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Abstract

Distributionally robust optimization (DRO) is an effective approach for data-driven
decision-making in the presence of uncertainty. Geometric uncertainty due to sam-
pling or localized perturbations of data points is captured by Wasserstein DRO
(WDRO), which seeks to learn a model that performs uniformly well over a Wasser-
stein ball centered around the observed data distribution. However, WDRO fails
to account for non-geometric perturbations such as adversarial outliers, which
can greatly distort the Wasserstein distance measurement and impede the learned
model. We address this gap by proposing a novel outlier-robust WDRO framework
for decision-making under both geometric (Wasserstein) perturbations and non-
geometric (total variation (TV)) contamination that allows an ε-fraction of data to
be arbitrarily corrupted. We design an uncertainty set using a certain robust Wasser-
stein ball that accounts for both perturbation types and derive minimax optimal
excess risk bounds for this procedure that explicitly capture the Wasserstein and
TV risks. We prove a strong duality result that enables tractable convex reformula-
tions and efficient computation of our outlier-robust WDRO problem. When the
loss function depends only on low-dimensional features of the data, we eliminate
certain dimension dependencies from the risk bounds that are unavoidable in the
general setting. Finally, we present experiments validating our theory on standard
regression and classification tasks.

1 Introduction

The safety and effectiveness of various operations rely on making informed, data-driven decisions
in uncertain environments. Distributionally robust optimization (DRO) has emerged as a powerful
framework for decision-making in the presence of uncertainties. In particular, Wasserstein DRO
(WDRO) captures uncertainties of geometric nature, e.g., due to sampling or localized (adversarial)
perturbations of the data points. The WDRO problem is a two-player zero-sum game between a
learner (decision-maker), who chooses a decision θ ∈ Θ, and Nature (adversary), who chooses a
distribution ν from an ambiguity set defined as the p-Wasserstein ball of a prescribed radius around
the observed data distribution µ̃. Namely, WDRO is given by1

inf
θ∈Θ

sup
ν:Wp(ν,µ̃)≤ρ

EZ∼ν [ℓ(θ, Z)], (1)

whose solution θ̂ ∈ Θ is chosen to minimize risk over the Wasserstein ball with respect to (w.r.t.) the
loss function ℓ. WDRO has received considerable attention in many fields, including machine learning
[6, 22, 45, 48, 59], estimation and filtering [36, 37, 46], and chance constraint programming [12, 55].

In many practical scenarios, the observed data may be contaminated by non-geometric perturbations,
such as adversarial outliers. Unfortunately, the WDRO problem from (1) is not suited for handling this

1Here, Wp(µ, ν) := infπ∈Π(µ,ν)

( ∫
∥x − y∥pdπ(x, y)

)1/p is the p-Wasserstein metric between µ and ν,
where Π(µ, ν) is the set of all their couplings.
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issue, as even a small fraction of outliers can greatly distort the Wp measurement and impede decision-
making. In this work, we address this gap by proposing a novel outlier-robust WDRO framework
that can learn well-performing decisions even in the presence of outliers. We couple it with a
comprehensive theory of excess risk bounds, statistical guarantees, and computationally-tractable
reformulations, as well as supporting numerical results.

1.1 Contributions
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Figure 1: A visual depiction of a clean measure
µ ∈ P(R) and a corrupted observation µ̃ ∈ P(R)
satisfying Wε

p(µ̃, µ) ≤ ρ.

We consider a scenario where the observed data
distribution µ̃ is subject to both geometric (Wasser-
stein) perturbations and non-geometric (total varia-
tion (TV)) contamination, which allows an ε-fraction
of data to be arbitrarily corrupted. Namely, if µ
is the true (unknown) data distribution, then the
Wasserstein perturbation maps it to some µ′ with
Wp(µ

′, µ) ≤ ρ, and the TV contamination step fur-
ther produces µ̃ with ∥µ̃−µ′∥TV ≤ ε (e.g., in the spe-
cial case of the Huber model [28], µ̃ = (1−ε)µ′+εα
where α is an arbitrary noise distribution). To enable
robust decision-making under this model, we replace
the Wasserstein ambiguity set in (1) with a ball w.r.t.
the recently proposed outlier-robust Wasserstein dis-
tance Wε

p [38, 39]. The Wε
p distance (see (2) ahead)

filters out the ε-fraction of mass from the contami-
nated distribution that contributed most to the trans-
portation cost, and then measures the Wp distance
post-filtering. To obtain well-performing solutions for our WDRO problem, the Wε

p ball is intersected
with a set that encodes standard moment assumptions on the uncorrupted data distribution, which are
necessary for meaningful outlier-robust estimation guarantees.

We establish minimax optimal excess risk bounds for the decision θ̂ that solves the proposed outlier-
robust WDRO problem. The bounds control the gap E[ℓ(θ̂, Z)]− E[ℓ(θ⋆, Z)], where Z ∼ µ follows
the true data distribution and θ⋆ = argminθ E[ℓ(θ, Z)] is the optimal decision, subject to regularity
properties of ℓ⋆ = ℓ(θ⋆, ·). In turn, our bounds imply that the learner can make effective decisions
using outlier-robust WDRO based on the contaminated observation µ̃, so long as ℓ⋆ has low variational
complexity. The bounds capture this complexity using the Lipschitz or Sobolev seminorms of ℓ⋆ and
clarify the distinct effect of each perturbation (Wasserstein versus TV) on the quality of the learned θ̂
solution. We further establish their minimax optimality when p = 1, by providing a matching lower
bound in the setting when an adversary picks a class of Lipschitz functions over which the learner
must perform uniformly well. The excess risk bounds become looser as the data dimension d grows.
We show that this degradation is alleviated when the loss function depends on the data only through
k-dimensional affine features, by providing risk bounds that adapt to k instead of d.

We then move to study the computational side of the problem, which may initially appear intractable
due to non-convexity of the constraint set. We resolve this via a cheap preprocessing step that
computes a coarse robust estimate of the mean [34] and replaces the original constraint set (that
involves the true mean) with a version centered around the estimate. We adapt our excess risk bounds
to this formulation and then prove a strong duality theorem. The dual form is reminiscent of the one
for classical WDRO with adaptations reflecting the constraint to the clean distribution family and the
partial transportation under Wε

p. Under additional convexity conditions on the loss, we further derive
an efficiently-computable, finite-dimensional, convex reformulation. The optimization results are
also adapted to the setting with low-dimensional features. Using the developed machinery, we present
experiments that validate our theory on simple regression/classification tasks and demonstrate the
superiority of the proposed approach over classical WRDO, when the observed data is contaminated.

1.2 Related Work

Distributionally robust optimization. The Wasserstein distance has emerged as a powerful tool for
modeling uncertainty in the data generating distribution. It was first used to construct an ambiguity
set around the empirical distribution in [40]. Recent advancements in convex reformulations and
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approximations of the WDRO problem, as discussed in [8, 20, 35], have brought notable computa-
tional advantages. Additionally, WDRO is linked to various forms of variation [2, 9, 19, 43] and
Lipschitz [7, 11, 44] regularization, which contribute to its success in practice. Robust generalization
guarantees can also be provided by WDRO via measure concentration argument or transportation
inequalities [18, 30, 31, 51, 53, 54]. Several works have raised concerns regarding the sensitivity
of standard DRO to outliers [24, 27, 58]. An attempt to address this was proposed in [56] using a
refined risk function based on a family of f -divergences. This formulation aims to prevent DRO
from overfitting to potential outliers but is not robust to geometric perturbations. Further, their risk
bounds require a moment condition to hold uniformly over Θ, in contrast to our bounds that depend
only on θ⋆. We are able to address these limitations by setting a WDRO framework based on partial
transportation. While partial OT has been previously used in the context of DRO problems, it was
introduced to address stochastic programs with side information in [17] rather than to account for
outlier robustness. Another closely related line of work is presented in [4, 5], where the ambiguity set
is constructed using an f -divergence to mitigate statistical errors and the Prokhorov distance to handle
outlier data. The proposed model is both computationally efficient and statistically reliable. However,
they have not investigated its minimax optimality or robustness against the Huber contamination
model, which we aim to do in this paper. Additionally, a best-case favorable analysis approach
has been proposed in [29] to address outlier data. This approach is an alternative to the worst-case
distributionally robust method. However, it requires solving a non-convex optimization problem,
significantly impacting its scalability, and is not accompanied by any proof of minimax optimality.

Robust statistics. The problem of learning from data under TV ε-corruptions dates back to [28].
Over the years, various robust and sample-efficient estimators, particularly for mean and scale
parameters, have been developed in the robust statistics community; see [41] for a comprehensive
survey. The theoretical computer science community, on the other hand, has focused on developing
computationally efficient estimators that achieve optimal estimation rates in high dimensions [13, 16].
Relatedly, the probably approximate correct (PAC) learning framework has been well-studied in
similar models [1, 10]. Recently, [58] developed a unified robust estimation framework based on
minimum distance estimation that gives sharp population-limit and promising finite-sample guarantees
for mean and covariance estimation, as well linear regression. Their analysis centers on a generalized
resilience quantity, which is essential to our work. We are unaware of any results in the settings above
which extend to combined TV and Wp corruptions. Finally, our analysis relies on the outlier-robust
Wasserstein distance from [38, 39], which was shown to yield an optimal minimum distance estimate
for robust distribution estimation under Wp loss.

2 Preliminaries

Notation. Consider a closed, non-empty set Z ⊆ Rd equipped with the Euclidean norm ∥ · ∥. A
continuously differentiable function f : Z → R is called α-smooth if ∥∇f(z)−∇f(z′)∥ ≤ α∥z−z′∥,
for all z, z′ ∈ Z . The perspective function of a lower semi-continuous (l.s.c.) and convex function
f is Pf (x, λ) := λf(x/λ) for λ > 0, with Pf (x, λ) = limλ→0 λf(x/λ) when λ = 0. The convex
conjugate of f is f∗(y) := supx∈Rd y⊤x− f(x). We denote by χZ the indicator function of Z , that
is, χZ(z) = 0 if z ∈ Z and χZ(z) =∞ otherwise. The convex conjugate of χZ , denoted by χ∗

Z , is
termed as the support function of Z .

We useM(Z) for the set of signed Radon measures on Z equipped with the TV norm ∥µ∥TV :=
1
2 |µ|(Z), and write µ ≤ ν for set-wise inequality. The class of Borel probability measures on Z is
denoted by P(Z). We write Eµ[f(Z)] for expectation of f(Z) with Z ∼ µ; when clear from the
context, the random variable is dropped and we write Eµ[f ]. Let Σµ denote the covariance matrix of
µ ∈ P2(Z). Define Pp(Z) := {µ ∈ P(Z) : infz0∈Z Eµ[∥Z − z0∥p] < ∞}. The push-forward of
f through µ ∈ P(Z) is f#µ(·) := µ(f−1(·)), and, for A ⊆ P(Z), write f#A := {f#µ : µ ∈ A}.
The pth order homogeneous Sobolev (semi)norm of continuously differentiable f : Z → R w.r.t. µ
is ∥f∥Ḣ1,p(µ) := Eµ[∥∇f∥p]1/p. The set of integers up to n ∈ N is denote by [n]; we also use the
shorthand [x]+ = max{x, 0}. We write ≲,≳,≍ for inequalities/equality up to absolute constants.

Classical and outlier-robust Wasserstein distances. For p ∈ [1,∞), the p-Wasserstein distance
between µ, ν ∈ Pp(Z) is Wp(µ, ν) := infπ∈Π(µ,ν)

(
Eπ

[
∥X − Y ∥p

])1/p
, where Π(µ, ν) := {π ∈

P(Z2) : π(· × Z) = µ, π(Z × ·) = ν} is the set of all their couplings. Some basic properties of
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Wp are (see, e.g., [42, 52]): (i) Wp is a metric on Pp(Z); (ii) the distance is monotone in the order,
i.e., Wp ≤Wq for p ≤ q; and (iii) Wp metrizes weak convergence plus convergence of pth moments:
Wp(µn, µ)→ 0 if and only if µn

w→ µ and
∫
∥x∥pdµn(x)→

∫
∥x∥pdµ(x).

To handle corrupted data, we employ the ε-outlier-robust p-Wasserstein distance2, defined by

Wε
p(µ, ν) := inf

µ′∈P(Rd)
∥µ′−µ∥TV≤ε

Wp(µ
′, ν) = inf

ν′∈P(Rd)
∥ν′−ν∥TV≤ε

Wp(µ, ν
′). (2)

The second equality is a useful consequence of Lemma 4 in [39] (see Appendix A for details, along
with an interpretation of Wε

p as a partial OT distance).

Robust statistics. Resilience is a standard sufficient condition for population-limit robust statistics
bounds [49, 58]. The p-Wasserstein resilience of a measure µ ∈ P(Z) is defined by

τp(µ, ε) := sup
µ′≤ 1

1−εµ

sup
µ′≤ 1

1−εµ

Wp(µ
′, µ),

and that of a family G ⊆ P(R) by τp(G, ε) := supµ∈G τp(µ, ε). The relation between Wp resilience
and robust estimation is formalized in the following proposition.
Proposition 1 (Robust estimation under Wp resilience [39]). Fix 0 ≤ ε ≤ 0.49. For any clean
distribution µ ∈ G ⊆ P(Z) and corrupted measure µ̃ ∈ P(Z) such that Wε

p(µ̃, µ) ≤ ρ, the minimum
distance estimate µ̂ = argminν∈G Wε

p(ν, µ̃) satisfies Wp(µ̂, µ) ≲ ρ+ τp(G, 2ε).3

Throughout, we focus on the bounded covariance class Gcov :=
{
µ ∈ P(Z) : Σµ ⪯ Id

}
.

Proposition 2 (Wp resilience bound for Gcov [39]). Fixing 0 ≤ ε ≤ 0.99 and 1 ≤ p ≤ 2, we have
τp(Gcov, ε) ≲

√
d ε1/p−1/2.

3 Outlier-robust WDRO

We perform stochastic optimization with respect to an unknown data distribution µ, given access only
to a corrupted version µ̃. We allow both localized Wasserstein perturbations, that map µ to some µ′

with Wp(µ, µ
′) ≤ ρ, and TV ε-contamination that takes µ′ to µ̃ with ∥µ̃− µ′∥TV ≤ ε. Equivalently,

both perturbations are captured by Wε
p(µ̃, µ) ≤ ρ.4 To simplify notation, we henceforth suppress the

dependence of the loss function ℓ on the model parameters θ ∈ Θ, writing ℓ for ℓ(θ, ·) for a specific
function and L = {ℓ(θ, ·)}θ∈Θ for the whole class. Our full model is as follows.

Setting A: Fix a p-Wasserstein radius ρ ≥ 0 and TV contamination level ε ∈ [0, 0.49]. Let L ⊆ RZ

be a family of real-valued loss functions onZ , such that each ℓ ∈ L is l.s.c. with supz∈Z
ℓ(z)

1+∥z∥p <∞,
and fix a class G ⊆ Pp(Z) encoding distributional assumptions. We consider the following model:

(i) Nature selects a distribution µ ∈ G, unknown to the learner;
(ii) The learner observes a corrupted measure µ̃ ∈ P(Z) such that Wε

p(µ̃, µ) ≤ ρ;

(iii) The learner selects a decision ℓ̂ ∈ L and suffers excess risk Eµ[ℓ̂]− infℓ∈L Eµ[ℓ].

We seek a decision-making procedure for the learner which provides strong excess risk guarantees
when ℓ⋆ = argminℓ∈L Eµ[ℓ] is appropriately “simple.” To achieve this, we introduce the ε-outlier-
robust p-Wasserstein DRO problem:

inf
ℓ∈L

sup
ν∈G:Wε

p(µ̃,ν)≤ρ

Eν [ℓ]. (OR-WDRO)

3.1 Excess Risk Bounds

We quantify the excess risk of decisions made using OR-WDRO for the two most popular choices of
order, p = 1, 2. Proofs are provided in Supplement B.

2While not a metric, Wε
p is symmetric and satisfies an approximate triangle inequality ([39], Proposition 3).

3If a minimizer does not exist for either problem, an infimizing sequence will achieve the same guarantee.
4We defer explicit modeling of sampling to Section 3.2 but note that the following results immediately

transfer to the n-sample setting so long as ρ is taken to be larger than Wp(µ̂n, µ) with high probability.
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Theorem 1 (OR-WDRO risk bound). Under Setting A, let ℓ̂ minimize (OR-WDRO). Then, writing
c = 2(1− ε)−1/p, the excess risk is bounded by

Eµ[ℓ̂ ]− Eµ[ℓ⋆] ≤

{
∥ℓ⋆∥Lip

(
cρ+ 2τ1(G, 2ε)

)
, p = 1, ℓ⋆ Lipschitz

∥ℓ⋆∥Ḣ1,2(µ)

(
cρ+ 2τ2(G, 2ε)

)
+ 1

2α
(
cρ+ 2τ2(G, 2ε)

)2
, p = 2, ℓ⋆ α-smooth

.

Note that c = O(1) since ε ≤ 0.49. These bounds imply that the learner can make effective decisions
when ℓ⋆ has low variational complexity5. In contrast, there are simple regression settings with
TV corruption that drive the excess risk of standard WDRO to infinity. Our proof derives both
results as a special case of a general bound in terms of the Wp regularizer, defined byRµ,p(ρ; ℓ) :=
supν′∈P(Z):Wp(ν′,ν)≤ρ Eν′ [ℓ]−Eν [ℓ]. Introduced in [18], this quantity appears implicitly throughout
the WDRO literature. In particular, for each ℓ ∈ L, we derive the following bound:

Eµ[ℓ̂ ]− Eµ[ℓ] ≤ Rµ,p

(
cρ︸︷︷︸
Wp

+2τp(G, 2ε)︸ ︷︷ ︸
TV

; ℓ
)
, (3)

whose radius reveals the effect of each perturbation (viz. Wasserstein versus TV) on the quality of
the decision. The first bound of the theorem follows by plugging in p = 1 and controllingRµ,1 via
Kantorovich duality. The second bound uses p = 2 and controlsRµ,2 by replacing ℓ with its Taylor
expansion about Z ∼ µ. We now instantiate Theorem 1 for the bounded covariance class Gcov.
Corollary 1 (Risk bounds for Gcov). Under the setting of Theorem 1 with G ⊆ Gcov, we have

Eµ[ℓ̂]− Eµ[ℓ⋆] ≲

{
∥ℓ⋆∥Lip

(
ρ+
√
dε
)
, p = 1, ℓ⋆ Lipschitz

∥ℓ⋆∥Ḣ1,2(µ)(ρ+
√
d ) + α(ρ2 + d), p = 2, ℓ⋆ α-smooth

.

Since Gcov encodes second moment constraints, τ2(Gcov, ε) ≍ d is independent of ε. Therefore, the
first bound is preferable as ε → 0 if ∥ℓ⋆∥Ḣ1,2(µ) ≈ ∥ℓ⋆∥Lip, while the second is better when
ε = Ω(1) and ∥ℓ⋆∥Ḣ1,2(µ) ≪ ∥ℓ⋆∥Lip. 6 Distinct trade-offs are observed under stronger tail bounds

like sub-Gaussianity, i.e., for GsubG := {µ ∈ P(Z) : Eµ[e
(θ⊤(Z−E[Z])2 ] ≤ 2, ∀θ ∈ Sd−1}.

Corollary 2 (Risk bounds for GsubG). Under the setting of Theorem 1 with G ⊆ GsubG, the excess
risk Eµ[ℓ̂]− Eµ[ℓ⋆] is bounded up to constants by

∥ℓ⋆∥Lip
(
ρ+

√
d+ log 1

ε ε
)
, p = 1, ℓ⋆ Lipschitz

∥ℓ⋆∥Ḣ1,2(µ)

(
ρ+
√
(d+log 1

ε )ε
)
+α
(
ρ2+

(
d+log 1

ε

)
ε
)
, p = 2, ℓ⋆ α-smooth

.

Remark 1 (Comparison to MDE under Wε
p). We note that the excess riskRµ,p

(
cρ+2τp(G, 2ε); ℓ⋆

)
from (3) can alternatively be obtained by performing standard p-WDRO with an expanded radius cρ+
2τ1(G, 2ε) around the minimum distance estimate µ̂ = argminν∈G Wε

1(µ̃, ν). However, obtaining µ̂
is an expensive preprocessing step, and we are unaware of any efficient algorithms for such MDE in
the finite-sample setting. In Supplement D, we explore recentering WDRO around a tractable estimate
obtained from iterative filtering [15], but find the resulting risk to be highly suboptimal. Furthermore,
the improvements to our risk bounds under low-dimensional structure, which are derived in Section 4,
do not extend to decisions obtained from these alternative procedures.

We now show that Theorem 1 cannot be improved in general. In particular, the first bound is minimax
optimal over Lipschitz loss families when µ ∈ Gcov.
Proposition 3 (Lower bound). Fix Z = Rd and ε ∈ [0, 0.49]. For any L ≥ 0, there exists a family
L ⊆ LipL(Rd), independent of ε, such that for any decision rule D : P(Z)→ L there exists a pair
(µ, µ̃) ∈ Gcov × P(Z) with Wε

1(µ̃, µ) ≤ ρ satisfying Eµ[D(µ̃)]− infℓ∈L Eµ[ℓ] ≳ L
(
ρ+
√
dε
)
.

Each family L encodes a multivariate regression problem. Our proof combines a one-dimensional
lower bound of [49] for linear regression with lower bounds of [39] for robust estimation under W1.

5The same bounds hold up to ε additive slack if ℓ⋆ is only ε-approximately optimal for (OR-WDRO).
6Under Wε

p perturbations, one may perform outlier-robust WDRO using any p′ ∈ [1, p], which may be
advantageous in terms of the TV component of the excess risk.
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3.2 Statistical Guarantees

We next formalize a finite-sample model and adapt our excess risk bounds to it.

Setting B: Fix ρ, ε,L,G as in Setting A, and let Z1, . . . , Zn be identically and independently dis-
tributed (i.i.d.) according to µ ∈ G, with empirical measure µ̂n = 1

n

∑n
i=1 δZi

. Upon observing these
clean samples, Nature applies a Wp perturbation of size ρ0, producing {Z ′

i}ni=1 with empirical mea-
sure µ′

n such that Wp(µ̂n, µ
′
n) ≤ ρ0. Finally, Nature corrupts up to ⌊εn⌋ samples to obtain {Z̃i}ni=1

with empirical measure µ̃n such that ∥µ̃n − µ′∥TV = 1
n

∑n
i=1 1{Z̃i ̸= Zi} ≤ ε. Equivalently, the

final dataset satisfies Wε
p(µ̃n, µ̂n) ≤ ρ0.7 The learner is now tasked with selecting ℓ̂ ∈ L given µ̃n.

The results from Section 3 apply whenever ρ ≥ ρ0 + Wp(µ, µ̂n). In particular, we obtain the
following corollary as an immediate consequence of Theorem 1 and Theorem 3.1 of [32].

Corollary 3 (Finite-sample risk bounds). Under Setting B, fix ℓ̂ ∈ L minimizing (OR-WDRO)
centered at µ̃ = µ̃n with ρ ≥ ρ0 + 100E[Wp(µ, µ̂n)]. Then the excess risk bounds of Theorem 1
hold with probability at least 0.99. If G ∈ {Gcov,GsubG}, p = 1, and d ≥ 3, or if G = GsubG, p = 2,
and d ≥ 5, then E[Wp(µ, µ̂n)] ≲

√
dn−1/d.

Remark 2 (Smaller radius). In the classic WDRO setting with ρ0 = ε = 0, the radius ρ can be taken
significantly smaller than n−1/d if L and µ are sufficiently well-behaved. For example, [18] proves
that ρ = Õ(n−1/2) gives meaningful risk bounds when µ satisfies a T2 transportation inequality.8
While this high-level condition may be hard to verify in practice, Supplement E shows that this
improvement can be lifted to an instance of our outlier-robust WDRO problem.

3.3 Tractable Reformulations and Computation

For computation, we restrict to µ ∈ Gcov. Initially, (OR-WDRO) may appear intractable, since
Gcov is non-convex when viewed as a subset of the cone M+(Z). Moreover, enforcing mem-
bership to this class is non-trivial. To remedy these issues, we use a cheap preprocessing step
to obtain a robust estimate z0 ∈ Z of the mean Eµ[Z], and we optimize over the modified class
G2(σ, z0) :=

{
ν ∈ P(Z) : Eν [∥Z − z0∥2] ≤ σ2

}
, with σ ≳ ∥z0 − Eµ[Z]∥ +

√
d taken so

that µ ∈ G2(σ, z0). Finally, for technical reasons, we switch to the one-sided robust distance
Wε

p(µ∥ν) := infµ′∈P(Rd):µ′≤ 1
1−εµ

Wp(µ
′, ν). Altogether, we arrive at the modified DRO problem

inf
ℓ∈L

sup
ν∈G2(σ,z0):W

ε
p(µ̃n∥ν)≤ρ

Eν [ℓ], (4)

which, as stated next, admits risk bounds matching Corollary 1 up to empirical approximation error.
Proposition 4 (Risk bound for modified problem). Consider Setting B with G ⊆ Gcov. Fix z0 ∈ Z
such that ∥z0−Eµ[Z]∥ ≤ E = O(ρ0+

√
d), and suppose that Wp(µ̂n, µ) ≤ δ. Take ℓ̂ minimizing (4)

with ρ = (ρ0 + δ)(1− ε)−1/p + τp(Gcov, ε) and σ =
√
d+ E. We then have

Eµ[ℓ̂]− Eµ[ℓ⋆] ≲

{
∥ℓ⋆∥Lip

(
ρ0 +

√
dε+ δ

)
, p = 1, ℓ⋆ Lipschitz

∥ℓ⋆∥Ḣ1,2(µ)

(
ρ0 +

√
d+ δ

)
+ α

(
ρ0 +

√
d+ δ

)2
, p = 2, ℓ⋆ α-smooth

.

Parameters ρ, σ are taken so that µ ∈ G2(σ, z0) and Wε
p(µ̃n∥µ) ≤ ρ. Noting this, the proof mirrors

that of Theorem 1, using a Wp resilience bound for G2(σ, z0). To ensure Wp(µ̂n, µ) ≤ δ with decent
probability, one should take δ to be an upper bound on supν∈G E[Wp(ν̂n, ν)]. When p = 2, this
quantity is only finite if Z is bounded or if G encodes stronger tail bounds than Gcov (see, e.g., [32]).

For efficient computation, we must specify a robust mean estimation algorithm to obtain z0 and a
procedure for solving (4). The former is achieved by taking a coordinate-wise trimmed mean.
Proposition 5 (Coarse robust mean estimation). Consider Setting B with G ⊆ Gcov and ε ≤ 1/3.
For n = Ω(log(d)), there is a trimmed mean procedure, which applied coordinate-wise to {Z̃i}ni=1,
returns z0 ∈ Rd with ∥z0 − Eµ[Z]∥ ≲

√
d+ ρ0 with probability at least 0.99, in time Õ(d).

7In general, {Z̃i}ni=1 may be any measurable function of {Zi}ni=1 and independent randomness such that
Wε

p(µ̃n, µ̂n) ≤ ρ0.
8We say that µ ∈ T2(τ) if W2(ν, µ) ≤

√
τH(ν∥µ), for all ν ∈ P2(Z), where H(ν∥µ) is relative entropy.
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More sophisticated methods, e.g., iterative filtering [15], achieve dimension-free estimation guarantees
at the cost of additional sample and computational complexity. We will return to these techniques in
Section 4, but overlook them for now since they do not impact worst-case excess risk bounds.

We next show that that the inner maximization problem of (4) can be simplified to a minimization
problem involving only two scalars provided the following assumption holds.
Assumption 1 (Slater condition I). Given the distribution µ̃n and the fixed point z0, there exists
ν0 ∈ P(Z) such that Wε

p(µ̃n∥ν0) < ρ and Eν0
[∥Z − z0∥2] < σ2. Additionally, we require ρ > 0.

Notice that Assumption 1 indeed holds for ν0 = µ as applied in Proposition 4.
Proposition 6 (Strong duality). Under Assumption 1, for any ℓ ∈ L and z0 ∈ Rd, we have

sup
ν∈G2(σ,z0):
Wε

p(µ̃n∥ν)≤ρ

Eν [ℓ] = inf
λ1,λ2∈R+

α∈R

λ1σ
2 + λ2ρ

p + α+
1

1− ε
Eµ̃n

[
ℓ(· ;λ1, λ2, α)

]
, (5)

where ℓ(z;λ1, λ2, α) := supξ∈Z
[
ℓ(ξ)− λ1∥ξ − z0∥2 − λ2∥ξ − z∥p − α

]
+

.

The minimization problem over (λ1, λ2, α) is an instance of stochastic convex optimization, where
the expectation of the implicit function ℓ is taken w.r.t. the contaminated empirical measure µ̃n. In
contrast, the dual reformulation for classical WDRO only involves λ2 and takes the expectation of the
implicit function ℓ(z;λ2) := supξ∈Z ℓ(ξ)− λ2∥ξ − z∥p w.r.t. µ̃n. The additional λ1 variable above
is introduced to account for the clean family G2(σ, z0), and the use of partial transportation under Wε

p

results in the introduction of the operator [·]+ and the decision variable α.
Remark 3 (Connection to conditional value at risk (CVaR)). The CVaR of a Borel measurable loss
function ℓ acting on a random vector Z ∼ µ ∈ P(Z) with risk level ε ∈ (0, 1) is defined as

CVaR1−ε,µ[ℓ(Z)] = inf
α∈R

α+
1

1− ε
EZ∼µ

[
[ℓ(Z)− α]+

]
.

CVaR is also known as expected shortfall and is equivalent to the conditional expectation of ℓ(Z),
given that it is above an ε threshold. This concept is often used in finance to evaluate the market risk
of a portfolio. With this definition, the result of Proposition 6 can be written as

sup
ν∈G2(σ,z0):
Wε

p(µ̃n∥ν)≤ρ

Eν [ℓ] = inf
λ1,λ2∈R+

λ1σ
2+λ2ρ

p+CVaR1−ε,µ̃n

[
sup
ξ∈Z

ℓ(ξ)− λ1∥ξ − z0∥2 − λ2∥ξ − Z∥p
]
.

When ε → 0 and σ → ∞, whence CVaR reduces to expected value and the constrained class
G2(σ, z0) expands to P(Z), the dual formulation above reduces to that of classical WDRO [8, 21].

Evaluating ℓ requires solving a maximization problem, which could be in itself challenging. To
overcome this, we impose additional convexity assumptions, which are standard for WDRO [35, 43].
Assumption 2 (Convexity condition). The loss ℓ is a pointwise maximum of finitely many concave
functions, i.e., ℓ(ξ) = maxj∈[J] ℓj(ξ), for some J ∈ N, where ℓj is real-valued, l.s.c., and concave9.
The set Z is closed and convex. The atoms of µ̃n are in the relative interior of Z .
Theorem 2 (Convex reformulation). Under Assumption 1, for any ℓ ∈ L satisfying Assumption 2
and z0 ∈ Rd, we have

sup
ν∈Gq(σ,z0):
Wε

p(µ̃n∥ν)≤ρ

Eν [ℓ]=



inf λ1σ
2 + λ2ρ

p + α+ 1
n(1−ε)

∑
i∈[n] si

s.t. α∈R, λ1, λ2∈R+, s, τij ∈Rn
+, ζ

ℓ
ij , ζ

G
ij , ζ

W
ij , ζ

Z
ij ∈Rd, ∀i ∈ [n],∀j ∈ [J ]

si ≥ (−ℓj)∗(ζℓij) + z⊤0 ζGij + τij

+Z̃⊤
i ζWij + Ph(ζ

W
ij , λ2) + χ∗

Z(ζ
Z
ij )− α, ∀i ∈ [n],∀j ∈ [J ]

ζℓij + ζGij + ζWij + ζZij = 0, ∥ζGij∥2 ≤ λ1τij , ∀i ∈ [n],∀j ∈ [J ],

where Ph is the perspective function (i.e., Ph(ζ, λ) = λh(ζ/λ)) of
9Generally, any continuous function can be approximated arbitrarily well by a maximum of finitely many

concave functions. However, the number of functions needed may be arbitrarily large in general. Fortunately,
some losses like the ℓ∞-norm ∥z∥∞=maxi∈[d],a∈{±1} σzi require only poly(d) pieces.
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h(ζ) :=

χ{z∈Rd: ∥z∥≤1}(ζ), p = 1

(p−1)p−1

pp ∥ζ∥
p

p−1 , p > 1.
(6)

The minimization problem in Theorem 2 is a finite-dimensional convex program. In Section 5, we
use this result in conjunction with Proposition 5 to efficiently perform outlier-robust WDRO.

We conclude this section by characterizing the worst-case distribution, i.e., the optimal adversarial
strategy, for our outlier-robust WDRO problem. To that end, we need the primal formulation below.

Theorem 3 (Worst-case distribution). Under Assumption 1, for any ℓ ∈ L satisfying Assumption 2
and z0 ∈ Rd, we have

sup
ν∈Gq(σ,z0):
Wε

p(µ̃n∥ν)≤ρ

Eν [ℓ] =



max −
∑

(i,j)∈[n]×[J] P−ℓj (ξij , qij)

s.t. qij ∈ R+, ξij ∈ qij · Z ∀i ∈ [n],∀j ∈ [J ]∑
j∈[J] qij ≤

1
n(1−ε) ∀i ∈ [n]∑

(i,j)∈[n]×[J] qij = 1∑
(i,j)∈[n]×[J] P∥·∥p(ξij − qijZ̃i, qij) ≤ ρ∑
(i,j)∈[n]×[J] P∥·∥2(ξij − qijz0, qij) ≤ σ2

The discrete distribution ν⋆ =
∑

(i,j)∈Q q⋆ijδξ⋆ij/q⋆ij achieves the worst-case expectation on the left-
hand side, where (q⋆ij , ξ

⋆
ij)(i,j)∈[n]×[J] are optimizers of the maximization problem on the right and

Q := {(i, j) ∈ [n]× [J ] : q⋆ij > 0}.

The maximization problem from Theorem 3 is the conjugate dual of the minimization in Theorem 2.
Subsequently, we propose a systematic approach for constructing a discrete distribution based on a
solution derived from the maximization problem that achieves the worst-case expected loss.

Remark 4 (Comparison to WDRO worst-case distribution). Recall that our robust WDRO approach
reduces to the classic WDRO approach as ε = 0 and σ → ∞. Consequently, this implies that
the constraints

∑
j∈[J] qij ≤ 1/(n(1 − ε)) and

∑
(i,j)∈[n]×[J] P∥·∥2(ξij − qijz0, qij) ≤ σ2 can be

dropped under this specific choice of ε and σ. As a result, our construction simplifies to the approach
presented in [35, Theorem 4.4] for WDRO problems.

Remark 5 (Parameter tuning). In practice, ε, ρ0, and the relevant tail bound may be unknown. Thus,
in Appendix F, we consider learning under Setting B with G = Gcov(σ) for potentially unknown ε, σ,
and ρ0. First, we observe that knowledge of upper bounds on these parameters is sufficient to attain
risk bounds scaling in terms of said upper bounds. This approach avoids meticulous parameter tuning
but may result in suboptimal risk. To efficiently match our risk bounds with known parameters, we
show that it is necessary and sufficient to know ρ0 and at least one of ε or σ (up to constant factors).

4 Low-Dimensional Features

While Proposition 3 shows that the excess risk bounds from Theorem 1 cannot be improved in general,
finer guarantees can be derived when the optimal loss function depends only on k-dimensional affine
features of the data. Defining G(k) as the union of the projections {U#µ : µ ∈ G} over U ∈ Rk×d

with UU⊤ = Ik
10, we improve the excess risk bound of Theorem 1 for this setting.

Theorem 4 (Excess risk bound). Under Setting A, let ℓ̂ minimize (OR-WDRO), and assume that
ℓ⋆ = ℓ ◦A for an affine map A : Rd→Rk and some ℓ : Rk→R. Writing c=2(1−ε)−1/p, we have

Eµ[ℓ̂ ]−Eµ[ℓ⋆] ≤

{
∥ℓ⋆∥Lip

(
cρ+ 2τ1(G(k), 2ε)

)
, p=1, ℓ⋆ Lipschitz

∥ℓ⋆∥Ḣ1,2(µ)

(
cρ+2τ2(G(k), 2ε)

)
+ 1

2α
(
cρ+2τ2(G(k), 2ε)

)2
, p=2, ℓ⋆ α-smooth

.

This dependence on G(k) rather than G = G(d) is a substantial improvement when k ≪ d.

10If G is closed under isometries, like Gcov, then G(k) = {U#µ : µ ∈ G} for any such U .
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Corollary 4 (Risk bounds for Gcov). Under the setting of Theorem 4 with G ⊆ Gcov, we have

Eµ[ℓ̂]− Eµ[ℓ⋆] ≲

{
∥ℓ⋆∥Lip

(
ρ+
√
kε
)
, p = 1, ℓ⋆ Lipschitz

∥ℓ⋆∥Ḣ1,2(µ)(ρ+
√
k ) + α(ρ2 + k), p = 2, ℓ⋆ α-smooth.

We again have a matching lower bound for the Lipschitz setting, this time using k-variate regression.
Proposition 7 (Lower bound). Fix Z = Rd and ε ∈ [0, 0.49]. For any L ≥ 0, there exists a
family L ⊆ LipL(Rd), independent of ε, such that each ℓ ∈ L decomposes as ℓ = ℓ ◦ A for
A ∈ Rk×d and ℓ : Rk → R, and such that for any decision rule D : P(Z)→ L there exists a pair
(µ, µ̃) ∈ Gcov × P(Z) with Wε

1(µ̃, µ) ≤ ρ satisfying Eµ[D(µ̃)]− infℓ∈L Eµ[ℓ] ≳ L
(
ρ+
√
kε
)
.

For computation, we turn to a slightly modified n-sample contamination model. Our analysis for the
low-dimensional case only supports additive TV corruptions (sometimes called Huber contamination).

Setting B′: Fix ρ, ε,L,G as in Setting A, and fix m = ⌈(1− ε)n⌉ for some n ∈ N. Let Z1, . . . , Zm

be drawn i.i.d. from µ ∈ G, with empirical measure µ̂m = 1
m

∑m
i=1 δZi

. Upon observing these clean
samples, Nature applies a Wp perturbation of size ρ0, producing {Z ′

i}mi=1 with empirical measure µ′
m

such that Wp(µ̂m, µ′
m) ≤ ρ0. Finally, Nature adds ⌊εn⌋ samples to obtain {Z̃i}ni=1 with empirical

measure µ̃n such that µ′
m ≤ 1

1−ε µ̃n. Equivalently, the final dataset satisfies Wε
p(µ̃n∥µ̂m) ≤ ρ0.

As before, we modify (OR-WDRO) using a centered alternative to Gcov. Defining Gcov(σ, z0) :={
µ ∈ P(Z) : Eµ[(Z − z0)(Z − z0)

⊤] ⪯ σ2Id
}

, we consider the outlier-robust WDRO problem

inf
ℓ∈L

sup
ν∈Gcov(σ,z0):W

ε
p(µ̃n∥ν)≤ρ

Eν [ℓ]. (7)

To start, we provide a corresponding risk bound which matches Corollary 4 when k = O(1).
Proposition 8 (Risk bound for modified problem). Consider Setting B′ with G ⊆ Gcov, and assume
ℓ⋆ = ℓ ◦ A for affine A : Rd→Rk and ℓ : Rk→R. Fix z0 ∈ Z such that ∥z0 − Eµ[Z]∥ ≤ E =

O(ρ0 + 1), and assume Wp(µ̂m, µ) ≤ δ. If ℓ̂ minimizes (7) with ρ = ρ0 + δ and σ = 1 + E, then

Eµ[ℓ̂]− Eµ[ℓ⋆] ≲

{
∥ℓ⋆∥Lip

(√
kρ0 +

√
kε+ δ

)
, p = 1, ℓ⋆ Lipschitz

∥ℓ⋆∥Ḣ1,2(µ)

(√
kρ0 +

√
k + δ

)
+ α

(√
kρ0 +

√
k + δ

)2
, p = 2, ℓ⋆ α-smooth

.

Here, the stronger requirement for the robust mean estimate, the restriction to additive contamination,
and the need to optimize over the centered Gcov class rather than G2 all stem from the fact that the
resilience term τp((Gcov)k, ε) scales with

√
k rather than

√
d. Fortunately, efficient computation is

still possible. First, we employ iterative filtering [15] for dimension-free robust mean estimation.
Proposition 9 (Refined robust mean estimation). Consider Setting B or B′ with G = Gcov and
ε ≤ 1/12. For n = Ω̃(d), there exists an iterative filtering algorithm which takes µ̃n as input, runs in
time Õ(nd2), and outputs z0 ∈ Rd such that ∥z0 − Eµ[Z]∥ ≲ ρ0 + 1 with probability at least 0.99.

The analysis requires care when p = 1, since W1 perturbations can arbitrarily increase the initial
covariance bound. Fortunately, this increase can be controlled by trimming out a few samples.

Next, we show that computing the inner worst-case expectation in (7) can be simplified into a
minimization problem involving only a scalar and a positive semidefinite matrix provided the
following assumption holds (which is indeed the case in the setting of Proposition 8).
Assumption 3 (Slater condition II). Given the distribution µ̃n and fixed point z0, there exists
ν0 ∈ P(Z) such that Wε

p(µ̃n∥ν0) < ρ and Eν0
[(Z−z0)(Z−z0)

⊤]≺σ2Id. Further, we require ρ>0.

Proposition 10 (Strong duality). Under Assumption 3, for any ℓ ∈ L and z0 ∈ Rd, we have

sup
ν∈Gcov(σ,z0):
Wε

p(µ̃n∥ν)≤ρ

Eν [ℓ] = inf
Λ1∈Qd

+

λ2∈R+,α∈R

− z⊤0 Λ1z0+σ2 Tr[Λ1]+λ2ρ
p+α+

1

1− ε
Eµ̃n

[
ℓ(· ; Λ1, λ2, α)

]
,

where ℓ(z; Λ1, λ2, α) := supξ∈Z [ℓ(ξ)− ξ⊤Λ1ξ + 2ξ⊤Λ1z0 − λ2∥ξ − z∥p − α]+.

The minimization problem over the variables (Λ1, λ2, α) belongs to the class of stochastic convex
optimization problems. As before, we show that under the convexity condition from Assumption 2 we
obtain a tractable reformulation that does not involve an extra optimization problem for evaluating ℓ.
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Theorem 5 (Convex reformulation). Under Assumption 3, for any ℓ ∈ L satisfying Assumption 2
and z0 ∈ Rd, we have

sup
ν∈Gcov(σ,z0):
Wε

p(µ̃n∥ν)≤ρ

Eν [ℓ]=



inf −z⊤0 Λ1z0 + σ2 Tr[Λ1] + λ2ρ
p + α+ 1

n(1−ε)

∑
i∈[n] si

s.t. α ∈ R, Λ1 ∈ Qd
+, λ2 ∈ R+, s ∈ Rn

+,

τij ∈ R+, ζ
ℓ
ij , ζ

G
ij , ζ

W
ij , ζ

Z
ij ∈ Rd, ∀i ∈ [n],∀j ∈ [J ]

si ≥ (−ℓj)∗(ζℓij) + τij + Z̃⊤
i ζWij

+Ph(ζ
W
ij , λ2) + χ∗

Z(ζ
Z
ij )− α, ∀i ∈ [n],∀j ∈ [J ]

ζℓij+ζGij+ζWij +ζZij =2Λ1z0, (ζ
G
ij)

⊤Λ−1
1 ζGij≤4τij , ∀i ∈ [n],∀j ∈ [J ],

where Ph is the perspective function of h defined in (6).

5 Experiments
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Figure 2: Excess risk of standard WDRO and
several forms of outlier-robust WDRO for linear
regression under Wp and TV corruptions, with
varied sample size and dimension.

Lastly, we implement our tractable reformulations
and validate their excess risk bounds. Fixing Z =
X × Y = Rd−1 × R, we focus on linear regres-
sion with the mean absolute deviation loss, i.e.,
L = {ℓθ(x, y) = |θ⊤x − y| : θ ∈ Rd}. The ex-
periments below were run in 80 minutes on an M1
MacBook Air with 16GB RAM. See Supplement G
for full details and additional experiments treating
classification and multivariate regression. Code
is available at https://github.com/sbnietert/
outlier-robust-WDRO.

Fix Z = Rd for d ≥ 2, ρ = ε = 0.1, and θ⋆ ∈
Sd−2. Taking X ∼ N (0, Id−1), we fix clean data
(X, θ⊤⋆ X) ∼ µ and corrupted data (X̃, Ỹ ) ∼ µ̃

such that (X̃, Ỹ ) = (X, θ⊤⋆ X + ρ) with probability
1− ε and (X̃, Ỹ )=(CX,−C2θ⊤⋆ X) with probabil-
ity ε, so that Wε0

p (µ̃∥µ)≤ ρ. In Figure 2 (top), we
fix d = 10, C = 8 and compare the excess risk
Eµ[ℓθ̂] − Eµ[ℓθ⋆ ] of standard WDRO and outlier-
robust WDRO with G = G2, as described by Propo-
sition 4 and implemented via Theorem 2. The re-
sults are averaged over T = 20 runs for sample
size n∈{10, 20, 50, 75, 100}. We run outlier-robust
WDRO with corruption fraction ε̂∈{0, ε, 2ε}, achiev-
ing low excess risk when ε̂ ≥ ε as predicted. In
Figure 2 (bottom), to highlight the Section 4 improve-
ments due to low-dimensional structure, we fix n = 20, C = 100 and compare the excess risk
of outlier-robust WDRO with G = G2 to that with G = Gcov, as described by Proposition 8 and
implemented via Theorem 5. We average over T = 10 runs and present results for dimension
d∈{5, 10, 25, 40}. Confidence bands in both plots depict the top and bottom 10% quantiles among
100 bootstrapped means from the T runs. Implementations were performed in MATLAB using the
YALMIP toolbox [33] and the Gurobi and SeDuMi solvers [23, 50].

6 Concluding Remarks

In this work, we have introduced a novel framework for outlier-robust WDRO that allows for both
geometric and non-geometric perturbations of the data distribution, as captured by Wp and TV,
respectively. We provided minimax optimal excess risk bounds and strong duality results, with the
latter enabling efficient computation via convex reformulations. There are numerous directions for
future work, including refined statistical guarantees for ρ≪ ρ0 + n−1/d and convex reformulations
for distribution families beyond Gcov. Overall, our approach enables principled, data-driven decision-
making in realistic scenarios where observations may be subject to adversarial contamination.
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A Preliminary Results on Robust OT and Wasserstein DRO

We first recall properties of the robust Wasserstein distance Wε
p which will be used throughout

the supplement. To start, we show that our definition coincides with another based on partial OT,
considered in [39]. In what follows, we fix p ≥ 1, write cP(Z) := {cµ : µ ∈ P(Z)}, and, for
µ, ν ∈ cP(Z), we define Π(µ, ν) := cΠ(µ/c, ν/c) and Wp(µ, ν)

p := cWp(µ/c, ν/c).
Lemma 1 (Wε

p as partial OT). Fix ε ∈ [0, 1]. For any µ, ν ∈ P(Z), we have

Wε
p(µ, ν) := inf

µ′∈P(Z)
∥µ′−µ∥TV≤ε

Wp(µ
′, ν) = inf

ν′∈P(Z)
∥ν′−ν∥TV≤ε

Wp(µ, ν
′) = inf

µ′,ν′∈(1−ε)P(Z)
µ′≤µ, ν′≤ν

Wp(µ
′, ν′).

Proof. We write Wε
p(µ, ν) for the rightmost expression; this is definition of Wε

p considered in [39].
We first show that Wε

p(µ, ν) ≤ Wε
p(µ, ν). Fix any µ′ feasible for the Wε

p problem. Then, by the
approximate triangle inequality for Wε

p (Proposition 3 of [39]), we have

Wε
p(µ, ν) ≤Wε

p(µ, µ
′) +Wp(µ

′, ν) ≤Wp(µ
′, ν).

Indeed, writing c := (µ ∧ µ′)(Z) ≥ 1 − ε, the last inequality uses that Wε
p(µ, µ

′) ≤ Wp(
1−ε
c µ ∧

µ′, 1−ε
c µ ∧ µ′) = 0. Infimizing over feasible µ′ gives that Wε

p(µ, ν) ≤Wε
p(µ, ν).

For the other direction, take any µ′, ν′ feasible for the Wε
p problem. Let π ∈ Π(µ′, ν′) be any optimal

coupling for the Wp(µ
′, ν′) problem, and write µ′′ = µ′ + (ν − ν′) ∈ P(Z). Defining the coupling

π′ = π + (Id, Id)#(ν − ν′) ∈ Π(µ′′, ν), we compute

Wp(µ
′′, ν)p ≤

∫
Z×Z

∥x− y∥p dπ′(x, y) =

∫
Z×Z

∥x− y∥p dπ(x, y) = Wp(µ
′, ν′).

By construction, ∥µ′′ − µ∥TV ≤ ε, and so Wε
p(µ, ν) ≤ Wp(µ

′, ν′). Infimizing over feasible µ′, ν′

gives that Wε
p(µ, ν) ≤Wε

p(µ, ν).

We thus inherit several results for Wp given in [39].

Lemma 2 (Approximate triangle inequality [39]). If µ, ν, κ ∈ P(Z) and ε1, ε2 ∈ [0, 1], then

Wε1+ε2
p (µ, ν) ≤Wε1

p (µ, κ) +Wε2
p (κ, ν).

Lemma 3 (Wε
p modulus of continuity, [39], Lemma 3). For any G ⊆ P(Z), we have

sup
α,β∈G

Wε
p(α,β)≤ρ

Wp(α, β) ≤ (1− ε)−1/pρ+ 2τp(G, ε).

Lemma 4 (One-sided vs. two-sided Wε
p). For µ, ν ∈ P(Z), we have

Wε
p(µ∥ν) ≤ (1− ε)−1/pWε

p(µ, ν) + τp(ν, ε).

Proof. Fix any µ′, ν′ ∈ (1− ε)P(Z) with µ′ ≤ µ and ν′ ≤ ν. By design, we have

Wε
p(µ∥ν) ≤Wp

(
1

1−εµ
′, ν
)

≤Wp

(
1

1−εµ
′, 1

1−εν
′)+Wp

(
1

1−εν
′, ν
)

= (1− ε)−1/pWp(µ
′, ν′) + τp(ν, ε)

Infimizing over µ′ and ν′ and applying Lemma 1 gives the lemma.

Next, we specify explicit constants for the Wp resilience of Gcov. Our analysis goes through the
related notion of mean resilience [49], defined by τ(µ, ε) = supµ′∈P(Z):µ′≤ 1

1−εµ
∥Eµ′ [Z]−Eµ[Z]∥.

We say that Z ∼ µ ∈ P(Z) is (τ0, ε)-resilient in mean or under Wp if µ ∈ τ(τ0, ε) or µ ∈ τp(τ0, ε).
Lemma 5 (Wp resilience for G2 and Gcov). Fix ε ∈ [0, 1) and σ ≥ 0. For 1 ≤ p ≤ 2, we have
τp(G2(σ), ε) ≤ 4σε1/p−1/2(1− ε)−1/p. Moreover, we have τp(Gcov(σ), ε) ≤ τp(G2(

√
dσ), ε).
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Proof. Fix any Z ∼ µ ∈ G2(σ, z0). By definition, we have E[(∥Z − z0∥p)2/p] = E[∥Z − z0∥2] ≤
σ2 = (σp)2/p. Thus, standard bounds (e.g., Lemma E.2 of [58]) give that ∥Z−z0∥p is (σpε1−p/2(1−
ε)−1, ε)-resilient in mean. By Lemma 7 of [39], we thus have that Z is (2σε1/p−1/2(1− ε)−1/p +
2ε1/pσ, ε)-resilient under Wp. This gives the first result. For the second, we observe that for
Z ∼ µ ∈ Gcov(σ), we have E[∥Z − E[Z]∥2] = tr(Σµ) ≤

√
dσ.

Lastly, we turn to the Wp regularizer.

Lemma 6 (Controlling Wp regularizer, [18], Lemmas 1 and 2). For any ℓ ∈ L, we haveRν,1(ρ; ℓ) ≤
ρ∥ℓ∥Lip, with equality if ℓ is convex. For α-smooth ℓ, we have |Rν,2(ρ; ℓ)− ρ∥ℓ∥Ḣ1,2(ν)| ≤

1
2αρ

2.

The factor of 1/2 under smoothness was not present in Lemma 2 of [18], since the proof only used
that |ℓ(z)− ℓ(z0)−∇(z0)⊤(z− z0)| ≤ α∥z− z0∥2, instead of the tight upper bound of α

2 ∥z− z0∥2.

This quantity naturally bounds the excess risk of standard WDRO.

Lemma 7 (WDRO excess risk bound). Under Setting A with ε = 0, the standard WDRO estimate
ℓ̂ = argminℓ∈L supν∈P(Z):Wp(µ̃,ν)≤ρ Eν [ℓ] satisfies Eµ[ℓ̂]− Eµ[ℓ⋆] ≤ Rµ,p(2ρ; ℓ⋆).

Proof. We bound

Eµ[ℓ̂]− Eµ[ℓ⋆] ≤ sup
ν∈P(Z)

Wp(ν,µ̃)≤ρ

Eν [ℓ̂]− Eµ[ℓ⋆] (Wp(µ, µ̃) ≤ ρ)

≤ sup
ν∈P(Z)

Wp(ν,µ̃)≤ρ

Eν [ℓ⋆]− Eµ[ℓ⋆] (optimality of ℓ̂)

≤ sup
ν∈P(Z)

Wp(ν,µ)≤2ρ

Eν [ℓ⋆]− Eµ[ℓ⋆] (Wp triangle inequality)

= Rµ,p(2ρ; ℓ⋆),

as desired.

Note that this bound does not incorporate the distributional assumptions encoded by G.

B Proofs for Section 3

B.1 Proof of Theorem 1

We compute

Eµ[ℓ̂ ]− Eµ[ℓ] ≤ sup
ν∈G

Wε
p(µ̃,ν)≤ρ

Eν [ℓ̂ ]− Eµ[ℓ] (µ ∈ G, Wε
p(µ̃, µ) ≤ ρ)

≤ sup
ν∈G

Wε
p(µ̃,ν)≤ρ

Eν [ℓ]− Eµ[ℓ] (ℓ̂ optimal for (OR-WDRO))

≤ sup
ν∈G

W2ε
p (ν,µ)≤2ρ

Eν [ℓ]− Eµ[ℓ] (Lemma 2)

≤ sup
ν∈G

Wp(ν,µ)≤cρ+2τp(G,2ε)

Eν [ℓ]− Eµ[ℓ] (Lemma 3)

≤ sup
ν∈P(Z)

Wp(ν,µ)≤cρ+2τp(G,2ε)

Eν [ℓ]− Eµ[ℓ] (G ⊆ P(Z))

= Rµ,p

(
cρ+ 2τp(G, 2ε); ℓ

)
.

Combining this bound with Lemma 6 gives the theorem.
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B.2 Proof of Corollary 1

The corollary follows as an immediate consequence of Theorem 1 and the resilience bounds of
Proposition 2.

B.3 Proof of Corollary 2

The corollary follows as an immediate consequence of Theorem 1 and the resilience bound

τp(GsubG, ε) ≲
√
d+ p+ log 1

ε ε
1/p established in [39, Theorem 2].

B.4 Proof of Proposition 3

For ease of presentation, suppose d = 2m is even. Consider Rd as Rm × Rm, fix w ∈ Rm with
∥w∥ = ρ, and let L consist of the following loss functions:

ℓ+,0(x, y) := L∥x+ y∥
ℓ−,0(x, y) := L∥x− y∥
ℓ+,1(x, y) := L∥x+ y − w∥
ℓ−,1(x, y) := L∥x− y + w∥.

Fixing corrupted measure µ̃ = δ0, we consider the following candidates for the clean measure µ:

µ+,0 := (1− ε)δ0 + ε(Id,− Id)#N (0, Id/ε)

µ−,0 := (1− ε)δ0 + ε(Id,+Id)#N (0, Id/ε)

µ+,1 := (1− ε)δ(0,w) + ε(Id,− Id+w)#N (0, Id/ε)

µ−,1 := (1− ε)δ(0,w) + ε(Id, Id+w))#N (0, Id/ε),

where Id : x 7→ x is the identity map. By design, Wε
1(µ̃∥µ+,0),W

ε
1(µ̃∥µ−,0),W

ε
1(µ̃∥µ+,1), and

Wε
1(µ̃∥µ−,1) are all at most ρ and µ+,0, µ−,0, µ+,1, µ−,1 ∈ Gcov. Moreover,

Eµ+,0
[ℓ+,0] = Eµ−,0

[ℓ−,0] = Eµ+,1
[(ℓ+,1) = Eµ−,1

[ℓ−,1] = 0

Eµ+,0
[ℓ−,0] = Eµ−,0

[ℓ+,0] = Eµ+,1
[ℓ−,1] = Eµ−,1

[ℓ+,1] = 2LεEZ∼N (0,Id/ε)[∥Z∥] ≳ L
√
dε

Eµ+,0
[ℓ+,1] = Eµ+,1

[ℓ+,0] = Eµ−,0
[ℓ−,1] = Eµ−,1

[ℓ−,0] = L∥w∥ = Lρ.

Thus, for any ℓ̂ = D(µ̃) ∈ L, there exists µ ∈ {µ+,0, µ−,0, µ+,1, µ−,1} such that

Eµ[ℓ̂]− inf
ℓ∈L

Eµ[ℓ] = Eµ[ℓ̂] ≳ Lmax{ρ,
√
dε} ≍ L

(
ρ+
√
dε
)
.

B.5 Proof of Proposition 4

Since µ ∈ Gcov, we have

Eµ

[
∥Z − z0∥2

] 1
2 ≤ Eµ[∥Z − Eµ[Z]∥2] 12 + ∥Eµ[Z]− z0∥

= tr(Σµ)
1
2 + ∥Eµ[Z]− z0∥

≤
√
d+ ∥Eµ[Z]− z0∥ ≤ σ.

Consequently, we have µ ∈ G2(σ, z0). Next, we bound

Wε
p(µ̃n∥µ) := inf

ν∈P(Z)
ν≤ 1

1−ε µ̃n

Wp(ν, µ)

≤ inf
ν,µ′∈P(Z)
ν≤ 1

1−ε µ̃n

µ′≤ 1
1−εµ

Wp(ν, µ
′) +Wp(µ

′, µ)

≤ inf
ν,µ′∈P(Z)
ν≤ 1

1−ε µ̃n

µ′≤ 1
1−εµ

Wp(ν, µ
′) + τp(µ, ε) (definition of τp)
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= (1− ε)−
1
pWε

p(µ̃n, µ) + τp(µ, ε) (Lemma 1)

≤ (1− ε)−
1
p (ρ0 + δ) + τp(Gcov, ε) = ρ.

Writing G′ = G2(σ, z0) and mirroring the proof of Theorem 1, we have for each ℓ ∈ L that

Eµ[ℓ̂ ]− Eµ[ℓ] ≤ sup
ν∈G′

Wε
p(µ̃n∥ν)≤ρ

Eν [ℓ̂ ]− Eµ[ℓ]

≤ sup
ν∈G′

Wε
p(µ̃n∥ν)≤ρ

Eν [ℓ]− Eµ[ℓ] (ℓ̂ optimal for (4))

≤ sup
ν∈G′

W2ε
p (ν,µ)≤2ρ

Eν [ℓ]− Eµ[ℓ] (Lemma 2)

≤ sup
ν∈G′

Wp(ν,µ)≤cρ+2τp(G′,2ε)

Eν [ℓ]− Eµ[ℓ] (Lemma 3)

≤ sup
ν∈P(Z)

Wp(ν,µ)≤cρ+2τp(G′,2ε)

Eν [ℓ]− Eµ[ℓ]

= Rµ,p

(
cρ+ 2τp(G′, 2ε); ℓ

)
≤ Rµ,p

(
cρ+ 8σ(2ε)

1
p−

1
2 (1− 2ε)−

1
p ; ℓ
)
. (Lemma 5)

When p = 1, we bound the regularizer radius by

cρ+ 8σ
√
2ε(1− 2ε)−1 ≲ ρ0 + δ + τ1(Gcov, ε) + (

√
d+ ρ0)

√
ε ≲ ρ0 + δ +

√
dε,

using Lemma 5. Similarly, when p = 2, we bound the radius by

cρ+ 8σ(1− 2ε)−
1
2 ≲ ρ0 + δ + τ2(Gcov, ε) + (

√
d+ ρ0) ≲ ρ0 + δ +

√
d.

Taking ℓ = ℓ⋆ and applying Lemma 7 gives the proposition.

B.6 Proof of Proposition 5

To start, we fix d = 1. Given 0 ≤ γ < 1/2 and ν ∈ P(R) with cumulative distribution function
(CDF) Fν , define the γ-trimming Tγ(ν) ∈ P(R) as the law of F−1

ν (U), where U ∼ Unif([γ, 1−γ]),
and let mγ(ν) := ETγ(ν)[Z] denote the γ-trimmed mean. If ν = 1

|A|
∑

a∈A δa is uniform over a

finite set A = {a1 < a2 < · · · < an} and γn is an integer, we have mγ(ν) =
1

(1−2γ)n

∑(1−γ)n
i=γn+1 ai.

Our robust mean estimate when d = 1 is z0 = mγ(µ̃n) with γ = 1/3. The smaller choice of γ = ε
gives tighter guarantees at the cost of increased sample complexity; we keep the larger choice since
we only require a coarse estimate.
Lemma 8. Consider Setting B with d = 1, G = Gcov, ρ0 = 0, ε ≤ 1/3. Fix sample size
n = Ω(log(1/δ)), for 0 < δ < 1/2. Then, ∥mγ(µ̃n)− Eµ[Z]∥ ≲ 1 with probability at least 1− δ.

Proof. This follows by Proposition 1.18 of [16] applied to the distribution µ with corruption fraction
γ, ε′ = 4γ/3 < 1/2, and resilience bound τ(Gcov, 2ε′) ≲

√
γ ≲ 1.

Now, since we are free to permute the order of the TV and Wp corruptions (see Lemma 1), there exist
{Wi}ni=1 ⊆ R with empirical measure νn ∈ P(R) such that ∥νn− µ̂n∥TV ≤ ε and Wp(νn, µ̃n) ≤ ρ0.
By Lemma 8, we have |mγ(νn)− Eµ[Z]| ≲ 1. Of course, we do not observe νn, so this result is not
immediately useful. To apply this fact, we use that Tγ is an approximate Wasserstein contraction.

Lemma 9. If α, β ∈ P(R) and 0 ≤ γ < 1/2, then Wp(Tγ(α),Tγ(β)) ≤ (1− 2γ)−1/pWp(α, β).

Proof. Writing Fα and Fβ for the CDFs of α and β, respectively, we compute

Wp(Tγ(α),Tγ(β))
p =

1

1− 2γ

∫ 1−γ

γ

|F−1
α (t)− F−1

β (t)|p dt
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≤ 1

1− 2γ

∫ 1

0

|F−1
α (t)− F−1

β (t)|p dt = 1

1− 2γ
Wp(α, β)

p,

as desired.

Applying Lemma 9, we bound

|mγ(µ̃n)− Eµ[Z]| ≤ |mγ(νn)− Eµ[Z]|+ |mγ(νn)−mγ(µ̃n)|
≤ |mγ(νn)− Eµ[Z]|+W1(Tγ(νn),Tγ(µ̃n))

≲ 1 +W1(νn, µ̃n)

≲ 1 + ρ0.

This matches the proposition statement when d = 1.

For general d > 1, we propose the coordinate-wise trimmed estimate z0 ∈ Rd given by (z0)i =
mγ(e

⊤
i #µ̃n). Plugging in δ ← 1/(100d) into Lemma 8 and taking a union bound over coordinates,

we condition on the 0.99 probability event that the one-dimensional bound holds for all coordinates.
We can then bound

∥z0 − Eµ[Z]∥2 =
d∑

i=1

(
mγ(e

⊤
i #µ̃n)− Eµ[e

⊤
i Z]

)2
≲ d+

d∑
i=1

W1(e
⊤
i #νn, e

⊤
i #µ̃n)

2

≤ d+W1(νn, µ̃n)
2

≤ d+ ρ20,

as desired. The penultimate inequality is a consequence of the reverse Minkowski inequality.
Lemma 10. Fix α, β ∈ P(Rd) Write αi = e⊤i #α and βi = e⊤i #β, i ∈ [d], for their coordinate-wise
marginals. We then have

d∑
i=1

W1(αi, βi)
2 ≤W1(α, β)

2. (8)

Proof. Take (X,Y ) to be an optimal coupling for the W1(α, β) problem. Writing ∆i = ∥Yi −Xi∥2
for i ∈ [d], the right hand side of (8) can be written as the L1/2 norm ∥

∑d
i=1 ∆i∥1/2. We then bound

d∑
i=1

W1(αi, βi)
2 ≤

d∑
i=1

∥∆i∥1/2 ≤

∥∥∥∥∥
d∑

i=1

∆i

∥∥∥∥∥
1/2

,

where the final inequality follows by the reverse Minkowski inequality for L1/2.

B.7 Proof of Proposition 6

We have

sup
ν∈G2(σ,z0):

Wε
p(µ̃n∥ν)≤ρ

Eν [ℓ] = sup
µ′,ν∈P(Z)
π∈Π(µ′,ν)

Eν [ℓ] :

Eν [∥Z − z0∥2] ≤ σ2,

Eπ[∥Z ′ − Z∥p] ≤ ρp,

µ′ ≤ 1
1−ε µ̃n



= sup
m∈Rn

ν1,...,νn∈P(Z)


∑
i∈[n]

mi Eνi
[ℓ] :

∑
i∈[n] mi Eνi [∥Zi − z0∥2] ≤ σ2,∑
i∈[n] mi Eνi

[∥Z̃i − Zi∥p] ≤ ρp,

0 ≤ mi ≤ 1
n(1−ε) , ∀i ∈ [n]∑

i∈[n] mi = 1

,

where the first equality follows from the definitions of G2(σ, z0) and Wε
p(µ̃n∥ν). The second equality

holds because µ̃n = 1
n

∑
i∈[n] δZ̃i

, which implies that the distributions µ′, ν and π take the form

18



µ′ =
∑

i∈[n] miδZ̃i
, ν =

∑
i∈[n] miνi, and π =

∑
i∈[n] miδZ̃i

⊗ νi, respectively. Note that the
distribution νi models the probability distribution of the random variable Z condition on the event
that Z ′ = z̃i. Using the definition of the expectation operator and introducing the positive measure
ν′i = miνi for every i ∈ [n], we arrive at

sup
ν∈G2(σ,z0):

Wε
p(µ̃n∥ν)≤ρ

Eν [ℓ] = sup
m∈Rn

ν′
1,...,ν

′
n≥0


∑
i∈[n]

Eν′
i
[ℓ] :

∑
i∈[n]

∫
Z ∥zi − z0∥2dν′i(zi) ≤ σ2,∑

i∈[n]

∫
Z ∥zi − Z̃i∥pdν′i(zi) ≤ ρp,

0 ≤ mi ≤ 1
n(1−ε) , ∀i ∈ [n],∑

i∈[n] mi = 1∫
Z dν′i(zi) = mi, ∀i ∈ [n]



= inf
λ1,λ2∈R+

r,s∈Rn,α∈R

λ1σ
q + λ2ρ

p + α+

∑
i∈[n] si

n(1− ε)
:

si ≥ max{0, ri − α}, ∀i ∈ [n],

ri ≥ ℓ(ξ)− λ1∥ξ − z0∥2 − λ2∥ξ − Z̃i∥p,
∀ξ ∈ Z,∀i ∈ [n]

,

where the second equality follows from strong duality, which holds because the Slater condition
outlined in [47, Proposition 3.4] is satisfied thanks to Assumption 1. The proof concludes by removing
the decision variables r and s and using the definition of µ̃n.

B.8 Proof of Theorem 2

The proof requires the following preparatory lemma. We say that the function f is proper if
f(x) > −∞ and dom(f) ̸= ∅.
Lemma 11. The followings hold.

(i) Let f(x) = λg(x − x0), where λ ≥ 0 and g : Rd → R is l.s.c. and convex. Then,
f∗(y) = x⊤

0 y + λg∗(y/λ).

(ii) Let f(x) = ∥x∥p for some p ≥ 1. Then, f∗(y) = h(y), where the function h is defined as
in (6).

(iii) Let f(x) = x⊤Σx for some Σ ≻ 0. Then, f∗(y) = 1
4y

⊤Σ−1y.

Proof. The claims follows from [25, §E, Proposition 1.3.1 ], [57, Lemma B.8 (ii)] and [25, §E,
Example 1.1.3], respectively.

Proof of Theorem 2. By Proposition 6 and exploiting the definition of µ̃n, we have

sup
ν∈G2(σ,z0):

Wε
p(µ̃n∥ν)≤ρ

Eν [ℓ] =


inf λ1σ

2 + λ2ρ
p + α+ 1

n(1−ε)

∑
i∈[n] si

s.t. α ∈ R, λ1, λ2 ∈ R+, s ∈ Rn
+

si ≥ sup
ξ∈Z

ℓ(ξ)− λ1∥ξ − z0∥2 − λ2∥ξ − Z̃i∥p − α ∀i ∈ [n]

=



inf λ1σ
2 + λ2ρ

p + α+ 1
n(1−ε)

∑
i∈[n] si

s.t. α ∈ R, λ1, λ2 ∈ R+, s ∈ Rn
+

si ≥ sup
ξ∈Z

ℓj(ξ)− λ1∥ξ − z0∥2

−λ2∥ξ − Z̃i∥p − α ∀i ∈ [n],∀j ∈ [J ]
(9)

where the second equality follows form Assumption 2. For any fixed i ∈ [n] and j ∈ [J ], we have

sup
ξ∈Z

ℓj(ξ)− λ1∥ξ − z0∥2 − λ2∥ξ − Z̃i∥p − α

=

{
inf (−ℓj)∗(ζℓij) + z⊤0 ζGij + τij + Z̃⊤

i ζWij + Ph(ζ
W
ij , λ2) + χ∗

Z(ζ
Z
ij )− α

s.t. τij ∈ Rn
+, ζ

ℓ
ij , ζ

G
ij , ζ

W
ij , ζ

Z
ij ∈ Rd, ζℓij + ζGij + ζWij + ζZij = 0, ∥ζGij∥2 ≤ λ1τij
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where the equality is a result of strong duality due to [57, Theorem 2] and Lemma 11. The claim
follows by substituting all resulting dual minimization problems into (9) and eliminating the corre-
sponding minimization operators.

B.9 Proof of Theorem 3

Thanks to Remark 3, we have
sup

ν∈G2(σ,z0):
Wε

p(µ̃n∥ν)≤ρ

Eν [ℓ]

= inf
λ1,λ2∈R+

λ1σ
2 + λ2ρ

p +CVaR1−ε,µ̃n

[
sup
ξ∈Z

ℓ(ξ)− λ1∥ξ − z0∥2 − λ2∥ξ − Z∥p
]

= inf
λ1,λ2∈R+

sup
m∈Mε

λ1σ
2 + λ2ρ

p +
∑
i∈[n]

mi

[
sup
ξ∈Z

ℓ(ξ)− λ1∥ξ − z0∥2 − λ2∥ξ − Z̃i∥p
]
,

whereMε := {m ∈ Rn
+ : mi ≤ 1/(n(1− ε)),∀i ∈ [n],

∑
i∈[n] mi = 1}, and the equality follows

from the primal representation of the CVaR as a coherent risk measure [3, Example 4.1] and the fact
that µ̃n is discrete. By Assumption 2, we have

sup
m∈Mε

∑
i∈[n]

mi

[
sup
ξ∈Z

ℓ(ξ)− λ1∥ξ − z0∥2 − λ2∥ξ − Z̃i∥p
]

= sup
m∈Mε

sup
ξij∈Z

∑
i∈[n]

mi

[
max
j∈[J]

ℓ(ξij)− λ1∥ξij − z0∥2 − λ2∥ξij − Z̃i∥p
]

= sup
q∈Qε

sup
ξij∈Z

∑
(i,j)∈[n]×[J]

qij

[
ℓ(ξij)− λ1∥ξij − z0∥2 − λ2∥ξij − Z̃i∥p

]
,

where Qε := {q ∈ Rn×J
+ :

∑
j∈[J] qij ≤

1
n(1−ε) ,∀i ∈ [n],

∑
(i,j)∈[n]×[J] qij = 1}, and the

last equality easily follows by introducing the variables qij as a means to merge the variables mi

and the maximum operator. Note that the final supremum problem is nonconvex as we have bi-
linearity between qij and ξij . Using the definition of the perspective function and the simple variable
substitution ξij ← ξij/qij , however, one can convexify this problem and arrive at

sup
ν∈G2(σ,z0):
Wε

p(µ̃n∥ν)≤ρ

Eν [ℓ] = inf
λ1,λ2∈R+

sup
q∈Qε

ξij∈qij ·Z

{
λ1σ

2 + λ2ρ
p −

∑
(i,j)∈[n]×[J]

P−ℓj (ξij , qij)

− λ1P∥·∥2(ξij − qijz0, qij)− λ2P∥·∥p(ξij − qijZ̃i, qij)
}
.

Note that strong duality holds similar to the proof of [57, Section 6]. This allows us to interchange
the infimum and supremum without changing the optimal value of the problem. Then, infimizing
over λ1 and λ2, and noticing that the resulting supremum problem is solvable, since the feasible set is
compact, conclude the first part of the proof. Following the discussion in [57, § 6], it is easy to show
that the proposed discrete distribution ν⋆ solves the worst-case expectation problem. The details are
omitted for brevity. This concludes the proof.

C Proofs for Section 4

C.1 Proof of Theorem 4

We start with the following lemma.

Lemma 12. Under the setting of Theorem 4, we may decompose ℓ⋆ = ℓ̃ ◦ Q for Q ∈ Rk×d with
QQ⊤ = Ik and some ℓ̃ : Rk → Rd. For any such decomposition, we have

sup
ν∈G

Wε
p(ν,µ̃)≤ρ

Eν [ℓ⋆] = sup
ν∈Gk

Wε
p(ν,Q#µ̃)≤ρ

Eν [ℓ̃].
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Proof. To start, we decompose A(z) = RQz + z0, where Q ∈ Rk×d with QQ⊤ = Ik, R ∈ Rk×k,
and z0 ∈ Rk. Note that the orthogonality condition ensures that Q⊤ isometrically embeds Rk into
Rd. We then choose ℓ̃(w) = ℓ(Rw + z0).

Next, given ν ∈ G, we have Q#ν ∈ G(k) with Wε
p(Q#ν,Q#µ̃) ≤Wε

p(ν, µ̃), and Eν [ℓ] = EQ#ν [ℓ̃].
Thus, the RHS supremum is always at least as large as the LHS. It remains to show the reverse.

Fix ν ∈ Gk with Wε
p(ν,Q#µ̃). Take any ν′ ∈ P(Rk) with Wp(ν, ν

′) ≤ ρ and ∥ν′ −Q#µ̃∥TV ≤ ε.
Write κ = Q⊤

#ν ∈ G and κ′ = Q⊤
#ν

′. Since Q⊤ is an isometric embedding, we have κ ∈ G,
Wp(κ, κ

′) = Wp(ν, ν
′) ≤ ρ, and ∥κ′− µ̃∥TV = ∥ν′−Q#µ̃∥TV ≤ ε. Finally, we have Eν [ℓ] = Eκ[ℓ̃].

Thus, the RHS supremum is no greater than the LHS, and we have the desired equality.

Writing µk = Q#µ, we mirror the proof of Theorem 1 and bound

Eµ[ℓ̂ ]− Eµ[ℓ⋆] ≤ sup
ν∈G

Wε
p(µ̃,ν)≤ρ

Eν [ℓ̂ ]− Eµ[ℓ⋆] (µ ∈ G, Wε
p(µ̃, µ) ≤ ρ)

≤ sup
ν∈G

Wε
p(µ̃,ν)≤ρ

Eν [ℓ⋆]− Eµ[ℓ⋆] (ℓ̂ optimal for (OR-WDRO))

= sup
ν∈G(k)

Wε
p(ν,Q#µ̃)≤ρ

Eν [ℓ̃]− Eµk
[ℓ̃] (Lemma 12)

≤ sup
ν∈G(k)

W2ε
p (ν,µk)≤2ρ

Eν [ℓ̃]− Eµk
[ℓ̃] (Lemma 2)

≤ sup
ν∈G(k)

Wp(ν,µk)≤cρ+2τp(G(k),2ε)

Eν [ℓ̃]− Eµk
[ℓ̃] (Lemma 3)

≤ sup
ν∈P(Z)

Wp(ν,µk)≤cρ+2τp(G(k),2ε)

Eν [ℓ̃]− Eµk
[ℓ̃] (G ⊆ P(Z))

= Rµk,p

(
cρ+ 2τp(G(k), 2ε); ℓ̃

)
.

To obtain the theorem, we apply Lemma 6 and observe that ∥ℓ̃∥Lip = ∥ℓ⋆∥Lip and ∥ℓ̃∥Ḣ1,2(µk)
=

∥ℓ⋆∥Ḣ1,2(µ) (since Q⊤ is an isometric embedding from Rk into Rd).

C.2 Proof of Corollary 4

This follows as an immediate consequence of Theorem 4 and Corollary 1.

C.3 Proof of Proposition 7

We simply instantiate the lower bound construction from Proposition 3 in Rk, viewed as a subspace of
Rd. Extending each ℓ ∈ L to Rd by ℓ(z) = ℓ(z1:k), the same lower bound applies with d← k.

C.4 Proof of Proposition 8

For Z ∼ µ ∈ Gcov and z0, w ∈ Rd, we bound

E
[
w⊤(Z − z0)(Z − z0)

⊤w
] 1

2 = E
[
w⊤(Z − z0)

2
] 1

2

≤ E
[
w⊤(Z − E[Z])2

] 1
2 + |w⊤(E[Z]− z0)|

≤ ∥w∥(1 + ∥z0 − E[Z]∥).
Consequently, we have µ ∈ Gcov(1 + ∥z0 − E[Z]∥, z0) ⊆ Gcov(σ, z0). Moreover, we have
Wε

p(µ̃n, µ) ≤ Wp(µ
′
m, µ) ≤ ρ0 + δ = ρ. Decomposing ℓ⋆ = ℓ̃ ◦ Q as in Lemma 12 and writ-

ing µk = Q#µ, the same approach applied in the proof of Theorem 4 gives

Eµ[ℓ̂ ]− Eµ[ℓ⋆] ≤ Rµk,p

(
cρ+ 2τp(Q#Gcov(σ, z0), 2ε); ℓ̃

)
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≤ Rµk,p

(
cρ+O(σ

√
kε

1
p−

1
2 ); ℓ̃

)
.

When p = 1, we bound the regularizer radius by

cρ+O(σ
√
kε) ≲ ρ0 + δ + (1 + ρ0)

√
kε ≲

√
kρ0 +

√
kε+ δ,

using Lemma 5. Similarly, when p = 2, we bound the radius by

cρ+O(σ
√
k) ≲ ρ0 + δ + (1 + ρ0)

√
k ≲
√
kρ0 +

√
k + δ

We then conclude as in Theorem 4.

C.5 Proof of Proposition 9

Since iterative filtering works by identifying a subset of samples with bounded covariance and Wp

perturbations can arbitrarily increase second moments when p < 2, it is not immediately clear how to
apply this method. Fortunately, W2 perturbations have a bounded affect on second moments, and, by
trimming out a small fraction of samples, we can ensure that a W1 step is bounded under W2.

Lemma 13. For any µ, ν ∈ P(Rd) and 0 < γ ≤ 1, there exists ν′ ∈ P(Rd) with ∥ν′ − ν∥TV ≤ τ
such that W1(µ, ν

′) ≤W1(µ, ν) and W∞(µ, ν′) ≤W1(µ, ν)/γ.

Proof. Let (X,Y ) be a coupling of µ and ν with E[∥X − Y ∥] = W1(µ, ν). Writing ∆ = ∥X − Y ∥,
the event E that ∆ ≤ W1(µ, ν)/γ has probability at least 1− γ by Markov’s inequality. We shall
take ν′ be the law of Y ′ = 1EY + (1− 1E)X . By design, ∥ν′ − ν∥TV ≤ γ, and

W1(µ, ν
′) ≤ E[∥X − Y ′∥p] = E[1E∥X − Y ∥p] ≤W1(µ, ν).

Finally, we bound W∞(µ, ν′) ≤ ∥1E∆∥∞ ≤W1(µ, ν)/γ.

For consistency between Settings B and B′, we let m = n if we are the former. Thus, in both cases,
we have Wp(µ̂m, µ′

m) ≤ ρ0 and ∥µ′
m−µ̃n∥TV ≤ ε ≤ ε0 := 1/12. It is well known that the empirical

measure µ̂m will inherit the bounded covariance of µ for m sufficiently large, so long as a small
fraction of samples are trimmed out. In particular, by Lemma A.18 of [15] and our sample complexity
requirement, there exists a uniform discrete measure αk over a subset of k = (1− ε0/120)m points,
such that ∥Eαk

[Z]− Eµ[Z]∥ ≲ 1 and Σαk
⪯ O(1)Id with probability at least 0.99.

Moreover, applying Lemma 13 with γ = ε0/120, there exists β ∈ P(Rd) with ∥β − µ′
m∥TV ≤

ε0/120 and W2(β, µ̂n) ≤ 240ρ0/ε0. Combining, we have that Wε0/120+ε0/120+ε0
2 (αm, µ̃n) =

W
61ε0/60
2 (αk, µ̃n) ≤ 240ρ0/ε0, and so there exists κ ∈ P(Rd) such that W∞(αk, κ) ≤ 240ρ0/ε0

and ∥κ− µ̃n∥TV ≤ 61ε0/60. The W∞ bound implies that Σκ ⪯ O(1 + ρ20ε
−2
0 )Id.

Thus, by the proof of Theorem 4.1 in [26] and our sample complexity requirement, the iterative
filtering algorithm (Algorithm 1 therein, based on that of [15]) applied with an outlier fraction of
61/60ε0 ≤ 1/10 returns a reweighting of µ̃n whose mean z0 ∈ Rd is within O(

√
ε0 + ρ0/

√
ε0) =

O(1 + ρ0) of that of κ. Thus, we obtain

∥z0 − Eµ[Z]∥ ≤ ∥Eκ[Z]− Eµ[Z]∥+O(1 + ρ0)

≤ ∥Eαk
[Z]− Eµ[Z]∥+O(1 + ρ0)

≤ O(1 + ρ0),

as desired.

C.6 Proof of Proposition 10

We have

sup
ν∈Gcov(σ,z0):

Wε
p(µ̃n∥ν)≤ρ

Eν [ℓ] = sup
µ′,ν∈P(Z)
π∈Π(µ′,ν)

Eν [ℓ] :

Eν [(Z − z0)(Z − z0)
⊤] ⪯ σId,

Eπ[∥Z ′ − Z∥p] ≤ ρp,

µ′ ≤ 1
1−ε µ̃n


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= sup
m∈Rn

ν1,...,νn∈P(Z)


∑
i∈[n]

mi Eνi
[ℓ] :

∑
i∈[n] mi Eνi

[(Zi − z0)(Zi − z0)
⊤] ⪯ σId,∑

i∈[n] mi Eνi
[∥Z̃i − Zi∥p] ≤ ρp,

0 ≤ mi ≤ 1
n(1−ε) , ∀i ∈ [n],∑

i∈[n] mi = 1



= sup
m∈Rn

ν′
1,...,ν

′
n≥0


∑
i∈[n]

Eν′
i
[ℓ] :

∑
i∈[n]

∫
Z(zi − z0)(zi − z0)

⊤dν′i(zi) ⪯ σId,∑
i∈[n]

∫
Z ∥zi − Z̃i∥pdν′i(zi) ≤ ρp,

0 ≤ mi ≤ 1
n(1−ε) , ∀i ∈ [n],∑

i∈[n] mi = 1∫
Z dν′i(zi) = mi, ∀i ∈ [n]


,

where the first equality follows from the definitions of Gcov(σ, z0) and Wε
p(µ̃n∥ν). The second and

the third equalities follow from the same variable substitution as in the proof of Proposition 6. The
last optimization problem admits the dual form

inf
Λ1∈Qd

+,λ2∈R+

r,s∈Rn,α∈R


−z⊤0 Λ1z0 + σTr[Λ1] + λ2ρ

p + α+
∑

i∈[n] si

n(1−ε) :

si ≥ max{0, ri − α}, ∀i ∈ [n],

ri ≥ ℓ(ξ)− ξ⊤Λ1ξ + 2ξ⊤Λ1z0 − λ2∥ξ − Z̃i∥p, ∀ξ ∈ Z,∀i ∈ [n]

.

Strong duality holds thanks to Assumption 3 and [47, Proposition 3.4]. The proof of the second claim
concludes by removing the decision variables r and s and using the definition of µ̃n.

C.7 Proof of Theorem 5

By Proposition 10 and exploiting the definition of µ̃n, we have
sup

ν∈Gcov(σ,z0):

Wε
p(µ̃n∥ν)≤ρ

Eν [ℓ]

=


inf −z⊤0 Λ1z0 + σTr[Λ1] + λ2ρ

p + α+
1

n(1− ε)

∑
i∈[n]

si

s.t. Λ1 ∈ Qd
+, λ2 ∈ R+, s ∈ Rn

+

si ≥ sup
ξ∈Z

ℓ(ξ)− ξ⊤Λ1ξ + 2ξ⊤Λ1z0 − λ2∥ξ − Z̃i∥p − α ∀i ∈ [n]

=


inf −z⊤0 Λ1z0 + σTr[Λ1] + λ2ρ

p +
1

n(1− ε)

∑
i∈[n]

si

s.t. Λ1 ∈ Qd
+, λ2 ∈ R+, s ∈ Rn

+

si ≥ sup
ξ∈Z

ℓj(ξ)− ξ⊤Λ1ξ + 2ξ⊤Λ1z0 − λ2∥ξ − Z̃i∥p − α ∀i ∈ [n],∀j ∈ [J ]

(10)

where the second equality follows form Assumption 2. For any fixed i ∈ [n] and j ∈ [J ], we have

sup
ξ∈Z

ℓj(ξ)− ξ⊤Λ1ξ + 2ξ⊤Λ1z0 − λ2∥ξ − Z̃i∥p − α

=

{
inf (−ℓj)∗(ζℓij) + 1

4 (ζ
G
ij)

⊤Λ−1
1 ζGij + Z̃⊤

i ζWij + λ2h(ζ
W
ij /λ2, p) + χ∗

Z(ζ
Z
ij )− α

s.t. ζℓij , ζ
G
ij , ζ

W
ij , ζ

Z
ij ∈ Rd, ζℓij + ζGij + ζWij + ζZij = 2Λ1z0

where the equality is a result of strong duality due to [57, Theorem 2] and Lemma 11. The claim
follows by introducing the epigraph variable τij for the term 1

4 (ζ
G
ij)

⊤Λ−1
1 ζGij , and substituting all

resulting dual minimization problems into (10) and eliminating the corresponding minimization
operators. Note that by the Schur complement argument, we have

1

4
(ζGij)

⊤Λ−1
1 ζGij ≤ τij ⇐⇒

[
Λ1 ζGij

(ζGij)
⊤ 4τij

]
⪰ 0,

which implies that the resulting reformulation is indeed convex.
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D Comparison to WDRO with Expanded Radius around Minimum Distance
Estimate (Remark 1)

First, we prove the claimed excess risk bound for WDRO with an expanded radius around the
minimum distance estimate µ̂ = µ̂(µ̃,G, ε) := argminν∈G Wε

p(ν, µ̃). We write c = 2(1− ε)−1/p as
in Theorem 1.
Lemma 14. Under Setting A, let ℓ̂ = argminℓ∈L supν∈P(Z):Wp(ν,µ̂)≤ρ′ Eν [ℓ], for the expanded

radius ρ′ := cρ+ 2τp(G, 2ε). We then have Eµ[ℓ̂]− Eµ[ℓ⋆] ≤ Rµ,p(cρ+ 2τp(G, 2ε); ℓ⋆).

Proof. Since Wε
p(µ, µ̃) ≤ ρ and µ ∈ G, we have Wε

p(µ̂, µ̃) ≤ ρ. Thus, Lemma 2 gives that
W2ε

p (µ̂, µ) ≤ 2ρ. By Lemma 3, we then have Wp(µ̂, µ) ≤ cρ+ 2τp(G, 2ε), and so Lemma 7 gives
the desired result.

In practice, we are unaware of efficient finite-sample algorithms to compute µ̂. For the class Gcov, we
instead propose the spectral reweighing estimate µ̌ = µ̌(µ̃, ε) := argminν∈P2(Z), ν≤ 1

1−2ε µ̃
∥Σν∥op,

where ∥ · ∥op is the matrix operator norm (see [26] for varied applications of spectral reweighing).
In practice, when µ̃ = µ̃n is an n-sample empirical measure, one can efficiently obtain a feasible
measure ν whose objective value is optimal up to constant factors for the problem with ε← 3ε, using
the iterative filtering algorithm [15]. We work with the exact minimizer µ̌ for convenience, but our
results are robust to such approximate solutions.
Lemma 15. Under Setting A with G = Gcov, p = 1, and 0 < ε ≤ 0.2, we have W1(µ̌, µ) ≲√
dρ +

√
dε, and this bound is tight; that is, there exists an instance (µ, µ̃) ∈ Gcov × P(Rd)

with Wε
1(µ, µ̃) ≤ ρ such that W1(µ̌, µ) ≳

√
dρ +

√
dε. Consequently, the WDRO estimate ℓ̌ =

argminℓ∈L supν∈P(Z):W1(ν,µ̌)≤ρ̌ Eν [ℓ] satisfies Eµ[ℓ̌]− Eµ[ℓ⋆] ≤ Rµ,1(O(
√
dρ+

√
dε); ℓ⋆).

Proof. Upper bound: For the upper bound on W1 estimation error, fix any µ̃ ∈ P(Rd) with
Wε

1(µ̃, µ) ≤ ρ. Take any µ′ ∈ P(Rd) such that W1(µ
′, µ) ≤ ρ and ∥µ′ − µ̃∥TV ≤ ε. By Lemma 13,

there exists α ∈ P(Rd) with W1(α, µ) ≤ ρ, W2(α, µ) ≤ ρ
√
2/ε, and ∥α− µ̃∥TV ≤ 2ε. Fixing an

optimal coupling π ∈ Π(α, µ) for the W2(α, µ) problem and letting (Z,W ) ∼ π, we bound

∥Σα∥
1
2
op = sup

θ∈Sd−1

E
[
θ⊤(Z − E[Z])2

] 1
2 ≤ sup

θ∈Sd−1

E
[
θ⊤(Z − E[W ])2

] 1
2 ≤ ∥Σµ∥

1
2
op +W2(α, µ)

Thus, α ∈ Gcov(1 + ρ
√
2/ε). Write β := 1

(α∧µ̃)(Rd)
α ∧ µ̃, and note that this midpoint measure is

feasible for the problem defining µ̌. Hence, we have

∥Σµ̌∥op ≤ ∥Σβ∥op ≤ sup
θ∈Sd−1

Eβ

[
(θ⊤(Z − Eα[Z]))2

]
≤ 1

1− 2ε
∥Σα∥op ≤

1

1− 2ε
(1 + ρ

√
2/ε)2,

and so µ̌ ∈ Gcov
(
(1 − 2ε)−1/2(1 + ρ

√
2/ε)

)
. Moreover, we have ∥µ̌ − α∥TV ≤ 4ε. Thus, using

Lemma 5 and the fact that 4ε is bounded away from 1, we bound

W1(µ̌, α) ≤W1

(
µ̌, 1

(µ̌∧α)(Rd)
µ̌ ∧ α

)
+W1

(
1

(µ̌∧α)(Rd)
µ̌ ∧ α

)
≲
√
dρ+

√
dε.

By the triangle inequality, we have W1(µ̌, µ) ≲
√
dρ+

√
dε. The risk bound follows by Lemma 7.

Taking the final error measurement using distance between means instead of W1, we observe that
∥Eµ̌[Z]− Eµ[Z]∥2 ≲ ρ+

√
ε.

Lower bound: To see that this guarantee cannot be improved, fix clean measure µ = δ0 ∈ Gcov,
and consider the corrupted measure µ̃ = (1 − 3ε)δ0 + 2ε

(
1
2δ ρ

2εe1
+ 1

2δ− ρ
2εe1

)
+ εN

(
0, ρ2

100ε2 Id
)
,

constructed so that Wε
1(µ̃, µ) ≤ ρ. Intuitively, iterative filtering seeks to drive down the operator norm

of covariance matrix and will thus focus on removing mass from the second mixture component.

To formalize this, we decompose the output of filtering as (1−2ε)µ̌ = (1−3ε−τ)δ0+α+β, where
0 ≤ τ ≤ 2ε and α, β ∈ M+(Rd) such that α ≤ 2ε

(
1
2δ ρ

2εe1
+ 1

2δ− ρ
2εe1

)
and β ≤ εN

(
0, ρ2

100ε2 Id
)
.

We have τ + (2ε−α(Rd)) + (ε− β(Rd)) = 2ε by the definition of µ̌. Further note that ∥Eµ̌[Z]∥ ≲
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√
ε+ ρ ≲ ρ, by the bounds above. Now suppose for sake of contradiction that β(Rd) ≤ ε/2. Then

α(Rd) ≥ ε/2, and so we bound

∥Σµ̌∥
1
2
op ≥

√
Eµ̌[Z2

1 ]− ∥Eµ̌[Z]∥

≥

√
ε

2(1− 2ε)

ρ2

4ε2
− ∥Eµ̌[Z]∥

≥ ρ√
8ε
−O(ρ).

On the other hand, another feasible outcome for spectral reweighing is µ′ = 1
1−ε (1 − 3ε)δ0 +

εN
(
0, ρ2

100ε2 Id
)
, for which we have ∥Σµ′∥1/2op = ρ

10
√
ε
. Since 10 >

√
8, this contradicts optimality

of µ̌ if ε ≤ cρ2 for a sufficiently small constant c. However, if ε > cρ2, then a lower bound of
Ω(
√
dε) suffices. This bound holds even without Wasserstein perturbations; see the Gcov lower risk

bound of Ω(
√
dε) in Theorem 2 of [38].

We now suppose that β(Rd) ≥ ε/2. Let Z ∼ N
(
0, ρ2

100ε2

)
and write F for the CDF of ∥Z∥2 (which

has a scaled χ2
d distribution). We then have

∫
∥z∥ dβ(z) ≥ εE

[
∥Z∥ | ∥Z∥2 ≤ F−1(1/2)

]
≳
√
dρ,

using concentration of χ2
d about its mean. Thus, W1(µ̌, µ) ≥ Eµ̌[∥Z∥]− Eµ[∥Z∥] ≳

√
dρ.

E Smaller Robustness Radius for Outlier-Robust WDRO (Remark 2)

In the classical WDRO setting with ρ0 = ε = 0, the radius ρ can often be taken significantly smaller
than n−1/d if L and µ are sufficiently well-behaved. In particular, when µ satisfies a T2 transportation
inequality, [18] proves that ρ = Õ(n−1/2) gives meaningful risk bounds. Recall that µ ∈ T2(τ) if

W2(ν, µ) ≤
√

τH(ν∥µ), ∀ν ∈ P2(Z),

where H(ν∥µ) :=
∫
Z log(dν/dµ)dν denotes relative entropy when ν ≪ µ (and is +∞ otherwise).

We note that T2 is implied by the log-Sobolev inequality, which holds for example when µ has
strongly log-concave density. Under T2, [18] shows the following.
Proposition 11 (Example 3 in [18]). Fix Z = Rd × R, τ,B > 0, and an α-smooth and L-Lipschitz
function f : R→ R. Consider the parameterized family of loss functions L = {(x, y) 7→ ℓθ(x, y) =
f(θ⊤x − y) : θ ∈ Θ}, where Θ ⊂ {θ ∈ Rd : ∥θ∥ ≤ B}. Fix µ ∈ P(Z) whose first marginal
µX = µ(· × R) satisfies µX ∈ T2(τ) and such that infθ∈Θ Eµ[f

′(θ⊤X − Y )2] > 0. Write

σ = sup
θ∈Θ

Eµ[f
′(θ⊤X,Y )4]

1
2

Eµ[f ′(θ⊤X,Y )2]
≤ L2

infθ∈Θ Eµ[f ′(θ⊤X,Y )2]
<∞.

For t > 0, define

ρn =

√
τt
(
1 + d log(2 + 2Bn)

)
n

(
1 + σ

√
2t(1 + d log(2 + 2Bn))

n

)
,

δn =
2L+2BαEµ[∥X∥]+B2α2Varµ(∥X∥)+ρn

√
Eµ

[
(L+Bα∥X∥)2

]
+Varµ

(
(L+Bα∥X∥)2

)
n

,

ηn =
2αB2τt

(
1 + d log(2 + 2Bn)

)
n

.

Then, with probability at least 1− 2/n− 2e−t, we have

|Eµ[ℓθ]− Eµ̂n [ℓθ]| ≤ Rµ̂n,2(ρn; ℓθ) + δn + ηn ∀θ ∈ Θ. (11)

We note that (11) is stated without the absolute value on the right hand side, but that this strengthened
result holds due to the discussion after [18, Theorem 1]. This generalization bound immediately gives
the following excess risk bound.
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Corollary 5. Assume n ≥ 800. Fix ρn, δn, ηn, and L as in Proposition 11 with t = 7, and take
ℓθ̂ ∈ L minimizing (1) with p = 2 and radius ρ = ρn. Then, with probability at least 0.99, we have

Eµ[ℓθ̂]− Eµ[ℓθ] ≲ ρn∥ℓθ∥Ḣ1,2(µ) + αρ2n + δn + ηn ∀θ ∈ Θ.

Proof. By Proposition 11 and [18, Remark 1], we have

Eµ[ℓθ̂]− Eµ[ℓθ] ≤ 2Rµ̂n,2(ρn; ℓθ) + 2δn + 2ηn ∀θ ∈ Θ,

with probability at least 1− 2/n− 2e−t ≥ 0.995. Since ℓθ is α-smooth, Lemma 6 gives that

Eµ[ℓθ̂]− Eµ[ℓθ] ≤ 2ρn∥ℓθ∥Ḣ1,2(µ̂n)
+ 2αρ2n + 2δn + 2ηn ∀θ ∈ Θ,

with probability at least 0.995. By Markov’s inequality, we can substitute µ̂n with µ at the cost of a
constant factor blow-up in excess risk and a decrease in the confidence probability to, say, 0.99.

In the example above, excess risk is controlled by the 2-Wasserstein regularizer with radius ρn =
O(n−1/2), up to O(n−1) correction terms, which is significantly smaller that the typical radius
size of O(n−1/d). We shall now lift this improvement to the outlier-robust setting. Similar to
Proposition 4, we perform outlier-robust DRO with a modified choice of A. This time, writing
G2(σ) = ∪z0∈ZG2(σ, z0), we have the following.

Proposition 12 (Outlier-robust WDRO under T2). Assume n ≥ 800 and µ ∈ Gcov. Fix ρn, δn, ηn,
and L as in Proposition 11 with t = 8, and take ℓθ̂ minimizing (OR-WDRO) with center µ̃n, radius
ρ = ρ0 + 15ρn + 200

√
d, and A = G2(15

√
d+ ρn). Then, with probability at least 0.99, we have

Eµ[ℓθ̂]− Eµ[ℓθ] ≲ ∥ℓθ∥Ḣ1,2(µ)

(
ρ0 + ρn +

√
d
)
+ α

(
ρ0 + ρn +

√
d
)2

+ δn + ηn ∀θ ∈ Θ.

Proof. Noting that Gcov ⊆ G2(
√
d), we have by Markov’s inequality that µ̂n ∈ G2(15

√
d) with

probability at least 0.995. In other words, there exists z0 ∈ Z such that W2(µ̂n, δz0) ≤ 15
√
d.

Thus, for any ν ∈ P(Z) with W2(µ̂n, ν) ≤ ρn, we have W2(ν, δz0) ≤ 15
√
d + ρn, and so

ν ∈ G2(15
√
d+ ρn). By Lemmas 4 and 5, this implies that

Wε
2(µ̃n∥ν) ≤Wε

2(µ̃n, ν) + τ2(ν, ε)

≤ ρ0 + ρn + 8(15
√
d+ ρn)(1− ε)−1/2

< ρ.

Next, by Proposition 11, with probability at least 1 − 1/400 + 2e−8 ≥ 0.9985, we have for each
θ ∈ Θ that

Eµ[ℓθ̂]− Eµ[ℓθ] ≤ Eµ̂n
[ℓθ̂] +Rµ̂n,2(ρn; ℓθ̂)− Eµ[ℓθ] + δn + ηn

= Eµ̂n
[ℓθ̂] +

 sup
ν∈P(Z)

W2(µ̂n,ν)≤ρn

Eν [ℓθ̂]− Eµ̂n
[ℓθ̂]

− Eµ[ℓθ] + δn + ηn

= Eµ̂n
[ℓθ̂] +

 sup
ν∈G2(15

√
d+ρn)

W2(µ̂n,ν)≤ρn

Eν [ℓθ̂]− Eµ̂n
[ℓθ̂]

− Eµ[ℓθ] + δn + ηn

≤ Eµ̂n
[ℓθ̂] +

 sup
ν∈G2(15

√
d+ρn)

Wε
2(µ̃n∥ν)≤ρ

Eν [ℓθ̂]− Eµ̂n
[ℓθ̂]

− Eµ[ℓθ] + δn + ηn.

Let c = 2
(

1−ε
1−2ε

)1/p
. Using optimality of ℓ̂ and Lemma 2, we further bound
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Eµ[ℓθ̂]− Eµ[ℓθ] ≤

 sup
ν∈G2(15

√
d+ρn)

Wε
2(µ̃n∥ν)≤ρ

Eν [ℓθ]− Eµ̂n
[ℓθ]

+ Eµ̂n
[ℓθ]− Eµ[ℓθ] + δn + ηn

≤

 sup
ν∈G2(15

√
d+ρn)

Wε
2(µ̃n∥ν)≤ρ

Eν [ℓθ]− Eµ̂n
[ℓθ]

+Rµ̂n,2(ρn; ℓθ) + 2δn + 2ηn

≤

 sup
ν∈G2(15

√
d+ρn)

W2ε
2 (µ̂n,ν)≤cρ

Eν [ℓθ]− Eµ̂n [ℓθ]

+Rµ̂n,2(ρn; ℓθ) + 2δn + 2ηn

≤

 sup
ν∈G2(15

√
d+ρn)

W2(ν,µ̂n)≤cρ+τ2(µ̂n,2ε)+τ2(A,2ε)

Eν [ℓθ]− Eµ̂n [ℓθ]

+Rµ̂n,2(ρn; ℓθ) + 2δn + 2ηn

≤ Rµ̂n2

(
cρ+ τ2(µ̂n, 2ε) + τ2(A, 2ε); ℓθ

)
+Rµ̂n,2(ρn; ℓθ) + 2δn + 2ηn

≲ ∥ℓθ∥Ḣ1,2(µ̂n)

(
ρ0 + ρn +

√
d
)
+ α

(
ρ0 + ρn +

√
d
)2

+ δn + γn.

As in Corollary 5, we can substitute µ̂n with µ at the cost of a constant factor increase in excess risk
along with a small decrease in the confidence probability (in this case, sufficiently small such that the
total failure probability is at most 0.01).

The main goal of Proposition 12 was to demonstrate that one can expect improved excess risk bounds
for outlier-robust WDRO in situations where such improvements hold for standard WDRO. We
conjecture that similar guarantees hold for additional settings and under milder assumptions like the
T1 inequality, but leave such refinements for future work. In particular, for the class Gcov, it would be
desirable to prove such bounds when p = 1, so that the TV contribution to the risk vanishes as ε→ 0.

F Parameter Tuning (Remark 5)

To clarify the parameter selection process, we consider Setting B with the class G = Gcov(σ), p = 1,
and ε ≤ 1/3. We aim to efficiently achieve excess risk

Eµ[ℓ̂]− Eµ[ℓ⋆] ≲ ∥ℓ⋆∥Lip
(
ρ0 + σ

√
dε+ σ

√
dn−1/d

)
, (12)

matching Proposition 4, when

ℓ̂ = argminℓ∈L sup
ν∈G2(σ̂,z0):Wε̂

1(µ̃n,ν)≤ρ̂

Eν [ℓ] (13)

for some parameter guesses σ̂, ε̂, and ρ̂, and a robust mean estimate z0. First, we observe that the
coordinate-wise trimmed mean estimate from Proposition 5 is computed without knowledge of the
parameters, so it is safe to assume that ∥z0 − Eµ[Z]∥ ≲

√
d + ρ0. If the parameter guesses are

conservative, i.e., σ̂ ≥ σ, ε̂ ≥ ε, and ρ̂ ≥ ρ0+W1(µ, µ̂n), then we may still employ Proposition 4. If
they are not too large, i.e., σ̂ ≲ σ, ε̂ ≲ ε, and ρ̂ ≤ ρ0 + σ

√
dn−1/d, this gives the desired excess risk.

We now explore what prior knowledge of σ, ε, and ρ0 is needed to obtain such guesses. First, we
show that effective learning is impossible without knowledge of ρ0, even for standard WDRO (i.e.,
ε = 0, σ =∞). For ease of presentation, we present the following lower bound without sampling.
Lemma 16. There exists a family of loss functionsL over R such that, for any C > 0 and decision rule
D : P(R)→ L, there are µ, µ̃ ∈ P(R) such that Eµ[D(µ̃)] > C(infℓ∈L Eµ[ℓ] +W1(µ, µ̃)∥ℓ∥Lip).

Proof. Let L = {ℓθ : θ > 0}, where ℓθ(z) := z/θ + θ. By design, we have ∥ℓθ∥Lip = 1/θ. Let
µ̃ = δ0 and write D(µ̃) = ℓθ̂ for some θ̂ > 0. We then set µ = δρ for ρ = 10θ̂2C2. This gives

Eµ[D(µ̃)] = ℓθ̂(ρ) =
ρ

θ̂
+ θ̂ >

ρ

θ̂
= 10C2θ̂,
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and

inf
ℓ∈L

Eµ[ℓ] +W1(µ, µ̃)∥ℓ∥Lip = inf
θ>0

ℓθ(ρ) +
ρ

θ
= inf

θ>0

2ρ

θ
+ θ = 2

√
2ρ =

√
80Cθ̂.

Thus, we have Eµ[D(µ̃)] > infℓ∈L Eµ[ℓ] +W1(µ, µ̃)∥ℓ∥Lip, as desired.

Thus, we assume in what follows that ρ̂ = ρ0 is known. Moreover, we require knowledge of at least
one of ε and σ. If both are unknown, then is information theoretically impossible to meaningfully
distinguish inliers from outliers (see Exercise 1.7b of [16] for a discussion of this issue in the setting
of robust mean estimation). If ε is known, then we can choose σ̂ as 2i for the smallest i such that the
supremum of Eq. (13) is feasible (or, equivalently, such that the associated dual is bounded for some
fixed ℓ ∈ L). We can overshoot by at most a factor of two and thus achieve the desired risk bound.
Using binary search, this adds a multiplicative overhead logarithmic in the ratio of the initial guess
for σ and its true value. The same approach can be employed if σ is known but not ε.

G Additional Experiments

We now provide several experiments in addition to those in the main body. Code is again provided at
https://github.com/sbnietert/outlier-robust-WDRO.

First, in Fig. 3, we extend the experiment summarized Fig. 2 (top) to include runs with ε̂ = ε and
varied Wasserstein radius ρ̂ ∈ {ρ/2, ρ, 2ρ}. For this simple learning problem and perturbation model,
we find that the choice of ρ̂ plays a minor role in the resulting excess risk. We emphasize that, in the
worst case, selection of ρ̂ can be critical, as demonstrated by Lemma 16.

10 20 30 40 50 60 70 80 90 100

# samples

0

0.5

1

1.5

2

2.5

3

3.5

4

ex
ce

ss
 r

is
k 

(m
ea

n 
ab

so
lu

te
 d

ev
ia

tio
n)

 Excess Risk for Varied Sample Size and Method

standard WDRO

Figure 3: Excess risk of standard WDRO and
outlier-robust WDRO for linear regression under
Wp and TV corruptions, with varied sample size
and dimension.

Next, we consider linear classification with the hinge
loss, i.e. L = {ℓθ(x, y) = max{0, 1 − y(θ⊤x)} :
θ ∈ Rd−1}. This time (to ensure that the re-
sulting optimization problem is convex), our ap-
proach supports Euclidean Wasserstein perturbations
in the feature space, but no Wasserstein perturba-
tions in the label space (this corresponds to using
Z = Rd−1 × R equipped with the (extended) norm
∥(x, y)∥ = ∥x∥2 + ∞ · 1{y ̸= 0}. We consider
clean data (X,Y = sign(θ⊤⋆ X)) ∼ µ, where X ∼
N (0, Id−1). The corrupted data (X̃, Ỹ ) ∼ µ̃ satisfies
(X̃, Ỹ ) = (X + ρe1, Y ) with probability 1 − ε and
(X̃, Ỹ ) = (100X,−Y ) with probability ε, so that
Wε

p(µ̃∥µ) ≤ ρ. In Figure 4 (left), we fix d = 10 and
compare the excess risk Eµ[ℓθ̂]−Eµ[ℓθ⋆ ] of standard
WDRO and outlier-robust WDRO with G = G2, as described by Proposition 4 and implemented via
Theorem 2. The results are averaged over T = 20 runs for sample size n ∈ {10, 20, 50, 75, 100}. We
note that this example cannot drive the excess risk of standard WDRO to infinity, so the separation
between standard and outlier-robust WDRO is less striking than regression, though still present.

We further present results for multivariate regression. This time, we consider Z = Rd×k equipped
with the ℓ2 norm, and use the loss family L = {ℓM (x, y) = ∥Mx − y∥1 : M ∈ Rk×d}. We
consider clean data (X,Y = M⊤

⋆ X) ∼ µ, where M⋆ ∈ Rk×d and X have standard normal entries.
The corrupted data (X̃, Ỹ ) ∼ µ̃ satisfies (X̃, Ỹ ) = (X + ρe1, Y ) with probability 1 − ε and
(X̃, Ỹ ) = (10X,−100M⋆X) with probability ε, so that Wε

p(µ̃∥µ) ≤ ρ. In Figure 4 (right), we fix
d = 10 and k = 3, and compare the excess risk Eµ[ℓM̂ ]− Eµ[ℓM⋆ ] of standard WDRO and outlier-
robust WDRO with G = G2, as described by Proposition 4 and implemented via Theorem 2. The
results are averaged over T = 10 runs for sample size n ∈ {10, 20, 50, 75, 100}. We are restricted
to low k since the ℓ1 norm in the losses is expressed as the maximum of 2k concave functions
(specifically, we use that ℓM (x, y) = maxα∈{−1,1}k α⊤(Mx− y)).

Finally, we turn to a classification task with image data. We train a robust linear classifier to distinguish
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Figure 4: Excess risk of standard WDRO and outlier-robust WDRO for classification and multivariate linear
regression under Wp and TV corruptions, with varied sample size.
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Figure 5: Classification accuracy of standard
WDRO and outlier-robust WDRO predictors for
MNIST digit classification under random label
flips, with varied number of training samples.

between the MNIST [14] digits “3” and “8” when
10% of training labels are flipped uniformly at ran-
dom, using outlier-robust WDRO with G = G2 and
the hinge loss, as above, applied with ε = 0.1 and
ρ = 0.01. To ensure tractability, we first pass the
images through principal component analysis to re-
duce the input to 50 dimensions, and we again use
Theorem 2 for implementation. In Fig. 5, we plot the
classification accuracy of our robust classifier com-
pared to one learned via standard WDRO for training
set size n ∈ {10, 20, 50, 100, 150}, averaged over
T = 10 runs. In this case, we do not witness a
noticeable improvement over standard WDRO. We
suspect that the relevant G2 class is too large to be of
significant use in this high-dimensional setting.

For all experiments, confidence bands are plotted
representing the top and bottom 10% quantiles
among 100 bootstrapped means from the T runs. The additional experiments were performed on an
M1 Macbook Air with 16GB RAM in roughly 30 minutes each.
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