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ABSTRACT

Originally introduced in game theory, Shapley values have emerged as a central
tool in explainable machine learning, where they are used to attribute model pre-
dictions to specific input features. However, computing Shapley values exactly
is expensive: for a general model with n features, O(2") model evaluations are
necessary. To address this issue, approximation algorithms are widely used. One
of the most popular is the Kernel SHAP algorithm, which is model agnostic and
remarkably effective in practice. However, to the best of our knowledge, Kernel
SHAP has no strong non-asymptotic complexity guarantees. We address this issue
by introducing Leverage SHAP, a lightweight modification of Kernel SHAP that
provides provably accurate Shapley value estimates with just O(n logn) model
evaluations. Our approach takes advantage of a connection between Shapley value
estimation and agnostic active learning by employing leverage score sampling,
a powerful regression tool. Beyond theoretical guarantees, we find that Lever-
age SHAP achieves an approximately 50% reduction in error compared to the
highly optimized implementation of Kernel SHAP in the widely used SHAP li-
brary [Lundberg & Lee, 2017].

1 INTRODUCTION

While Al is increasingly deployed in high-stakes domains like education, healthcare, finance, and
law, increasingly complicated models often make predictions or decisions in an opaque and uninter-
pretable way. In high-stakes domains, transparency in a model is crucial for building trust. More-
over, for researchers and developers, understanding model behavior is important for identifying areas
of improvement and applying appropriate safeguards. To address these challenges, Shapley values
have emerged as a powerful game-theoretic approach for interpreting even opaque models (Shapleyl
1951; gtrumbelj & Kononenko, 2014} |Datta et al.,|2016; |[Lundberg & Leel 2017). These values can
be used to effectively quantify the contribution of each input feature to a model’s output, offering at
least a partial, principled explanation for why a model made a certain prediction.

Concretely, Shapley values originate from game-theory as a method for determining fair ‘payouts’
for a cooperative game involving n players. The goal is to assign higher payouts to players who
contributed more to the cooperative effort. Shapley values quantify the contribution of a player by
measuring how its addition to a set of other players changes the value of the game. Formally, let the
value function v : 2"} — R be a function defined on sets S C [n]. The Shapley value for player 7 is:
1 v(SU{i}) —v(S
T ({n}>1) ($).
SCn\{i} 151
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The denominator weights the marginal contribution of player i to set .S by the number of sets of size
|S|, so that the marginal contribution to sets of each size are equally considered. With this weight-
ing, Shapley values are known to be the unique values that satisfy four desirable game-theoretic
properties: Null Player, Symmetry, Additivity, and Efficiency (Shapleyl, [1951). For further details
on Shapley values and their theoretical motivation, we refer the reader to Molnar| (2024)).

A popular way of using Shapley values for explainable Al is to attribute predictions made by a model
f :R™ — R on a given input x € R™ compared to a baseline input y € R™ (Lundberg & Lee|
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2017). The players are the features and v(.9) is the prediction of the model when using the features
in S;ie., v(S) = f(x) where x7 = z; for i € S and x{ = y, otherwise[]| When v is defined in
this way, Shapley values measure how each feature value in the input contributes to the prediction.
Shapley values also find other applications in machine learning, including in feature and data selec-
tion. For feature selection, the value function v(.S) is taken to be the model loss when when using
the features in .S (Marcilio & Eler, 2020; Fryer et al., 2021). For data selection, v(.9) is taken to be
the loss when using the data observations in S (Jia et al.l 2019} |Ghorbani & Zou, [2019).

1.1 EFFICIENT SHAPLEY VALUE COMPUTATION

Naively, computing all n Shapley values according to Equation requires O(2™) evaluations of v
(each of which involves the evaluation of a learned model) and O(2"™) time. This cost can be reduced
in certain special cases, e.g. when computing feature attributions for linear models or decision trees
(Lundberg et al., [2018}; [Campbell et al.,|2022; |Amoukou et al., 2022} |Chen et al., [2018]).

More often, when v is based on an arbitrary model, like a deep neural network, the exponential cost
in n is avoided by turning to approximation algorithms for estimating Shapley values, including
sampling, permutation sampling, and Kernel SHAP (Strumbelj & Kononenko, [2010; |[Lundberg &
Leel 2017 Mitchell et al., 2022). The Kernel SHAP method is especially popular, as it performs
well in practice for a variety of models, requiring just a small number of black-box evaluations of
v to obtain accurate estimates to ¢, .. ., ¢,. The method is a corner-stone of the ubiquitous SHAP
library for explainable Al based on Shapley values (Lundberg & Leel, 2017).

Kernel SHAP is based on an elegant connection between Shapley values and least squares regression
(Charnes et al.,|1988). Specifically, let [n] denote {1, ...,n}, @ denote the empty set, and 1 denote
an all 1’s vector of length n. The Shapley values ¢ = [¢1, ..., ¢,] € R™ are known to satisfy:

= arg min IZx —y||2, 2)
x:(x,1)=v([n])—v(0)

where Z € R?"~2%" is a specific structured matrix whose rows correspond to sets S C [n] with

0<|S]<m,andy € R?"~2 is vector whose entries correspond to values of v(S). (We precisely
define Z and y in Section[2})

Since solving the regression problem in Equation [2| directly would require evaluating v(.S) for all
2™ — 2 subsets represented in y, Kernel SHAP solves the problem approximately via subsampling.
Concretely, for a given number of samples m and a discrete probability distribution p € [0, 1]2" 2
over rows in Z, consider a sampling matrix S € R™>2"~2, where each row of S is 0 except for a
single entry 1/, /p; in the j™ entry with probability p;. The Kernel SHAP estimate is given by

¢ = arg min ISZx — Sy||2. 3)

x:(x,1)=v([n])—v(0)
Importantly, computing this estimate only requires at most m evaluations of the value function v,
since Sy can be constructed from observing at most m entries in y. Value function evaluations
typically dominate the computational cost of actually solving the regression problem in Equation
so ideally m is chosen as small as possible. In an effort to reduce sample complexity, Kernel SHAP
does not sample rows uniformly. Instead, the row corresponding to subset .S is chosen with proba-

bility proportional to:
-1
wllsh = ( (5 )18t —1s0) @

The specific motivation for this distribution is discussed further in Section [2} but the choice is intu-
itive: the method is more likely to sample rows corresponding to subsets whose size is close to 0 or
n, which aligns with the fact that these subsets more heavily impact the Shapley values (Equation T).
Ultimately, however, the choice of w(]S|) is heuristic.

'There are multiple ways to define the baseline y. The simplest is to consider a fixed vector (Lundberg &
Leel [2017). Other approaches define y as a random vector that is drawn from a data distribution (Lundberg
et al., [2018; Janzing et al.| 2020) and take v(S) = IE[XS ], where the expectation is taken over the random
choice of y. The focus of our work is estimating Shapley values once the values function v is fixed, so our
methods and theoretical analysis are agnostic to the specific approach used.
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In practice, the Kernel SHAP algorithm is implemented with further optimizations (Lundberg &
Lee, [2017; |Covert & Leel 2021 Jethani et al., 2021]).

* Paired Sampling: If a row corresponding to set S is sampled, the row corresponding to its com-
plement S := [n] \ S is also sampled. This paired sampling strategy intuitively balances samples
so each player ¢ is involved in the exact same number of samples. Paired sampling substantially
improves Kernel SHAP (Covert & Lee, [2021).

* Sampling without Replacement: When n is small, sampling with replacement can lead to in-
accurate solutions even as the number of samples m approaches and surpasses 2", even though
2™ evaluations of v are sufficient to exactly recover the Shapley values. In the SHAP library im-
plementation of Kernel SHAP, this issue is addressed with a version of sampling without replace-
ment: if there is a sufficient ‘sample budget’ for a given set size, all sets of that size are sampled
(Lundberg & Leel 2017). Doing so substantially improves Kernel SHAP as m approaches 2.

1.2 OUR CONTRIBUTIONS

Despite its ubiquity in practice, to the best of our knowledge, no non-asymptotic theoretical accu-
racy guarantees are known for Kernel SHAP when implemented with m < 2™ — 2 row samples
(which corresponds to m evaluations of the value function, v). We address this issue by proposing
Leverage SHAP, a lightweight modification of Kernel SHAP that 1) enjoys strong theoretical ac-
curacy guarantees and 2) consistently outperforms Kernel SHAP in experiments, achieving a 50%
reduction in error on average (see Table[2).

Leverage SHAP begins with the observation that a nearly optimal solution to the regression problem
in Equation [2| can be obtained by sampling just O(n) rows with probability proportional to their
statistical leverage scores, a natural measure for the “importance” or “uniqueness” of a matrix row
(Sarlés}, 2006 Rauhut & Ward, 2012 Hampton & Doostan, 2015; (Cohen & Miglioratil, 2017) This
fact immediately implies that, in principle, we should be able to provably approximate ¢ with a
nearly-linear number of value function evaluations (one for each sampled row).

However, leverage scores are expensive to compute, naively requiring at least O(2™) time to write
down for a matrix like Z with O(2™) rows. Our key observation is that this bottleneck can be avoided
in the case of Shapley value estimation: we prove that the leverage scores of Z have a simple closed
form that admits efficient sampling without ever writing them all down. Concretely, we show that

. . . -1
the leverage score of the row corresponding to any subset S C [n] is proportional to (‘g‘)

This suggests a similar, but meaningfully different sampling distribution than the one used by Kernel
SHAP (see Equation [4). Since all subsets of a given size have the same leverage score, we can
efficiently sample proportional to the leverage scores by sampling a random size s uniformly from
{1,...,n — 1} then selecting a subset S of size s uniformly at random.

Theorem 1.1. For any ¢ > 0 and constant § > 0, the Leverage SHAP algorithm uses
m = O(nlog(%) + nk) evaluations of v in expectation and O(mn?) additional runtime to
return estimated Shapley values ¢ satisfying (¢, 1) = v([n]) — v(0) and, with probability 1 — 6,

1Zé —yl3 < (1+¢)|Zd — y|3. (5)

In words, Theorem [I.T] establishes that, with a near-linear number of function evaluations, we can
compute approximate Shapley values whose objective value is close to the true Shapley values.
We also require O(mn?) additional runtime to solve the linearly constrained regression problem in
Equation 3] although this cost can be reduced in practice using, e.g., iterative methods.

By leveraging the fact that Z is a well-conditioned matrix, the bound in Equation [§] also implies a

bound on the average squared error, ||q~b — ¢||3, which is provided in Section (In Appendix we
discuss why estimating Shapley values with multiplicative error is NP-hard.)

Beyond our theoretical results, we also show that leverage score sampling can be naturally com-
bined with paired sampling, without sacrificing theoretical guarantees. Moreover, we show that

Technically, this fact is known for unconstrained least square regression. Some additional work is needed
to handle the linear constraint in Equation@ but doing so is relatively straightforward.
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Figure 1: Predicted versus true Shapley values for all features in 8 datasets (we use m = 5n samples
for this experiment). Points near the identity line indicate that the estimated Shapley value is close to
its true value. The plots suggest that our Leverage SHAP method is more accurate than the baseline
Kernel SHAP algorithm, as well as the optimized Kernel SHAP implementation available in the
SHAP library. We corroborate these findings with more experiments in Section@

a natural “without replacement” version of leverage score sampling leads to additional accuracy
improvements when m is large. Overall, these simple optimizations lead to an algorithm that con-
sistently outperforms the optimized version of Kernel SHAP available in the SHAP Library (this
‘Optimized Kernel SHAP’ algorithm also uses paired sampling and sampling without replacement).
We illustrate this point in Figure[I]

More extensive experiments are included in Section[5} We find that the improvement of Leverage
SHAP over Kernel SHAP is especially substantial in settings where n is large in comparison to m
and when we only have access to noisy estimates of the Shapley values. This is often the case in
applications to explainable Al where, as discussion earlier, v(.S) is an expectation over functions
involving random baselines and estimated via a finite sample.

1.3 RELATED WORK

Shapley Values Estimation. As discussed, naively computing Shapley values requires an expo-
nential number of evaluations of v. While more efficient methods exist for certain structured value
functions (see references in Section ﬂ;f[) for generic functions, faster algorithms involve some sort
of approximation. The most direct way of obtaining an approximation to is approximate the summa-
tion definition of Shapley values (Equation 1)), which involves O(2") terms for each subset of [n],
with a random subsample of subsets (Castro et al., 2009; |Strumbelj & Kononenko, [2010; §trumbe1j
& Kononenkol [2014). The first methods for doing so use a different subsample for each player <.

A natural alternative is to try selecting subsets in such a way that allows them to be reused across
multiple players (Illés & Kerényil 2019; Mitchell et al., 2022). However, since each term in the
summation involves both v(.S) and v(S U {i}), it is difficult to achieve high levels of sample reuse
when working with the summation definition. One option is to split the sum into two, and separately
estimate Y e r,\ iy V(S U{i})/ (75‘1) and g iy 0(5)/ (7@1) This allows substantial subset
reuse, but tends to perform poorly in practice due to high variance in the individual sums (Wang &
Jia,[2023). By solving a global regression problem that determines the entire ¢ vector, Kernel SHAP
can be viewed as a more effective way of reusing subsets to obtain Shapley values for all players.

In addition to the sampling methods referenced above, |Covert & Lee| (2021) propose a modified
Kernel SHAP algorithm, prove it is unbiased, and compute its asymptotic variance. However, they
find that the modified version performs worse than Kernel SHAP. Additionally, we note that some
recent work in the explainable Al setting takes advantage of the fact that we often wish to evaluate
feature impact for a large number of different input vectors x € R"™, which each induce their own
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set function v. In this setting, it is possible to leverage information gathered for one input vector
to more efficiently compute Shapley values for another, further reducing sample cost (Schwab &
Karlen,2019; Jethani et al.,|2021)). This setting is incomparable to ours; like Kernel SHAP, Leverage
SHAP works in the setting where we have black-box access to a single value function v.

Leverage Scores. As discussed, leverage scores are a natural measure of importance for matrix
rows. They are widely used as importance sampling probabilities in randomized matrix algorithms
for problems ranging from regression (Cohen et al.l 2015} |Alaoui & Mahoney, 2015)), to low-rank
approximation (Drineas et al., 2008 (Cohen et al., 2017; Musco & Musco, 2017} |Rudi et al., [2018)),
to graph sparsification (Spielman & Srivastava, 2011}, and beyond (Agarwal et al., [2020).

More recently, leverage score sampling has been applied extensively in active learning as a method
for selecting data examples for training (Cohen & Migliorati,2017;|Avron et al.,[2019;|Chen & Pricel
2019; |Erdélyi et al.| 20205 |Chen & Derezinski, 2021} |Gajjar et al.,|2023; Musco et al.; Cardenas et al.}
2023} |Shimizu et al., [2024). The efficient estimation of Shapley values via the regression problem
in Equation 4| can be viewed as an active learning problem, since our primary cost is in observing
entries in the target vector y, each of which corresponds to an expensive value function evaluation.

For active learning of linear models with n features under the ¢5 norm, the O(nlogn+n/e) sample
complexity required by leverage score sampling is known to be near-optimal. More complicated
sampling methods can achieve O(n/¢), which is optimal in the worst-case (Batson et al.,[2012;|Chen
& Price), [2019). However, it is not clear how to apply such methods efficiently to an exponentially
tall matrix, as we manage to do for leverage score sampling.

2 BACKGROUND AND NOTATION

Notation. Lowercase letters represent scalars, bold lowercase letters vectors, and bold uppercase
letters matrices. We use the set notation [n] = {1,...,n} and § = {}. We let O denote the all zeros
vector, 1 the all ones vector, and I the identity matrix, with dimensions clear from context. For a
vector X, x; is the i entry (non-bold to indicate a scalar). For a matrix X € R?*", [X]; € RIX7™ is
the i row. For a vector x, [|x||2 = (3, #2)'/2 denotes the Euclidean (£5) normand ||x||; = 3, ||
is the #; norm. For a matrix X € R™*™, X+ denotes the Moore—Penrose pseudoinverse.

Preliminaries. Any subset S C [n] can be represented by a binary indicator vector z € {0,1}",

and we use use v(S) and v(z) interchangeably. We construct the matrix Z and target vector y
appearing in Equation 2] by indexing rows by all z € {0, 1}" with 0 < ||z|j; < n:

* Let Z € R?" 2% be a matrix with [Z], = /w(]|z[1)z .

P |2][1)(v(2) — v(0)).

Above, w(s) = ((7)s(n — s)) ! is the same weight function defined in Equation

S

* Lety € R?"~2 be the vector where [y w(||z|

As discussed, the Kernel SHAP method is based on an equivalence between Shapley values and the
solution of a constrained regression problem involving Z and y. Formally, we have:

Lemma 2.1 (Equivalence (Lundberg & Lee, [2017; (Charnes et al., |1988))).
¢= argmin [Zx—yl3 (6)
x:(x,1)=v(1)—v(0)
= argmin > w(llzlh) - (z,%) — (v(z) — v(0)))*. @)

x:(x,1)=0(1)=v(0) ;.0 |1zl <n

For completeness, we provide a self-contained proof of Lemma in Appendix [I The form in
Equation [7| inspires the heuristic choice to sample sets with probabilities proportional to w(||z|1)
in Kernel SHAP, as larger terms in the sum should intuitively be sampled with higher probability
to reduce variance of the estimate. However, as discussed, a more principled way to approximately
solve least squares regression problems via subsampling is to use probabilities proportional to the
statistical leverage scores. Formally, these scores are defined as follows:

Definition 2.2 (Leverage Scores). Consider a matrix X € RP*"™. For i € [p], the leverage score of
the i row [X]; € RV is ¢; := [X];(XTX) " [X]].
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3 LEVERAGE SHAP

Statistical leverage scores are traditionally used to approximately solve unconstrained regression
problems. Since Shapley values are the solution to a linearly constrained problem, we first re-
formulate this into an unconstrained problem. Ultimately, we sample by leverage scores of the
reformulated problem, which we prove have a simple closed form that admits efficient sampling.

Concretely, we have the following equivalence:
Lemma 3.1 (Constrained to Unconstrained). Let P be the projection matrix I — %llT. Define
A=7ZPandb=y — ZIM. Then
(1) —v(0)
- .

arg min ||ZX—YH§ZargminHAX_b||§+1U
x:(x,1)=v(1)—v(0) x

®)

Further, we have that miny. i 1)—u(1)—v(0) ||ZX — y||3 = miny [|Ax — ng .

When there are multiple x that minimize the objective || Ax — ng, we define arg min, ||Ax — b||§
as the x that also minimizes ||x||3.

Lemma is proven in Appendix [K] Using the equivalent unconstrained regressio n problem, we
consider methods that construct a sampling matrix S and return:

: 1) - (0
d):argminHSAx—Sng—klw. )

The main question is how to build S. Our Leverage SHAP method does so by sampling with prob-
abilities proportional to the leverage scores of A. Since naively these scores would be intractable to
compute, requiring O(pn?) time, where p = 2" — 2 is the number of rows in A, our method rests
on the derivation of a simple closed form expression for the leverage scores, which we prove below.

3.1 ANALYTICAL FORM OF LEVERAGE SCORES

Lemma 3.2. Let A be as defined in Lemma[3.1] The leverage score of the row in A with index
. n y—1
z € {0,1}", where 0 < ||z||1 < n, is equal to £, = (qul) .

The proof of Lemma depends on an explicit expression for the matrix A T A:
Lemma 3.3. Let A be as defined in Lemma ATA = %P.

This fact will also be relevant later in our analysis, as it implies that AT A is well-conditioned.
Perhaps surprisingly, all of its non-zero singular values are equal to 1/n.

Proof of Lemma[3.3] Recall that A = ZP, so ATA = PTZ"ZP. We start by deriving explicit
expressions for the (i,;) entry of Z'Z, denoted by [Z"Z]; ), for all i € [n] and j € [n]. In
particular, we can check that [Z7 Z]; ;) = > sefo1yn Zizjw(|]|1). So, when i # j,

[ZTZ}(LJ) = Z w(|zl[1) = Z_: (Z_;)w(s). (10)

z:2;,25=1 s=2
Let c,, denote the above quantity, which does not depend on i and j. Le., [Z T Z] (i,j) = Cn fori # j.

For the case i = 7, let j' be any fixed index not equal to i. We have that

272 = Y wllzll) = Y wlzly+ D wllzlh)

z:z;=1 z:z;=1,2;,=0 z:z;=1,z;, =1
n—1 n—1
n—2 n—2 1
DI IICRS S ( IIOEESE (1)
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Figure 2: Let S be a subset sampled with the Kernel SHAP or Leverage SHAP probabilities. The
plots show the distribution of the set size |\S| for different n. As in in the definition of Shapley
values, the leverage score distribution places equal fotal weight on each subset size, contrasting with
Kernel SHAP which over-weights small and large subsets.

The last equality can be verified via a direct calculation. By Equations [I0] and [TT] we have that
Z'Z =11+ c,117. So we conclude that:

1 1 1 1 1
ATA=P'Z77ZP = <I — 11T> (I + cn11T> (I — 11T> =— (I — 11T) . O
n n n n n

With Lemma [3.3] we are now ready to analytically compute the leverage scores.

Proof of Lemma[3.2] The leverage scores of A are given by ¢, = [ZP], (ATA)Jr [ZP],). By
Lemma we have that ATA = 1 (I—2117) and thus (ATA)* = nI — 11", Recall that

2], = o)z 50 [ZP), = y/u(lal)a" (- 1117). We thus have:
T
b= VatTali (2= 1) r - 7)) (2 )

= w(|lz]1)(nllzls — l12]7) = w(l|z]l1)llz]l1 (n — ||z}1) = (Ilznlh) ' -

Notice that the leverage scores simply correspond to sampling every row proportional to the number
of sets of that size. In retrospect, this is quite intuitive given the original definition of Shapley values
in Equation [T} As shown in Figure 2] unlike the Kernel SHAP sampling distribution, leverage score
sampling ensures that all subset sizes are equally represented in our sample from A.

3.2 OUR ALGORITHM

With Lemma [3.2]in place, we are ready to present Leverage SHAP, which is given as Algorithm
[1] In addition to leverage score sampling, the algorithm incorporates paired sampling and sampling
without replacement, both of which are used in optimized implementations of Kernel SHAP.

For paired sampling, the idea is to sample rows with probabilities proportional to the leverage scores,
but in a correlated way: any time we sample index z, we also select its complement, z, where
zZ; = 1 — z; for i € [n]. Note that, by the symmetry of A’s leverage scores, £, = {;. Similarly,
w(]|z]]1) = w(]|z]|1). Moving forward, let Z denote the set of pairs (z,z) where 0 < ||z||; < n.

To perform paired sampling without replacement, we select indices (z, z) independently at random
with probability min(1, ¢(¢, + ¢z)) = min(1,2¢l,), where ¢ > 1 is an oversampling parameter.
All rows that are sampled are included in a subsampled matrix Z'P and reweighted by the inverse
of the probability with which they were sampled. The expected number of row samples in Z'P is
equal to Z(z,i) min(1, 2¢f,). We choose ¢ via binary search so that this expectation equals m — 2,
where m is our target number of value function evaluations (two evaluations are reserved to compute
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Algorithm 1 Leverage SHAP

Input: n: number of players, v: set function, m: target number of function evaluations (at least n)
Output: ¢: approximate Shapley values

1: m < min(m,2") > 2™ samples to solve exactly
2: Find c via binary search so that m — 2 = ZEZ{ZJ min((?), 2¢) > Equation
3: 2’ + BernoulliSample(n,c) > Sample from Z without replacement (Algorithm [2)
4: 7 O, W +— 02|Z/|><2‘Z’|’ Z/ — 02\Z’|><n

5: for (z,z) € Z' do > Build sampled regression problem

. ! T l 71

6: Z(m —z', Z(i+1,) — 1z

7: Wiy < Wiigt,iv1) < % > Correct weights in expectation
8: 14 1+2

9: end for
10: y' + v(Z') — v(0)1 > v(Z’) evaluates v on m — 2 inputs
11: by — 2@ 7
12: Compute

¢t «— argmin HW%Z/PX —W3b/|;

> Standard least squares
13: return ¢ ¢+ + Y0y

v(1) — v(0)). Le., we choose c to solve the equation:

n—1 -1
m—2= Sz::lmin (1,26(:) ) <Z> (12)

Note that our procedure is different from the with-replacement Kernel SHAP procedure described in
Section[I.T} Sampling without replacement requires more care to avoid iterating over the exponential
number of pairs in Z. Fortunately, we can exploit the fact that there are only n — 1 different set sizes,
and all sets of the same size have the same leverage score. This allows us to determine how many
sets of a different size should be sampled (by drawing a binomial random variable), and we can then
sample the required number of sets of each size uniformly at random. Ultimately, we can collect m
samples in O(mn?) time. Details are deferred to Appendix|[J]

Because we sample independently without replacement, it is possible that the number of function
evaluations |Z’| + 2 used by Algorithm|I|exceeds m. However, because this number is itself a sum
of independent random variables, it tightly concentrates around its expectation, m. If necessary,
Leverage SHAP can be implemented so that the number of evaluations is deterministically m (i.e.,
instead of sampling from a Binomial on Line 4] in Algorithm [2] set m, to be the expectation of
the Binomial). Since this version of Leverage SHAP no longer has independence, our theoretical
analysis no longer applies. However, we still believe the guarantees hold even without independence,
and leave a formal analysis to future work.

4 THEORETICAL GUARANTEES

As discussed, Leverage SHAP offers strong theoretical approximation guarantees. Our main result is
Theoremwhere we show that, with m = O(nlog(n/d) + Z5) samples in expectation, Algorithm

returns a solution <j~> that, with probability 1 — J, satisfies
IA¢ — b5 < (1+¢)[|A¢ — b]]3. (13)

We prove this guarantee in Appendix[A] The proof modifies the standard analysis of leverage scores
for active least squares regression, which requires two components: 1) a subspace embedding guar-
antee, proven with a matrix Chernoff bound applied to a sum of rank-1 random matrices, and 2) an
approximate matrix-multiplication guarantee, proven with a second moment analysis. We replace
these steps with 1) a matrix Bernstein bound applied to a sum of rank-2 random matrices and 2) a
block-approximate matrix multiplication guarantee.
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Figure 3: The /5-norm error between the estimated Shapley values and ground truth Shapley values
as a function of sample size. The lines report the median error while the shaded regions encompass
the first to third quartile over 100 runs. Besides the setting where the exact Shapley values can be
recovered, Leverage SHAP reliably outperforms even Optimized Kernel SHAP: the third quartile of
the Leverage SHAP error is roughly the median error of Optimized Kernel SHAP.

While well-motivated by the connection between Shapley values and linear regression, the objective
function in Theorem is not intuitive. Instead, we may be interested in the £5-norm error between
the true Shapley values and the estimated Shapley values. Fortunately, we can use special properties
of our problem to show that Theorem I.1]implies the following corollary on the ¢5-norm error.
Corollary 4.1. Suppose ¢ satisfies | Ap—b||3 < (1+¢€)|A¢p — bl||3. Lety = |Ap—b]|3/||A¢]3.
Then

6 — @113 < er|ll5.

The proof of Corollary [.1] appears in Appendix [B] The statement of the corollary is in terms of a
problem-specific parameter v which intuitively measures how well the optimal coefficients ¢ can
reach the target vector b. In Appendix [F} we explore how the performance varies with -y in practice.
We find (see e.g., Figures[3] [6l[7) that performance does erode as - increases for all regression-based
algorithms, suggesting that y is not an artifact of our analysis.

5 EXPERIMENTS

In the experiments, we evaluate Leverage SHAP and Kernel SHAP based on how closely they align
with the ground truth Shapley values. We primarily use the £2-norm error i.e., ||¢ — @||3/||®||3 as
the error metric. We run our experiments on eight popular datasets from the SHAP library (Lund-
berg & Leel [2017). We find that Leverage SHAP outperforms the highly optimized Kernel SHAP,
achieving a 50% reduction in error on average (see Table . In addition, we find that Leverage
SHAP consistently outperforms Permutation SHAP (see the additional experiments in Section[G]).

Implementation Details. In order to compute the ground truth Shapley values for large values of
n, we use a tree-based model for which we can compute the exact Shapley values efficiently using
Tree SHAP (Lundberg & Leel 2017). All of our code is written in Python and can be found on
Githutﬂ We use the SHAP library for the Optimized Kernel SHAP implementation, Tree SHAP,
and the datasets. We use XGBoost for training and evaluating trees, under the default parameters.

Additional experiments. So that we do not overcrowd the plots, we show performance on Kernel
SHAP, the Optimized Kernel SHAP implementation, and Leverage SHAP in the main body. We also
run all of the experiments with the ablated estimators in Appendix [G] The ablation experiments (see
e.g., Figure[8) suggest that Bernoulli sampling (sampling without replacement) improves Leverage
SHAP for small n and the paired sampling improves Leverage SHAP for all settings. Because it is
more interpretable, we report the {5-norm error metric to compare the estimated to the ground truth
Shapley values. We also report the linear objective error for similar experiments in Appendix [H]

3github.com/rtealwitter/leverageshap
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IRIS California Diabetes Adult Correlated Independent NHANES Communities

Kernel SHAP
Mean 0.026 0.0266 0.0553 0.0673 0.0465 0.0264 0.0604 0.12
Ist Quartile 1.61e-05 0.00829 0.0116 0.0182 0.0244 0.0134 0.0202 0.0563
2nd Quartile 0.000898 0.0236 0.0229 0.0345 0.0404 0.0217 0.0388 0.089
3rd Quartile 0.0328 0.0424 0.0524 0.0936 0.056 0.0303 0.0843 0.149
Optimized Kernel SHAP
Mean 4.84¢-09 0.00342 0.0093 0.00989 0.0117 0.00474 0.00758 0.0233
Ist Quartile 1.66e-13  0.000802  0.00161 0.00187 0.00499 0.00194 0.00156 0.00962
2nd Quartile 2.17e-13 0.00238 0.00356  0.00489 0.00916 0.00391 0.00425 0.0173
3rd Quartile 2.69e-10 0.00489 0.00868 0.0122 0.015 0.00695 0.00871 0.0325
Leverage SHAP
Mean 4.84e-09  0.000311 0.0023 0.00477 0.00716 0.00288 0.00532 0.0156
Ist Quartile 1.66e-13  4.47e-05  0.000215 0.000477 0.00289 0.000843 0.000995 0.0062
2nd Quartile 2.17e-13  0.000133  0.000969  0.00124 0.00528 0.00257 0.00288 0.0104
3rd Quartile 2.69¢-10  0.000366  0.00241  0.00354 0.00891 0.00417 0.00554 0.0225

Table 1: Summary statistics of the £3-norm error for every dataset. We adopt the Olympic medal
convention: gold, silver and bronze cells signify first, second and third best performance, re-
spectively. Except for ties, Leverage SHAP gives the best performance across all settings.

Figure [3|plots the performance for Kernel SHAP, the Optimized Kernel SHAP, and Leverage SHAP
as the number of samples varies (we set m = 5n, 10n, 20n, ..., 160n). For each estimator, the line
is the median error and the shaded region encompasses the first and third quartile over 100 random
runs Kernel SHAP gives the highest error in all settings of m and n, pointing to the importance
of the paired sampling and sampling without replacement optimizations in both Optimized Kernel
SHAP and Leverage SHAP. Because both methods sample without replacement, Optimized Kernel
SHAP and Leverage SHAP achieve essentially machine precision as m approaches 2". For all
other settings, Leverage SHAP reliably outperforms Optimized Kernel SHAP; the third quartile of
Leverage SHAP is generally at the median of Optimized Kernel SHAP. The analogous experiment
for the linear objective error depicted in Figure [I0]indicates the same findings.

Table |1| depicts the estimator performance for m = 10n. The table shows the mean, first quartile,
second quartile, and third quartile of the error for each estimator on every dataset. Except for ties
in the setting where m > 2", Leverage SHAP gives the best performance followed by Optimized
Kernel SHAP and then Kernel SHAP.

Beyond sample size, we evaluate how the estimators perform with noisy access to the set functions
in Appendix [D] As in the sample size experiments, Leverage SHAP meets or exceeds the other
estimators, suggesting the utility of the algorithm as a robust estimator in explainable Al.

6 CONCLUSION

We introduce Leverage SHAP, a principled alternative to Kernel SHAP, designed to provide provable
accuracy guarantees with nearly linear model evaluations. The cornerstone of our approach is lever-
age score sampling, a powerful subsampling technique used in regression. To adapt this method for
estimating Shapley values, we reformulate the standard Shapley value constrained regression prob-
lem and analytically compute the leverage scores of this reformulation. Leverage SHAP efficiently
uses these scores to produce provably accurate estimates of Shapley values. Our method enjoys
strong theoretical guarantees, which we prove by modifying the standard leverage score analysis
to incorporate the empirically-motivated paired sampling and sampling without replacement opti-
mizations. Through extensive experiments on eight datasets, we demonstrate that our algorithm
outperforms even the optimized version of Kernel SHAP, establishing Leverage SHAP as a valuable
tool in the explainable Al toolkit.

“We report the median and quartiles instead of the mean and standard deviation since the mean minus
standard deviation is negative for the small error values in our experiments.

10



Published as a conference paper at ICLR 2025

7 ACKNOWLEDGEMENTS

This work was supported by the National Science Foundation under Grant No. 2045590 and Grad-
uate Research Fellowship Grant No. DGE-2234660. We are grateful to Yurong Liu for introducing
us to the problem of estimating Shapley values.

11



Published as a conference paper at ICLR 2025

REFERENCES

Naman Agarwal, Sham Kakade, Rahul Kidambi, Yin-Tat Lee, Praneeth Netrapalli, and Aaron Sid-
ford. Leverage score sampling for faster accelerated regression and erm. In Proceedings of the
31st International Conference on Algorithmic Learning Theory, 2020.

Ahmed Alaoui and Michael W Mahoney. Fast randomized kernel ridge regression with statistical
guarantees. In Advances in Neural Information Processing Systems 28 (NeurIPS), 2015.

Salim I Amoukou, Tangi Salaiin, and Nicolas Brunel. Accurate shapley values for explaining tree-
based models. In International conference on artificial intelligence and statistics, pp. 2448-2465.
PMLR, 2022.

Haim Avron, Michael Kapralov, Cameron Musco, Christopher Musco, Ameya Velingker, and Amir
Zandieh. A universal sampling method for reconstructing signals with simple fourier transforms.
In Proceedings of the 51st Annual ACM Symposium on Theory of Computing (STOC), 2019.

Joshua Batson, Daniel A. Spielman, and Nikhil Srivastava. Twice-Ramanujan sparsifiers. SIAM
Journal on Computing, 41(6):1704-1721, 2012.

Thomas W Campbell, Heinrich Roder, Robert W Georgantas III, and Joanna Roder. Exact shapley
values for local and model-true explanations of decision tree ensembles. Machine Learning with
Applications, 9:100345, 2022.

Juan M. Cardenas, Ben Adcock, and Nick Dexter. CS4ML.: a general framework for active learning
with arbitrary data based on christoffel functions. In Advances in Neural Information Processing
Systems 36 (NeurIPS), 2023.

Javier Castro, Daniel Gémez, and Juan Tejada. Polynomial calculation of the shapley value based
on sampling. Computers & Operations Research, 36(5):1726-1730, 2009.

A Charnes, B Golany, M Keane, and J Rousseau. Extremal principle solutions of games in char-
acteristic function form: core, chebychev and shapley value generalizations. Econometrics of
planning and efficiency, pp. 123-133, 1988.

Jianbo Chen, Le Song, Martin J Wainwright, and Michael I Jordan. L-shapley and c-shapley: Effi-
cient model interpretation for structured data. In Proceedings of the 7th International Conference
on Learning Representations (ICLR), 2018.

Xue Chen and Michal Derezinski. Query complexity of least absolute deviation regression via robust
uniform convergence. In Proceedings of the 34th Annual Conference on Computational Learning
Theory (COLT), volume 134, pp. 11441179, 2021.

Xue Chen and Eric Price. Active regression via linear-sample sparsification active regression via
linear-sample sparsification. In Proceedings of the 32nd Annual Conference on Computational
Learning Theory (COLT), 2019.

Albert Cohen and Giovanni Migliorati. Optimal weighted least-squares methods. SMAI Journal of
Computational Mathematics, 3:181-203, 2017.

Michael B. Cohen, Yin Tat Lee, Cameron Musco, Christopher Musco, Richard Peng, and Aaron
Sidford. Uniform sampling for matrix approximation. In Proceedings of the 6th Conference on
Innovations in Theoretical Computer Science (ITCS), pp. 181-190, 2015.

Michael B Cohen, Cameron Musco, and Christopher Musco. Input sparsity time low-rank approx-
imation via ridge leverage score sampling. In Proceedings of the Twenty-Eighth Annual ACM-
SIAM Symposium on Discrete Algorithms, pp. 1758-1777. SIAM, 2017.

Ian Covert and Su-In Lee. Improving KernelSHAP: Practical shapley value estimation using linear
regression. In Proceedings of The 24th International Conference on Artificial Intelligence and
Statistics, pp. 3457-3465, 2021.

Anupam Datta, Shayak Sen, and Yair Zick. Algorithmic transparency via quantitative input influ-
ence: Theory and experiments with learning systems. In 2016 IEEE Symposium on Security and
Privacy, pp. 598-617, 2016.

12



Published as a conference paper at ICLR 2025

Petros Drineas, Michael W. Mahoney, and S. Muthukrishnan. Relative-error CUR matrix decompo-
sitions. SIAM Journal on Matrix Analysis and Applications, 30(2):844-881, 2008.

Tamas Erdélyi, Cameron Musco, and Christopher Musco. Fourier sparse leverage scores and ap-
proximate kernel learning. Advances in Neural Information Processing Systems 33 (NeurIPS),
2020.

Daniel Fryer, Inga Striimke, and Hien Nguyen. Shapley values for feature selection: The good, the
bad, and the axioms. leee Access, 9:144352—-144360, 2021.

Aarshvi Gajjar, Chinmay Hegde, and Christopher Musco. Active learning for single neuron models
with Lipschitz non-linearities. In Proceedings of the 26th International Conference on Artificial
Intelligence and Statistics (AISTATS), 2023.

Amirata Ghorbani and James Zou. Data shapley: Equitable valuation of data for machine learning.
In International conference on machine learning, pp. 2242-2251. PMLR, 2019.

Jerrad Hampton and Alireza Doostan. Coherence motivated sampling and convergence analysis
of least squares polynomial chaos regression. Computer Methods in Applied Mechanics and
Engineering, 290:73-97, 2015.

Ferenc Illés and Péter Kerényi. Estimation of the shapley value by ergodic sampling. arXiv preprint
arXiv:1906.05224, 2019.

Dominik Janzing, Lenon Minorics, and Patrick Blobaum. Feature relevance quantification in ex-
plainable ai: A causal problem. In International Conference on artificial intelligence and statis-
tics, pp- 2907-2916. PMLR, 2020.

Neil Jethani, Mukund Sudarshan, Ian Connick Covert, Su-In Lee, and Rajesh Ranganath. Fastshap:
Real-time shapley value estimation. In Infernational conference on learning representations,
2021.

Ruoxi Jia, David Dao, Boxin Wang, Frances Ann Hubis, Nick Hynes, Nezihe Merve Girel, Bo Li,
Ce Zhang, Dawn Song, and Costas J Spanos. Towards efficient data valuation based on the
shapley value. In The 22nd International Conference on Artificial Intelligence and Statistics, pp.
1167-1176. PMLR, 2019.

Scott M Lundberg and Su-In Lee. A unified approach to interpreting model predictions. Advances
in neural information processing systems, 30, 2017. URL https://github.com/shap/
shapl

Scott M Lundberg, Gabriel G Erion, and Su-In Lee. Consistent individualized feature attribution for
tree ensembles. arXiv preprint arXiv:1802.03888, 2018.

Wilson E Marcilio and Danilo M Eler. From explanations to feature selection: assessing shap values
as feature selection mechanism. In 2020 33rd SIBGRAPI conference on Graphics, Patterns and
Images (SIBGRAPI), pp. 340-347. Teee, 2020.

Rory Mitchell, Joshua Cooper, Eibe Frank, and Geoffrey Holmes. Sampling permutations for shap-
ley value estimation. Journal of Machine Learning Research, 23(43):1-46, 2022.

Christoph Molnar. Interpretable machine learning: A guide for making black box models explain-
able. Leanpub, 2024.

Cameron Musco and Christopher Musco. Recursive sampling for the nystrom method. In Advances
in Neural Information Processing Systems 30 (NeurlPS), 2017.

Cameron Musco, Christopher Musco, David P. Woodruff, and Taisuke Yasuda. Active linear re-
gression for ¢, norms and beyond. In Proceedings of the 63rd Annual IEEE Symposium on
Foundations of Computer Science (FOCS).

Holger Rauhut and Rachel Ward. Sparse Legendre expansions via ¢1-minimization. Journal of
Approximation Theory, 164(5):517 — 533, 2012.

13


https://github.com/shap/shap
https://github.com/shap/shap

Published as a conference paper at ICLR 2025

Alessandro Rudi, Daniele Calandriello, Luigi Carratino, and Lorenzo Rosasco. On fast leverage
score sampling and optimal learning. Advances in Neural Information Processing Systems, 31,
2018.

Tamads Sarl6s. Improved approximation algorithms for large matrices via random projections. In
Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS),
2006.

Patrick Schwab and Walter Karlen. Cxplain: Causal explanations for model interpretation under
uncertainty. Advances in neural information processing systems, 32, 2019.

Lloyd S Shapley. Notes on the n-person game—ii: The value of an n-person game. 1951.

Atsushi Shimizu, Xiaoou Cheng, Christopher Musco, and Jonathan Weare. Improved active learning
via dependent leverage score sampling. In Proceedings of the 12th International Conference on
Learning Representations (ICLR), 2024.

Daniel A. Spielman and Nikhil Srivastava. Graph sparsification by effective resistances. SIAM
Journal on Computing, 40(6):1913-1926, 2011.

Erik Strumbelj and Igor Kononenko. An efficient explanation of individual classifications using
game theory. The Journal of Machine Learning Research, 11:1-18, 2010.

Erik Strumbelj and Igor Kononenko. Explaining prediction models and individual predictions with
feature contributions. Knowledge and information systems, 41:647-665, 2014.

Joel A Tropp et al. An introduction to matrix concentration inequalities. Foundations and Trends®
in Machine Learning, 8(1-2):1-230, 2015.

Jiachen T. Wang and Ruoxi Jia. Data banzhaf: A robust data valuation framework for machine
learning. In Proceedings of The 26th International Conference on Artificial Intelligence and
Statistics, volume 206 of Proceedings of Machine Learning Research, pp. 6388-6421. PMLR,
25-27 Apr 2023.

Yue Wu. A note on random sampling for matrix multiplication. arXiv preprint arXiv:1811.11237,
2018.

14



Published as a conference paper at ICLR 2025

Appendices

CONTENTS

|

|1.1  Efficient Shapley Value Computation|. . . . . .. ... ... ..

[2__Background and Notation|

B Eeverage SHA Fl

3.1 Analytical Form of Leverage Scores| . . . . . ... ... ....

3.2 Our Algorithm| . . . ... ... ... .. ... ... .. ...

E

xperiments

=

{7 Acknowledgements|

Append

|{A" Proof of Approximation Guarantee|

B~ Proof of Approximation Corollary|

|C  Computational Hardness|

[D Noisy Access to the Set Function|

[E Error Relative to Optimized Kernel SHAP]|

|G Additional Experiments with ¢>-norm Error|

[H Ablation Experiments with Objective Error |

I Constrained and Unconstrained Equivalence|

[J " Efficiently Sampling Without Replacement]

K Constrained Regression|

15

AW N =

10

11

15

16

19

20

20

21

22

23

24

25

26

28



Published as a conference paper at ICLR 2025

A PROOF OF APPROXIMATION GUARANTEE

In this section, we prove the following theorem.
Theorem A.1. Let m = O(nlog(%) + ny-). Algorithm produces an estimate ¢ such that, with
probability 1 — 6,

IA¢ —b|3 < (1+¢)|A¢ — b]]3.

Because of the connection between the constrained and unconstrained regression problems described
in Lemma 3.1} the theorem implies the theoretical guarantees in Theorem[I.1] The time complexity
bound in Theorem [I.T|follows from Lemma[J.T]in Appendix[J}

Consider the following leverage score sampling scheme where rows are selected in blocks. (We use
the word “block” instead of “pair” in the formal analysis for generality.) Let © be a partition into
blocks of equal size (size 2 in our case) where the leverage scores within a block are equal. Block ©;
is independently sampled with probability p;” := min(1,¢ " ko, {,) for a constant c. The constant

c is chosen so that the expected number of blocks sampled is m, i.e., 27 pj = m. Let m’ be the

number of blocks sampled. Let S € RI®ilm" %0 be the (random) sampling matrix. Each row of S
corresponds to a row k from a sampled block i: every entry in the row is 0 except for the kth entry

whichis 1/4/p;".

In order to analyze the solution returned by Algorithm [I} we will prove that the sampling matrix S
preserves the spectral norm and Frobenius norm.

Lemma A.2 (Bernoulli Spectral Approximation). Let U € RP*™ be a matrix with orthonormal
columns. Consider the block random sampling matrix S described above with rows sampled ac-
cording to the leverage scores of U. When m = Q(nlog(n/8)/e?),

II-UTSTSU|]; <« (14)
with probability 1 — 4.
Proof of LemmalA.2] We will use the following matrix Bernstein bound (see e.g., Theorem 6.6.1 in
Tropp et al.|(2015)).

Fact A.3 (Matrix Bernstein). Consider a finite sequence {X;} of independent, random, Hermitian
matrices with dimension n. Assume that E[X] = 0 and ||X;||2 < L for all i. Define X =3, X;
and let V = ||E[X?]|2 = || 3, E[X?]||2. Then for any e > 0,

Pr([X]s > ) < /2
9 >€) < nexp VL3 (15)

Let U,y € RY" be the kth row of U. Similarly, let Ug, € RI%/*" be the matrix with rows Uy,
for k € ©;.

We will choose X; = UJ Ug, — p%rUgiU@iIL[i selected]. Then E[X;] = Oand X = I —
U'sTsu.

First, we will upper bound max; || X;||2. If 4 is not selected or p;” = 1, then ||X;||2 = 0 so we only
need to consider the case where i is selected and p;" =cy, reo, {k < 1. Then

1
U5, Ue, |2 < oF > 0w,
i ke,

1
1% < ‘1—p+

?

1
2=Z=1 16
|2 c (16)

Next, we will upper bound || ", E[X?]||2. Again, notice that E[X?] = 0 if p;” = 1 so we only need
to consider the case where p?' < 1. Then

1 2
YEXI= Y (1—p+) (U3 Ue)* +(1-p}) (U3 Us)>.  (7)

i:p;r<1 v
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Notice that p; (1 —1/p )2+ (1 —pf) = pf —2+1/pf +1—p; =1/p} —1 < 1/p] . Therefore
1

[17) < Z — U, Ue,U{, U, (18)
ipF<1 pi

Observe that entry (k, k') of Ug, U € RI®:IxI®:lis U, U], So the absolute value of each entry

is [ULUL| < [ Ukll2Up |2 = 51/251/ ? by Cauchy-Schwarz. Define /™ = maxyeo, () and
i = mingee, lk. By the Gershgorm circle theorem, Up, U, < 2€{“6‘X|® |*I. Equivalently,

A < B, x" Ax < x"Bx for all x. Consider an arbitrary z. We have z' CTACz < z' C"BCz
since Cz is some x. It follows that U, Ue, U{, Ue, < 262%%|0,2U{, Ue,. Then

1 19l gpmax)g 12y T
2&-& 0:°U,Us, 1 051
max|9,2U4 Ue, =~ max2|0,| LT (19)
2 keo, b ¢ “

Since |©;| < 2 and the leverage scores in a block are all equal, [|E[X?]l2 < 4/c.

Recall that ¢ is chosen so that m = >, min(1,¢) o, €k) < €2y > ico, bk = cn, where the last
equality follows because the leverage scores sum to n. So 1/¢ < n/m.

Plugging in to Fact[A.3] we have that
Pr (|I-UTSTSU|; > ¢) < nex —mei 20N s (20)
2= = Py €/3 )~
provided m = Q(nlog(n/8)/e?).

Next, we will prove that the sampling matrix preserves the Frobenius norm.

Lemma A.4 (Frobenius Approximation). Let U € RP*™ be a matrix with orthonormal columns.
Consider the block random samplmg matrix S described above with rows sampled according to the

leverage scores of U. Let V € RP*™ . As long asm > 5, L, then

[UTSTSV - UTV||, < ¢|Ul|r|V]r @h
with probability 1 — 4.

Proof. We adapt Proposition 2.2 in [Wu| (2018) to the setting where blocks are sampled without
replacement.

E[UTSTSV - UTVIE = 3 S E(UTSTSV - UTVR, 1 @)
h1=1hy=1

= > Var(UTSTSV)(, 4] (23)
h1=1hy=1

where the last equality follows because E[UTSTSV] = UTV. We will consider an individual
entry in terms of the blocks 7. If pj' = 1, then the entry is 0 so we only need to consider the case
where pj < 1. Then, using independence, we have

Var(UTSTSV) s, 1)) = Z Varéﬂ[z selected] (U, 6.1V (@,.h2))] (24)
1p,l <1 pi
1/ 2
< Z + (U(hly@i)v(@ivh2)>) (25)
i:p; F<1 Pi
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50
1
@) < D 1UeyVenli< D — 0,7V lE (26)
inpf <1 ipf <1’
Uyl[3 2 Lo 1 2 2
Ve, =—|V||% < —||U||%||V 27
Z Zkeo Ve, CH Iz < m” 12 IVIz (27)

i p,L <1
where the last equality follows because m < cn and || U||% = n.

By Markov’s inequality,

E[[uTsTsv-UTvV[i]
Pr([UTSTSV — UV, > €|U]Ip|VI]r) < < e

< )
el[OIEIVIE me?

(28)
aslong as m > 5. O

With the spectral and Frobenius approximation guarantees from Lemmas[A.2]and[A.4] we are ready
to prove Theorem [A.T]

Proof of Theorem[A.1] Observe that
|A¢ —b[3 = |Ap — Ad + Ad — b = |A¢d — Ag|3 + || A¢ — DlI3 (29)

where the second equality follows because A ¢ — b is orthogonal to any vector in the span of A. So
to prove the theorem, it suffices to show that

|A} — Ad|3 < e][Ap — b3 (30)

Let U € R?*™ be an orthonormal matrix that spans the columns of A where n’ < n. There is

some y such that Uy = A¢ and some y such that Uy = A¢. Observe that ||Aq~5 —Ad|2 =
|Uy — Uyll2 = ||y — y|l2 where the last equality follows because UT U = 1.

By the reverse triangle inequality and the submultiplicavity of the spectral norm, we have
Iy = yll2 < [UTSTSUF ~ y)ll2 + [UTSTSU(y ~y) — (¥ ~¥)2 (31)
<UTSTSU(y —y)ll2 +|U'S"SU —I[ly — y]2. (32)

Because U has the same leverage scores as A and the number of rows sampled in S is within a
constant factor of mn, we can apply Lemma[A.2} With m = O(nlog %), we have |[UTSTSU —

T2 < % with probability 1 — /2. So, with probability 1 — 4/2,

Iy =yl <2[UTSTSU(y —y)|2. (33)

Then
|[UTSTSU(y —y)|. =||[U'ST (SUy — Sb+ Sb — SUy)||, (34)
=|UuTs's(Uy —b)||, (35)

where the second equality follows because SUy — Sb is orthogonal to any vector in the span of
SU. By similar reasoning, notice that U (Uy — b) = 0. Then, as long as m = O(£ ), we have

Ve
2vn

with probability 1 — §/2 by Lemma Since U has orthonormal columns, |[U||% < n. Then,
combining inequalities yields

|AG —Ag|3 =y —y|3 <2|U'STSU([y —y)|3 < ¢[[Uy — b|3 =¢[|[Adp - Db|3 37
with probability 1 — 6. ]

[UTSTS (Uy -~ b)|, < 5= Ul|#||Uy - bl|2 (36)
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B PROOF OF APPROXIMATION COROLLARY

We will establish several properties specific to our problem and then use these properties to prove
Corollary {.1]

Lemma B.1 (Properties of A, ¢, and @). The Shapley values ¢, the matrix A, and the estimated
Shapley values qb produced by Algorithm Isansﬁ/

1A - )13 = 16 - 9l (8)
and

e el (9)

Proof. Even though A does not have n singular values, we can exploit the special structure of A,
¢, and ¢~> Let A = UXV be the singular value decomposition of A. By Lemma we know
> ¢ R=Dx("=1) j5 a diagonal matrix with ﬁ on the diagonal and V € R™*(®~1) has n — 1
orthonormal columns that are all orthogonal to 1. Let vy,...,v,_1 € R” be these vectors. Then

_\" 1 T on—1 :
A= Zi:l TR iv; where uy,...,u,_1 € R are the n — 1 orthonormal columns in U.

By Lemma[2.T]and[3.1] we can write

n—1 n—1
i=1 i=

for some s; and 3; where i € [n — 1]. Then (¢ — ¢) = o 11 vi(8; — s;) and
B n—1 1 n—1 n—1 1
Ap—)=> —=wv] > v;(3 =D —=u(5 —si) (41)
i=1 v j=1 i=1 v
so [A(d— )3 = 116~ ¢l5.
Similarly, we can write
n—1 n—1 n—1
Ap = vis; + 122" U (42)
St (S S
where the second equality follows because vi,...,v, 1 are orthogonal to 1. Then ||A¢|3 =
3+ (lgf3 - temZHen)
n
O

Corollary 4.1. Suppose ¢ satisfies || Ad—Db||3 < (1+¢)|Ag — b|j3. Lety = [[Adp—Db|3/|Ag|3.
Then

lp — @113 < erlll3.

Proof of Corollary[d.1} We have

1A — Dbl = |A¢ — Ad + Ag — bl = | A — Ag|3 + | A¢ — blI3 (43)
where the second equality follows because A ¢ — b is orthogonal to any vector in the span of A.
Then, by the assumption, we have

|Ap — Ag|2 < ¢|[Agp — b3 (44)

By the definition of v = % and Lemma

—0(0))?
(A —blZ = Y| AG]Z = ey (||¢>|2 “”“’”) 45)
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Finally, by Lemma[B.T|along with Equations [#4]and 5] we have

1, - . 1
—ll¢ = ¢l3 = [|1A(& — @)[5 < el A¢ — bII3 < —evl|]l3. (46)

The corollary statement then follows after multiplying both sides by n. O

C COMPUTATIONAL HARDNESS

When the Shapley value problem is viewed as an optimization problem, we provide a constant factor
approximation in polynomial time (see e.g., Theorem|[I.)).

On the other hand, suppose we wanted to, e.g., ensure that %qﬁi < ¢ < Co; for all i. We claim
that obtaining this goal for any constant C' is NP-hard in many settings. In particular, to ask about
computational hardness, we also need to specify the input to the algorithm: i.e., is v given as a
polynomial size circuit, a polynomial size formula, or as a black-box, unit cost oracle? In all of
these settings the problem is NP-hard to approximate. In particular, consider the case when v either
evaluates to 0 for all sets, or evaluates to 0 for all sets except for a single set S. In the first case, the
Shapley values will all equal 0, whereas in the second case, the Shapley values for indices in S are
non-zero. As such, to obtain a multiplicative approximation, we need to determine if there is some
set .S for which v does not evaluate to 0. When v is a black-box, finding such a set clearly requires
Q(2™) time (we can only enumerate all possible inputs). However, it is still hard when v is given
other forms. For example, if v is a given as a circuit, then determining if there is an S for which
v(S) # 0 is equivalent to the NP-complete circuit SAT problem.

This argument makes it clear why asking for a multiplicative approximation is not reasonable, and
why instead we might care about an approximation in objective value. This is the case for many
computational problems: for example, in the class of NP-hard optimization problems like set cover,
we do not typically ask to approximate the optimal solution itself, but instead to find another solution
with nearly the same objective value as the optimal solution (whether or not it is similar to that
optimal solution or not).

D NOISY ACCESS TO THE SET FUNCTION

In this section, we explore how the regression-based estimators perform given noisy access to the
set function v. This setting is particularly relevant for Shapley values in explainable Al, since the set
function may be an expectation that is approximated in practice. Figure ] shows plots performance
as noise is added to the set functions: Instead of observing v(.S), the estimators observe v(.S) + ¢
where ¢ ~ N(0, 0?) is normally distributed with standard deviation o (we set ¢ = 0,5 x 1073, 1 x
10725 x 1072,...,1).

IRIS (n = 4) California (n = 8) Diabetes (n = 10) Adult (n = 12)

g 10%
g
& 100F
g
g 10°° 1072 F
5]
10°% 107 107t 10°
Correlated (n = 60) Independent (n = 60) Communities (n = 101)
g 107t 1071
&
4 10-2
=
z 1072
4 E
= ‘ : ‘ qo1070 ‘ ‘ 1078k ‘ ‘ E ‘ ‘ ‘ ‘
1073 102 107! 10° 10-3 1072 101 10° 1073 102 107! 10° 10-3 1072 101 10°
Standard Deviation of Noise (o) Standard Deviation of Noise (o) Standard Deviation of Noise (o) Standard Deviation of Noise (o)
Kernel SHAP ~ ----- Optimized Kernel SHAP —— Leverage SHAP

Figure 4: The /5-norm error between the estimated and ground truth Shapley values as a function
of noise in the set function. Leverage SHAP gives the best performance in all settings; the third
quartile of the Leverage SHAP generally matches the median of the Optimized Kernel SHAP error.
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E ERROR RELATIVE TO OPTIMIZED KERNEL SHAP

Dataset 5n 10n 20n 40n 80n 160n
IRIS 1.00 1.00 1.00 1.00 1.00 1.00
California 0.0923 0.0909 0.0463 1.00 1.00 1.00
Diabetes 0.314 0.247 0.278 0.203 0.110 1.00
Adult 0.351 0.482 0.536 0.318 0.279 0.276

Correlated 0484 0614 0.613 0.658 0.682 0.685
Independent 0.540 0.608 0.614 0.637 0.658 0.651
NHANES 0572 0702  0.757 0.709 0.658 0.741
Communities 0.514  0.668  0.647 0.681 0.661 0.722

Table 2: The table reports the average error ratio over 100 random runs between Leverage SHAP and
Optimized Kernel SHAP. For example, on the Correlated dataset with m = 5n samples, Leverage
SHAP achieved estimates with 54% of the error of Optimized Kernel SHAP. A ratio of 1 indicates
that m > 2™, and both algorithms recovered estimates accurate to machine precision. On average
(excluding entries where the ratio is 1), Leverage SHAP estimates have 50.2% of the error of Op-
timized Kernel SHAP. In other words, Leverage SHAP achieves roughly a 50% reduction in error
compared to Optimized Kernel SHAP.

Table [2| presents the average error ratios between Leverage SHAP and Optimized Kernel SHAP
across various datasets and sample sizes, computed over 100 independent random runs. Each entry
reports the ratio of the mean absolute error of Leverage SHAP to that of Optimized Kernel SHAP. For
example, on the Correlated dataset with m = 5n samples, Leverage SHAP achieved an error that
was 54% of the error of Optimized Kernel SHAP. A reported ratio of 1 corresponds to cases where
m > 2", in which both methods recovered estimates accurate to machine precision. Averaging
over all non-unit entries, Leverage SHAP achieved 50.2% of the error of Optimized Kernel SHAP,
corresponding to an approximate 50% reduction in error
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F EXPLORING 7y

The problem-specific term v = ||A¢ — b||3/||b||3 appears in the f5-norm guarantee of Corollary
@] In this section, we explore the distribution of ~, and the performance by ~. Because exactly
computing ~ requires evaluating b, we focus on datasets where n < 16.

Table [3] shows summary statistics of v over 100 runs (the randomness comes from the different
models trained on the data). On every dataset, the third quartile of +y is less than 2.

Table 3: Summary statistic of vy over 100 runs.

Dataset n  Ist Quartile 2nd Quartile 3rd Quartile
IRIS 4 0.000234 0.266 1.03
California 8 0.158 0.298 0.449
Diabetes 10 0.174 0.321 0.513
Adult 12 0.180 0.395 0.703

In Figure 5] we explore experimentally whether + is an artifact of our analysis or a necessary param-
eter. We perform the experiment by explicitly building the matrix A (only possible for small n) and
then choosing b as a linear combination of a vector in the column span of A and a vector not in the
column span of A. Then, we back out the corresponding set function v using the definition of b. We
induce different values of v as we vary how much of b is a vector in the column span of A. Because
all three of the algorithms we consider perform worse as 7y increases, the experiment suggests that
~ is not an artifact of our analysis. The same trend appears for the ablated estimators, as shown in
Figure[6] As our analysis suggests, v does not appear to be a relevant factor for the objective error,
as shown in Figure

Synthetic (n = 10) Synthetic (n = 12) Synthetic (n = 14) Synthetic (n = 16)

o ! ! ! ! ! ! ! ! ! ! ! !
g
<0t 1 107t / 1077 / 1071 /
g
5
= -2 | 4
= ! . . 10-2 n . . 107%F n . 3 10 n . .

1071 100 10t 107! 10° 10t 1071 10° 10t 1071 10° 10t

Y Y v v
Kernel SHAP ~ ----- Optimized Kernel SHAP —— Leverage SHAP

Figure 5: The ¢5-norm error as a function of ~y, the problem-specific parameter in Corollary
The lines indicate the median and the shaded regions encompass the first and third quartile over 100
runs. All three of the main algorithms we consider have higher /5-norm error as ~y grows, suggesting
that +y is not an artifact of our analysis.
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Figure 6: The ¢5-norm error as a function of -, the problem-specific parameter in Corollary The
lines indicate the mean over 100 runs. All algorithms we consider have higher ¢5-norm error as ~y
grows, suggesting that -y is not an artifact of our analysis.
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Synthetic (n = 16)
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Figure 7: The linear objective error as a function of ~, the problem-specific parameter in Corollary
@] The lines indicate the mean over 100 runs. All algorithms we consider have no dependence
on 7y grows, suggesting that ~y is not a relevant parameter for the linear objective error. This finding
aligns with Theorem@ which has no dependence on ~.

G ADDITIONAL EXPERIMENTS WITH /5-NORM ERROR

Table [] evaluates additional estimators. Leverage SHAP continues to give the best performance,
notably outperforming Permutation SHAP.

IRIS California Diabetes Adult Correlated Independent NHANES Communities

Kernel SHAP
Mean 0.026 0.0266 0.0553 0.0673 0.0465 0.0264 0.0604 0.12
Ist Quartile 1.61e-05 0.00829 0.0116 0.0182 0.0244 0.0134 0.0202 0.0563
2nd Quartile 0.000898 0.0236 0.0229 0.0345 0.0404 0.0217 0.0388 0.089
3rd Quartile 0.0328 0.0424 0.0524 0.0936 0.056 0.0303 0.0843 0.149
Optimized Kernel SHAP
Mean 4.84e-09 0.00342 0.0093 0.00989 0.0117 0.00474 0.00758 0.0233
1st Quartile 1.66e-13  0.000802  0.00161 0.00187 0.00499 0.00194 0.00156 0.00962
2nd Quartile 2.17e-13 0.00238 0.00356  0.00489 0.00916 0.00391 0.00425 0.0173
3rd Quartile 2.69¢-10 0.00489 0.00868 0.0122 0.015 0.00695 0.00871 0.0325
Leverage SHAP
Mean 4.84e-09  0.000311 0.0023 0.00477 0.00716 0.00288 0.00532 0.0156
Ist Quartile 1.66e-13  4.47e-05  0.000215 0.000477 0.00289 0.000843 0.000995 0.0062
2nd Quartile 2.17e-13  0.000133  0.000969  0.00124 0.00528 0.00257 0.00288 0.0104
3rd Quartile 2.69e-10  0.000366  0.00241  0.00354 0.00891 0.00417 0.00554 0.0225
Kernel SHAP Paired
Mean 0.00343 0.00081 0.00437  0.00607 0.0107 0.00453 0.00754 0.0249
Ist Quartile 3.07e-10  9.92e-05  0.000444  0.000676 0.00395 0.00143 0.00156 0.0108
2nd Quartile 1.28e-07  0.000361 0.00203  0.00157 0.00827 0.00344 0.00415 0.016
3rd Quartile 0.000189  0.000971 0.00565  0.00482 0.0141 0.00658 0.00857 0.034
Leverage SHAP (Unpaired)
Mean 0.0332 0.0237 0.049 0.0531 0.0308 0.0163 0.0357 0.067
Ist Quartile 9.5e-06 0.00834 0.00947 0.0144 0.0171 0.00775 0.00969 0.0322
2nd Quartile 0.000951 0.0183 0.0184 0.0303 0.0245 0.013 0.024 0.0495
3rd Quartile 0.0277 0.0328 0.035 0.067 0.0356 0.02 0.0479 0.0774
Permutation SHAP
Mean 0.00511 0.00145 0.00875 0.0118 0.015 0.00517 0.00868 0.0312
Ist Quartile 1.29¢-09 ~ 0.000174  0.000785 0.000708 0.00403 0.00109 0.00127 0.0105
2nd Quartile 2.35e-07 | 0.000793 @ 0.00361 | 0.00222 0.0098 0.00338 0.00355 0.0188
3rd Quartile 0.000659 = 0.00196 0.0102 0.0079 0.0199 0.00847 0.00789 0.045

Table 4: Normalized ¢>-norm by dataset and estimator, reported in summary statistics from 100
random runs.

Figures [8] and [9] show additional experiments where the error is measured with the ¢>-norm error.
We find that Leverage SHAP gives the best performance.
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Figure 8: The ¢5-norm error between the estimated Shapley values and ground truth Shapley values
as a function of sample size. The lines report the mean error over 100 runs. Leverage SHAP
reliably gives the best performance, exceeding second-best Optimized Kernel SHAP for small n and
Leverage SHAP w/o Bernoulli Sampling for large n.
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Figure 9: The ¢>-norm error between the estimated and ground truth Shapley values as a function of
noise in the set function. Leverage SHAP gives the best performance in almost all settings, with the
exception of NHANES where Leverage SHAP with replacement (without Bernoulli) gives slightly
better performance.

H ABLATION EXPERIMENTS WITH OBJECTIVE ERROR

Figures [T0] and [TT] show ablation experiments where the error is measured with the objective value
naturally suggested by the regression formulation. We find that Leverage SHAP, or its ablated
version without Bernoulli sampling, give the best performance.
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Figure 10: Linear objective error by sample size. The lines indicate the mean error over 100 runs.
Leverage SHAP quickly achieves the lowest error in all settings. (For small n, numerical instability
can lead to error below 1.)
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Figure 11: Linear objective error by standard deviation of noise. The noise grows large as o ap-
proaches one for all algorithms. The plots indicate no clear winner across all four datasets.

I CONSTRAINED AND UNCONSTRAINED EQUIVALENCE

Lemma 2.1 (Equivalence (Lundberg & Leel 2017} |Charnes et al., [1988)).

b= agmin  |Zx—y|3 ©
x:(x,1)=v(1)—v(0)
=  argmin > wllzlh) - (z.%) = (u(z) - 0(0))*. 9
x:(x,1)=v(1)—v(0) 2:0<||z]|1 <n

We provide a cleaner, direct proof using the unconstrained problem and the exact characterization
of ZTZ.

Proof of Lemma[2.1] 'We will show that

1)—v(0
& — argmin | Ax — b2 + 120 )n”( ) (47)
where A =ZP andb =y — Zl%v(o). Then Lemmanfollows from Lemma
We know
argmin |[Ax — b2 = (ATA)*Ab. (48)
By Lemma3.3] we have (ATA)* = (PTZTZP)* =nI— 11" = nP. Then
(ATAYYAT =nPP'Z" =nPZ". (49)

Letz € {0,1}" with 0 < ||z||; < n. It follows that

(ATA) ATb =P | Z7 | \/u([al) (u() - v(0))| — 27 \/w<|\z|\1>||‘z||1w
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By symmetry, the last term is a scaling of the all ones vector so it gets projected off by P. Recall
w(s) = W The weights are carefully designed so that w(s)s = w(s 4+ 1)(n — s — 1).
Then, for i € [n], we have the ith entry of (AT A)* A Tb given by

Y wllzl)(nz —|zl) (v(z) —v(0)

z:0<||z]|1<n

SRS <";1)1v(5)—1 3 (";1>1v(5> (50)

S:{i}CSC[n] " S:0CSC[n)\{:}

L o) = v(®) _ v((n]) — v (0) (51)

n n

LS (”;1)_145y_1 3 (”;1>_145) (52)

n . n .
S:{i}CSCn] S:0CSCnI\{i}

_ olln]) = 0(0) 5
n
v([n]) — (0
— b w (54)
where the first equality follows by converting from binary vectors to sets. Then Equation[@d7follows.
O

J  EFFICIENTLY SAMPLING WITHOUT REPLACEMENT

Since there are an exponential number of rows, the naive method of considering each row indepen-
dently will not work. Our approach is as follows: For each set size s € [[n/2]], we sample the
number of samples that will be chosen. This is distributed as a Binomial distribution with (Z) trials

and probability min(1, 20(2) 71). Then, because the probabilities are the same for all subsets of size
s, we exploit this symmetry and sample random indices uniformly from [(:)] without replacement.
We index all subsets of size s and then construct the subsets corresponding to the randomly sampled
indices without enumerating all subsets. The Bernoulli sampling code appears in Algorithm [2| and
the subset construction code appears in Algorithm [3] both deferred to Appendix[J}

Like before, there is one special case when n is even and there is a middle set size s = [n/2]. Here,
the paired samples z and z have the same size s so we need to partition the set of all subsets of size s
so we do not risk sampling the same pair twice. We accomplish this by sampling z from all subsets
of n — 1 items with size s — 1 then appending z,, = 1 and computing the complement z.

Lemma J.1 (Time Complexity). Let m' be the number of samples used in Algorithm|l| and define
T, as the time complexity of evaluating v in parallel on m’ inputs. Algorithm |l| runs in time
O(m/n? + Tp).

For most settings, we expect 1;,,» to dominate the time complexity. For example, consider a shallow
fully connected neural network with inner dimension just n. Even evaluating the forward pass on
m/ inputs for a single layer of this network takes time O(m’'n?).

Proof of Lemma BernoulliSample takes O(mn?) time: For each pair of samples, we call
Combo at most twice which takes time at most O(n?) since there are only two loops, each over at
most n items. For simplicity of presentation, the algorithm calls v three times: once with input 1,
once with input 0, and once with m’ — 2 inputs. However, by concatenating the inputs, the algorithm
can be easily modified to call v once on m’ inputs for a time complexity of T},.. Computing the
optimal subsampled solution ¢ takes O(n?) time to compute a factorization of a n x n matrix and
O(m/n?) time to compute the n x n matrix. Since m’ > n, the time complexity is O(m'n?). [
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Algorithm 2 BernoulliSample(n,c): Efficient Bernoulli Sampling

Input: n: number of players, c: probability scaling
Output: Z’: random sample of Z that independently contains pair (z,Z) w.p. min(1,2¢- £,)

I Z«0
2: forsetsize s € {1,...,[5]} do
3: isMiddle < (2|n) A (s = [5]) > Special handling of middle set size for paired samples
4. m, ~ Binomial(("), min(1,2c- (2)71)
5: ms + |ms/2] if isMiddle
6: randomlIndices <— m uniform random integers drawn without replacement from [(Z)]
7: for i € randomlIndices do
8: Z + Combo(n, s,1) > ¢th combination of n items with size s (Algorithm
9: if isMiddle then > Partition the middle size by setting z,, = 1
10: z <Combo(n — 1,s — 1,4) > ith combination of n — 1 items with size s — 1
11: Append 0 to z
12: end if
13: Add (z,z) to Z'
14: end for
15: end for

16: return Z’

Algorithm 3 Combo(n, s,i): Compute the ith Combination in Lexicographic Order

1: Input: n: total number of elements, s: subset size, i: index of subset
2: Output: z: the ¢th combination (lexicographically) in binary form

3: 24+ 0,, k <+ s,start < 1

4: foridx € {1,...,s} do

5 for j € {start,...,n} do
6: count <— (";f;l) > Combinations possible with remaining elements if j is added
7 if i < count then
8: z; 1 > Add j
9: k+—k—-1 > Decrease the number of elements left to choose
10: start <— s 41 > Update starting index to ensure lexicographic order
11: break
12: else
13: 1 < 1 — count > Skip this batch of combinations
14: end if
15: end for
16: end for
17: return z
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K CONSTRAINED REGRESSION

Lemma 3.1 (Constrained to Unconstrained). Let P be the projection matrix I — %llT. Define
A=ZPandb =y — 21120 1pep

(1) - v(0) .

arg min 1Zx — y/3 :argminHAX—ng-l-lv
x:(x,1)=v(1)—v(0) x

Further, we have that min.(x 1y=v(1)v(0) ||ZX — y||3 = min | Ax — blf3.

Proof of Lemma[3.1} We will decompose x into one vector that is orthogonal to 1 and another vector
that is a scaling of 1. That is, x = x’ + ¢1 where (x’,1) = 0 for some c. In order to satisfy the

constraint, it follows that ¢ = M. Then

arg min |Zx —y|?= argmin |Z(x'+cl) —y|3 (55)
x:(x,1)=v(1)—v(0) x/+cl:(x',1)=0
= argmin ||Zx' — (y — cZ1)||3 +cl (56)
x/:(x/,1)=0
= argmin || ZPx’ — (y — ¢Z1)||3 + c1 (57)

We used P to project off any component in the direction of 1 and thereby remove the constraint.
Plugging in the value of ¢ with the definitions of A and b yields the first equation. The second
equation follows by a similar argument. O

Traditional Solution Used in Kernel SHAP Consider the problem

*

x* = arg min 1Zx — y|3. (58)
x:(x,1)=v(1)—v(0)

For Leverage SHAP, we reformulate the problem to an unconstrained regression problem with
Lemma [3.T]and solve it using standard least squares.

In the standard Kernel SHAP implementation, the constrained problem is solved directly using the
method of Lagrange multipliers. We put the analysis in here for completeness.

The Lagrangian function with respect to x and multiplier A € R is

L(x,A) = 1Zx — yll5 + A((x,1) — v(1) + v(0)) (59)

At the optimal solution x* and \*, the gradients with respect to x and A are 0. This observation
implies the following two equations:

ViL(x* \)=2ZT(Zx* —y) +\1=0 = x"=(Z2'2)"! (ZTy - )\1> (60)

2
VAL(X", \*) = (x*,1) —v(1) + v(0) = 0. (61)
Together, Equations [60]and [61] tell us that
1,x"y =v(1) —v(0)=17(ZTZ)! (ZTy — 21) (62)

Plugging back into Equation [60} we have that

T(gpTopN—1p T, v v
x* = (ZTZ)71 (ZTy _ 1 (Z Z)].T(eryz)lgl) + (0) 1) ) (63)
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