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ABSTRACT

Neuroscience and artificial intelligence (AI) both grapple with the challenge of
adapting neural circuits to diverse tasks while maintaining efficiency and stability.
Neuromodulatory systems in the brain dynamically regulate synaptic parameters
to enable rapid, context-dependent reconfiguration, mirroring parameter-efficient
fine-tuning (PEFT) techniques in deep learning. We propose that associative
memory (AM) mechanisms can serve as a biologically plausible substrate for
storing and retrieving task-specific modulatory signals, akin to adapter-based fine-
tuning in AI models. Our framework integrates AM networks such as Modern
Hopfield Networks and Predictive Coding Networks, to store and recall PEFT-
modulated weights, facilitating task adaptation in task-incremental and multi-task
settings. Empirical results on Split-CIFAR100 and Split-TinyImageNet demon-
strate that AMs can retrieve task-specific modulations with high fidelity, achieving
comparable performance to disk-based storage. Our computational experiments
show that storing these modulatory signals in AMs not only reduces the need for
extensive synaptic rewiring but also sheds light on the neural basis of flexible task
sets. By bridging neuromodulation and AI memory architectures, our work high-
lights a shared principle of task-dependent adaptation, offering insights into how
the brain may reuse established circuits to meet evolving demands.

1 INTRODUCTION

A central puzzle in neuroscience is how the brain quickly repurposes the same circuitry for multiple
tasks without dismantling its core wiring (Duncan, 2001; Miller & Cohen, 2001; Bocincova et al.,
2022). Studies of the prefrontal cortex reveal that neural ensembles often display mixed selectiv-
ity, where overlapping sets of neurons encode multiple task rules simultaneously (Miller & Cohen,
2001; Rigotti et al., 2013; Warden & Miller, 2010), with neuromodulatory signals regulating the
active rule at a given time (Lee & Dan, 2012). Similarly, hippocampal circuits can be rapidly tuned
by incoming contextual cues (Preston & Eichenbaum, 2013), thus allowing the same neurons to rep-
resent multiple environments or tasks as long as the context is maintained (Muller & Kubie, 1987).
From a different perspective, in contemporary artificial intelligence (AI), Large Language Models
(Minaee et al., 2024), Vision Transformers (Dosovitskiy et al., 2021), or Large Multimodal Models
(Nguyen et al., 2024; Liu et al., 2023) confront an analogous challenge: how to adapt to novel tasks
without retraining the entire network. Parameter-Efficient Fine Tuning (PEFT) addresses this issue
by storing a small number of task-specific parameters instead of modifying the entire parameter set,
thus preserving the core model and significantly reducing the computational cost of training.

Neuromodulation in the brain and PEFT in deep learning models thus share a common functional
principle of selectively overlaying small changes onto a stable parameter backbone. Chemical
changes (such as those of dopamine, acetylcholine, and norepinephrine) have been known to tran-
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siently adjust synaptic weights or excitability in the cortical and subcortical regions, reshaping their
processing modes without destroying prior learning (Lee & Dan, 2012; Doya, 2002). One could
view PEFT methods such as LoRA (Hu et al., 2021) and its variants (Kopiczko et al., 2024; Gao
et al., 2024; Zhang et al., 2023; Hyeon-Woo et al., 2021; Yeh et al., 2024; E.L. Buehler, 2024) as
analogous in AI systems, wherein these methods introduce additional adaptable modules that mini-
mally alter forward passes, allowing a shared base model to quickly refocus on a new domain. These
parallels underscore the potential for identifying and building on converging principles in biological
and artificial systems (Marblestone et al., 2016) on approaches to fast, context-dependent adaptation.

In PEFT, particularly in LoRA and its derivatives (Hu et al., 2021; Kopiczko et al., 2024; Gao et al.,
2024), low-rank updates are stored in an external memory and retrieved at inference time, enabling
a minimal overhead approach to multi-task operations. This observation prompts us to hypothesize
that associative memories (AM) can serve as storage mechanisms that support the subsequent on-
demand retrieval of such task-specific modulations. A key advantage of such an approach is that
associative memory mechanisms may not only represent content (e.g., representation of a specific
data instance), but also modulatory information that can be used to dynamically adapt neural circuits
to perform specific tasks. In this work, we explore this idea. To this end, we consider recent de-
velopments in associative memory networks – Predictive Coding Networks (PCNs) (Salvatori et al.,
2021; Yoo & Wood, 2022) and Modern Hopfield Networks (Ramsauer et al., 2021) in particular – as
a means to store the task-specific modulations for adapting deep learning models. Specifically, we
demonstrate this in task-incremental and multi-task learning setups, where adapters are trained for
each task and stored in the associative memory. They are then appropriately retrieved at inference
for the relevant task. Our experiments show that given relevant cues, such networks can recover the
task-specific modulations with high fidelity, achieving performance comparable to accessing such
adapter weights from disk.

Our findings in this work have potential implications, both in AI systems and in neuroscience. On the
one hand, in the context of AI systems, leveraging associative memory to trigger context-dependent
modulatory signals could inspire new architectures that dynamically retrieve task-specific parameter
updates for more robust adapter-based learning approaches. Using a memory module can also help
in more efficient (or decentralized) use of computational resources for such tasks. From a neuro-
science perspective, our framework suggests that neuromodulation in the brain can be approximated
as a retrieval process, where task-specific modulations are stored in and recalled from associative
memory systems. Such a mechanism also allows postulating a theory for understanding rapid task
switching and context-dependent processing observed in regions such as the prefrontal cortex and
hippocampus (Hyafil et al., 2009; Preston & Eichenbaum, 2013). Our empirical studies in this work
validate that such an approach works in AI systems, where the first task is a meta-task that deter-
mines which specific adapter weights need to be modulated over the substrate model for an incoming
image, and the second task consists of identifying which class the image belongs to. Experiments on
popular datasets such as CIFAR100/TinyImageNet demonstrate the credibility of such an approach.

2 BACKGROUND AND RELATED WORK

Traditional Hopfield networks (Hopfield, 1982) pioneered computational models of associative
memories by allowing a set of stored binary patterns to be retrieved via energy minimization, al-
beit with relatively limited capacity. Recent work on Modern Hopfield Networks (Ramsauer et al.,
2021) and universal Hopfield Networks (Millidge et al., 2022) improved upon the original formula-
tion to achieve exponentially greater storage capacity, in addition to enabling storage and retrieval of
real-valued vectors. Other approaches use memory-augmented networks, such as Memory Networks
(Weston et al., 2015; Sukhbaatar et al., 2015), Neural Turing Machines (Graves et al., 2014), and
Differentiable Neural Computers (Graves et al., 2016), integrating explicit read/write operations into
an external memory module to support long-range dependency handling and content-based retrieval.

Orthogonally, the surge in large pre-trained models has led to methods that minimize the compu-
tational and storage overhead associated with fine-tuning. Techniques like LoRA (Hu et al., 2021)
and its variants (Kopiczko et al., 2024; Gao et al., 2024; Zhang et al., 2023; Hyeon-Woo et al., 2021;
Yeh et al., 2024; E.L. Buehler, 2024) factorize weight updates into low-rank matrices, while Prefix
Tuning (Li & Liang, 2021), Adapter Layers (Houlsby et al., 2019), LayerNorm Tuning (Zhao et al.,
2024), and BitFit (Ben Zaken et al., 2022) similarly constrain the number of trainable parameters.
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3 METHOD

Our proposed framework uses an external associative memory model to store and retrieve weights.
We use task-incremental learning (van de Ven et al., 2022) and multi-task learning (Sun et al., 2021)
setups to demonstrate the application and performance of our proposed framework. We use a mem-
ory as described in the next subsection to store and retrieve adapter weights, and see that bio-inspired
memory frameworks can be used to store adapter weights (potentially analogous to storing task-
specific modulatory signals in the brain). An overview of the method is shown in Figures 1, 2.

Figure 1: During training, given a dataset for each
task t, the base model is trained with task-intrinsic
adapters for each such task. In an MTS setup,
as task predictor is also separately trained to pre-
dict task IDs from the aggregate of all the datasets
across tasks.

Preliminaries: LetDt = {(x(t)
i , y

(t)
i )}Ni=1 rep-

resent our dataset for task t, where x
(t)
i ∈ X (t)

are the input features, y(t)i ∈ Y(t) are the la-
bels, and t ∈ {1, 2, . . . T } indicates the task
identifier. Each task Tt is associated with a dis-
tinct, non-overlapping class set Yt. We demon-
strate our method in two settings, i.e. task-
incremental learning (TIL) (van de Ven et al.,
2022) and multi-task switching (MTS) (Sun
et al., 2021). In TIL, tasks arrive sequentially,
and once a new task begins, all training data
samples from previous tasks are lost. How-
ever, the task identifier ti is available during
both training and inference. In MTS, training
data for each task is available at the same time.
However, task identifiers are made available
only during training and are not provided to the
model at inference. Thus in MTS, we first infer
ti from the input by a separate predictor whose
weights we denote by θ0. Once ti is inferred,
both settings follow identical pipelines, as they
facilitate the substrate model F to switch contexts (i.e., parameter subsets) accordingly.

The adapter parameters used for training on task Tt are denoted as θt. The goal is to train/optimize
F to achieve high performance on all tasks {T1, . . . , Tt}.

3.1 FORMULATION AND IMPLEMENTATION

In our context, a memoryM refers to an abstract data type that implements two operations:

Figure 2: During inference, given the task identi-
fier t, the corresponding modulations are retrieved
and overlayed on the base model. In an MTS
setup, the model is initially configured for the
meta-task of predicting the appropriate task iden-
tifier for the given input (right of the partition).

Sequential Write, represented by W(·): This
operation stores a provided value in the mem-
ory, such that it can be retrieved later using the
read operationR. Moreover, the storage should
be done in a manner such that the previously
written values remain retrievable using an ap-
propriate call toR.

Random Read, represented by R(·): Given
an index (location-based memory) or a query
(content-addressable memory), this operation
recalls the value stored at the given index or as-
sociated with the provided query. Invoking this
retrieval operation on a certain value requires
it to have already been written to the memory
usingW .

We begin by abstracting out the two key steps,
storing weights and retrieving them using task
identifiers. It should be noted that memory in
our case is a reservoir for model weights, not
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for exemplars (van de Ven et al., 2022) as in prior continual learning approaches that use memories
for experience-replay. In an analogous biological model, it would correspond to the engrams that
encode a given set of modulatory signals. Of the known biologically plausible AM architectures, we
identify BayesPCN (Huang & Rao, 2011) and Modern Hopfield Networks (Ramsauer et al., 2021)
as candidate architectures that satisfy our definition of a memory. For the remainder of this paper, we
represent a generic AM model asM, BayesPCN asMBPCN , and the Modern Hopfield Network
asMH.

We train task-specific model-weight modulations θt for each task t, using LoRA adapters (Hu et al.,
2021) as a proxy for the modulatory signals that are added to the main network. Furthermore, we
train the weights of the task ID predictor θ0 (another set of LoRA adapters) in the MTS setting,
to allow the model to predict the optimal set of weights to process a given input. After training
the model for task t, we compute a task identification vector kt and form a tuple (kt, θt). In our
approach, we set kt as a small subset of θt itself. Note that this is strictly an engineering choice.
We only aim to investigate whether memories can reliably retrieve task-specific modulations given
task identification signals; we do not investigate how task identifiers are generated. The memory
M is then updated to store the tuple using a write operation: M ← W(M, (kt, θt/kt)). During
inference, given the task identification vector kt (predicted in MTS or provided in TIL), we can
retrieve θt from the memory using a read operation: θ̂t ← R(M,kt). The retrieved modulations
may be a close approximation of the original stored ones instead of having the exact values that were
previously stored. Hence, we represent them as θ̂t. The retrieved values θ̂t are then loaded into the
classifier and the prediction ŷ is obtained. The overview of the training & inference pipelines are
presented as Algorithms 1 - 4 in Appendix section A.1, respectively.

W and R onM: Let w(i)
q and w

(i)
v be the flattened weights of the adapters modulating the query

and value matrices of the ith transformer block in ViT. The weights written toM at the end of every
task are a concatenation of the flattened w

(i)
q , w(i)

v for i ∈ [1, 2, 3, ..., L], where L is the number
of transformer blocks in ViT. Formally, θt = w

(1)
q ⊕ w

(1)
v ⊕ w

(2)
q ⊕ w

(2)
v ⊕ ... ⊕ w

(L)
q ⊕ w

(L)
v ,

where ⊕ represents the concatenation operation, for each t ∈ T . In our implementation, the task
identification vector is taken to be the first |kt| elements of θt, which is a hyperparameter. We set
|kt| = ⌊0.1 × |θt|⌋. It should be noted that using part of the modulation signals as queries for
associative recall is strictly an engineering choice. In biological systems, kt will likely correspond
to task-specific neural activity. During inference, there is exactly one forward pass throughF via the
weights modulated for the given task ID t in the TIL setting, but an additional forward pass in MTS
setting, since we utilize a different set of modulations over the same substrate network to predict the
task ID before retrieving the task-specific modulations.

When using BayesPCN, which is essentially a fully connected network, theR andW operations on
MBPCN are formulated using its parameters and its hidden activations, both of which are optimized
using Predictive Coding. We kindly refer the reader to the BayesPCN paper (Yoo & Wood, 2022)
for further details on howW and R are implemented. When using the Modern Hopfield Network
instead, a write corresponds to concatenating the task-specific key weights kt to a matrix of all keys,
K, and concatenating the task-specific value weights θt/kt to a matrix of all values, V, as new
columns. The read operation then computes the similarity between the provided task-specific query
and all stored wq’s, and uses these similarity scores to perform a weighted combination of all wv’s.
Mathematically, the retrieved parameters θ̂t are given by θ̂t = kt ⊕Vsoftmax(βKTkt).

4 EXPERIMENTS AND RESULTS

Benchmark Datasets. To evaluate the proposed framework, we perform a comprehensive suite of
experiments on Split-CIFAR-100 (Krizhevsky, 2009). We consider 20 and 50 splits (C100-20S and
C100-50S), with 5 and 2 classes per split respectively. We also report results on 50 and 100 splits
of the TinyImageNet dataset (Le & Yang, 2015) (TINet-50S and TINet-100S), containing 4 and 2
classes per split respectively.

Metrics. We use two metrics to evaluate the performance of associative memories in storing and
retrieving model weights. The first, Final Average Accuracy (FAA), measures the performance of
the model by averaging the accuracy across all tasks at the end of the learning process. This metric
reflects how well the model retains and applies knowledge acquired from previous tasks when tested
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Task Method C100-20S C100-50S TINet-50S TINet-100S

FAAGT 97.29±0.30 97.79±0.20 91.56±0.48 95.09±0.40

T
IL

FAATIL(MBPCN ) 96.50±0.64 97.24±0.73 90.46±0.35 93.28±0.35
DTIL(MBPCN ) 0.32±0.12 0.62±0.32 1.16±0.57 1.71±0.20

FAATIL(MH) 97.12±0.44 97.76±0.47 91.82±0.28 94.77±0.48
DTIL(MH) 2.6e-3±0.01 0.04±0.07 -0.21±0.10 -0.30±0.19

M
T

S Task Acc. 91.47±0.21 91.42±0.28 84.42±0.49 83.27±0.18
FAAMTS(MH) 91.34±0.52 94.28±0.15 83.14±0.16 88.69±0.57
DMTS(MH) 5.95±0.0.22 3.50±3.50 8.35±0.53 6.47±0.73

Table 1: Comparison of classification accuracy of recalled weights in TIL/MTS against ground
truth weights. FAAGT represents the performance using the ground-truth weights. D indicates the
drop in performance when using recalled weights instead of the ground truth. In case of the MTS
task, the drop includes errors caused due to misidentification of the task an input image belongs to.

on the entire set of tasks. We compute the FAA scores over all experiences using the weights recalled
fromM. Additionally, to compare against the ground truth (GT) - loading adapters from disk - we
report the difference in FAA scores when using weights loaded from disk, represented as FAAGT ,
versus when recalling the same weights fromM, represented as FAATASK(M). Mathematically,
FAA is expressed as FAA = 1

T

∑T
t=1 AT,t, where T is the total number of tasks, and AT,t is

the accuracy on task t after learning the final task T . The difference in FAA scores when loading
adapter weights from disk versus loading the weights fromM is denoted by D(M) = FAAGT −
FAATASK(M). Together, these metrics provide a comprehensive evaluation of a model’s ability
to maintain and integrate knowledge over time.

Performance of Associative Memories in storing and recalling adapter weights. In Table 1, we
present the results using our benchmark datasets, in TIL and MTS settings. We find that BayesPCN
and Hopfield Networks are both able to recall weights with high fidelity, resulting in very minor
drops in performance, if any. In particular, the fidelity of the Hopfield Network is nearly perfect and
consistently higher than that of BayesPCN. Interestingly, we find that the performance of weights
recalled from the Hopfield Network on TinyImageNet is actually better than the base weights stored
on disk - as indicated by the negative value of DTIL(MH). We believe that this could be due to
cross-task knowledge transfer that happens within the memory during recall, due to the weighted
sum of parameters from all tasks. In case of the MTS task, we observe that due to the possible error
introduced by the task predictor (the accuracy of which is denoted by Task Acc.), the ensuing FAA
score for MTS is lower than the corresponding TIL score. Nevertheless, our results indicate the
feasibility of the framework in implementing dynamic switching of tasks through the use of AM
storage and retrieval. It should be noted that the drop in performance in MTS is not due to AM
retrieval - it is solely due to errors by the task predictor.

5 CONCLUSION

This work establishes a conceptual and computational link between neuromodulatory processes in
the brain and parameter-efficient adaptation in deep learning. By leveraging associative memory net-
works to store and retrieve task-specific modulatory signals, we demonstrate a bio-inspired mech-
anism for efficient task adaptation in task-incremental and multi-task learning. Our experiments
show that Modern Hopfield Networks and Predictive Coding Networks can recall adapter weights
with minimal degradation, sometimes even improving generalization through implicit knowledge
transfer. This insight suggests that neural memories may not only store task-relevant representa-
tions but also encode dynamic modulatory patterns essential for rapid adaptation. Future work may
extend this framework to class-incremental learning settings, providing another perspective on how
the brain can avoid the problem of catastrophic forgetting. It may also lead to refined theoretical
models of neuromodulatory recall in biological systems. By uniting perspectives from neuroscience
and AI, our framework paves the way for more adaptable and efficient machine learning systems.
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A.1 TRAINING AND INFERENCE

In Algorithms 1 and 2, we show the training and inference algorithms in the TIL setting used
in our proposed framework; analogously, Algorithms 3 and 4 represent the training and inference
algorithms in the MTS setting. The algorithms explicitly highlight the role of the AM in reading
and writing weights.

Algorithm 1 TIL Training
1: Input: Set of task IDs T = {1, . . . , T}
2: Initialize: MemoryM0 ← ∅,

Set of task keys K0 ← ∅
3: for each task ID t ∈ T do
4: Receive dataset Dt for task t
5: Randomly initialize task-specific parameters θt
6: Update θt based on loss L(θt;Dt) using AdamW
7: Compute task ID vector vt from θt
8: Kt ← Kt−1 ∪ {vt}
9: Mt ←W(Mt−1, {vt, θt})

10: end for
11: Output: MemoryMT , Set of task keys KT

Algorithm 2 TIL Inference
1: Input: PEFT Model C, Sample x,

Task ID vt, MemoryMT

Intialize: C ← base weights W
2: Find Parameters:
3: Retrieve θ̂t ← R(MT ,vt).
4: Classify:
5: Output ŷ = C(x,W, θ̂t)
6: Output: Prediction ŷ

Algorithm 3 MTS Training
1: Input: Set of task IDs T = {1, . . . , T}
2: Initialize: MemoryM0 ← ∅,

Set of task keys K0 ← ∅
3: Receive datasets

⋃
t∈T Dt

4: Update θ0 based on loss L(θ0;
⋃

t∈T Dt)
5: for each task ID t ∈ T do
6: Randomly initialize task-specific parameters θt
7: Update θt based on loss L(θt;Dt) using AdamW
8: Compute task ID vector vt from θt
9: Kt ← Kt−1 ∪ {vt}

10: Mt ←W(Mt−1, {vt, θt})
11: end for
12: Output: MemoryMT , Set of task IDs KT

1
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Algorithm 4 MTS Inference
1: Input: PEFT Model C, Sample x,

Task ID vt, MemoryMT

Intialize: C ← base weights W
2: Predict task ID:
3: Output t̂ = C(x,W, θ0)
4: Find Parameters:
5: Retrieve θ̂t̂ ← R(MT ,vt̂).
6: Classify:
7: Output ŷ = C(x,W, θ̂t̂)
8: Output: Prediction ŷ

A.2 EXPERIMENTAL DETAILS

BayesPCN Hyperparameters. In all your experiments, we use a 4-layer BayesPCN with one particle.
The model uses GELU activations in its hidden layers. The learning rate for weight updates during
writes is set to 0.0001. For reads, the learning rate is set to 0.01, and the number of read steps is set
to 500. Adam optimizer is used for both reads and writes. Any other hyperparameters are set to the
default values described in Yoo & Wood (2022).

Hopfield Network Hyperparameters. The only controllable hyperparameter in the MHN module is
the value of β, the softmax temperature (Ramsauer et al., 2021). We set this temperature as 25 in all
our experiments.

Training Hyperparameters. In all our experiments, we train on each task for 3 epochs with a learning
rate starting from 0.005 and decay the learning rate to 0.0001. In the meta-task in the MTS setting,
we train the task prediction weights for 10 epochs, starting with a learning rate of 0.002 and decaying
to 0.0001. We used a weight decay value of 0.1 in all of our experiments, with the AdamW optimizer.
In all experiments, we report the mean and standard deviation computed over 3 runs with different
seeds. Additionally, we fix the rank of the LoRA adapters to 8 for all experiments in Table 1.

Invariance to LoRA Config: We run our experiments with different configurations of LoRA, chang-
ing the low-rank parameter in each configuration. We find that the performance of the recalled
weights in each case remains comparable to the performance when using the ground-truth weights.
We present the results in Table A.1.

Method/Dataset LoRA Rank C100-20S C100-50S TInet-50S TInet-100S

FAATIL(MH) 4 96.60±0.37 97.70±51 91.39±0.42 94.94±0.59
DTIL(MH) 4 0.0±0.05 -0.03±0.0 -0.1±0.24 0.09±0.31

FAATIL(MH) 8 97.12±0.44 97.76±0.47 91.82±0.28 94.77±0.48
DTIL(MH) 8 2.6e-3±0.01 0.04±0.07 -0.21±0.10 -0.30±0.19

FAATIL(MH) 32 96.99±0.01 97.62±0.44 91.64±0.44 95.09±0.47
DTIL(MH) 32 0±0.01 0.20±0.02 -0.04±0.34 0.13±0.47

Table A1: Comparison of classification accuracy of recalled weights in TIL against ground truth
weights, when the low-rank parameter of the adapters is varied.

Training Hardware. All experiments were executed on a single A6000 Ada 48GB GPU coupled
with a 96-core CPU. Each model that uses Hopfield Networks takes between 2 − 4 hours to train
on all experiences, depending on the number of splits and training iterations. Experiments with
BayesPCN take up to a day for TinyImageNet-100 Split.

A.3 LIMITATIONS

This work intends to highlight the strong parallels that exist between the two fields of rapid task
switching in Neuroscience, and Parameter-Efficient Fine Tuning in Deep Learning, that have been
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traditionally looked at independently. Additionally, it proposes a potential mechanism in which such
task-switching can occur in biological systems with the aid of associative memories and provides a
proof-of-concept. As such, it does not contain experiments on a large number of datasets or vari-
ants of LoRA. More importantly, all the experiments provided are based on computational models
from deep learning research. For sound evidence, analogous experiments from the neuroscience
community will be required to validate the hypothesis proposed.
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