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Abstract— We propose wake-sleep consolidated learning
(WSCL), a learning strategy leveraging complementary learning
system (CLS) theory and the wake-sleep phases of the human
brain to improve the performance of deep neural networks
(DNNs) for visual classification tasks in continual learning (CL)
settings. Our method learns continually via the synchronization
between distinct wake and sleep phases. During the wake
phase, the model is exposed to sensory input and adapts its
representations, ensuring stability through a dynamic param-
eter freezing mechanism and storing episodic memories in a
short-term temporary memory (similar to what happens in the
hippocampus). During the sleep phase, the training process is split
into nonrapid eye movement (NREM) and rapid eye movement
(REM) stages. In the NREM stage, the model’s synaptic weights
are consolidated using replayed samples from the short-term
and long-term memory and the synaptic plasticity mechanism
is activated, strengthening important connections and weakening
unimportant ones. In the REM stage, the model is exposed to
previously-unseen realistic visual sensory experience, and the
dreaming process is activated, which enables the model to explore
the potential feature space, thus preparing synapses for future
knowledge. We evaluate the effectiveness of our approach on four
benchmark datasets: CIFAR-10, CIFAR-100, Tiny-ImageNet, and
FG-ImageNet. In all cases, our method outperforms the baselines
and prior work, yielding a significant performance gain on con-
tinual visual classification tasks. Furthermore, we demonstrate
the usefulness of all processing stages and the importance of
dreaming to enable positive forward transfer (FWT). The code
is available at: https://github.com/perceivelab/wscl.

Index Terms— Complementary learning systems (CLSs), con-
tinual learning (CL), off-line brain states.

I. INTRODUCTION

UMANS have a remarkable ability to continuously learn

and retain past experiences while quickly adapting to
new tasks and problems. On the contrary, machine learning
has shown limitations when dealing with nonstationary data
streams. This can be attributed to the inherent structure and
optimization approaches of artificial neural networks, which
differ significantly from how humans learn and build neural
connectivity over a lifetime. The complementary learning
systems (CLSs) theory [1], [2] suggests that effective human
learning occurs through the interplay of two learning processes
originating from the hippocampus and neocortex brain regions.
These regions interact to learn representations from experi-
ence (neocortex) while consolidating and sustaining long-term
memory (hippocampus). This theory has inspired continual
learning (CL) methods [3], [4] which translate CLS concepts
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into computational frameworks. DualNet [3] employs two
learning networks: a slow learner that emulates the memory
consolidation process in the hippocampus and a fast learner
that adapts current representations to new observations. Dual-
Prompt [4] addresses the challenge of adapting transformer
models to new tasks while minimizing the loss of previous
knowledge, using learnable prompts that are responsible for
adapting to new data quickly, while preventing catastrophic
forgetting. The specialization of prompt sets to their respec-
tive tasks is similar to how the hippocampus and neocortex
specialize in complementary learning processes. DualNet and
DualPrompt suggest that grounding artificial neural networks
to cognitive neuroscience may result in improved performance,
as they both achieve state-of-the-art performance on multiple
benchmarks. Though promising, these approaches are rather
rigid as the structures of the two learning parts (network
architecture in DualNet; prompt format and positioning in
DualPrompt) are defined a priori, while neural networks in
primates perform fast adaptation by flexibly reconfiguring
synapses while learning from new experience. Moreover, prior
work does not consider the role of offline brain states such
as sleep. Current theories suggest that sleep and dreaming
play a crucial role in consolidating memories and facilitating
learning, by increasing generalization of knowledge [5], [6],
[7]. During sleep, neurons are spontaneously active without
external input and generate complex patterns of synchronized
activity across brain regions [8], [9]. This strong neural activity
is believed to be due to the brain replaying and consolidating
memories while reorganizing synaptic connections [10].

In this work we propose wake-sleep consolidated learning
(WSCL), extending the CLS theory by including wake-sleep
states, in order to improve artificial neural networks’ CL
capabilities. This integration is achieved by introducing a sleep
phase at training time that mimics the offline brain states
during which synaptic connection, memory consolidation, and
dreaming occur. In WSCL, a deep neural network (DNN)
is used to emulate the functions of the neocortex, while
a two-layered buffer for short-term and long-term memory
mimics the role of the hippocampus. Training is organized
in two main phases: 1) a wake phase, where fast adaption of
the DNN to new sensory experience is carried out and episodic
memories are stored in the short-term memory; and 2) a
sleep phase, consisting of two alternating stages: a) nonrapid
eye movement (NREM), where the network replays episodic
memories collected during the wake step, consolidates past
experiences in the long-term memory, and optimizes its neural
connections to support synaptic plasticity; and b) rapid eye
movement (REM), where dreaming simulates new experience,
preparing the brain for future events. The hypothesis is that
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dreaming serves as an “anticipatory” mechanism, helping
the brain to identify relationships between different types of
information and making it easier to learn and remember new
information.

Our computational formulation of the week-sleep pro-
cess is tested on several benchmarks, including CIFAR-10,
Tiny-ImageNet, and FG-ImageNet. In all cases, our method
outperforms the baselines and prior work, yielding a sig-
nificant gain in classification tasks. Remarkably, the WSCL
approach is the first CL method yielding positive forward
transfer (FWT), demonstrating its ability to prepare synapses
for future knowledge. We also show that all three steps are
necessary: the wake stage is essential to ensure efficiency and
to favor network plasticity by the NREM stage, while the REM
stage helps to increase feature transferability and reduce the
forgetting of acquired knowledge.

II. RELATED WORK

CL [11], [12] is a branch of machine learning whose
objective is to bridge the gap in incremental learning between
humans and neural networks. McCloskey and Cohen [13]
highlight that the latter undergo catastrophic forgetting of
previously acquired knowledge in the presence of input dis-
tribution shifts. To mitigate this problem, various strategies
have been proposed, encompassing the integration of appro-
priate regularization terms [14], [15], tailored architectural
configurations [16], [17], and the utilization of rehearsal
mechanisms involving a limited set of previously encoun-
tered data points [18], [19], [20]. Notably, rehearsal-based
approaches emerge as the most promising avenue for com-
bating catastrophic forgetting in CL scenarios, especially in
dynamic real-world applications. Unlike static models prone
to overwriting prior knowledge, rehearsal-based techniques
capitalize on past experiences by storing select samples in a
small buffer, which the model continues to train on even when
presented with new tasks.

While current solutions help reduce forgetting, real-world
application proves difficult, as typical CL evaluations are
carried out on oversimplistic benchmarks [21], [22]. Most
approaches tackling this challenging scenario combine a replay
strategy [18], [23], [24], [25] to regularization on logits
sampled throughout the optimization trajectory [20]. Some
works focus on memory management: GSS [26] introduces a
specific optimization of the basic rehearsal formula meant to
store maximally informative samples; HAL [27] individuates
synthetic replay data points that are maximally affected by
forgetting. CaSpeR [25] adopts a rehearsal-based strategy
enforcing latent space regularization on buffer samples through
geometric constraints. Other works propose tailored classifi-
cation schemes: CoPE [28] uses class prototypes to ensure
a gradual evolution of the shared latent space; ER-ACE [29]
makes the cross-entropy loss asymmetric to minimize imbal-
ance between current and past tasks. Recent works introduce
a surrogate optimization objective: CR [30] employs a super-
vised contrastive learning objective and OCM [31] leverages
mutual information: both aim at learning features that are less
subject to forgetting.

Our approach differs from these classes of methods, in that
we take inspiration from cognitive neuroscience theory of
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learning (CLSs and wake-sleep) and exploit brain off-line
states such as sleeping and dreaming. We demonstrate that
alternating standard training with a revisited strategy that
combines on-line and off-line stages makes the model more
resilient to task shifts. Recently, a few neuroscience-informed
CL methods have been proposed. Elastic weight consolidation
(EWC) [14] and synaptic intelligence [15] employ regular-
ization to preserve important weights learned during previous
tasks while allowing the network to adapt to new tasks,
emulating fast adaption happening in the neocortex. Fear-
Net [32] adopts an auxiliary network (in line with CLS theory)
to detect catastrophic forgetting and trigger knowledge-
preserving regularization. Co2L [33] learns stable repre-
sentations through contrastive learning and self-supervised
distillation.

Existing approaches similarly inspired by CLS theory are
DualNet [3], DualPrompt [4], and CLS-ER [34]. DualNet
employs two networks that loosely emulate slow and fast
learning in humans. DualPrompt [4] also takes a cogni-
tive approach, using learnable prompts to be paired to a
pretrained transformer backbone. CLS-ER [34] implements
semantic memory using two separate neural networks to model
short-term and long-term memory dynamics. While these
approaches yield good results, they ignore off-line states, that
appear fundamental in human learning. Alternating between
wake and sleep phases has already been shown to have the
potential for learning improved and robust semantic represen-
tations [35], [36]. Sleep replay consolidation [37] employs
sleep-based training using local unsupervised Hebbian plas-
ticity rules for mitigating catastrophic forgetting of ANN. The
recent SIESTA [38] introduces alternating waking and sleeping
and it primarily focuses on online learning with intermittent
consolidation phases.

WSCL further unfolds the sleep phase by detailing the
NREM and REM stages, integrating the dreaming process into
the learning loop. This integration, which appears to contribute
significantly to human learning, has a positive impact on the
training of neural networks (as shown in the results). The com-
putational formulation of the wake-NREM-REM of WSCL
is inspired by [10], where the role of adversarial dreaming
for learning visual representations is preliminary investigated.
However, simple strengthening of existing connections through
unsupervised learning as proposed in [10] and [37] does
not seem sufficient to build robust representations during
sleep [7]: our work thus explores more sophisticated restruc-
turing of neural connections in the neocortex guided by the
hippocampus.

Finally, WSCL utilizes a selecting freezing strategy of the
model’s parameters. This strategy aims exclusively to enhance
model efficiency, mirroring human fast adaptation, and oper-
ates during training without task-specific parameter selection
during inference. This strategy is fundamentally different from
architectural approaches such as the ones in [16], [17], [39],
[40], and [41] that, instead, learn task-specific parameters
which are then selected, at inference time, based on task
identifiers [17], mask entropy [40], or scaling parameters [41]:
WSCL maintains a unified network for all tasks, eliminating
the necessity for task-specific masks or parameters during
inference.
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WSCL: in the wake stage, the model (which emulates the neocortex) fast adapts to the new sensory experience, storing episodic memories (as in

the hippocampus) in the short-term memory to be replayed during sleep. The sleep phase foresees two alternating processes: 1) the NREM stage, where the
DNN model consolidates its synapses based on the replayed (recent and past) samples and the long-term memory is updated; and 2) the REM stage, where
the DNN is trained with dreamed samples to prepare the model for future sensory inputs.

III. METHOD

An overview of the WSCL approach is presented in Fig. 1,
showing how the training stage on a new task is divided into
two phases: a wake phase and a sleep phase.

During the wake phase, the model is exposed to the new
task, with the objective of performing a fast adaptation of
existing knowledge to the task characteristics. In this stage,
the model quickly updates its parameters in order to find
a balance between previously-acquired knowledge and new
information, storing the latter in a short-term memory for later
reuse during the sleep stage. In implementation terms, this
balance is achieved by dynamically and adaptively freezing
layer representations, identifying plasticity requirements for
learning the new task while enforcing stability. Thus, during
the wake stage, WSCL focuses primarily on quick learning
general and transferable representation by combining both
current and past experience as well as in identifying which
part of the network has to be trained and which not. In the
sleep phase, the model consolidates newly acquired knowledge
by revisiting the hippocampus’s short-term memory containing
the task data, merging it into existing knowledge by updating
synaptic connections, moving it into long-term memory for
future reference, and exploring the representational space
through task-agnostic “dreaming.” These stages are mapped
into our training procedure by means of supervised training
on task data, buffering task information in a (small) long-term
memory, and employing an auxiliary dataset (uncorrelated to
task data) as a surrogate for the generative process associated
with dreaming.

Following the established literature, we pose CL as a
supervised classification problem on a non-i.i.d. stream of data,
with the assumption that task boundaries, and marking changes
in the data distributions, are known at training time. More
formally, let D = {Dy, ..., Dr} be a sequence of data streams,
where each pair (x, y) ~ D; denotes a data point x € X with

the corresponding class label y € V; the sample distributions
(in terms of both the data point distribution and the class label
distribution) of different D; and D; may vary—for instance,
class labels from D; is different from those from D;. Given
a classifier f : X — ), parameterized by 6, the objective of
CL is to train f on D, organized as a sequence of T tasks
{1, ..., 77}, under the constraint that, at a generic task t;, the
model receives inputs sampled from the corresponding data
distribution only, i.e., (X, y) ~ D;. The classification model
may also keep a limited memory buffer M (assumed to be
our long-term memory in the hippocampus) of past samples,
to reduce forgetting of features from previous tasks. The model
update step between tasks can be summarized as

(f. 01, Mi_1) 2> (f.0;. M) (1)

where 0; and M; represent the set of model parameters and
the memory buffer at the end of task t;.

The training objective is to optimize a classification loss
over the sequence of tasks (without losing accuracy on past
tasks) by the model instance at the end of the training

T

arg n(};n Z By~ [L(f (X; 07), y)]

i=1

2)

where L is a generic classification loss (e.g., cross-entropy),
which a CL model attempts to optimize while accounting for
model plasticity (the capability to learn current task data) and
stability (the capability to retain the knowledge of previous
tasks) [13].

A. Wake Phase

According to the established cognitive foundation, we define
the waking stage in the proposed learning paradigm as the
combination of two simultaneous processes, short-term mem-
orization and fast model adaptation.
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Short-term memorization has the objective of storing part
of the current task experience, for later reuse—in particular,
for processing and consolidation during the sleep stage. In a
CL setting, we model short-term memorization into M; as a
sampling of task data D;

M; = {(x;,5)) ~ Di}iv; )

where N, is the amount of samples collected from the D;
distribution.! Note that M is reset during each wake phase
and is distinguished from the long-term memory M;, which
includes a smaller permanent number of samples N; from past
tasks (in practice, the buffer of rehearsal-based methods).

Fast model adaptation. In accordance with CLS theory [1],
[2], we propose a method for fast model adaptation that
employs parameter freezing during the wake stage to maximize
stability and plasticity. This strategy operates only during the
model’s training, as it aims at adapting quickly the model
to the current data distribution, while it does not activate at
inference time when the model’s knowledge is already con-
solidated. Specifically, fast model adaption works by training
the model for a limited number of iterations under varying
parameter freezing settings, providing an opportunity for the
model to rapidly learn new information in the wake stage while
retaining the previous knowledge; in-depth consolidation of
task information is carried out separately in the sleep stage.
Unlike approaches such as DualNet, where the structure of the
slow and fast networks are predefined, in WSCL the part of the
network that reuses past knowledge and the part accounting
for plasticity are identified on-line during the wake phase.

Formally, we want to model the joint probability between
task data D;, previous experience M;_;, model parameters 6;
and a binary freezing mask m;, with the same dimensions as
0; and such that m; ; = 1 indicates that parameter 6; ; should
be frozen

P(x,y,0;,m;) = P(y|x, f(x,0;,m;))P(0;, m;) P(x) (4)

where x and y represent samples and labels from D; UM;_;.
The first term of the decomposition of (4) is the likelihood
of correct labels given the input and the model prediction,
while the joint distribution P(#;, m;) describes the relation
between model parameters #; and the freezing strategy defined
by m;. Assuming the independence between #; and m;, this
distribution can be expressed as

P(0;,m;) = P(6; | m;) P (m;) )
where

P@; |m;) = HN(Qi,j; 0i—1,j 0,~2))17mi'/~ 6)
J

In this formulation, we model the distribution of each
parameter 0; ; as a Gaussian distribution depending on the
corresponding mask value m; ;, which removes a term from
the overall probability when m; ; = 1. Note that the mean
of each parameter is set to 6,_ ;, i.e., its value at the end of
the previous task (or to O for the first task, based on common
initialization strategies).

'For brevity, we drop task index i from short-term memory My, as it is
recreated at each task.
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However, modeling P (m;) by operating on each parameter
0, j is practically infeasible, we thus employ some simplifying
assumptions based on the layered structure of deep learning
models. Given f =1ljolp0---0l;, where each [; represents a
network layer with parameters @, and 0 = [0, ...,0,.], let
us similarly define O and 1, as two tensors with the same
size as O, with all values set to 0 and 1, respectively. Then,
we impose that possible values for m; must be parameterized
by a value / as follows:

m,(l) = [1|1, ..

with [ € {1,..., L}. In practice, parameters frozen at previous
tasks must remain so at the current task, and a layer’s
parameters can only be frozen altogether if all previous layers
are also frozen.

Given these constraints, our goal is to find the optimal
binary mask m; that maximizes the likelihood of the labels
y given the inputs x from current task D; and from long-term
memory M;_;. This is expressed as the following optimization
problem:

L O, 0 ] vm @)

argmax P(y | x, f(x. 0;. m))P(8; | m)Pm)P(x)  (8)

where the optimization is over parameters #; and all feasible
binary masks m;. Fast adaptation is thus carried out by
maximizing this likelihood through the optimization of a loss
function £

Efma = ]E(x,y)NDi [‘C(y’ f(Xv 01" mt))]
+ aE oM, [L(, f(x, 0;,m;))] 9)

where m; varies as described above, and « is a weighing factor
between data sources. It is important to notice that, while
optimizing for m; necessarily requires updating 6; as well
(since freezing, per se, does not alter inference performance),
the objective is to prepare the model by identifying the optimal
set of parameters that should be kept from previous tasks in
a way that ensures both knowledge retainment and room for
plasticity. For this reason, optimization is carried out for a
single epoch over D;. Note that the choice of L is arbitrary:
the proposed formulation allows for plugging in any existing
CL method, enhancing it with the proposed training strategy.

B. Sleep Phase

During sleep, the brain cycles multiple times through two
phases, known as REM and NREM sleep. In the NREM phase,
the hippocampus replays and consolidates the information
acquired at waking time by facilitating its transfer to the
neocortex, where long-term memory storage occurs [5], [42].
REM sleep is thought to play a role in creativity and problem-
solving [43], [44], allowing the brain to form new connections
and generate novel ideas. In our WSCL approach, we analo-
gously distinguish between two alternating training modalities,
conceptually mapped to the NREM and REM phases.

During the former, we access examples from the current
task (stored in the short-term memory) and from previous
tasks (retrieved from long-term memory) to train the model—
partially frozen during the wake stage—and stabilize present
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knowledge. In the REM stage, we emulate the dreaming
process by providing the model with examples from an
external data source, with classes unrelated to any CL task.
This approach allows the model to learn task-agnostic fea-
tures which can be interpreted as prior knowledge supporting
task-specific learning and FWT. NREM stage. The main objec-
tive of this stage is to transfer information from the short-term
memory My, built in the precedent wake phase, to the model,
strengthening the synaptic connections associated with the
current task and thus enforcing plasticity, while retaining
previously acquired knowledge thanks to long-term memory
M;_;. In this setting, we apply parameter freezing mask m;
(defined in the wake phase), which is however not updated in
the process.

Formally, in this stage, we model the same distribution as
in (4), but optimize for @; alone, while leaving m; constant.
The objective thus becomes

arg max P(yIx, f(x,0;,m))P@; |m)P(x) (10)
where the prior on parameters P (6;|m;) is essentially the same
as in (6), with the difference that the mean of the distribution
is the value of #; as computed at the end of the wake stage,
rather than #;_;. Optimizing the above objective amounts to
minimizing a variant of the loss in (9)

Larem = Eyyom, [L£(y, f(x,0;, m;))]
+aByom , [L0, f(X, 0, m;))]

where M is employed instead of the whole dataset D;.

In this stage, we also gradually update long-term memory
M;, using reservoir sampling [45] to inject task experience
from short-term memory M; into M;, so that it becomes
available to future tasks.

REM Stage: We approximate the sleeping mechanism per-
formed by the human brain in the REM stage by providing
the model with an additional source of previously unseen
knowledge (a “dreaming” dataset with no semantic overlap
with CL classes), that can help the model to generalize
better to new and unseen data, as suggested by cognitive
literature [10].

Let Dgream be the dreaming dataset from which we can
sample data points (X, y) ~ Dgream, With X € X and class
label y € YViream- We assume that Vieam N Y = @ (the latter
being the set of CL classes), to prevent any overlap between
auxiliary and CL classes. Given this premise, the proposed
optimization objective becomes

(1)

arg max P(y|x, f(x,0;,m))P@O; |m)P(x) (12)
where (X, y) ~ Ddream, While the other terms are the same
as in (10). This objective is then mapped to a training loss
function defined as

Lrem = Ex )~ Dy [ L+ [ (X, 0;, m;))].

During the REM stage, training with two distinct class label
sets, ) from the CL problem and Ygream from the dreaming
dataset has been addressed following the procedure reported
in [46].

13)

IV. EXPERIMENTAL EVALUATION
A. Benchmarks

We test WSCL on several CL benchmarks obtained by
taking image classification datasets and splitting their classes
equally into a series of disjoint tasks. Moreover, since the
REM stage requires additional dreaming samples, for each
benchmark we also identify its dreaming-counterpart.

1) Split CIFAR-10 [15]: A widely used image classification
dataset obtained by splitting CIFAR-10 images into
five binary classification tasks. Its counterpart used for
the REM stage consists of a subset of 50 CIFAR-100
classes, selected after removing those with semantic
relations to CIFAR-10.

2) Split CIFAR-100 [15]: Which is a variant of the CIFAR-
100 dataset where the original 100 classes are divided
into ten disjoint subsets to test CL performance. Each
subset, or split, contains a portion of the original classes.
Its counterpart used for the REM stage (referred to
as ImageNet™™) consists of a subset of 100 ImageNet
classes, selected after removing those with semantic
relations to CIFAR-100.

3) Split FG-ImageNet” is a fine-grained image classification
benchmark with 100 classes of animals, used to test
CL methods on a more challenging task. The dream-
ing counterpart (referred as to ImageNetN®) consists
of additional 100 classes taken from ImageNet, after
removing all synsets derived from “organism” (N© stands
for “nonorganism”).

4) Tiny-ImageNet [47]: is a subset of ImageNet consist-
ing of 200 classes with 500 images each, resized to
64 x 64. We employ the first 100 classes as the main
training dataset tinyimagenet (organized as five tasks
of 20 classes) and the remaining 100 classes as the
dreaming dataset (referred to in the article as to Tiny-
ImageNet?).

B. Training Procedure

Our approach employs a ResNet-18 backbone for feature
extraction and classification. ResNet-18 includes, at a high
level, four layers with two blocks each, for a total of eight
blocks.> With reference to the definition of model f in
Section III-A, we map each layer /; to each ResNet-18 block.

In the wake stage of task i, we train multiple instances
of the model, starting from parameters #;, with all possible
configurations of m;: if the deepest frozen layer is [;, the
number of possible values for m; is L—j + 1, with L being
the total number of layers. Training is carried out for a single
epoch with a mini-batch SGD and a learning rate of 0.03.
Batch size is set to 32 for CIFAR-10 and Tiny-ImageNet,,, ,
and to 8 for FG-ImageNet. The « hyperparameter in (9) is set
to 1, and the N, dimension of the short-term buffer to 5000.

It is important to mention that, in our implementation, the
optimization of (9) (fast model adaptation loss Ly,) and (11)
(NREM loss Lngrem) on long-term memory M; is carried

2Split FG-ImageNet is derived from https:/www.kaggle.com/datasets
/ambityga/imagenet100
3https://pytorch.org/vision/master/_modules/torchvision/models/resnet.html
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TABLE I
CLASS-INCREMENTAL FAA OF REHEARSAL-BASED METHODS, WITH AND WITHOUT WSCL, FOR DIFFERENT BUFFER SIZES

Target dataset ‘ CIFAR-10 CIFAR-100 Tiny-ImageNet;/, FG-ImageNet
Dreaming dataset ‘ CIFAR-100 ImageNet®“™® Tiny-ImageNetP ImageNet™N ©
Buffer size ‘ 200 500 200 500 200 500 200 1000
GDumb [48] 3381 + 1.52  46.01 +3.26 | 6.71 + 1.55 1095 £ 0.20 | 5.74 £ 045 9.85 + 0.50 4.54 +0.23 9.79 + 1.18
—WSCL 66.85 + 1.60 7235 + 0.72 | 14.79 £+ 0.28  23.68 + 0.72 | 17.79 + 2.34  26.84 + 0.84 | 7.70 = 0.14  16.43 + 0.10
ER [29] 48.76 £ 0.57 59.75 £ 251 | 1431 £ 047 20.71 £0.95 | 1625 £ 0.85 21.07 &+ 1.43 423 £ 0.15 5.05 £ 0.51
—WSCL 51.86 £ 440 63.71 + 1.35 | 1691 + 1.26 24.25 + 0.44 | 18.81 + 0.48 23.63 + 0.85 6.01 + 0.64  15.26 + 3.59
DER++ [20] 5735 £ 547 69.06 + 1.24 | 1493 £ 2.23 2326 + 3.19 | 16.62 £ 1.76 2340 + 1.66 | 5.95 4+ 0.49 8.59 £+ 1.11
—WSCL 63.97 £ 338 7233 £ 099 | 24.00 = 0.94 31.96 + 1.19 | 23.70 = 091 31.81 £ 0.70 | 6.48 + 1.22  11.70 + 0.14
ER-ACE [24] 5998 £2.65 67.17 £ 1.54 | 25.85 £ 193 32.85 £ 4.02 | 27.81 + 1.24  32.10 &+ 2.21 9.42 £+ 0.78 11.58 + 3.59
—WSCL 7115 £ 2.15 7418 + 1.28 | 3444 + 040 39.78 + 0.36 | 35.68 + 1.18 41.25 + 1.75 | 12.51 + 0.86  20.51 + 0.56
DualNet [3] 31.31 £ 2.05 43.20 &+ 2.81 9.49 + 0.28 11.04 £ 439 | 1645 £ 0.39 18.98 £ 0.71 9.78 £ 1.24 16.54 + 0.85
CoPE [28] 21.20 £ 028 23.64 +£ 1.56 | 13.71 043  21.03 £ 049 | 16.50 + 0.62  20.50 + 0.47 6.23 + 0.61 12.57 £ 3.69
CLS-ER [34] 3497 + 483 4517 £4.20 | 2385+ 1.16 30.22 £ 0.76 | 1538 + 043 18.19 £ 0.85 9.06 + 1.32 15.15 + 1.48

out on disjoint portions of the whole set of stored samples.
In particular, 10% of M; is used when optimizing Lgp,,
while the remaining 90% is used for Lnxgem. This separation
mitigates the risk of overfitting of Lxgpm on data that will
be used, in the wake phase, to determine to which extent
model layers should be frozen: indeed, in case of overfitting,
the wake phase would encourage model freezing, as it would
more easily minimize the corresponding loss term.

In the sleep stage, we train the model using Lnrgm and the
Lrem losses at alternate batches. We perform 10 epochs of
training, with the same optimizer settings and hyperparameters
as above.

All the reported results are computed in the
class-incremental setting and reported as mean and standard
deviation computed over five runs.

C. Results

We first evaluate how WSCL contributes to the classi-
fication accuracy of state-of-the-art models. To accomplish
this, we select recent rehearsal-based methods, namely,
DER++ [20], ER-ACE [29] and ER [24], and compare their
performance when the WSCL training strategy is employed,
by plugging them in as the £ loss term in (9), (11), and (13).
We address rehearsal-based methods only, as WSCL requires
a memory buffer to model long-term memory. We report
final average accuracy (FAA) after training on the last task
in the class-incremental setting. We further provide a lower
bound, consisting of training without any countermeasure to
forgetting (fine-tuning), and an upper bound given by training
all tasks jointly (Joint). Results in Table I show that, on all
four benchmarks, WSCL leads to a significant performance
gain that varies from about 2 percent points on FG-ImageNet
to 12 percent points on CIFAR-10, substantiating our claims
on the importance of leveraging human learning strategies for
building better computational methods. Table I also reports the
comparison with.

1) DualNet [3], which leverages CLS theory and the same
backbone, i.e., ResNet-18.

2) CoPE [28] that integrates contrastive learning—another
technique inspired by cognitive neuroscience [10]—for
better feature transferability to later tasks.*

3) CLS-ER [34], another method inspired by CLS theory
that implements a semantic memory with two sepa-
rate DNNs to model short-term and long-term memory
dynamics.

We do not include DualPrompt [4] as it uses a large pretrained
ViT [49] as a backbone, leading to an unfair comparison
with the simpler ResNet-18. All methods combined with our
WSCL strategy improve over DualNet (up to about 40 percent
points), CoPE, and CLS-ER, demonstrating how mimicking
off-line brain states improves performance even in a purely
discriminative supervised learning regime. We also measure
the FWT of WSCL, a desirable property in CL that indicates
how much a model leverages previous knowledge to learn a
new task [45]. FWT is estimated as the average difference
between the accuracy of a task when learning it in a CL
setting and when learning it from random initialization (details
in [45]). Table II shows how WSCL tends to enhance FWT,
turning it from negative to positive values. This is highly
remarkable as the majority of existing CL methods show a
negative FWT.

Furthermore, it is equally important to measure forgetting
(the lower, the better) to assess how well an approach tackles
non-iid data. Cross-checking results in Table III with those
available in Table I highlights how WSCL effectively reduces
forgetting, while enhancing FWT skills and accuracy perfor-
mance in a way sensibly higher than the baselines.

Previous results have primarily been derived from experi-
ments conducted on common CL benchmarks, where dreaming
datasets typically exhibit a semantic distribution shift, meaning
their image classes do not overlap with those of the target
task. In order to further validate the efficacy of the wake-sleep
CL (WSCL) strategy, we extend our evaluation to scenarios
involving domain distribution shifts. Specifically, we assess

4Results for DualNet and CoPE are computed using their original imple-
mentations and hyperparameters.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

SORRENTI et al.: WAKE-SLEEP CONSOLIDATED LEARNING

TABLE I

CLASS-INCREMENTAL FWT OF REHEARSAL-BASED METHODS, WITH AND WITHOUT WSCL, FOR DIFFERENT BUFFER SIZES

Target dataset ‘ CIFAR-10 CIFAR-100 Tiny-ImageNet;/, FG-ImageNet

Dreaming dataset ‘ CIFAR-100 ImageNet®"™ Tiny-ImageNet® ImageNet™N ©

Buffer size ‘ 200 500 200 500 200 500 200 1000

ER [29] <736 £575 -1220 £ 0.74 | -0.80 + 048 -092 + 0.52 | -1.00 £ 0.33  -1.32 +£ 0.08 | -1.05 &£ 0.06 -1.02 4+ 0.09
—WSCL 1.68 £ 2.16 6.03 £ 2.58 7.07 £ 1.37 6.49 £ 201 | 1241 098 12.60 £ 0.43 3.82 £ 0.64 3.17 £ 0.73

DER++ [20] -12.29 + 0.18 -6.23 £5.63 | -0.87 £ 051 -0.72+ 043 | -0.84 £049 -1.06 + 047 | -0.08 £ 0.00 -1.05 £ 0.42
—WSCL 1.06 &+ 6.05 2.83 + 5.27 8.83 + 0.30 7.52 +£0.84 | 12.16 £ 1.25 12.24 £ 1.52 1.78 £+ 043 2.31 + 0.07

ER-ACE [24] -8.58 £ 5.03 -897 £2.21 | -1.01 £ 061 -1.02+0.14 | -0.73 £ 051 -094 + 047 | -1.04 £ 0.02 -1.17 £ 0.14
—WSCL 0.48 £ 5.53 -1.87 £ 3.12 6.25 + 0.81 6.06 £ 0.43 8.60 £+ 0.96 9.06 + 1.22 1.83 £+ 0.69 1.19 £ 0.67

TABLE III
CLASS-INCREMENTAL FORGETTING OF REHEARSAL-BASED METHODS, WITH AND WITHOUT WSCL, FOR DIFFERENT BUFFER SIZES

Target dataset ‘ CIFAR-10 CIFAR-100 Tiny-ImageNet;/, FG-ImageNet

Dreaming dataset ‘ CIFAR-100 ImageNet*"* Tiny-ImageNet? ImageNet™N ©

Buffer size ‘ 200 500 200 500 200 500 200 1000

ER [29] 56.66 + 2.64 4321 + 341 | 73.13 £ 1.04 6549 + 1.78 | 62.63 £ 3.43 58.16 &+ 1.13 | 74.04 £2.09 73.45 + 2.06
—WSCL 50.23 +£ 494 36.04 =252 | 68.66 £ 1.04 60.80 & 1.60 | 56.71 £ 1.68  50.63 + 1.37 | 76.79 £ 0.67 63.93 + 0.91

DER++ [20] 3123 £2.07 2263 £ 1.68 | 67.76 £ 2.87 5476 £5.15 | 62.15 £ 1.27 50.81 £ 2.56 | 67.10 & 2.83  63.63 & 4.12
—WSCL 3553 £ 328 2352 +229 | 5463 £ 142 4633 £0.81 | 51.30 £2.26 4391 £ 0.75 | 59.84 £ 1.59 52.39 + 2.01

ER-ACE [24] 16.55 £2.03 1521 & 2.05 | 38.37 £ 0.86 30.77 & 6.28 | 3441 £ 1.35 28.15 + 1.96 | 32.61 £ 3.56 36.44 + 2.46
—WSCL 11.78 £ 1.61  10.69 + 2.02 | 28.20 £ 1.05 2591 + 0.89 | 28.23 £ 1.52 23.29 + 447 | 27.24 £ 0.55 33.53 + 0.76

TABLE IV

WSCL PERFORMANCE ON THE CORES0 DATASET WITH MULTIPLE DREAMING DATASETS, IN TERMS OF ACCURACY (FAA): WSCL LEADS TO
SIGNIFICANT PERFORMANCE GAINS, DEMONSTRATING ITS EFFICACY

Target dataset ‘ CORe50

Buffer size \ 200 500

ER [29] 19.97 + 0.02 19.93 + 0.10

DER++ [20] 19.88 £+ 0.05 19.94 + 0.06

ER-ACE [24] 19.90 £+ 0.03 19.96 + 0.02

Dreaming dataset ‘ CIFAR-10 CIFAR-100 Tiny-ImageNet? ImageNet™N ©

Buffer size ‘ 200 500 200 500 200 500 200 500

ER [29] —+WSCL 36.40 + 1.91 44.03 £ 0.79 | 34.40 + 333 51.71 £2.71 | 37.30 £ 244 56.07 = 4.00 | 43.89 +2.93 60.94 £ 2.15
DER++ [20] —WSCL 4743 + 241 5431 £ 428 | 41.83 £ 257 58.83 +£1.25 | 53.13 £ 499 63.85 + 2.34 | 60.43 +3.86 71.20 £ 5.01
ER-ACE [24] —WSCL | 59.46 + 393 6848 £ 0.67 | 61.62 + 1.68 71.12 + 0.76 | 60.53 + 2.19 71.02 4+ 3.30 | 66.85 + 1.53  76.94 + 2.57

the performance of the WSCL strategy, when combined with
ER, DER++, and ER-ACE, on the challenging CORe50
dataset [50] with multiple dreaming datasets. As shown in
Table IV, our approach achieves exceptional performance
gains, with improvements of up to 50 percent points, across
all dreaming datasets. These results not only underscore the
effectiveness of the WSCL strategy but also highlight its appli-
cability to extremely complex datasets where conventional
approaches often fall short.

We further expand performance analysis by grounding
WSCL to other prominent CL methods.” For this evaluation,
we employ of model that yields the highest results, i.e., ER-
ACE combined to WSCL (as shown in Table I). As shown in
Table V, ER-ACE w/ WSCL (indicated as “ours”) significantly

SResults obtained using the original code released along with the relative
papers.

outperforms all existing methods. Notably, when excluding the
buffer for training ER-ACE w/ WSCL (which means using the
model without NREM stage, indicated in Table V as Wake
+ REM), it achieves a substantial performance improvement,
from approximately 12% (on Tiny-ImageNet;, ) to about
23% on CIFAR-10, over existing buffer-free methods, namely,
LwF [51], SI [15], and oEWC [16].

D. Model Analysis

The model analysis primarily utilizes ER-ACE, identified as
the top-performing method (refer to Table I), as the baseline.
We evaluate its performance on both the Tiny-ImageNet;,, and
CORe50 datasets, examining scenarios involving semantic and
domain shifts. Initially, we conduct ablations on the processing
phases of WSCL. Results in Table VI demonstrate that NREM
and REM sleep states contribute equally to the final model
performance across both benchmarks.
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TABLE V

COMPARISON WITH SOTA METHODS, IN TERMS OF CLASS-INCREMENTAL FAA, FOR DIFFERENT BUFFER SIZES

Method ‘ CIFAR-10 CIFAR-100 Tiny-ImageNet;/, FG-ImageNet

Joint 85.15 £ 1.99 61.83 £+ 0.47 50.81 £+ 1.65 43.39 + 1.76

Fine-tune 19.47 4+ 0.10 9.11 + 0.11 13.84 4+ 0.55 3.88 + 0.33
Buffer-free methods

LwF [51] 19.33 £ 0.16 8.44 £+ 0.39 13.87 + 1.11 3.83 £ 0.11

SI [15] 19.27 £ 0.23 7.86 + 1.08 13.12 + 1.63 375 £ 0.35

oEWC [16] 18.96 + 0.24 7.11 4+ 0.40 13.87 4+ 0.53 3.48 £+ 0.18

Ours (Wake+REM) ‘ 41.58 + 3.94 18.17 + 1.04 25.68 + 0.44 6.27 + 0.89
Buffer-based methods

Buffer size ‘ 200 500 200 500 200 500 200 1000

ER [29] 4876 + 0.57  59.75 + 2.51 | 1431 £ 047 2071 £ 095 | 1625 +£ 0.85 21.07 £ 1.43 | 4.23 + 0.15 5.05 + 0.51

DER++ [20] 5735 £ 547  69.06 + 1.24 | 1433 £ 197 2326 332 | 16.62 £ 1.76 2340 £ 1.66 | 5.95 + 0.49 8.59 £+ 1.11

ER-ACE [24] 5998 +2.65 67.17 &+ 1.54 | 2586 £ 1.94 3285 +4.02 | 27.81 +£ 1.24  32.10 £ 2.21 9.42 + 0.78 11.58 £+ 3.59

A-GEM [52] 19.45 £ 025 2021 + 0.38 8.34 £ 097 8.02 £ 1.25 1375 £ 037 1356 + 0.39 | 4.00 + 0.20 4.15 + 0.06

BiC [53] 55.03 £ 193 6624 + 1.65 | 21.80 £ 3.81 29.52 +£2.06 | 16.26 £ 0.87 12.88 £ 550 | 8.10 £ 2.75 7.03 + 4.71

FDR [54] 38.72 £ 893 3191 £ 5.08 | 1341 £ 1.02 1934 £229 | 17.67 £ 1.04 23.17 £ 1.69 | 4.44 £+ 0.77 391 +£ 022

GEM [45] 21.93 +2.04 2080 + 0.23 | 1040 £ 2.19 1439 + 4.11 | 1457 £ 0.57 1520 £ 1.28 | 4.36 + 0.11 429 + 0.28

GDumb [48] 3381 + 1.52  46.01 +3.26 | 6.71 + 1.55 10.95 + 020 | 5.74 + 045 9.85 £+ 0.50 4.54 +0.23 9.79 + 1.18

GSS [26] 41.36 + 6.46  48.83 441 | 11.11 £0.63 1278 + 0.18 | 15.92 + 0.88 18.15 £ 0.61 4.05 + 042 4.46 + 1.20

iCaRL [19] 64.52 + 1.18 6094 + 1.34 | 1422 £ 022 16.01 = 0.52 | 2040 + 0.36  22.68 £ 0.30 | 1040 + 0.20 11.17 £ 0.79

LUCIR [55] 5348 £ 7.62  63.01 &340 | 24.06 £ 1.81 3254 £ 1.16 | 22.65 £ 1.18  32.15 £ 0.88 6.08 + 0.32 13.19 £+ 0.32

RPC [56] 49.37 £ 147 5519 £ 273 | 1438 £ 1.36  21.01 £ 0.95 | 1658 £ 0.52 2095 + 0.59 | 4.13 + 0.16 5.83 £ 0.30

Ours 7115 £ 2.15 7418 + 1.28 | 34.44 £ 040 39.78 £+ 0.36 ‘ 35.68 + 1.18 4125+ 1.75 ‘ 12.51 £ 0.86  20.51 £+ 0.56

TABLE VI

ABLATION ON THE WSCL PROCESSING STAGES: RESULTS REFER TO
ER-ACE ON TINY-IMAGENET{;» AND ON CORE50 DATASETS WITH
BUFFER SIZE OF 200

Target dataset Tiny-ImageNet;/, CORe50

Tiny—lmagenetD

|
Dreaming dataset ‘
|

Method FAA FWT FAA FWT

Only Wake 4.70 -0.93 15.00 -7.49

Wake + REM 25.68 11.89 2382 -11.80

Wake + NREM 27.61 -0.67 54.15 -12.61

Wake + REM + NREM | 35.68 8.60 60.53 -5.62
TABLE VII

COMPARISON OF CLASSIFICATION PERFORMANCE IN TERMS OF
ACCURACY (FAA) BETWEEN WSCL AND CASPER. RESULTS ARE
COMPUTED ONLY IN COMBINATION WITH DER++ AND ER-ACE
AS THE OTHER MODELS IN [25] MANIPULATE FUTURE LOGITS
HINDERING WSCL APPLICATION. DREAMING DATASETS
ARE CIFAR-100 AND IMAGENETAYX, RESPECTIVELY,

FOR CIFAR-10 AND CIFAR-100 BENCHMARKS.

BUFFER SIZE Is 500

Dataset | CIFAR-10  CIFAR-100

DER++ [20] 67.38 28.01
<»CaSpeR [25] 69.11 32.16
—WSCL 72.18 35.00

ER-ACE [24] 66.13 34.99
<»CaSpeR [25] 69.58 36.70
<»WSCL 73.56 39.33

Notably, on the Tiny-ImageNet;,, dataset, the REM phase
exhibits positive FWT, aligning with cognitive neuroscience

findings indicating REM’s role in priming brain synapses for
future experiences [43], [44]. This pattern of FWT is observed
across the majority of the tested datasets (see Table II), except
for CORe50. This deviation can be attributed to the nature
of the CORe50 benchmark, which inherently restricts feature
reuse across tasks due to its strong background bias.

We then evaluate the impact of the quality of dreaming,
by adding Gaussian noise (at different percentages) and reduc-
ing the spatial resolution of dreaming samples. Fig. 2 indicates
that WSCL still outperforms the baseline when dreaming
images are affected by noise up to 30% or scaled down by
6x, suggesting that the role of REM stage in consolidating
knowledge is mostly independent of the visual details of
the dreamed samples, which merely serve to learn additional
reusable features.

We further investigate the impact of the size of the dreaming
dataset on the results. Fig. 3 illustrates how the dreaming stage
allows for enhanced performance even when the additional
dreaming dataset is reduced by approximately 70%.

Dreaming in WSCL serves as an implicit regularizer for
the learned latent space within the model, maintaining consis-
tent partitioning across classes, especially on low-dimensional
buffers. In this study, we contrast our WSCL approach with a
regularization method, namely, CaSpeR [25], which explicitly
encourages partitioning behavior in the learned space by
imposing constraints on its Laplacian spectrum. To ensure a
fair comparison, we replicated the experimental setup detailed
in [25], conducting tests over the same number of epochs
(20) and batch size of 64 on the CIFAR-10 and CIFAR-100
datasets with buffer 500 (as these represent the intersection
between [25] evaluation and ours). The results, presented in
Table VII, highlight how WSCL outperforms CaSpeR as a
regularizer.
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Impact of dreaming quality, in terms of noise (left) and image resolution (right). Results refer to ER-ACE and DER++ with WSCL (solid lines)

TABLE VIII

COMPARISON IN TERMS OF ACCURACY (FAA) AND PARAMETER UPDATES (AU DEFINED AS THE CHANGE IN PERCENTAGE OF PARAMETERS UPDATES
WHEN SELECTIVE FREEZING IS ENABLED) WITH AND WITHOUT SELECTIVE FREEZING OF THE ER-ACE + WSCL APPROACH ON THE
TINY-IMAGENET;;, DATASET WITH BUFFER 500

Backbone \ ResNet-18 ResNet-151
# epochs \ 10 50 100 10 50 100

\ FAA () AU FAA(M AU FAA (M AU \ FAA(M) AU FAA (M AUWd) FAA (M AU
Selective 'Freezmg 41.25 +8.83 44.50 1622 45.22 1714 35.96 4473 44.66 1643 43.68 24.07
No Freezing 41.22 44.24 44.26 38.40 45.36 42.62

Class-IL Accuracy (%)

40
35
30
25
20
15
~=—ER-ACE w/ WSCL
~=~DER++ w/ WSCL
10
0.0 0.1 0.3 0.5 0.7 09 1.0
Aux Dataset (%)
Fig. 3. Impact of dreaming dataset dimension. Results refer to ER-ACE and

DER-++ with WSCL (solid lines) and without it (dotted line).

We finally assess the efficiency aspects of WSCL. Indeed,
the human brain is capable of performing complex tasks with
remarkable speed and accuracy, at a relatively low energy
cost: cerebral parallel processing architecture, plasticity, and
ability to adapt to changing environments are all factors that
contribute to its efficiency [57], [58]. In WSCL, efficiency is
encouraged in the wake stage, by letting the model selectively
freeze different portions of the network: this is analogous
and consistent with cognitive neuroscience evidence that syn-
chronization of neural activity across different brain regions
and changes in the balance between excitation and inhibition
enables efficient processing [59], [60].

Fig. 4 shows the most frequent (over ten different runs) set
of frozen backbone layers at each task, when training ER-ACE
with WSCL on Tiny-ImageNet;,, , as well as the total number
of performed parameter updates using the training procedure
presented in Section I'V-B. It is important to note that, however,
the freezing strategy employed during the wake stage of
WSCL depends on the specific CL method and the target
dataset. Fig. 5 illustrates the predominant freezing scheme of
ER-ACE when evaluated on the FG-ImageNet dataset, as well
as the resulting efficiency. Unlike Tiny-ImageNet;, , where
ER-ACE typically freezes almost all layers after the comple-
tion of the first task, on FG-ImageNet, ER-ACE gradually
freezes the layers of its backbone network until Task ts.
Despite this more gradual freezing strategy, the efficiency gain
achieved is approximately 17.14%, indicating fewer updates
compared to the baseline model trained without the wake-sleep
strategy in WSCL. Thus, WSCL’s training procedure reduces
the overall number of updates for the entire training of the
ResNet-18 model, by a quantity that tends to increase with
the number of training epochs (from 2% to about 17% fewer
updates), thus confirming the suitability of the wake stage in
supporting efficient training.

Furthermore, we conducted an analysis to assess how the
freezing strategy scales with the backbone size and the number
of epochs, focusing on the performance of ER-ACE on the
Tiny-ImageNet;,, dataset. Our results, reported in Table VIII,
indicate that the efficiency gains achieved through selective
freezing tend to increase with both the number of epochs
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Fig. 4. 'WSCL model efficiency. The most frequent automatically learned freezing scheme (values within bars are a number of parameters) during the wake
phase for ER-ACE on Tiny-ImageNet;, (left). The numbers above the green bars represent the improvement in percent points with respect to the baseline
alone. The number of parameter updates for the whole training of ER-ACE with and without WSCL on Tiny-ImageNet;,» (from 10 epochs to 100 training
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Fig. 5.  WSCL model efficiency. The most frequent automatically learned freezing scheme (values within bars are a number of parameters) during the wake

phase for ER-ACE on FG-ImageNet (left). The numbers above the green bars represent the improvement in percentage points with respect to the baseline
alone. The number of parameter updates for the whole training of ER-ACE with and without WSCL on FG-ImageNet (from 10 epochs to 100 training epochs)

(right).

and the depth of the considered model. For instance, when
training ResNetl8 for 100 epochs, we observed a reduction
of approximately 17% in parameter updates compared to the
baseline model. In contrast, with ResNetl51 and the same
number of epochs, the reduction in parameter updates reached
about 24%. Notably, the selective freezing strategy primarily
targets reducing training computation costs and has minimal
impact on performance during inference. These findings under-
score the scalability and effectiveness of the wake stage in
WSCL for achieving efficient CL across a range of model
architectures and training durations.

V. CONCLUSION

The integration of CLSs theory and sleep mechanisms in
artificial neural networks holds great potential for enhancing

CL capabilities. Inspired by the interaction between the hip-
pocampus and neocortex in humans, WSCL introduces a sleep
phase that mimics off-line brain states during which memory
consolidation and synaptic reorganization occur. By leveraging
the wake phase for fast adaptation and episodic memory
formation, and the sleep phase for memory consolidation
and dreaming, WSCL shows superior performance compared
to prior work on various benchmarks. Importantly, WSCL
achieves positive FWT, exhibiting the ability to prepare
synapses for future knowledge. These findings highlight the
importance of all three stages—wake, NREM, and REM—
in supporting network plasticity and reducing forgetting for
improved learning and memory.

Future research will address the advancement of memory
and dreaming modeling techniques, which currently rely on
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conventional rehearsal methods to facilitate memory retention
and on the employment of external datasets for generating
dream-like experiences. With regard to memory modeling,
it is essential to delve into more nuanced and dynamic
approaches that accurately capture the intricacies of memory
formation, storage, and retrieval, by also devising mechanisms
to account for memory decay and interference. Likewise, for
dream modeling, there is an opportunity to push beyond the
current reliance on external datasets and explore more sophis-
ticated techniques. This could entail developing generative
models capable of simulating dream-like experiences based on
the network’s existing knowledge and latent representations.
By accomplishing this, the model’s ability to generate diverse,
creative, and contextually relevant dream scenarios can be
elevated to a new level of realism.

It is important to acknowledge that, while the pursuit of
more realistic memory and dreaming modeling techniques
is desirable, their integration into the WSCL framework is
possible thanks to its modular architecture, which provides
a solid foundation that can accommodate the inclusion of
advanced components dedicated to specific aspects of memory
management or sample generation.
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