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Abstract

Two principles: the complementary princi-001
ple and the consensus principle are widely002
acknowledged in the literature of multi-view003
learning. However, the current design of Multi-004
head self-attention, an instance of multi-view005
learning, prioritizes the complementarity while006
ignoring the consensus. To address this prob-007
lem, we propose an enhanced multi-head self-008
attention (EMHA). First, to satisfy the comple-009
mentary principle, EMHA removes the one-010
to-one mapping constraint among queries and011
keys in multiple subspaces and allows each012
query to attend to multiple keys. On top of that,013
we develop a method to fully encourage consen-014
sus among heads by introducing two interaction015
models, namely Inner-Subspace Interaction and016
Cross-Subspace Interaction. Extensive experi-017
ments on a wide range of language tasks (e.g.,018
machine translation, abstractive summarization019
and grammar correction, language modeling),020
show its superiority, with a very modest in-021
crease in model size.022

1 Introduction023

Transformer architectures (Vaswani et al., 2017)024

have yielded promising results on a wide range of025

natural language processing tasks (Devlin et al.,026

2019; Brown et al., 2020). A key factor contribut-027

ing to their success is the multi-head self-attention028

network (MHSA), which enables efficient model-029

ing of global dependencies among tokens in par-030

allel. Notably, instead of utilizing a single atten-031

tion mechanism, MHSA uses an ensemble of at-032

tention models, each models a small subspace, and033

finally aggregates these results to the final one. The034

core idea is similar to subspace learning (Blum and035

Mitchell, 1998) or multi-view learning (Chaudhuri036

et al., 2009).037

In the realm of multi-view learning, two funda-038

mental principles guide the research: the comple-039

mentary principle and the consensus principle (Xu040

et al., 2013). The complementary principle em- 041

phasizes that each data view may possess unique 042

knowledge not present in other views, prompting 043

the use of multiple views for a comprehensive and 044

accurate data description. On the contrary, the con- 045

sensus principle aims to maximize the agreement 046

on multiple distinct views. However, in the con- 047

text of MHSA design, most studies predominantly 048

focus on the complementary principle. This over- 049

sight is evident in their encouragement of diverse 050

information capture by different heads (Li et al., 051

2018; Cui et al., 2019) and the adoption of complex 052

aggregation operations (Li et al., 2019; Wang and 053

Tu, 2020). Some studies (Michel et al., 2019; Clark 054

et al., 2019; Voita et al., 2019; Behnke and Heafield, 055

2020) even consider the high similarity among at- 056

tention heads as a significant problem referred to 057

as attention redundancy. 058

Although diversity is crucial in multi-view learn- 059

ing, Dasgupta et al. (2001) has shown that simply 060

fusing diverse outputs does not guarantee improved 061

results: the probability of a disagreement of two 062

independent hypotheses upper bounds the error rate 063

of either hypothesis. The consensus principle high- 064

lights the need to minimize disagreement among 065

views to achieve better outcomes. In response to 066

the consensus principle, several studies (Kumar 067

and III, 2011; Kumar et al., 2011) have focused on 068

minimizing disagreement among views to achieve 069

better outcomes. However, in the context of MHSA 070

research, there is a tendency to prioritize comple- 071

mentarity over consensus among different attention 072

heads. Here we ask a question: Can striking a bal- 073

ance between these two principles be beneficial for 074

designing MHSA mechanisms? 075

However, encouraging such a consensus in multi- 076

head self-attention is challenging. In our prelim- 077

inary experiments, we find that directly utilizing 078

regularization terms can achieve this goal but can- 079

not improve performance. Drawing inspirations 080

from human behavior where group discussions and 081
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interactions foster consensus, we propose intro-082

ducing interactions among different subspaces in083

MHSA to achieve consensus.084

To this end, we propose a new multi-head085

self-attention variant: Enhanced Multi-Head Self-086

Attention, which encourages the consensus among087

attention heads while guaranteeing to contain suf-088

ficient information. To ensure information suffi-089

ciency, we propose a novel many-to-many map-090

ping scheme to generate numerous high-quality091

initial attention maps. This can generate more092

attention maps without suffering low-bottleneck093

problems (Bhojanapalli et al., 2020). On top of094

these sufficient attention maps, we propose two in-095

teraction components: inner-subspace interaction096

(ISI) and cross-subspace interaction (CSI). These097

hierarchical interaction modules fully encourage098

consensus among attention maps of different heads.099

The outcome of this work is an Enhanced Interac-100

tive Transformer (EIT) architecture in that MHSA101

is replaced with Enhanced Multi-Head Attention102

(EMHA). Our proposed EIT has been demonstrated103

to be simple to implement and highly parameter104

efficient, yet it consistently produces impressive105

results across a diverse set of tasks, including ma-106

chine translation, grammar error correction, ab-107

stractive summarization, and language modeling.108

In addition, we have developed a computationally109

efficient variant of EIT, which, while still maintain-110

ing strong performance on several tasks, is better111

suited for low-latency industrial applications.112

2 Preliminary: Multi-Head Self-Attention113

Multi-head self-attention (MHSA) is an efficient114

operation that can capture the interactions among115

tokens. Given an embedded input sequence X ∈116

RT×d, MHSA is defined as follows:117

Ai = Softmax(
(XWi

Q)(XWi
K)T

dk
) (1)118

O =
M∑
i=1

AiXWi
V W

i
O (2)119

where T denotes the sequence length, d is the in-120

put embedding dimension, dk is the head dimen-121

sion, M is the number of head partition on rep-122

resentations, Wi
Q,W

i
K ,Wi

O ∈ Rd×dk , Wi
O ∈123

Rdk×d. Ai represents the attention distribution124

of i-th head. Without special declaration, we use125

Qi,Ki,Vi to refer to XWi
Q,XWi

K ,XWi
V , re-126

spectively, which denotes the query, key and value127

in i-th head.128

3 Enhanced Interactive Transformer 129

We design a novel Enhanced Interactive Trans- 130

former (EIT) in which we replace the multi-head 131

self-attention with Enhanced Multi-Head Atten- 132

tion mechanism (EMHA) that encourages consen- 133

sus among different attention heads. Our method 134

mainly modified Eq. (1) but otherwise follows the 135

standard Transformer. 136

3.1 Many-to-Many Mapping Scheme 137

Intuitively, to achieve better consensus, multi-head 138

self-attention should first contain as much informa- 139

tion as possible. To achieve this goal, a natural idea 140

is to employ more attention heads in multi-head 141

self-attention. However, multi-head self-attention 142

with too many heads suffers from low bottleneck 143

problem (Bhojanapalli et al., 2020), resulting in 144

performance deterioration in practical applications. 145

Although various strategies like attention expan- 146

sion (Shazeer et al., 2020; Zhou et al., 2021b) have 147

been proposed, the information captured in their 148

attention maps remains limited due to an additional 149

linear transformation step, which can introduce re- 150

dundancy among the maps. 151

Q1

K1

Q2

K2

Q3

K3

Q4

K4K1 K2 K3 K4

S1 S2 S3 S4 S13 S14 S15 S16. . .

Generated Attention Maps: 16

Queries

Keys

Mappings

Figure 1: The illustration of many-to-many mapping
scheme (M = 4).

To alleviate this problem, we propose a novel 152

many-to-many (M2M) mapping scheme that en- 153

ables each query to attend to M keys instead of a 154

single key. As illustrated in Figure 1, four queries 155

and four keys can be served as two components in 156

a bipartite graph and each element in a component, 157

e.g., Q1, can interact with any elements in another 158

component, e.g., K1, . . . ,K4. Formally, suppos- 159

ing one with M heads, the i-th attention map can 160

be formally calculated as: 161

Si =
Q⌊(i−1)/M+1⌋(K(i−1)%M+1)T√

dk
(3) 162

where i ∈ {1, . . . ,M2}, Si ∈ RT×T is the atten- 163

tion maps without softmax, ⌊⌋ is the round down 164

operation and % is the mod operation. For example, 165

S4 is computed by Q1 and K4 when M = 4. 166
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Figure 2: Illustration of dual enhanced interaction in
EIT (M = 4). We omit the ReLU for simplicity.

Discussion. M2M demonstrates an increased ca-167

pacity to generate M times the number of attention168

maps when given identical input. This enhanced ca-169

pability can be attributed to effective utilization of170

a many-to-many mapping strategy by M2M, which171

fully leverages the original head features, such as Q172

and K. Notably, this approach successfully avoids173

the production of similar attention maps by employ-174

ing a dot-multiplication strategy to directly gener-175

ate the attention maps (See Figure 10). By avoiding176

the generation of redundant attention maps, M2M177

improves its ability to capture diverse and distinct178

patterns in the input data. As a result, it facilitates179

the subsequent creation of more comprehensive and180

informative representations. This module can also181

be viewed as a strategy to enhance complementary182

principle.183

3.2 Dual Enhanced Interaction184

As aforementioned, M2M enlarges the information185

capacity, which provides a prerequisite for encour-186

aging consensus among different heads. To encour-187

age consensus, a simple idea is to directly add a lin-188

ear transformation among attention maps (Shazeer189

et al., 2020; Zhou et al., 2021b; Wang and Tu,190

2020). While these methods can achieve perfor-191

mance improvements in vanilla Transformer set-192

tings, they are unsuitable in our framework. One193

key factor is that our framework encompasses a194

wealth of information; however, it also incorporates195

certain elements of noise. Such a coarse interaction196

fails to attain a satisfactory consensus.197

To address this problem, we propose a finer so-198

lution that is able to differentiate between relevant199

and irrelevant information, discarding the latter200

while fully capitalizing on the former. Two kinds of201

interactions among those attention maps are intro-202

duced hierarchically, the inner-subspace interaction203

and cross-subspace interaction.204

Two Relationships. We begin with identifying205

two important relationships: inner-subspace inter-206

action (ISI) relationship and cross-subspace inter- 207

action (CSI) relationship. As illustrated in Figure 208

1, the inner-subspace interaction (ISI) relationship 209

describes the connection among the attention maps 210

generated by the same query, e.g., attention maps in 211

the block of same color. These attention maps own 212

a closer relationship. The cross-subspace interac- 213

tion (CSI) relationship describes the collaboration 214

among different heads, which exists in the attention 215

maps generated by different queries, e.g., attention 216

maps from blocks of different color. 217

Inner-Subspace Interaction Modeling. One can 218

adopt the standard convolution operation via batch 219

transformation. However, such a way ignores the 220

difference among the ISI relationship constrained 221

by different queries, e.g., the ISI relationship in red 222

block and blue block in Figure 1. It is desirable 223

to preserve and enhance this distinction. To more 224

efficiently model the interaction within subspaces, 225

we therefore adopt group convolutions (Krizhevsky 226

et al., 2012), which use separate parameters to pro- 227

cess features from different groups. 228

Denote f(·) as a single layer group convolution. 229

As illustrated in Figure 2, given the output of M2M, 230

namely S, as input, ISI sub-module computed as: 231

Ṡ = f (1)(ReLU(f (0)(S))) (4) 232

where Ṡ ∈ RM×T×T is the output of the ISI sub- 233

module. We use MHisi to represent the intermedi- 234

ate number of heads in ISI sub-module and set the 235

number of groups in group convolutions to M . 236

Finally, we can obtain M high-quality attention 237

maps that effectively retain the benefits of using a 238

larger number of attention heads while discarding 239

irrelevant information. Such a process is another 240

key for Transformer to benefit from more heads 241

and is unique to our work. 242

Cross-Subspace Interaction Modeling. To ef- 243

ficiently model the cross-subspace interaction, we 244

adopt two-layer convolutions accompanied by the 245

ReLU activation to consist this sub-module. 246

Let us denote g(·) as a single layer convolution. 247

As illustrated in Figure 2, given the output of ISI, 248

namely Ṡ, as input, CSI sub-module computed as: 249

S̈ = g(1)(ReLU(g(0)(Ṡ))) (5) 250

where S̈ ∈ RM×T×T is the output of the CSI sub- 251

module. We use MHcsi to represent the intermedi- 252

ate number of heads in CSI sub-module. Finally, 253

we can obtain M final attention maps that fully 254

leverage the benefits of each head. 255
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3.3 Efficient Version of EIT256
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Figure 3: Illustration of dual enhanced interaction in ef-
ficient EIT (M = 4). We omit the ReLU for simplicity.

Despite the theoretically computational effi-257

ciency and parametric efficiency of group convolu-258

tions, they slow down the training in practice (Ma259

et al., 2018). To alleviate this issue, we provide260

another efficient version of EIT, namely E-EIT, by261

simplifying the design of dual enhanced interac-262

tion. As illustrated in Figure 3, both ISI and CSI263

adopt a single-layer operation. Formally, the dual264

enhanced interactions are computed as:265

S̈ = g(0)(ReLU(f (0) (S))), (6)266

where ReLU(f (0) (S)), namely as Ṡ,267

∈ RMH×T×T and S̈ ∈ RM×T×T and MH268

is a hyper-parameter, e.g. we set it as 32 for the269

base configuration. In this way, E-EIT avoids parts270

of memory consumption and somehow improves271

the computational efficiency.272

4 Experiment Settings273

We evaluated our EIT on four widely used bench-274

marks1: 1) Machine Translation, 2) Grammar Error275

Correction, 3) Abstractive Summarization, and 4)276

Language Modeling. The detailed architecture se-277

tups, training setups and evaluation setups were278

presented in Appendix A.279

4.1 Machine Translation280

Dataset. We selected two widely used corpus:281

WMT’14 English-German (En-De) translations (a282

large-scale dataset, 4.5M training sentence pairs)283

and WMT’16 English-Romanian (En-Ro) trans-284

lations (a small-scale dataset, 610K training sen-285

tence pairs). The validation and test sets are new-286

stest2013 and newstest2014, respectively. For the287

En-Ro task, it consists of 610K training sentence288

pairs. We preprocessed the data as the setups in289

Mehta et al. (2021). We performed shared BPE290

operations on both datasets to overcome the out-of-291

vocabulary (OOV) problem. Concretely, we set the292

1We also evaluated our EIT variants on some task beyond
natural language processing in Appendix.

size of BPE operations to 32K and 20K for En-De 293

and En-Ro datasets, resulting in a shared vocabu- 294

lary with sizes of 34040 and 19064, respectively. 295

Models. Our model architectures were based on 296

Transformer (Vaswani et al., 2017). We provided 297

three basic configurations, namely base, deep, and 298

big which follow the configurations in Vaswani 299

et al. (2017). We adopted a pre-normalization strat- 300

egy (Wang et al., 2019) considering training stabil- 301

ity under different configurations. 302

Training & Evaluation. We implemented our 303

models using Fairseq (Ott et al., 2019). Train- 304

ing employed 8 GEFORCE RTX 3090 cards for 305

WMT’14 En-De and 4 cards for WMT’16 En-Ro, 306

with batch sizes of 65536 and 16384, respectively. 307

In the En-De task, we completed 50K updates for 308

base, 50K for deep, and 100K for big models. We 309

utilized Adam (Kingma and Ba, 2015) with adamβ 310

(0.9, 0.997) as the optimizer, an invert sqrt learn- 311

ing rate scheduler with a rate of 0.002 and 16000 312

warmup updates, and 0.1 label smoothing for all 313

experiments. During evaluation, we used 4 beams 314

with a length penalty of 0.6 for En-De and 5 beams 315

with a length penalty of 1.3 for En-Ro. We ran each 316

experiment three times and reported the average 317

score. 318

4.2 Grammar Error Correction 319

Dataset. We also assessed EIT’s effectiveness 320

for grammar error correction, a crucial natural lan- 321

guage processing application. Our experiments 322

were conducted on the CONLL dataset, compris- 323

ing 827K training sentences. Following the setup 324

in (Chollampatt and Ng, 2018), we incorporated 325

the word-level dropout technique (Sennrich et al., 326

2016) to mitigate overfitting. We configured BPE 327

operations to 30K. 328

Models. We selected the Transformer (Vaswani 329

et al., 2017) and SURFACE (Liu et al., 2021) 330

for comparison. These architectures adhere to 331

the Transformer-base configuration outlined in 332

Vaswani et al. (2017). 333

Training & Evaluation. We trained grammar 334

error correction models on 8 GEFORCE RTX 3090 335

cards, using a batch size of 65536 and completing 336

14K total updates. Further training specifics can be 337

found in Table 11. For testing, we configured the 338

number of beams to 6 and the length penalty to 0.6. 339
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Type Model
WMT’14 En-De

θ (M) BLEU sBLEU

Head
Modification

Refiner (Zhou et al., 2021b) - 27.62 -
Talking-Head (Shazeer et al., 2020) - 27.51 -
Collaboration (Wang and Tu, 2020) - 27.55 -
DYROUTING (Li et al., 2019) 297 28.96 -
DISAGREE (Li et al., 2018) - 29.28 -
MoA (Zhang et al., 2022) 200 29.40 -
FISHformer (Nguyen et al., 2022) - 29.57 -

Localness
DMAN (Fan et al., 2021) 211 28.97 27.8
CSAN (Yang et al., 2019) - 28.74 -
UMST (Li et al., 2022) 242 29.75 -

Our
System

(Pre-Norm)

Transformer base 61.56 27.13 26.0
EIT base 61.63 28.00 26.9
E-EIT base 61.57 27.72 26.7

Transformer 48L 193.96 29.60 28.5
EIT 48L 194.32 30.25 29.2
E-EIT 48L 194.14 30.16 29.1

Transformer big 211.22 28.80 27.7
EIT big 211.55 29.79 28.7
E-EIT big 211.30 29.61 28.5

Table 1: Results on WMT’14 En-De Task.

Type Model
WMT’16 En-Ro

θ (M) BLEU

Basic
Baseline

Transformer (Liu et al., 2020) - 34.30
Transformer (Kasai et al., 2020) 34.16
DELIGHT (Mehta et al., 2021) 53 34.70

Head
modification

Refiner (Zhou et al., 2021b) 54 34.25
Talking-Head (Shazeer et al., 2020) 54 34.35
Collaboration (Wang and Tu, 2020) 54 34.64
FISHformer (Nguyen et al., 2022) 49 34.42
MoA (Zhang et al., 2022) 56 34.39

Localness DMAN (Fan et al., 2021) - 34.49
UMST (Li et al., 2022) 60 34.81

Our
System

(Pre-Norm)

Transformer base 53.90 34.23
EIT base 53.98 35.10
E-EIT base 53.92 35.01

Transformer 24L 110.64 35.00
EIT 24L 111.09 35.40
E-EIT 24L 110.73 35.35

Transformer big 195.88 34.44
EIT big 196.40 34.91
E-EIT big 195.97 34.67

Table 2: Results on WMT’16 En-Ro Task.

4.3 Abstractive Summarization340

Dataset. We also tested the effectiveness of EIT341

on abstractive summarization task, a task relying342

on the ability of modeling long dependency. Shared343

BPE operations of 30K were applied to the training344

data, resulting in a vocabulary of 32,584 words.345

Models. Our models were all under base config-346

uration, e.g., embedding dimension, hidden dimen-347

sion, M are set to 512, 2048 and 8, respectively.348

Training & Evaluation. We trained abstractive349

summarization models on 8 GEFORCE RTX 3090350

cards, utilizing a batch size of 131,072 and com-351

pleting 30,000 total updates. We incorporated a352

weight decay strategy with a ratio of 0.0001. We353

set warming updates to 16000. For testing, we con-354

figured 4 beams and a length penalty of 2.0, with355

minimum and maximum lengths set to 55 and 140,356

respectively.357

4.4 Language Modeling358

Dataset. We assessed EIT in a language mod-359

eling task using WikiText-103 to investigate its360

capacity for handling long dependencies. The train-361

ing, validation, and test sets encompass 103 million362

words (from 28,000 articles), 218,000 words, and363

246,000 words, respectively. We adhered to the364

official preprocessing procedure (Ott et al., 2019).365

Models. We chose the Adaptive Input Trans-366

former (Baevski and Auli, 2019) as the baseline367

model. All models are 8-layer models with 8 heads.368

Training & Evaluation. The training and evalu- 369

ation settings adhered to the standard PyTorch (Ott 370

et al., 2019) language modeling guidelines. We 371

trained both the baseline and EIT with 286,000 372

updates. During evaluation, we selected the check- 373

point with the best performance on the valida- 374

tion set. Parameters such as max-tokens, max- 375

sentences, and context-window were set to 3072, 1, 376

and 2560, respectively. 377

5 Experiments Results 378

5.1 Machine Translation 379

Table 1 and Table 2 display the results on En-De 380

and En-Ro tasks, respectively. First, we can see 381

that Our EIT variants demonstrate superior perfor- 382

mance compared to the vanilla Transformer across 383

various configurations on both tasks. This indicate 384

the effectiveness of EIT variants. Notably, E-EIT, 385

an alternative to satisfy the low-latency of indus- 386

trial application, can deliver competitive results 387

compared with the full version while maintaining 388

fast processing speeds. 389

Besides, Our EIT can beat all selected methods 390

of head modification and localness modeling, in- 391

cluding the latest methods such as MoA (Zhang 392

et al., 2022), Fishformer (Nguyen et al., 2022), 393

UMST (Li et al., 2022), on both datasets. This 394

highlights the fact that focusing on a single as- 395

pect, such as complementarity, is inadequate for 396

achieving optimal results. It is essential to take into 397

account both complementarity and consensus to 398

ensure the best outcomes. 399
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Model Precision Recall F0.5

Transformer ‡ 64.84 36.61 56.18
Talking-Head (Shazeer et al., 2020) 64.32 36.07 55.61
SURFACE (Liu et al., 2021) 66.80 35.00 56.60
EIT 69.98 32.80 57.05
E-EIT 69.85 33.36 57.31

Table 3: Results on the correction task.

Model RG-1 RG-2 RG-L

Transformer ‡ 40.84 18.00 37.58
Talking-Head (Shazeer et al., 2020) 41.26 18.34 38.06

PG-Net (See et al., 2017) 39.53 17.28 36.38
MADY (Wang et al., 2021) 40.72 17.90 37.21
DMAN (Fan et al., 2021) 40.98 18.29 37.88
BOTTOM-UP (Gehrmann et al., 2018) 41.22 18.68 38.34
SURFACE (Liu et al., 2021) 41.00 18.30 37.90
EIT 41.62 18.70 38.33
E-EIT 41.58 18.63 38.28

Table 4: Results on the summarization task.

5.2 Grammar Error Correction400

Table 3 presented the results on the CONLL401

dataset’s test set. Both EIT and E-EIT outper-402

form the standard Transformer, showing improve-403

ments of 0.87 and 1.13 in terms of F0.5, respec-404

tively. Compared to the strong baseline SURFACE,405

our methods (EIT and E-EIT) still outperform it406

by 0.45 and 0.71 F0.5 points, respectively. Im-407

portantly, both EIT and E-EIT require negligible408

extra parameters, less than 0.1M, indicating their409

enhanced expressive power. Notably, the Talking410

Heads model underperforms, possibly due to imper-411

fect hyper-parameters, needing more fine-tuning.412

An interesting observation is that EIT variants413

seem to trade recall for precision. This behavior414

is due to EIT’s foundation in both complementary415

and consensus principles, which naturally generate416

more precise attention maps by filtering out uncer-417

tain information. As a result, EIT primarily makes418

corrections where it is most confident.419

5.3 Abstractive Summarization420

Table 4 shows results on test set of CNN-DailyMail.421

We can see EIT can achieve scores of 41.62422

ROUGE-1 points, 18.70 ROUGE-2 points and423

38.33 ROUGE-L points, outperforming the stan-424

dard Transformer by 0.78, 0.70 and 0.75 in terms425

of ROUGE-1, ROUGE-2 and ROUGE-L points, re-426

spectively. Compared with other strong baselines,427

our EIT can still show superiority on these datasets428

in terms of ROUGE-1 points, e.g., EIT surpasses429

SURFACE, DMAN, BOTTOM-UP, Talking-Head by430

Model Depth θ (M) Test PPL

Adaptive Transformer 8 146.49 21.11
EIT 8 146.50 20.00
E-EIT 8 146.49 20.19

Table 5: Results on the WikiText-103 dataset.

# Model En-De En-Ro
1 Transformer 27.13 34.23

2 EIT 28.00 35.10
3 - Many-to-Many 27.39 34.71
4 - Inner-Subspace Interaction 25.79 32.50
5 - Cross-Subspace Interaction 27.70 34.53

Table 6: Ablation study on two tasks. Time denotes the
training computing time.

0.62, 0.64, 0.40 and 0.36 in terms of ROUGE- 431

1 points, respectively. Notably, our E-EIT can 432

achieve comparable performance with EIT. 433

5.4 Language Modeling 434

Table 5 presents the perplexity scores of various 435

models on the WikiText-103 test set. Our EIT and 436

E-EIT models outperform the baseline with PPL 437

scores of 1.11 and 0.92, respectively. These results 438

highlight the high expressiveness of our methods, 439

as the improvements are achieved with only a neg- 440

ligible increase in parameters. Also, these results 441

demonstrate the universal of our approach as apply- 442

ing our approach to decoder-side can also achieve 443

improvement. 444

6 Ablation Studies 445

Settings. We gave detailed description about the 446

settings of ablation studies. 447

• EIT - M2M: We directly applied ISI and CSI 448

modules to the attention maps generated by 449

Eq. (1). Notably, in both ISI and CSI, we 450

maintain a consistent ratio between hidden 451

size and input size, e.g., 2 and 8 for ISI and 452

CSI, respectively, mirroring the EIT settings. 453

• EIT - ISI: we directly applied CSI module to 454

the M2 attention maps generated by M2M. 455

• EIT - CSI: we only applied ISI module to the 456

M2 attention maps generated by M2M. 457

Results. Table 6 summarized the impacts of re- 458

moving each module on En-De and En-Ro tasks, 459

respectively. First, we found removing any mod- 460

ule (or sub-module) results in obvious performance 461
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Figure 4: Cosine similarity among attention maps of
different models on En-De task.

degradation (#3,4,5 vs. #2). These evidences indi-462

cate the indispensability of these modules.463

Notably, when removing the M2M module (#2464

vs. #3), we observe an obvious decline in per-465

formance on two translation tasks, indicating the466

importance of M2M module. Within our EIT frame-467

work, the M2M module, motivated by the comple-468

mentary principle, serves the critical purpose of469

supplying necessary information for subsequent470

interactions. Therefore, its absence impedes the471

effectiveness of our two interaction models.472

Furthermore, the omission of the ISI sub-module473

(#2 vs. #4) results in a significant and noticeable de-474

crease in BLEU scores. One possible explanation is475

that while increasing the number of heads enhances476

the information capacity, it also introduces a cer-477

tain degree of irrelevant information (noise) into478

the attention maps. Consequently, a direct fusion479

of these heads fails to yield satisfactory outcomes.480

However, our EIT framework overcomes this chal-481

lenge by incorporating the ISI sub-module, which482

provides an effective mechanism for discarding ir-483

relevant information while retaining the benefits484

of the previous heads. This unique and innovative485

design sets our approach apart from the attention486

expansion technique (Zhou et al., 2021b).487

7 Analysis on Attention Heads Behavior488

7.1 EIT owns Higher Consensus489

As depicted in Figure 4, it is evident that EIT ex-490

hibits the highest average similarity among atten-491

tion maps from various heads, surpassing all other492

models. This finding suggests that EIT demon-493

strates a greater consensus among attention heads.494

We attribute this achievement to the significant role495

played by M2M and dual enhanced interaction.496

M2M facilitates the generation of rich information,497

while dual enhanced interaction efficiently lever-498

ages and refines the available information from499

different attention heads.500
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0.10

0.40

0.70

1.00

Transformer-6L

Transformer-24L
Transformer-48L

EIT-6L
EIT-24L
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Figure 5: Token correlation of Transformer and EIT on
En-De task.

Discussions. This phenomenon is contradictory 501

to the findings of previous studies about head inter- 502

action (Wang et al., 2022a). We speculate that this 503

is because our interactions are more efficient, not 504

only relying on an adequate number of attention 505

heads but also operating in a hierarchical manner. 506

These characteristics result in a consensus among 507

the attention maps. 508

7.2 Benefits of High Consensus 509

EIT Learns High-quality Representations We 510

further investigate how consensus affect the layer 511

representations. Following (Gong et al., 2021; 512

Dong et al., 2021; Shi et al., 2022; Wang et al., 513

2022b), we adopt the token correlation T C to mea- 514

sure the quality of features (the lower, the better). 515

The token correlation is computed by the Pearson 516

correlation coefficient (Benesty et al., 2009). 517

Figure 5 exhibits the results on the test set of 518

the En-De task. Notably, the features learned by 519

EIT exhibit lower token correlation compared to 520

the vanilla Transformer across all configurations. 521

This indicates that EIT effectively learns improved 522

layer representations. 523

Furthermore, we observe that the vanilla Trans- 524

former consistently maintains relatively high token 525

correlation from the first layer. This observation 526

aligns with prior study (Shleifer and Ott, 2022), 527

suggesting that lower layers struggle to optimize ef- 528

fectively in pre-normalization Transformers. How- 529

ever, our EIT approach alleviates this issue. 530

EIT Makes Head Pruning Easier To further 531

explore the possibility of pruning the consensus 532

attention maps, we introduce a simple head mask 533

mechanism for head pruning during the inference 534

phase as follows:: O =
∑M

i=1 ηiA
iXWi

V W
i
O, 535

where ηi ∈ {0, 1}. Table 7 exhibits the results on 536

En-De tasks. Note that the head selection process 537

is done in a straightforward manner, such as se- 538

lecting heads by index, without considering their 539

relative importance as highlighted in previous stud- 540

7



Model Pruning Ratio
0.0% 50.0% 87.5%

Transformer-48L 29.60 27.64 1.86
EIT-48L 30.25 29.09 21.12

Table 7: BLEU scores of models with head pruning on
the En-De task.

ies (Michel et al., 2019). Additionally, the head541

pruning operations are exclusively applied to the542

encoder side. It is evident that EIT exhibits a high543

tolerance for head pruning without experiencing544

significant deterioration in performance. Such phe-545

nomenon sheds light on the researches of head546

pruning and inference speeding.547

8 Analysis of Computational Efficiency548

MACs Comparison. Table 8 displayed MACs549

comparison between EIT variants and transformer550

baselines. We can see that EIT can achieve an im-551

provement of 0.87 BLEU points with only extra552

0.1B MACs and 0.07M parameters. This indicated553

the efficiency of our EIT architecture. Besides, the554

efficient version of EIT. the E-EIT can achieve sim-555

ilar improvements with even fewer extra resource556

consumption.557

Resource Comparison. In addition to theoreti-558

cally exploring the efficiency of EIT variants, we559

also measured the practical computational con-560

sumption during training process. Without losing561

generality, we focused on the model for the base562

configuration. We can see that EIT cost 8% more563

memory consumption and 45% more training costs564

than the baseline with a depth of 6. To mitigate this,565

we have proposed the E-EIT which only costs 5%566

more memory consumption and 10% more train-567

ing costs than the baseline but delivered similar568

performance compared to EIT. Notably, as shown569

in Table 1, the performance gap between EIT and570

E-EIT decreases as the model capacity increases.571

9 Related Work572

Low Bottleneck in Multi-Head Attention The573

"Low Bottleneck" issue in Multi-head Self-574

Attention (MHSA) occurs when adding more heads575

to Transformers does not correspondingly improve576

performance. Bhojanapalli et al. (2020) first identi-577

fied this issue, attributing it to the diminishing head578

dimension as the number of heads increases, which579

limits the creation of precise attention maps. In580

Model θ (M) MACs Time Memory BLEU

Transformer 61.56 10.0B - - 27.13
EIT 61.63 10.1B 1.45× 1.08× 28.00
E-EIT 61.57 10.0B 1.10× 1.05× 27.72

Table 8: EIT variants are efficient as compared to
transformers. BLEU score is reported on the WMT’14
En-De dataset. We used 20 source and target tokens for
computing multiplication-addition operations (MACs).

response, Shazeer et al. (2020) introduced "talking- 581

head attention," using two linear transformations 582

around the SoftMax function to address this bottle- 583

neck. Later, Zhou et al. (2021b) proposed a frame- 584

work involving "ghost heads" to enrich attention 585

patterns, differentiating from talking-head attention 586

in the positioning of linear transformations and the 587

number of ghost heads. Our approach introduces a 588

many-to-many mapping in MHSA, using existing 589

queries and keys for more attention maps through 590

direct query-key multiplication. 591

Improved Multi-Head Mechanism Previous 592

work has shown that multi-head attention can be 593

further enhanced by encouraging individual atten- 594

tion heads to extract distinct information (Li et al., 595

2018; Cui et al., 2019; Sukhbaatar et al., 2019; Guo 596

et al., 2020; Hao et al., 2019). Another branch of re- 597

search is designing more complex interactive mod- 598

eling to make better use of the multiple subspace 599

information (Shazeer et al., 2020; Wang and Tu, 600

2020; Li et al., 2019). Besides, Voita et al. (2019) 601

empirically demonstrates that some heads in atten- 602

tion are useless and can be pruned without perfor- 603

mance degradation. Along this line, researchers in- 604

vestigate how to efficiently cut off redundant heads 605

(Michel et al., 2019; Behnke and Heafield, 2020). 606

Different from them, our study utilized the benefits 607

of both diversity and consistency. 608

10 Conclusions 609

In this paper, we propose EIT, an alternative to the 610

Transformer architecture. It further advances the 611

multi-head schema by fully leveraging two prin- 612

ciples in multi-view learning: the complementary 613

principle and the consensus principle. In addition, 614

E-EIT can be served as another choice consider- 615

ing the trade-off between performance and com- 616

putation efficiency. Experimental results on four 617

widely-used tasks demonstrate the effectiveness 618

of EIT-variants, which deliver consistent improve- 619

ments to the standard Transformer. 620
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Limitations621

Besides the advantages endowed by EIT, there still622

exists a shortcoming that the computational effi-623

ciency of the group convolution cannot be satis-624

factory, although it is computationally efficient in625

theory. This is due to the lack of high-efficiency626

CUDA kernel support. We will release a more ef-627

ficient optimization of group convolutions in the628

soon future.629
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A Detailed Setups of Experiments923

A.1 Machine Translation Task924

Dataset We evaluated our approach on two925

widely used machine translation datasets: WMT’14926

En-De and WMT’16 En-Ro. The En-De dataset927

contains approximately 4.5M tokenized training928

sentence pairs. We selected newstest2013 and new-929

stest2014 as the validation and test data, respec-930

tively. As for the En-Ro dataset, it consists of931

0.6M tokenized training sentence pairs. We per-932

formed shared BPE operations on both datasets to933

overcome the out-of-vocabulary (OOV) problem.934

Concretely, we set the size of BPE operations to935

32K and 20K for En-De and En-Ro datasets, result-936

ing in a shared vocabulary with sizes of 34040 and937

19064, respectively.938

Model Configuration Our model architectures939

are based on Transformer (Vaswani et al., 2017).940

We provided three basic configurations, namely941

base, deep, and big which follow the configura-942

tions in Vaswani et al. (2017). We adopted a pre-943

normalization strategy (Wang et al., 2019) consider-944

ing training stability under different configurations.945

The detailed settings of hyper-parameters are given946

in Table 10.947

Training & Evaluation Our implementations948

are based on Fairseq (Ott et al., 2019). Our ex-949

periments are performed on the GEFORCE RTX950

3090 cards. We use 8 GEFORCE RTX 3090 cards951

to train models for the WMT’14 En-De task. As952

for the models on the WMT’16 En-Ro task, we953

train them on 4 GEFORCE RTX 3090 cards. The954

batch sizes for En-De and En-Ro tasks are 65536955

and 16384, respectively. The total updates are 50K,956

50K and 100K for base, deep and big in En-De957

task, respectively. We adopt Adam (Kingma and958

Ba, 2015) as an optimizer with an adamβ of (0.9,959

0.997). The learning rate scheduler is invert sqrt960

with a learning rate of 0.002 and warmup updates961

of 16000. We also adopt label smoothing with a962

ratio of 0.1 in all the experiments. More details are963

exhibited in Table 11. During the evaluation pro-964

cess, we set the beam number to 4 and the length965

penalty to 0.6 for the En-De task. As for the En-966

Ro task, the number of beams is 5 and the length967

penalty is 1.3.968

A.2 Abstractive Summarization Task969

Dataset For abstractive summarization, we con-970

duct experiments on a widely used corpus, e.g.,971

CNN/DailyMail dataset. It consists of 287K train- 972

ing documents. Shared BPE operations with a size 973

of 30K are performed on all the training data, re- 974

sulting in a vocabulary of 32584. 975

Model Configuration We only provide the base 976

configuration of our EIT and E-EIT for abstractive 977

summarization. The details are presented in Table 978

10. 979

Training & Evaluation We train models for an 980

abstractive summarization task on 8 GEFORCE 981

RTX 3090 cards with a batch size of 131072 and 982

total updates of 30K. We adopt a weight decay strat- 983

egy with a ratio of 0.0001. Other hyper-parameters 984

are the same as that in machine translation tasks. 985

You can find their settings in Table 11. During 986

testing, the number of beams is set to 4 and the 987

length penalty is set to 2.0. Besides, we set the min- 988

imal length and maximum length to 55 and 140, 989

respectively. 990

A.3 Grammar Error Correction Task 991

Dataset For the grammar error correction task, 992

we select the CONLL dataset to evaluate our ap- 993

proach. The CONLL dataset consists of 827K 994

training sentences. We replicate the setup in Chol- 995

lampatt and Ng (2018) and adopt the word-level 996

dropout technique (Sennrich et al., 2016) to allevi- 997

ate the overfitting problem. More details are listed 998

in Table 9. 999

Model Configuration For grammar error correc- 1000

tion task, we only provide the base configuration 1001

of our EIT and E-EIT. The details are presented in 1002

Table 10. Notice that the models on this task adopt 1003

a post-normalization strategy. 1004

Training & Evaluation We train models for the 1005

grammar error correction task on 8 GEFORCE 1006

RTX 3090 cards. The batch size is 65536 and the 1007

total updates are 14K. More training details are 1008

shown in Table 11. During testing, the beams and 1009

length penalty are set to 6 and 0.6, respectively. 1010

A.4 Automatic Disease Diagnosis Task 1011

Dataset For the automatic disease diagnosis task, 1012

we select the ABIDE dataset to evaluate our ap- 1013

proach. The ABIDE dataset consists of 1009 brain 1014

networks from 1009 real samples of 17 interna- 1015

tional sits. Due to the heterogeneity of this data, 1016

we adopt the shared data with re-standardized data 1017

splitting in Kan et al. (2022). Specifically, 70%, 1018
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Dataset Sentence BPE Vocab
Train Dev Test

WMT’14 En-De 4.5M 3.0K 3.0K 32K 34040
WMT’16 En-Ro 0.6M 2.0K 2.0K 20K 19064
CNN/DailyMail 287K 13.0K 11.0K 30K 32584
CONLL 827K 5.4K 1.3K 30K 33136
WikiText-103 103M 218K 246K - 267740

Table 9: The details of datasets of language tasks.

Task Model Configuration M MH MHisi MHcsi r Kisi
h Kisi

w Kcsi
h Kcsi

w

MT

EIT

base 8 - 128 64 8 1 7 1 3
deep 8 - 128 64 8 1 7 1 3
big 16 - 256 256 16 1 7 1 3

E-EIT

base 8 32 - - 8 1 7 1 7
deep 8 32 - - 8 1 7 1 7
big 16 64 - - 16 1 7 1 7

AS
EIT base 8 - 8 64 8 1 1 1 1

E-EIT base 8 16 - - 8 1 1 1 1

GEC
EIT base 8 - 128 128 8 1 7 1 3

E-EIT base 8 64 - - 8 1 7 1 7

LM
EIT big 8 - 64 32 8 1 1 1 1

E-EIT big 8 8 - - 8 1 1 1 1

Table 10: The configurations of models on three sequence generation tasks. MT, AS, GEC and LM denote machine
translation, abstractive summarization, grammar error correction and language modelling, respectively.

Hyper-parameter WMT’14 En-De WMT’16 En-Ro CNN/DailyMail CONLL WikiText-103

GPUs 8 4 8 8 8
Batch 4096 4096 4096 4096 1024
UF 2 1 4 2 8
Optimer Adam Adam Adam Adam Nag
Adamβ (0.9, 0.997) (0.9, 0.997) (0.9, 0.997) (0.9, 0.980) -
LR 0.0020 0.0020 0.0020 0.0015 0.0001
LR scheduler inverse sqrt inverse sqrt inverse sqrt inverse sqrt Cosine(t-mult=2)
Initial LR 1e−7 1e−7 1e−7 1e−7 1e−7

Total updates 50K (100K) 25K 30K 14K 286K
Warmup updates 16000 8000 8000 4000 16000
Weight decay 0.0000 0.0000 0.0001 0.0001 0.0000
Label smoothing 0.1 0.1 0.1 0.1 0.0
Dropout 0.1 (0.3) 0.1 (0.3) 0.1 0.2 0.3
Attention dropout 0.1 0.1 0.1 0.1 0.1
ReLU dropout 0.1 0.1 0.1 0.1 0.1
Word dropout 0.0 0.0 0.0 0.2 0.1

Table 11: The training setups of different tasks. UF denotes the update frequency of the gradient. (.) lists the values
of hyper-parameters under the big configuration, which vary from the values under the base configuration.

10% and 20% samples are served as the training,1019

validation and test sets, respectively.1020

Model Configuration For ABIDE task, we still 1021

follow the model configuration in Kan et al. (2022). 1022

Specifically, we build our BrainNetEITF with two- 1023
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layer encoder. The number of heads M are set to 41024

for each layer.1025

Training & Evaluation We train all models in-1026

cluding the BrainNetTF and BrainNetEITF fro1027

200 epochs on a single GEFORCE RTX 30901028

card. Each model is trained by 5 times. We adopt1029

Adam (Kingma and Ba, 2015) as an optimizer with1030

an initial learning rate of 10−4 and a weight decay1031

of 10−4. The batch size is set to 64. We adopt the1032

checkpoint of the final epoch for evaluating the test1033

set.1034

A.5 Language Modeling Task1035

Dataset For the language modeling task, we se-1036

lect the WikiText-103 dataset to evaluate our ap-1037

proach. The training set consists of 103M words1038

from 28K articles. While for the validation and test1039

sets, they are made up of 218K and 246K words, re-1040

spectively. In details, we follow the instructions in1041

Fairseq (Ott et al., 2019) to obtain and preprocess1042

the data. The details are listed in Table 9.1043

Model Configuration For WikiText-103 task,1044

Both baseline and our model are all 8-layer big1045

model with 8 heads. Note that the baseline we1046

adopted are adaptive input transformer (Baevski1047

and Auli, 2019). In this task, the kernel sizes in1048

DEI are all set to 1.1049

Training & Evaluation The training and evalua-1050

tion settings all follow the standard instructions for1051

language modeling in PyTorch (Ott et al., 2019).1052

We train both baseline and EIT with 286000 up-1053

dates. The details are given in Table 11. As for the1054

evaluation process, we adopt the checkpoint per-1055

forming best on the validation set. We set the max-1056

tokens, max-sentences, context-window to 3072, 11057

and 2560, respectively.1058

B Details of Metrics1059

B.1 Calculation of Head Distance1060

Inspired by the attention metrics in Zhou et al.1061

(2021a) and Wang et al. (2022b), we measure the1062

distance between different heads by calculating1063

cosine similarity among attention maps. Notice1064

that our metric focuses on the diversity of attention1065

maps, which is quite different from them. Denote1066

the dataset as D, and the attention map of h-th head1067

of l-th layer of i-th sample denotes as A(h,l,i), the1068

head similarity in l-th layer is computed by averag-1069

ing the cosine similarity of every two heads in i-th1070

layer across all samples as:1071

HD(l) =
1

|D|
1

M(M − 1)

1

T

|D|∑
i=1

(
M∑
j=1

M∑
k=1

T∑
t=1

Cosine(A
(j,l,i)
t,: ,A

(k,l,i)
t,: )

−M)

(7) 1072

where |D| denotes the size of dataset, M is the 1073

number of partition of features in attention, T is the 1074

sequence length and Cosine(·) denotes the cosine 1075

similarity function. We set D to the test set of the 1076

corresponding task. The obtained head similarity 1077

ranges from [0, 1]. The larger the head similarity, 1078

the lower the distances between different heads are. 1079

B.2 Calculation of Token Correlation 1080

We define a metric T C, which measures the correla- 1081

tion among the representations of different tokens. 1082

Denote the dataset as D, and the sequence represen- 1083

tation of i-th sample in l-th layer denotes as X(l,i), 1084

the token correlation of in l-th layer is computed 1085

as: 1086

T C(l) =
1

|D|
1

T (T − 1)

|D|∑
i=1

(

T∑
j=1

T∑
k=1

ρ(X
(l,i)
j ,X

(l,i)
k )− T )

(8) 1087

where ρ(·) denotes the pearson correlation func- 1088

tion. Intuitively, the larger the T C is, the higher the 1089

token correlation is, degrading the model’s learning 1090

capacity (Gong et al., 2021). 1091

C Detailed added parameters of our 1092

methods 1093

The detailed parameters of models on all tasks are 1094

listed in Table 12 and Table 13. We can see that 1095

the increased parameters are negligible on all tasks. 1096

Thus, we can exclude the effect of increasing pa- 1097

rameters on performance. 1098

14



Model
En-De En-Ro

Base Deep-48L Big Base Deep-24L Big
Transformer 61.56 M 193.96 M 211.22 M 53.90 M 110.64 M 195.88 M
EIT 61.63 M 194.32 M 211.55 M 53.98 M 111.09 M 196.40 M
E-EIT 61.57 M 194.14 M 211.30 M 53.92 M 110.73 M 195.97 M

Table 12: Detailed parameters of models on WMT En-De and WMT En-Ro tasks.

Model CNN-DailyMail CONLL WikiText-103 ABIDE
Transformer 60.82 M 61.10 M 146.49 M 3.98 M
EIT 60.83 M 61.19 M 146.50 M 3.98 M
E-EIT 60.82 M 61.15 M 146.49 M 3.98 M

Table 13: Detailed parameters of models on CNN-DailyMail, CONLL, WikiText-103 and ABIDE tasks.

C.1 Efficiency Comparison1099

Despite the performance evaluation, the memory1100

consumption and computational cost are also two1101

major concerns in the literature. Figure 6 also dis-1102

plays the memory consumption and computational1103

cost of models on the En-De task. EIT only costs1104

8.5% more memory consumption and 44.4% more1105

training costs than the baseline with a depth of 6.1106

However, the extra consumption goes larger as the1107

depth goes deeper.1108

Besides, as aforementioned, we elaborately de-1109

sign an efficient version E-Eit that only costs 9.4%1110

more memory consumption and 21.7% more train-1111

ing costs than the baseline under all the configura-1112

tions on average. In this work, the many-to-many1113

mapping rule is only applied on the encoder side.1114

This is because the proposed M2M module and the1115

subsequent ISI and CSI sub-modules will signifi-1116

cantly enlarge the inference cost due to the heavy1117

use of product attention on the decoder side, al-1118

though it can attain further benefits in terms of1119

BLEU.1120

D Visualization of Training and1121

Validation Perplexity1122

We plot the training and validation perplexity of1123

Transformer and our EIT on the WMT’14 task in1124

Figure 7. We can see that our EIT owns lower train-1125

ing and validation perplexity than Transformer.1126

E Hyper-Parameters Analysis (Kernel1127

Size and Hidden Size)1128

Since there are several hyper-parameters in both1129

ISI and CSI sub-modules, it is necessary to figure1130

out how they affect performance. Figure 8 (a-d)1131

plots the performance of EIT against the kernel1132

size and the hidden size. We can see that EIT can1133

outperform Transformer in all choice of kernel size1134

and hidden size. This observation can further help 1135

us trade off efficiency and performance well. For 1136

example, we can set csi kernel size to 1 or isi kernel 1137

size to 3 or MHisi to M2 or MHcsi to 4M to own 1138

a more efficient EIT. 1139

F Local Analysis 1140

Local modeling is one of the widely accepted 1141

ways to improve the expressiveness of Trans- 1142

former (Yang et al., 2019; Fan et al., 2021; Li et al., 1143

2022). In dual enhanced interaction, we apply con- 1144

volution operations to attention maps, which has 1145

the potential to introduce local biases. To figure 1146

it out, we measure the localness of attention maps 1147

since if there is a local bias, each token will dis- 1148

tribute larger attention weights on their neighboring 1149

tokens. We adopt the localness metric of Fan et al. 1150

(2021), denoted as C (higher is better). More details 1151

are presented in Appendix. 1152

We plot the C value within a local region w = 1153

0.1 ∗ T + 1, of models in En-De task and CNN- 1154

DailyMail task in Figure 9. The value is computed 1155

over the test set. Due to the long sequence length, 1156

we only use a subset of the test set consisting of 1157

1000 samples for the CNN-DailyMail task. The re- 1158

sults (mean) show no significant local enhancement 1159

phenomena in both tasks. Note that the attention 1160

maps in the first layer of EIT on the abstractive 1161

summarization have a strong local pattern, but the 1162

kernel sizes are set to 1 on this task. So we con- 1163

clude that the improvements do not come from 1164

local enhancement. 1165

G Evaluation on Automatic Brain Disease 1166

Diagnosis Task 1167

We further inspect the potential of EIT to be severed 1168

as a general method beyond language tasks. The 1169

automatic brain disease diagnosis, a disease classi- 1170
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Model AUROC ACC SEN SPE

MvS-GCN (Wen et al., 2022) 69.0 69.4 69.3 64.5
BrainNetTF (Kan et al., 2022) 80.9±2.6 71.8±3.0 71.1±4.1 72.5±1.9
BrainNetEITF 81.3±2.7 73.8±3.2 73.9±5.8 75.6±4.7
BrainNetE-EITF 82.9±3.3 74.6±3.2 72.2±5.3 76.8±3.0

Table 14: AUROC, ACC, SEN and SPE points on
ABIDE task.

fication task that highly relies on precisely learning1171

relationships among different brain regions has re-1172

cently been dominated by graph convolution (Wen1173

et al., 2022) and Transformer (Kan et al., 2022).1174

We select a widely used real-world fMRI dataset:1175

Autism Brain Imaging Data Exchange (ABIDE),1176

which consists of 1009 brain networks from 17 in-1177

ternational sites, of which 516 samples are autism1178

spectrum disorder patients. We follow the prepro-1179

cessing setup in Kan et al. (2022) and adopt the1180

CC200 (Craddock et al., 2012) as the Regin-of-1181

Interest (ROI) partition template. We select two1182

latest methods, the Mvs-GCN (Wen et al., 2022)1183

and BrainNetTF (Kan et al., 2022), as our compar-1184

ison. The experimental setups and configurations1185

of our BrainNetEITF and BrainNetEEITF are the1186

same as in Kan et al. (2022). Each experiment1187

is conducted 5 times and we report the mean and1188

standard deviation of the four metrics: Accuracy1189

(ACC), AUROC, Sensitivity (SEN) and Specificity1190

(SPE).1191

Encoder Layers Training Time En-De

[1] 1.07× 27.76
[2] - 27.46
[3] - 27.40
[4] - 27.38
[5] - 27.30
[6] - 27.48

[1− 2] 1.13× 28.08
[1− 3] 1.20× 28.02
[1− 4] 1.27× 28.05
[1− 5] 1.36× 27.82
[1− 6] 1.45× 28.00

Table 15: Layer Evaluation of Encoder with EMHA
Implementation. “1" indicates the bottom layer.

Results We exhibit the ACC, AUROC, SEN and 1192

SPE of different models in Table 14. We can see 1193

that both BrainNetEITF and BrainNetEEITF can 1194

outperform all the baselines in terms of all met- 1195

rics. Similarly, thanks to little increased parame- 1196

ters of our models, we can conclude that they have 1197

stronger expressiveness and can be easily extended 1198

to other scenarios. 1199

H Further Analyses 1200

H.1 Effect of Number of EIT Layers 1201

Recent researches (Shi et al., 2016; Peters et al., 1202

2018; Hao et al., 2019) has demonstrated that var- 1203

ious layers in the encoder of a model have a ten- 1204
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dency to capture distinct syntax and semantic fea-1205

tures. Consequently, each layer may have different1206

requirements for promoting agreement among the1207

representations. In light of this, we examine the1208

impact of consensus on different layers. The results1209

on the En-De task are presented in Tables 15. The1210

lowest layer clearly benefits from a higher degree1211

of consensus compared to other layers, consistent1212

with prior research (Shleifer and Ott, 2022) indi-1213

cating the challenges of optimizing shallow layers1214

within the pre-normalization paradigm. However,1215

by employing the consensus strategy, we enhance1216

the learning of representations in shallow layers,1217

giving them a significant advantage. Additionally,1218

it is observed that incorporating consensus into a1219

small subset of all layers can also yield good results,1220

e.g., 28.08. These findings suggest two insights: 1)1221

Our EMHA is so powerful that can work well even1222

only being applied to a small subset of all layers;1223

and 2) more efficient utilization of consensus may1224

achieve better performance whiling working more1225

efficiently.1226
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Figure 10: Dynamics of attention map similarity.

H.2 Dynamics of Attention Map Similarity 1227

during Computation 1228

Figure 10 exhibits the dynamics of attention map 1229

similarity for the EIT 48L model on the En-De test 1230

set. The similarity between attention maps initially 1231

decreases and then increases as the dual interac- 1232

tions progress. This pattern is attributed to the two 1233

stages of our approach. In the ISI phase, interac- 1234

tions are modeled within each group instead of the 1235

whole, generating representative attention maps. 1236

As these groups operate independently, the simi- 1237

larity among these representatives is lower. Subse- 1238

quently, in the CSI phase, interactions occur among 1239

these representatives, resulting in the final attention 1240

maps. This CSI enhances similarity among the 1241

attention maps, achieving the consensus. 1242
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