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ABSTRACT

Deep implicit functions (DIFs) have emerged as a powerful paradigm for many
computer vision tasks such as 3D shape reconstruction, generation, registration,
completion, editing, and understanding. However, given a set of 3D shapes with as-
sociated covariates there is at present no shape representation method which allows
to precisely represent the shapes while capturing the individual dependencies on
each covariate. Such a method would be of high utility to researchers to discover
knowledge hidden in a population of shapes. For scientific shape discovery, we pro-
pose a 3D Neural Additive Model for Interpretable Shape Representation (NAISR)
which describes individual shapes by deforming a shape atlas in accordance to
the effect of disentangled covariates. Our approach captures shape population
trends and allows for patient-specific predictions through shape transfer. NAISR is
the first approach to combine the benefits of deep implicit shape representations
with an atlas deforming according to specified covariates. We evaluate NAISR
with respect to shape reconstruction, shape disentanglement, shape evolution, and
shape transfer on three datasets: 1) Starman, a simulated 2D shape dataset; 2) the
ADNI hippocampus 3D shape dataset; and 3) a pediatric airway 3D shape dataset.
Our experiments demonstrate that NAISR achieves excellent shape reconstruction
performance while retaining interpretability. Our code is publicly available.

1 INTRODUCTION

Deep implicit functions (DIFs) have emerged as efficient representations of 3D shapes (Park et al.,
2019; Novello et al., 2022; Mescheder et al., 2019; Yang et al., 2021), deformation fields (Wolterink
et al., 2022b), images and videos (Sitzmann et al., 2020), graphs, and manifolds (Grattarola &
Vandergheynst, 2022). For example, DeepSDF (Park et al., 2019) represents shapes as the level set of
a signed distance field (SDF) with a neural network. In this way, 3D shapes are compactly represented
as continuous and differentiable functions with infinite resolution. In addition to representations of
geometry such as voxel grids (Wu et al., 2016; 2015; 2018), point clouds (Achlioptas et al., 2018;
Yang et al., 2018; Zamorski et al., 2020) and meshes (Groueix et al., 2018; Wen et al., 2019; Zhu
et al., 2019), DIFs have emerged as a powerful paradigm for many computer vision tasks. DIFs
are used for 3D shape reconstruction (Park et al., 2019; Mescheder et al., 2019; Sitzmann et al.,
2020), generation (Gao et al., 2022), registration (Deng et al., 2021; Zheng et al., 2021; Sun et al.,
2022a; Wolterink et al., 2022b), completion (Park et al., 2019), editing (Yang et al., 2022a) and
understanding (Palafox et al., 2022).

Limited attention has been paid to shape analysis with DIFs. Specifically, given a set of 3D shapes
with a set of covariates attributed to each shape, a shape representation method is still desired which
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can precisely represent shapes and capture dependencies among a set of shapes. There is currently
no shape representation method that can quantitatively capture how covariates geometrically and
temporally affect a population of 3D shapes; neither on average nor for an individual. However,
capturing such effects is desirable as it is often difficult and sometimes impossible to control covariates
(such as age, sex, and weight) when collecting data. Further, understanding the effect of such
covariates is frequently a goal of medical studies. Therefore, it is critical to be able to disentangle
covariate shape effects on the individual and the population-level to better understand and describe
shape populations. Our approach is grounded in the estimation of a shape atlas (i.e., a template shape)
whose deformation allows to capture covariate effects and to model shape differences. Taking the
airway as an example, a desired atlas representation should be able to answer the following questions:

• Given an atlas shape, how can one accurately represent shapes and their dependencies?
• Given the shape of an airway, how can one disentangle covariate effects from each other?
• Given a covariate, e.g., age, how does an airway atlas change based on this covariate?
• Given a random shape, how will the airway develop after a period of time?

To answer these questions, we propose a Neural Additive Interpretable Shape Representation
(NAISR), an interpretable way of modeling shapes associated with covariates via a shape atlas.
Table 1 compares NAISR to existing shape representations with respect to the following properties:

• Implicit relates to how a shape is described. Implicit representations are desirable as they
naturally adapt to different resolutions of a shape and also allow shape completion (i.e.,
reconstructing a complete shape from a partial shape, which is common in medical scenarios)
with no additional effort.

• Deformable captures if a shape representation results in point correspondences between
shapes, e.g., via a displacement field. Specifically, we care about point correspondences
between the target shapes and the atlas shape. A deformable shape representation helps to
relate different shapes.

• Disentangleable indicates whether a shape representation can disentangle individual covari-
ate effects for a shape. These covariate-specific effects can then be composed to obtain the
overall displacement of an atlas/template shape.

• Evolvable denotes whether a shape representation can evolve the shape based on changes of
a covariate, capturing the influence of individual covariates on the shape. An evolvable atlas
statistically captures how each covariate influences the shape population, e.g., in scientific
discovery scenarios.

• Transferable indicates whether shape changes can be transferred to a given shape. E.g., one
might want to edit an airway based on a simulated surgery and predict how such a surgical
change manifests later in life.

• Interpretable indicates a shape representation that is simultaneously deformable, disen-
tangleable, evolvable, and transferable. Such an interpretable model is applicable to tasks
ranging from the estimation of disease progression to assessing the effects of normal aging
or weight gain on shape.

NAISR is the first implicit shape representation method to investigate an atlas-based representation
of 3D shapes in a deformable, disentangleable, transferable and evolvable way. To demonstrate
the generalizability of NAISR, we test NAISR on a simulated dataset and two realistic medical
datasets *: 1) Starman, a simulated 2D shape dataset (Bône et al., 2020); 2) the ADNI hippocampus
3D shape dataset (Jack Jr et al., 2008); and 3) a pediatric airway 3D shape dataset. We quantitatively
demonstrate superior performance over the baselines.

2 RELATED WORK

We introduce the three most related research directions here. A more comprehensive discussion of
related work is available in Section S.1 of the supplementary material.

*Medical shape datasets are our primary choice because quantitative shape analysis is a common need for
scientific discovery for such datasets.
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Method Implicit Deformable Disentangleable Evolvable Transferable Interpretable

ConditionalTemplate (Dalca et al., 2019) % ! % ! % %

3DAttriFlow (Wen et al., 2022) % ! % ! % %

DeepSDF (Park et al., 2019) ! % % % % %

A-SDF (Mu et al., 2021) ! % % ! ! %

DIT (Zheng et al., 2021), DIF (Deng et al., 2021), NDF (Sun et al., 2022a) ! ! % % % %

NASAM (Wei et al., 2022) ! ! % ! % %

Ours (NAISR) ! ! ! ! ! !

Table 1: Comparison of shape representations based on the desirable properties discussed in Section 1. A
!indicates that a model has a property; a%indicates that it does not. Only NAISR has all the desired properties.

Deep Implicit Functions. Compared with geometry representations such as voxel grids (Wu et al.,
2016; 2015; 2018), point clouds (Achlioptas et al., 2018; Yang et al., 2018; Zamorski et al., 2020)
and meshes (Groueix et al., 2018; Wen et al., 2019; Zhu et al., 2019), DIFs are able to capture highly
detailed and complex 3D shapes using a relatively small amount of data (Park et al., 2019; Mu et al.,
2021; Zheng et al., 2021; Sun et al., 2022a; Deng et al., 2021). They are based on classical ideas of
level set representations (Sethian, 1999; Osher & Fedkiw, 2005); however, whereas these classical
level set methods represent the level set function on a grid, DIFs parameterize it as a continuous
function, e.g., by a neural network. Hence, DIFs are not reliant on meshes, grids, or a discrete set
of points. This allows them to efficiently represent natural-looking surfaces (Gropp et al., 2020;
Sitzmann et al., 2020; Niemeyer et al., 2019). Further, DIFs can be trained on a diverse range of
data (e.g., shapes and images), making them more versatile than other shape representation methods.
This makes them useful in applications ranging from computer graphics, to virtual reality, and
robotics (Gao et al., 2022; Yang et al., 2022a; Phongthawee et al., 2022; Shen et al., 2021). We
therefore formulate NAISR based on DIFs.

Neural Deformable Models Neural Deformable Models (NDMs) establish point correspondences
with DIFs. In computer graphics, there has been increasing interest in NDMs to animate scenes (Liu
et al., 2022; Bao et al., 2023; Zheng et al., 2023), objects (Lei & Daniilidis, 2022; Bao et al., 2023;
Zhang et al., 2023), and digital humans (Park et al., 2021b; Zhang & Chen, 2022; Niemeyer et al.,
2019). Establishing point correspondences is also important to help experts to detect, understand,
diagnose, and track diseases. NDMs have shown to be effective in exploring point correspondences
for medical images (Han et al., 2023b; Tian et al., 2023; Wolterink et al., 2022a; Zou et al., 2023)
and shapes (Sun et al., 2022a; Yang et al., 2022b) Among the NDMs for shape representations,
ImplicitAtlas (Yang et al., 2022b), DIF-Net (Deng et al., 2021), DIT (Zheng et al., 2021), and
NDF (Sun et al., 2022a) capture point correspondences between target and template shapes within
NDMs. Currently, no continuous deformable shape representation which models the effects of
covariates exists. NAISR provides a model with such capabilities.

Explainable Artificial Intelligence. The goal of eXplainable Artificial Intelligence (XAI) is to
provide human-understandable explanations for decisions and actions of an AI model. Various
flavors of XAI exist, including counterfactual inference (Berrevoets et al., 2021; Moraffah et al.,
2020; Thiagarajan et al., 2020; Chen et al., 2022), attention maps (Zhou et al., 2016; Jung & Oh,
2021; Woo et al., 2018), feature importance (Arik & Pfister, 2021; Ribeiro et al., 2016; Agarwal
et al., 2020), and instance retrieval (Crabbe et al., 2021). NAISR is inspired by neural additive
models (NAMs) (Agarwal et al., 2020) which in turn are inspired by generalized additive models
(GAMs) (Hastie, 2017). NAMs are based on a linear combination of neural networks each attending
to a single input feature, thereby allowing for interpretability. NAISR extends this concept to
interpretable 3D shape representations. This is significantly more involved as, unlike for NAMs
and GAMs, we are no longer dealing with scalar values, but with 3D shapes. NAISR will provide
interpretable results by capturing spatial deformations with respect to an estimated atlas shape such
that individial covariate effects can be distinguished.

3 METHOD

This section disccuses our NAISR model and how we obtain the desired model properties of Section 1.

3.1 PROBLEM DESCRIPTION

Consider a set of shapes S = {Sk} where each shape Sk has an associated vector of covariates
c = [c1, ..., ci, ..., cN ] (e.g., age, weight, sex). Suppose {Sk} are well pre-aligned and centered (e.g.,
based on Iterative Closest Point (ICP) registration (Arun et al., 1987) or landmark registration; see
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Figure 1: Neural Additive Implicit Shape Representation. During training we learn the template T and the
multi-layer perceptrons (MLPs) {gi} predicting the covariate-wise displacement fields {di}. The displacement
fields are added to obtain the overall displacement field d defined in the target space; d provides the displacement
between the deformed template shape T and the target shape. Specifically the template shape is queried not
at its original coordinates p, but at p̃ = p + d effectively spatially deforming the template. At test time we
evaluate the trained MLPs for shape reconstruction, evolution, disentanglement, and shape transfer.

Section S.2 for details). Our goal is to obtain a representation which describes the entire set S while
accounting for the covariates. Our approach estimates a template shape, T (the shape atlas), which
approximates S . Specifically, T is deformed based on a set of displacement fields {Dk} such that the
individual shapes {Sk} are approximated well by the transformed template.

A displacement field Dk describes how a shape is related to the template shape T . The factors that
cause this displacement may be directly observed or not. For example, observed factors may be
covariates such as subject age, weight, or sex; i.e., ck for subject k. Factors that are not directly
observed may be due to individual shape variation, unknown or missing covariates, or variations
due to differences in data acquisition or data preprocessing errors. We capture these not directly
observed factors by a latent code z. The covariates c and the latent code z then contribute jointly to
the displacement D with respect to the template shape T .

Inspired by neural additive (Agarwal et al., 2020) and generalized additive (Hastie, 2017) models,
we assume the overall displacement field is the sum of displacement fields that are controlled by
individual covariates: D = ΣiDi. Here, Di is the displacement field controlled by the i-th covariate,
ci. This results by construction in an overall displacement D that is disentangled into several
sub-displacement fields {Di}.

3.2 MODEL FORMULATION

Figure 1 gives an overview of NAISR. To obtain a continuous atlas representation, we use DIFs to
represent both the template T and the displacement field D. The template shape T is represented
by a signed distance function, where the zero level set {p ∈ R3|T (p) = 0} captures the desired
template shape. A displacement Di of a particular point p can also be represented as a function
di = fi(p, ci, z) ∈ R3. We use SIREN (Sitzmann et al., 2020) as the backbone for T (·) and {fi(·)}.
Considering that the not directly observed factors might influence the geometry of all covariate-
specific networks, we make the latent code, z, visible to all subnetworks {fi(·)}. We normalize the
covariates so that they are centered at zero. To assure that a zero covariate value results in a zero
displacement we parameterize the displacement fields as di = gi(p, ci, z) where

gi(p, ci, z) = fi(p, ci, z)− fi(p, 0, z) . (1)

The sub-displacement fields are added to obtain the overall displacement field

d = g(p, c, z) =

N∑
i=1

gi(p, ci, z) . (2)
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We then deform the template shape T to obtain an implicit representation of a target shape

s = Φ(p, c, z) = T (p̃) = T (p+

N∑
i=1

gi(p, ci, z)) , (3)

where p is a point in the source shape space, e.g., a point on the surface of shape Si and p̃ represents
a point in the template shape space, e.g., a point on the surface of the template shape T . To investigate
how an individual covariate ci affects a shape we can simply extract the zero level set of

si = Φi(p, ci, z) = T (p+ di) = T (p+ gi(p, ci, z)) . (4)

3.3 TRAINING

Losses. All our losses are ultimately summed over all shapes of the training population with the
appropriate covariates ck and shape code zk for each shape Sk. For ease of notation, we describe
them for individual shapes. For each shape, we sample on-surface and off-surface points. On-surface
points have zero signed distance values and normal vectors extracted from the gold standard† mesh.
Off-surface points have non-zero signed distance values but no normal vectors. Our reconstruction
losses follow Sitzmann et al. (2020); Novello et al. (2022). For points on the surface, the losses are

Lon(Φ, c, z) =

∫
S
λ1 ∥|∇pΦ(p, c, z)| − 1∥︸ ︷︷ ︸

LEikonal

+λ2 ∥Φ(p, c, z)∥︸ ︷︷ ︸
LDirichlet

+λ3 (1− ⟨∇pΦ(p, c, z),n(p)⟩)︸ ︷︷ ︸
LNeumann

dp ,

(5)
where n(p) is the normal vector at p and ⟨·⟩ denotes cosine similarity. For off-surface points, we use

Loff(Φ, c, z) =

∫
Ω\S

λ4 |Φ(p, c, z)− stgt(p)|︸ ︷︷ ︸
LDirichlet

+λ5 ∥|∇pΦ(p, c, z)| − 1∥︸ ︷︷ ︸
LEikonal

dp , (6)

where stgt(p) is the signed distance value at p corresponding to a given target shape. Similar to (Park
et al., 2019; Mu et al., 2021) we penalize the squared L2 norm of the latent code z as

Llat(z) = λ6
1

σ2
∥z∥22 . (7)

As a result, our overall loss (for a given shape) is
L(Φ, c, z) = Llat(z)︸ ︷︷ ︸

as regularizer

+Lon(Φ, c, z) + Loff(Φ, c, z)︸ ︷︷ ︸
for reconstrution

,
(8)

where the parameters of Φ and z are trainable.

3.4 TESTING

As shown in Figure 1, our proposed NAISR is designed for shape reconstruction, shape disentangle-
ment, shape evolution, and shape transfer.

Shape Reconstruction and Generation. As illustrated in the inference section in Figure 1, a shape
stgt is given and the goal is to recover its corresponding latent code z and the covariates c. To
estimate these quantities, the network parameters stay fixed and we optimize over the covariates c and
the latent code z which are both randomly initialized (Park et al., 2019; Mu et al., 2021). Specifically,
we solve the optimization problem

ĉ, ẑ = argmin
c,z

L(Φ, c, z) . (9)

In clinical scenarios, the covariates c might be known (e.g., recorded age or weight at imaging time).
In this case, we only infer the latent code z by the optimization

ẑ = argmin
z

L(Φ, c, z) . (10)

A new patient shape with different covariates can be generated by extracting the zero level set of
Φ(p, cnew, ẑ).

†In medical imaging, there is typically no groundtruth. We use gold standard to indicate shapes based off of
manual or automatic segmentations, which are our targets for shape reconstruction.

5



Published as a conference paper at ICLR 2024

Shape Evolution. Shape evolution along covariates {ci} is desirable in shape analysis to ob-
tain knowledge of disease progression or population trends in the shape population S. For
a time-varying covariate (c0i , ..., c

t
i, ..., c

T
i ), we obtain the corresponding shape evolution by

(Φi(p, c
0
i , ẑ), ...,Φi(p, c

t
i, ẑ), ...,Φi(p, c

T
i , ẑ)). If some covariates are correlated (e.g., age and

weight), we can first obtain a reasonable evolution of the covariates (c0, ..., ct, ..., cT ) and the
corresponding shape evolution as (Φ(p, c0, ẑ), ...,Φ(p, ct, ẑ), ...,Φ(p, cT , ẑ)). By setting ẑ to 0,
one can observe how a certain covariate influences the shape population on average.

Shape Disentanglement. As shown in the disentanglement section in Figure 1, the displacement
for a particular covariate ci displaces point p in the source space to p+ di in the template space for
a given or inferred ẑ and ci. We obtain the corresponding signed distance field as

si = Φi(p, ci, ẑ) = T (p+ di) = T (p+ gi(p, ci, ẑ)) . (11)

As a result, the zero level sets of {Φi(·)} represent shapes warped by the sub-displacement fields
controlled by ci.

Shape Transfer. We use the following clinical scenario to introduce the shape transfer task. Suppose
a doctor has simulated a surgery on an airway shape with the goal of previewing treatment effects
on the shape after a period of time. This question can be answered by our shape transfer approach.
Specifically, as shown in the transfer section in Figure 1, after obtaining the inferred latent code ẑ
and covariates ĉ from reconstruction, one can transfer the shape from the current covariates ĉ to
new covariates ĉ +∆c with Φ(p, ĉ +∆c, ẑ). As a result, the transferred shape is a prediction of
the outcome of the simulated surgery; it is the zero level set of Φ(p, ĉ + ∆c, ẑ). In more general
scenarios, the covariates are unavailable but it is possible to infer them from the measured shapes
themselves (see Eqs. 9-10). Therefore, in shape transfer we are not only evolving a shape, but may
also first estimate the initial state to be evolved.

4 EXPERIMENTS

We evaluate NAISR in terms of shape reconstruction, shape disentanglement, shape evolution, and
shape transfer on three datasets: 1) Starman, a simulated 2D shape dataset used in (Bône et al., 2020);
2) the ADNI hippocampus 3D shape dataset (Petersen et al., 2010); and 3) a pediatric airway 3D
shape dataset. Starman serves as the simplest and ideal scenario where sufficient noise-free data for
training and evaluating the model is available. While the airway and hippocampus datasets allow for
testing on real-world problems of scientific shape analysis, which motivates NAISR.

We can quantitatively evaluate NAISR for shape reconstruction and shape transfer because our dataset
contains longitudinal observations. For shape evolution and shape disentanglement, we provide
visualizations of shape extrapolations in covariate space to demonstrate that our method can learn a
reasonable representation of the deformations governed by the covariates.

Implementation details and ablation studies are available in Section S.3.1 and Section S.3.2 in the
supplementary material.

4.1 DATASET AND EXPERIMENTAL PROTOCOL

Starman Dataset. This is a synthetic 2D shape dataset obtained from a predefined model as illustrated
in Section S.2.1 without additional noise. As shown in Fig. S.4, each starman shape is synthesized
by imposing a random deformation representing individual-level variation to the template starman
shape. This is followed by a covariate-controlled deformation to the individualized starman shape,
representing different poses produced by a starman. 5041 shapes from 1000 starmen are synthesized
as the training set; 4966 shapes from another 1000 starmen are synthesized as a testing set.

ADNI Hippocampus Dataset. These hippocampus shapes were obtained from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) database. The dataset consists of 1632 hippocampus
segmentations from magnetic resonance (MR) images. We use an 80%-20% train-test split by patient
(instead of shapes); i.e., a given patient cannot simultaneously be in the train and the test set, and
therefore no information can leak between these two sets. As a result, the training set consists of 1297
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Starman ADNI Hippocampus Pediatric Airway
CD ↓ EMD ↓ HD ↓ CD ↓ EMD ↓ HD ↓ CD ↓ EMD ↓ HD ↓

µ M µ M µ M µ M µ M µ M µ M µ M µ M
DeepSDF 0.117 0.105 1.941 1.887 6.482 6.271 0.157 0.140 2.098 2.035 9.762 9.276 0.077 0.052 1.401 1.266 10.765 9.446
A-SDF 0.173 0.092 2.010 1.668 8.806 6.949 1.094 1.162 7.156 7.667 25.092 25.938 2.647 1.178 10.302 9.068 47.172 37.835
A-SDF (c) 0.049 0.043 1.298 1.261 5.388 4.964 0.311 0.294 3.136 3.099 13.852 13.003 0.852 0.226 4.090 2.890 30.848 21.965
DIT 0.281 0.181 2.727 2.497 10.295 8.442 0.156 0.142 2.096 2.054 9.465 9.123 0.094 0.049 1.414 1.262 11.524 10.228
NDF 1.086 0.736 5.364 4.821 21.098 19.705 0.253 0.213 2.699 2.580 11.328 10.947 0.238 0.117 2.174 1.737 14.950 12.516
Ours 0.111 0.072 1.709 1.515 7.951 7.141 0.174 0.153 2.258 2.191 10.019 9.521 0.067 0.039 1.233 1.132 10.333 8.404
Ours (c) 0.049 0.036 1.276 1.156 5.051 4.666 0.126 0.116 1.847 1.810 8.586 8.153 0.084 0.044 1.345 1.190 10.719 8.577

Table 2: Quantitative evaluation of shape reconstruction. CD = Chamfer distance. EMD = Earth mover’s
distance. HD = Hausdorff distance. All metrics are multiplied by 102. Bold red values indicate the best scores
across all methods. Bold black values indicate the 2nd best scores of all methods. Ours means the covariates
were inferred during testing (see Equation 9). Ours(c) means the covariates are used as input during inference
(see Equation 10). µ and M indicate the mean and median of the measurements on the testing shapes respectively.
NAISR performs well for all three reconstruction tasks while allowing for interpretability.

shapes while the testing set contains 335 shapes. Each shape is associated with 4 covariates (age, sex,
AD, education length). AD is a binary variable indicating whether a person has Alzheimer disease.

Pediatric Airway Dataset. This dataset contains 357 upper airway shapes to evaluate our method.
These shapes are obtained from automatic airway segmentations of computed tomography (CT)
images of children with a radiographically normal airway. These 357 airway shape are from 263
patients, 34 of whom have longitudinal observations and 229 of whom have only been observed once.
We use a 80%-20% train-test split by patient (instead of shapes). Each shape has 3 covariates (age,
weight, sex).

More details, including demographic information, visualizations, and preprocessing steps of the
datasets are available in Section S.2 in the supplementary material.

Comparison Methods. For shape reconstruction of unseen shapes, we compare our method on the
test set with DeepSDF (Park et al., 2019), A-SDF (Mu et al., 2021), DIT (Zheng et al., 2021), and
NDF (Sun et al., 2022a). For shape transfer, we compare our method with A-SDF (Mu et al., 2021)
because other comparison methods cannot model covariates as summarized in Table 1.

Metrics. For evaluation, all target shapes and reconstructed meshes are normalized to a unit sphere
(i.e., centered at the origin and uniformly scaled so that the furthest point is at unit distance from the
origin) to assure that large shapes and small shapes contribute equally to error measurements. We use
the Hausdorff distance, Chamfer distance, and earth mover’s distance to evaluate the performance
of our shape reconstructions. For shape transfer, considering that a perfectly consistent image
acquisition process is impossible for different observations (e.g., head positioning might slightly vary
across timepoints for the airway data), we visualize the transferred shapes and evaluate based on the
difference between the volumes of the reconstructed shapes and the target shapes on the hippocampus
and airway dataset.

4.2 SHAPE RECONSTRUCTION

The goal of our shape reconstruction experiment is to demonstrate that NAISR can provide compet-
itive reconstruction performance while providing interpretability. Table 2 shows the quantitative
evaluations and demonstrates the excellent reconstruction performance of NAISR. Figure 2 visualizes
reconstructed shapes. We observe that implicit shape representations can complete missing shape
parts which can benefit further shape analysis. A-SDF (Mu et al., 2021) works well for representing
Starman shapes but cannot reconstruct real 3D medical shapes successfully. The reason might be
the time span of our longitudinal data for each patient is far shorter than the time span across the
entire dataset, mixing individual differences and covariate-controlling differences. A-SDF may fail
to disentangle such mixed effects (from individuals and covariates), but instead memorizes training
shapes by their covariates c. In contrast, the additive architecture of NAISR prevents the model from
memorizing training shapes through covariates c. More discussions are available in Section S.3.3 of
the supplementary material.

4.3 SHAPE TRANSFER

Table 4 shows an airway shape transfer example for a cancer patient who was scanned 11 times.
We observe that our method can produce complete transferred shapes that correspond well with
the measured shapes. Table 3 shows quantitative results for the volume differences between our
transferred shapes and the gold standard shapes. Our method performs best on the real datasets
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DeepSDF A-SDF DIT NDF Ours Ours (c)Gold Standard

Figure 2: Visualizations of airway and hippocampus reconstruction with different methods. The red and blue
circles show the structure in the black circle from two different views. Hippocampus shapes are plotted with two
180◦-flipped views. NAISR can produce detailed and accurate reconstructions as well as impute missing airway
parts. More visualizations are available in Section S.3.3 of the supplementary material.

Starman ADNI Hippocampus Pediatric Airway
CD ↓ EMD ↓ HD ↓ VD ↓ VD ↓

w.C. µ M µ M µ M µ M µ M
A-SDF % 0 0 0.009 0.008 0.036 0.034 0.518 0.488 81.074 82.918
A-SDF ! 0 0 0.009 0.009 0.036 0.035 0.215 0.177 41.460 40.956
Ours % 0.003 0.002 0.025 0.023 0.094 0.077 0.086 0.063 12.820 8.837
Ours ! 0.009 0.002 0.031 0.025 0.116 0.083 0.089 0.071 11.227 9.653

Table 3: Quantitative evaluation of shape transfer. Statistics of Volume Difference (VD, cm3) between transferred
shapes and gold standard shapes. w.C. abbreviates with covariates. A!in w.C. indicates the inference follows
Equation 10. A %in w.C. indicates the inference follows Equation 9. Red bold scores indicate the best
performance across all methods and bold scores indicate the 2nd best. NAISR results in significantly improved
volume estimates for real medical shapes.
while A-SDF (the only other model supporting shape transfer) works slightly better on the synthetic
Starman dataset. Our results demonstrate that NAISR is capable of transferring shapes to other
timepoints St from a given initial state S0.

#time 0 1 2 3 4 5 6 7 8 9 10

{St}
# time 0 1 2 3 4 5 6 7 8 9 10
age 154 155 157 159 163 164 167 170 194 227 233
weight 55.2 60.9 64.3 65.25 59.25 59.2 65.3 68 77.1 75.6 75.6
sex M M M M M M M M M M M
p-vol 92.50 93.59 94.64 95.45 96.33 96.69 98.40 99.72 109.47 118.41 118.76
m-vol 86.33 82.66 63.23 90.65 98.11 84.35 94.14 127.45 98.81 100.17 113.84

Table 4: Airway shape transfer for a patient. Blue: gold standard shapes; red: transferred shapes with NAISR.
The table below lists the covariates (age/month, weight/kg, sex) for the shapes above. P-vol(predicted volume)
is the volume (cm3) of the transferred shape by NAISR covariates following Equation 9. M-vol (measured
volume) is the volume (cm3) of the shapes based on the actual imaging. NAISR can capture the trend of
growing volume with age and weight while producing clear, complete, and topology-consistent shapes. Note
that measured volumes may differ depending on the CT imaging field of view. More visualizations are available
in Section S.3.4 in the supplementary material.

4.4 SHAPE DISENTANGLEMENT AND EVOLUTION

Figure 3 shows that NAISR is able to extrapolate reasonable shape changes when varying covariates.
These results illustrate the capabilities of NAISR for shape disentanglement and to capture shape
evolutions. A-SDF and NAISR both produce high-quality Starman shapes because the longitudinal
data is sufficient for the model to discover the covariate space. However, for real data, only NAISR
can produce realistic 3D hippocampi and airways reflecting the covariates’ influences on template
shapes. Note that when evolving shapes along a single covariate ci, the deformations from other
covariates are naturally set to 0 by our model construction (see Section 3.2). As a result, the shapes
in the yellow and green boxes in Figure 3 represent the disentangled shape evolutions along different
covariates respectively. The shapes in the other grid positions can be extrapolated using Φ(·). By
inspecting the volume changes in the covariate space in Figure 3, we observe that age is more
important for airway volume than weight, and Alzheimer disease influences hippocampal volume.
These observations from our generated shapes are consistent with clinical expectations (Luscan et al.,
2020; Gosche et al., 2002), suggesting that NAISR is able to extract hidden knowledge from data and
is able to generate interpretable results directly as 3D shapes.
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Figure 3: Template shape extrapolation in covariate space using A-SDF and NAISR on three datasets. For
the Starman shape extrapolations, the blue shapes are the groundtruth shapes and the red shapes are the
reconstructions. The shapes in the middle white circles are the template shapes. The template shape is generated
with zero latent code and is used to create a template covariate space. The shapes in the green and yellow
boxes are plotted with {Φi}, representing the disentangled shape evolutions along each covariate respectively.
The purple shadows over the space indicate the covariate range that the dataset covers. Cyan points represent
male and purple points female patients in the dataset. The points represent the covariates of all patients in the
dataset. The colored shades at the boundary represent the covariate distributions stratified by sex. Example 3D
shapes in the covariate space are visualized with their volumes (cm3) below. NAISR is able to extrapolate the
shapes in the covariate space given either an individualized latent code z or template latent code 0, whereas
A-SDF struggles. The supplementary material provides more visualizations of individualized covariate spaces in
Section S.3.5. (Best viewed zoomed.)

5 LIMITATIONS AND FUTURE WORK

Invertible transforms are often desirable for shape correspondences but not guaranteed in NAISR.
Invertibility could be guaranteed by representing deformations via velocity fields, but such parameter-
izations are costly because of the required numerical integration. In future work, we will develop
efficient invertible representations, which will ensure topology preservation. So far we only indirectly
assess our model by shape reconstruction and transfer performance. Going forward we will include
patients with airway abnormalities. This will allow us to explore if our estimated model of normal
airway shape can be used to detect airway abnormalities. Introducing group sparsity (Yin et al., 2012;
Chen et al., 2017) to NAISR for high-dimensional covariates is also promising future work.

6 CONCLUSION

We proposed NAISR, a 3D neural additive model for interpretable shape representation. We tested
NAISR on three different datasets and observed particularly good performance on real 3D medical
datasets. Compared to other shape representation methods, NAISR 1) captures the effect of individual
covariates on shapes; 2) can transfer shapes to new covariates, e.g., to infer anatomy development;
and 3) can provide shapes based on extrapolated covariates. NAISR is the first approach combining
deep implicit shape representations based on template deformation with the ability to account for
covariates. We believe our work is an exciting start for a new line of research: interpretable neural
shape models for scientific discovery.
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REPRODUCIBILITY STATEMENT

We are dedicated to ensuring the reproducibility of NAISR to facilitate more scientific discoveries
on shapes. To assist researchers in replicating and building upon our work, we made the following
efforts.

• Model & Algorithm: Our paper provides detailed descriptions of the model architectures
(see Section 3), implementation details (see Section S.3.1), and ablation studies (see Sec-
tion S.3.2). We have submitted our source code. The implementation of NAISR will be
made publicly available.

• Datasets & Experiments: We provide extensive illustrations and visualizations for the
datasets we used. To ensure transparency and ease of replication, the exact data processing
steps, from raw data to processed input, are outlined in Section S.2 of the supplementary
materials. We expect our detailed supplementary material to ensure the reproducibility of
our method and the understandability of our experimental results. We also have submitted
the code for synthesizing the 2D Starman dataset so that researchers can easily reproduce
the results.
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SUPPLEMENTARY MATERIAL FOR NAISR

S.1 RELATED WORK

Deep Implicit Functions. Compared with geometry representations such as voxel grids (Wu et al.,
2016; 2015; 2018), point clouds (Achlioptas et al., 2018; Yang et al., 2018; Zamorski et al., 2020)
and meshes (Groueix et al., 2018; Wen et al., 2019; Zhu et al., 2019), DIFs are able to capture highly
detailed and complex 3D shapes using a relatively small amount of data (Park et al., 2019; Mu et al.,
2021; Zheng et al., 2021; Sun et al., 2022a; Deng et al., 2021). They are based on classical ideas of
level set representations (Sethian, 1999; Osher & Fedkiw, 2005); however, whereas these classical
level set methods represent the level set function on a grid, DIFs parameterize it as a continuous
function, e.g., by a neural network. Hence, DIFs are not reliant on meshes, grids, or a discrete set
of points. This allows them to efficiently represent natural-looking surfaces (Gropp et al., 2020;
Sitzmann et al., 2020; Niemeyer et al., 2019). Further, DIFs can be trained on a diverse range of
data (e.g., shapes and images), making them more versatile than other shape representation methods.
This makes them useful in applications ranging from computer graphics, to virtual reality, and
robotics (Gao et al., 2022; Yang et al., 2022a; Phongthawee et al., 2022; Shen et al., 2021). We
therefore formulate NAISR based on DIFs.

Neural Deformable Models Neural Deformable Models (NDMs) establish point correspondences
with DIFs. In computer graphics, there has been increasing interest in NDMs to animate or edit
scenes (Liu et al., 2022; Park et al., 2021a; Bao et al., 2023; Zheng et al., 2023), objects (Duggal &
Pathak, 2022; Lei & Daniilidis, 2022; Bao et al., 2023; Niemeyer et al., 2019; Zhang et al., 2023;
Shuai et al., 2023), and digital humans (Liu et al., 2021; Chen et al., 2021; Niemeyer et al., 2019;
Park et al., 2021b;a; Peng et al., 2021; Zhang & Chen, 2022; Zhang et al., 2023).

Establishing point correspondences is also important to help experts to detect, understand, diagnose,
and track diseases. NDMs have shown to be effective in exploring point correspondences for medical
images (Han et al., 2023b; Tian et al., 2023; Sun et al., 2022b; Wolterink et al., 2022a; Zou et al.,
2023) and shapes (Sun et al., 2022a; Yang et al., 2022b; Han et al., 2023a)

Among NDMs for shape representations, ImplicitAtlas (Yang et al., 2022b), DIF-Net (Deng et al.,
2021), DIT (Zheng et al., 2021), and NDF (Sun et al., 2022a) were proposed to capture point corre-
spondence between target and template shapes within NDMs. Currently, no continuous deformable
shape representation which models the effects of covariates exists. NAISR provides a model with
such capabilities.

Disentangled Representation Learning. Disentangled representation learning (DRL) has been
explored in a variety of domains, including computer vision (Shoshan et al., 2021; Ding et al., 2020;
Zhang et al., 2018b;a; Xu et al., 2021; Yang et al., 2020), natural language processing (John et al.,
2018), and medical image analysis (Chartsias et al., 2019; Bercea et al., 2022).

For example, Wei et al. built a mesh editing model based on disentangled semantic parameters. Their
model learns from simulated datasets which are based on parameterized models and pre-defined
templates (Wei et al., 2020). DRL has also emerged in the context of implicit representations as a
promising approach for 3D computer vision. By disentangling the underlying factors of variation,
such as object shape, orientation, and texture, DRL can facilitate more effective 3D object recognition,
reconstruction, and manipulation (Stammer et al., 2022; Zhang et al., 2018b;a; Xu et al., 2021; Yang
et al., 2020; 2022a; Gao et al., 2022; Tewari et al., 2022).

Besides DRL in computer vision, medical data is typically associated with various covariates which
should be taken into account during analyses. Taking (Chu et al., 2022) as an example, when
observing a tumor’s progression, it is difficult to know whether the variation of a tumor’s progression
is due to time-varying covariates or due to treatment effects. Therefore, being able to disentangle
different effects is highly useful for a representation to promote understanding and to be able to
quantify the effect of covariates on observations. NAISR provides a disentangled representation and
allows us to capture the shape effects of covariates.

Articulated Shapes. There is significant research focusing on articulated shapes, mostly on hu-
mans (Palafox et al., 2021; Chen et al., 2021; Tretschk et al., 2020; Deng et al., 2020). There is also a
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line of work on articulated general objects, e.g., A-SDF (Mu et al., 2021), NASAM (Wei et al., 2022)
and LEPARD (Liu et al., 2023). A-SDF (Mu et al., 2021) uses articulation as an additional input to
control generated shapes, while NASAM (Wei et al., 2022) and LEPARD (Liu et al., 2023) learns the
latent space of articulation without articulation as supervision.

The aforementioned works on articulated objects assume that each articulation affects a separate
object part. This is easy to observe, e.g., the angles of the two legs of a pair of eyeglasses. Hence,
although A-SDF (Mu et al., 2021) and 3DAttriFlow (Wen et al., 2022) can disentangle articulations
from geometry, they do not disentangle different covariates and their disentanglements are not
composable. However, in medical scenarios, covariates often affect shapes in a more entangled and
complex way, for example, a shape might simultaneously be influenced by sex, age, and weight. Dalca
et al. (Dalca et al., 2019) use templates conditioned on covariates for image registration. However,
they did not explore covariate-specific deformations, shape representations or shape transfer. NAISR
allows us to account for such complex covariate interactions.

Explainable Artificial Intelligence. The goal of eXplainable Artificial Intelligence (XAI) is to
provide human-understanable explanations for decisions and actions of an AI model. Various
flavors of XAI exist, including counterfactual inference (Berrevoets et al., 2021; Moraffah et al.,
2020; Thiagarajan et al., 2020; Chen et al., 2022), attention maps (Zhou et al., 2016; Jung & Oh,
2021; Woo et al., 2018), feature importance (Arik & Pfister, 2021; Ribeiro et al., 2016; Agarwal
et al., 2020), and instance retrieval (Crabbe et al., 2021). NAISR is inspired by neural additive
models (NAMs) (Agarwal et al., 2020) which in turn are inspired by generalized additive models
(GAMs) (Hastie, 2017). NAMs are based on a linear combination of neural networks each attending
to a single input feature. NAISR extends this concept to interpretable 3D shape representations. This
is significantly more involved as, unlike for NAMs and GAMs, we are no longer dealing with scalar
values, but with 3D shapes. NAISR provides interpretable results by capturing spatial deformations
with respect to an estimated atlas shape such that individual covariate effects can be distinguished.

S.2 DATASET

S.2.1 STARMAN DATASET

Figure S.4 illustrates how each sample in the dataset is simulated. 5041 shapes from 1000 different
starmen are simulated as the training set. 4966 shapes from another 1000 starmen are simulated
as a testing set. The number of movements for each individual comes from a uniform distribution
U{1,...10}.

The deformation for arms can be represented as

di(p) = α · exp(− (p− ci)
T (p− ci)

2σ2
) ·m0 , i = 0, 1;σ = 0.5 . (S.12)

The deformation for legs can be represented as

di(p) = β · exp(− (p− ci)
T (p− ci)

2σ2
) ·m1 , i = 2, 3;σ = 0.5 . (S.13)

We sample the covariates α and β from a uniform distribution U[−1,1]. The overall deformation D is
the sum of the covariates-controlling deformations {di} imposed on the individual starman shape, as

D = Σidi(dr(p) + p) . (S.14)

S.2.2 ADNI HIPPOCAMPUS

The ADNI hippocampus dataset ‡ consists of 1632 hippocampus segmentations from magnetic
resonance (MR) images from the ADNI dataset, 80% (1297 shapes) of which are used for training

‡Data used in the preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was launched in 2003 as a public-private
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Figure S.4: Visualization of the Starman dataset simulation. The template shape X is in solid black, the control
points {ci} are the five points in magenta. The grey dashed lines represent the individual random deformation
dr to the template and those control points {ci} , yielding an individualized template Xr . The moving direction
m0 controlling the two arms is shown as a bold blue arrow. The moving direction m1 controlling the two
legs is shown as a bold green arrow. The velocity fields d0 and d1 control the upward/downward movement
of two arms correspondingly. The velocity fields d2 and d3 controls the splits of two legs correspondingly.
The individualized template shape Xr is deformed by d = Σidi to Yr (the red shape), representing a person
moving their arms and legs. The covariates α and β decide how much the arm is lifted and how much the legs
are split.

and 20% (335 shapes) for testing. Each shape is associated with 4 covariates (age, sex, AD, education
length). AD is a binary variable that represents whether a person has Alzheimer disease. AD=1
indicates a person has Alzheimer disease. Table S.5 shows the distribution of the number of obser-
vations across patients. Table S.6 shows the hippocampus shapes and the demographic information
of an example patient. Table S.7 shows the shapes and demographic information at different age
percentiles for the whole data set. We observe that the time span of our longitudinal data for each
patient is far shorter than the time span across the entire dataset, indicating the challenge of capturing
spatiotemporal dependencies over large time spans between shapes while accounting for individual
differences between patients.

# observations 1 2 3 4 5 6
# patients 3 10 410 5 7 54

Table S.5: Number of patients for a given number of observations for the ADNI dataset. For example, the 1st
column indicates that there are 3 patients who were only observed once.

S.2.3 PEDIATRIC AIRWAY

The airway shapes are extracted from computed tomography (CT) images. We use real CT images of
children ranging in age from 1 month to ∼19 years old. Acquiring CT images is costly. Further, CT
uses ionizing radiation which should be avoided, especially in children, due to cancer risks. Hence,
it is difficult to acquire such CTs for many children. Instead, our data was acquired by serendipity
from children who received CTs for reasons other than airway obstructions (e.g., because they had
cancer). This also explains why it is difficult to acquire longitudinal data. E.g., one of our patients
has 11 timepoints because a very sick child had to be scanned 11 times. Note that our data is very
different from typical CV datasets which can be more readily acquired at scale or may even already

partnership, led by Principal Investigator Michael W. Weiner, MD. The primary goal of ADNI has been to
test whether serial magnetic resonance imaging (MRI), positron emission tomography (PET), other biological
markers, and clinical and neuropsychological assessment can be combined to measure the progression of
mild cognitive impairment (MCI) and early Alzheimer’s disease (AD). For up-to-date information, see www.
adni-info.org.
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# time 0 1 2 3 4 5

{St}
0 1 2 3 4 5

age 75.6 75.7 76.2 76.2 76.7 76.7
AD No No No No No No
sex F F F F F F
edu 20.0 20.0 20.0 20.0 20.0 20.0
m-vol 2.26 2.38 2.2 2.35 2.27 2.16

Table S.6: Visualization and demographic information of observations of a patient in the ADNI hippocampus
dataset. Shapes are plotted with their covariates (age/yrs, AD, sex, edu(education length)/yrs) printed in the
table. M-vol (measured volume) is the volume (cm3) of the gold standard shapes based on the actual imaging.

P- 0 10 20 30 40 50 60 70 80 90 100

{St}

0 1 2 3 4 5 6 7 8 9 10
age 55.2 68.4 71.2 72.6 74.2 76.2 77.9 79.8 82.0 85.2 90.8
AD No No Yes No No No Yes Yes No No No
sex F F F F M F F M M F F
edu 18.0 16.0 16.0 15.0 18.0 18.0 17.0 20.0 16.0 7.0 15.0
m-vol 1.91 1.58 1.3 1.48 2.08 2.2 1.66 1.63 2.0 1.64 2.21

Table S.7: Visualization and demographic information of our ADNI Hippocampus 3D shape dataset. Shapes
of {0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100}-th age percentiles are plotted with their covariates (age/yrs, AD,
sex, edu(education length)/yrs) printed in the table. M-vol (measured volume) is the volume (cm3) of the gold
standard shapes based on the actual imaging.
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exist based on internet photo collections. This is impossible for our task because image acquisition
risks always have to be justified by patient benefits.

Our dataset includes 229 cross-sectional observations (where a patient was only imaged once) and 34
longitudinal observations. Each shape has 3 covariates (age, weight, sex) and 11 annotated anatomical
landmarks. Errors in the shapes {Sk} may arise from image segmentation error, differences in head
positioning, missing parts of the airway shapes due to incomplete image coverage, and dynamic
airway deformations due to breathing. Table S.8 shows the distribution of the number of observations
across patients. Most of the patients in the dataset only have one observation; only 22 patients have
≥ 3 observation times. Table S.9 shows the airway shapes and the demographic information of
an example patient. Table S.10 shows the shapes and demographic information at different age
percentiles for the whole data set. Similar to the ADNI hippocampus dataset, the time span of the
longitudinal data for each patient is far shorter than the time span across the entire dataset, which
poses a significant shape analysis challenge for realistic medical shapes.

# observations 1 2 3 4 5 6 7 9 11
# patients 229 12 6 8 3 2 1 1 1

Table S.8: Number of patients for a given number of observations for the pediatric airway dataset. For example,
the 1st column indicates that there are 229 patients who were only observed once.

Data Processing. For the ADNI hippocampus dataset and the pediatric airway dataset, the shape
meshes are extracted using Marching Cubes (Lorensen & Cline, 1987; Van der Walt et al., 2014)
to obtain coordinates and normal vectors of on-surface points. The hippocapus shapes are rigidly
aligned using the ICP algorithm (Arun et al., 1987). The airway shapes are rigidly aligned using
the anatomical landmarks. The true vocal cords landmark is set to the origin. We follow the
implementation in (Park et al., 2019) to sample 500,000 off-surface points. During training, it is
important to preserve the scale information. We therefore scale all meshes with the same constant.

S.3 EXPERIMENTS

Section S.3.1 describes implementation details Section S.3.2 describe the ablation study. Section S.3.3,
Section S.3.4, and Section S.3.5 show additional experimental results for shape reconstruction, shape
transfer, and disentangled shape evolution, respectively.

S.3.1 IMPLEMENTATION DETAILS

Each subnetwork, including the template network T and the displacement networks {fi}, are all
parameterized with an Nl-layer MLP using sine activations. We use Nl=8 for Starman and the

#time 0 1 2 3 4 5 6 7 8

{St}

#time 0 1 2 3 4 5 6 7 8

age 84.00 85.00 87.00 91.0 95.00 98.00 101.00 104.00 120.00
weight 20.40 20.40 21.00 21.9 22.80 22.90 23.50 24.90 28.50
sex M M M M M M M M M
m-vol 30.07 32.18 48.95 33.8 44.87 42.29 28.42 40.92 61.36

Table S.9: Visualization and demographic information of observations of a patient in our 3D airway shape dataset.
Shapes are plotted with their covariates (age/month, weight/kg, sex) printed in the table. M-vol (measured
volume) is the volume (cm3) of the gold standard shapes based on the actual imaging.
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P- 0 10 20 30 40 50 60 70 80 90 100

{St}

P- 0 10 20 30 40 50 60 70 80 90 100

age 1.00 23.00 55.00 71.00 89.00 111.00 129.00 161.00 179.00 199.00 233.00
weight 3.90 14.20 20.10 21.80 19.70 32.85 44.80 21.30 59.00 93.90 75.60
sex M M F F M M M F F F M
m-vol 4.56 16.84 29.53 28.91 27.31 70.90 71.23 43.34 78.63 102.35 113.84

Table S.10: Visualization and demographic information of our 3D airway shape dataset. Shapes of
{0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100}-th age percentiles are plotted with their covariates (age/month,
weight/kg, sex) printed in the table. M-vol (measured volume) is the volume (cm3) of the gold standard
shapes based on the actual imaging.

Methods DeepSDF A-SDF DIT NDF Ours
Starman ADNI Hippocampus Pediatric Airway

#params 2.24M 1.98M 1.92M 0.34M 1.33M 2.26M 1.26M

Table S.11: Number of parameters of the different models.

ADNI hippocampus dataset; we use Nl=6 for the pediatric airway dataset. There are 256 hidden
units in each layer. The architecture of the {fi} follows DeepSDF (Park et al., 2019), in which a skip
connection is used to concatenate the input of (p, ci) to the input of the middle layer, as shown in
Fig. S.5. We use a latent code z of dimension 256 (L = 256).

We follow SIREN (Sitzmann et al., 2020) for the network architecture. SIREN uses periodic
activation functions for implicit neural representations and demonstrates that networks which use
periodic functions (such as sinusoidal functions) as activations, are well suited for representing
complex natural signals and their derivatives. We also follow SIREN’s initialization to draw weights
according to a uniform distribution W ∼ U

(
−
√

6
ω2

0Din
,
√

6
ω2

0Din

)
(Din is the input dimension and

ω0 is the scaling factor of the SIREN layers, which is set to 30).

Table S.11 lists the number of model parameters.

For each training iteration, the number of points sampled from each shape is 750 (N = 750), of
which 500 are on-surface points (Non = 500) and the others are off-surface points (Noff = 250).
We train NAISR for 3000 epochs for the airway dataset and 300 epochs for the ADNI hippocampus
and Starman datasets using Adam (Kingma & Ba, 2014) with a learning rate 5e− 5 and batch size
of 64. Also, we jointly optimize the latent code z with NAISR using Adam (Kingma & Ba, 2014)
with a learning rate of 1e− 3.

During training, λ1 = λ5 = 1 · 10; λ2 = 3 · 10; λ3 = 1 · 10, λ4 = 1 · 102. For Llat, λ6 = 2
L ;

σ = 0.01 (following DeepSDF (Park et al., 2019)). During inference, the latent codes are optimized
for Nt iterations with a learning rate of 5e− 3. Nt is set to 800 for the pediatric airway dataset; Nt is
set to 200 for the Starman and ADNI Hippocampus datasets.

Computational Runtime The model is trained on an Nvidia GeForce RTX 3090 GPU for
approximately 12 hours for 3000 epochs for the airway dataset. For each shape, it takes around
130 seconds for 800 iterations and 30 seconds for 200 iterations to infer the latent code z and the
covariates c respectively. However, we observed that 200 iterations are sufficient to produce a
reasonable reconstruction. Then, it takes approximately 30 seconds to sample the SDF field and apply
Marching Cubes to extract the shape mesh. Regarding shape transfer, evolution, and disentanglement
for a specific case, we first need to optimize the latent code z as for the shape reconstruction. Once
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Figure S.5: Construction of fi

CD ↓ EMD ↓ HD ↓Methods variants influenced term
µ M µ M µ M

Ours λ1 = λ5 = 0 LEikonal 0.072 0.047 1.447 1.323 10.426 8.716
Ours λ4 = 0 LDirichlet_off_surf 4.323 4.481 1.374 1.244 68.527 69.715
Ours λ3 = 0 LNeumann 0.081 0.051 1.449 1.307 10.269 8.546
Ours λ2 = 0 LDirichlet_on_surf 0.124 0.077 1.912 1.682 10.803 8.916
Ours λ6 = 0 Llat 0.045 0.023 0.980 0.890 8.920 7.028
Ours λ6∗ = 0.01 Llat 0.049 0.023 1.053 0.924 9.064 7.041
Ours λ6∗ = 0.1 Llat 0.056 0.031 1.126 1.015 9.578 7.831
Ours λ6∗ = 1 Llat 0.067 0.039 1.251 1.143 10.333 8.404
Ours λ6∗ = 10 Llat 0.075 0.049 1.368 1.270 11.111 9.176
Ours λ6∗ = 100 Llat 0.100 0.073 1.607 1.532 13.456 11.853

Table S.12: Ablation study: quantitative evaluation of shape reconstruction. Ours means covariates are not used
as additional input to NAISR. The shadowed line is what we report in the main text.

the latent code z is optimized or assigned (e.g., to 0 as template), it will take around 30 seconds to
produce a new mesh controlled by the covariate c.

Comparison Methods. For shape reconstruction of unseen shapes, we compare our method on
the test set with DeepSDF (Park et al., 2019) A-SDF (Mu et al., 2021) DIT (Zheng et al., 2021)
and NDF (Sun et al., 2022a). For shape transfer, we compare our method with A-SDF (Mu et al.,
2021) because other comparison methods cannot model covariates as summarized in Table 1. The
original implementations of the comparison methods did not produce satisfying reconstructions on
our dataset. We therefore improved them by using our reconstruction losses and by using the SIREN
backbone (Sitzmann et al., 2020) in DeepSDF (Park et al., 2019), A-SDF (Mu et al., 2021), and the
template networks in DIT (Zheng et al., 2021) and NDF (Sun et al., 2022a).

S.3.2 ABLATION STUDY

We conduct an ablation study on the loss terms on the pediatric airway dataset. Airway shapes are
more complicated than the Starman shapes and the hippocampi. Further, the number of shape samples
is smallest among the three datasets. On this challenging dataset, our aim is to observe the model
robustness when using varying loss terms and our goal is also to determine which loss terms are
necessary and what suitable hyperparameter settings are.

Table S.12 and Table S.13 show the shape reconstruction evaluation for different hyperparameter
settings. We see that LDirichlet for off-surface points is the most important term. A lower λ6 for the
latent code regularizer Llat yields better reconstruction results. Table S.14 shows an ablation study
for shape transfer. We observe that the reconstruction losses LDirichlet and LNeumann are important
for shape transfer.

To sum up, removing any of the reconstruction losses (LEikonal, LDirichlet, LNeumann) hurts
performance. A smaller λ6 yields better reconstruction performance, but may hurt shape transfer
performance.
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CD ↓ EMD ↓ HD ↓Methods variants influenced term
µ M µ M µ M

Ours (c) λ1 = λ5 = 0 LEikonal 0.097 0.052 1.559 1.344 11.178 9.426
Ours (c) λ4 = 0 LDirichlet_off_surf 4.029 4.485 1.454 1.239 68.272 69.356
Ours (c) λ3 = 0 LNeumann 0.089 0.055 1.494 1.313 10.52 8.625
Ours (c) λ2 = 0 LDirichlet_on_surf 0.151 0.09 2.058 1.756 11.354 9.569
Ours (c) λ6 = 0 Llat 0.041 0.019 0.936 0.834 8.677 7.335
Ours (c) λ6∗ = 0.01 Llat 0.051 0.025 1.061 0.923 9.301 7.139
Ours (c) λ6∗ = 0.1 Llat 0.061 0.031 1.154 1.043 9.875 8.151
Ours (c) λ6∗ = 1 Llat 0.084 0.044 1.344 1.182 10.719 8.577
Ours (c) λ6∗ = 10 Llat 0.109 0.058 1.554 1.336 11.933 9.705
Ours (c) λ6∗ = 100 Llat 0.152 0.088 1.943 1.715 14.37 12.043

Table S.13: Ablation study: quantitative evaluation of shape reconstruction. Ours (c) means covariates are used
as additional input to NAISR. µ indicates the mean value of the measurements; M indicates the median of the
measurements. The shadowed line is what we report in the main text.

ablations Volume Difference ↓
without covariates with covariatesMethods variarants influenced term
µ M µ M

Ours λ1 = λ5 = 0 LEikonal 13.977 10.925 8.324 7.214
Ours λ4 = 0 LDirichlet_off_surf 3736.527 3709.001 3693.514 3612.394
Ours λ3 = 0 LNeumann 24.717 24.877 26.094 25.311
Ours λ2 = 0 LDirichlet_on_surf 55.579 57.766 64.845 63.442
Ours λ6 = 0 Llat 14.679 10.306 9.465 7.096
Ours λ6∗ = 0.01 Llat 8.766 6.629 8.518 5.105
Ours λ6∗ = 0.1 Llat 12.861 8.307 11.518 8.950
Ours λ6∗ = 1 Llat 12.820 8.837 11.227 9.653
Ours λ6∗ = 10 Llat 8.644 4.676 9.464 5.756
Ours λ6∗ = 100 Llat 11.959 8.857 11.939 8.113

Table S.14: Ablation study: quantitative evaluation of shape transfer. µ indicates the mean value of the
measurements; M indicates the median of the measurements. The shadowed line is what we report in the main
text.
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CD ↓ EMD ↓ HD ↓LDirichlet_on_surf LDirichlet_off_surf LNeumann LEikonal Llat µ M µ M µ M
0 × 100 × 0.01 × 10 × 10 × 10 5.486 5.386 1.093 0.981 69.792 69.779
1 × 0.1 × 10 × 1 × 100 × 0.01 2.046 1.657 9.576 8.835 33.779 30.757
2 × 0.01 × 100 × 1 × 0.1 × 0.01 0.175 0.138 2.237 2.162 23.269 23.102
3 × 0.1 × 0.1 × 0.01 × 0.1 × 100 0.168 0.131 1.697 1.641 15.570 14.062
4 × 10 × 0.01 × 10 × 0.01 × 1 0.210 0.128 1.828 1.458 17.472 17.574
5 × 10 × 0.01 × 0.1 × 10 × 10 3.815 4.483 1.538 1.437 61.785 68.420
6 × 10 × 0.01 × 0.1 × 0.1 × 0.1 1.598 1.416 3.337 2.898 37.793 39.948
7 × 0.01 × 1 × 100 × 10 × 10 33.090 25.892 0.028 0.027 86.968 80.081
8 × 1 × 100 × 1 × 0.01 × 0.01 1.382 0.047 1.461 1.368 14.455 12.120
9 × 100 × 0.01 × 100 × 0.1 × 100 0.202 0.103 1.837 1.453 20.760 19.042

10 × 0.1 × 1 × 1 × 0.01 × 0.1 0.066 0.038 1.309 1.150 10.494 8.781
11 × 0.1 × 0.1 × 0.1 × 10 × 10 1.662 1.405 5.776 5.282 26.966 24.977
12 × 1 × 10 × 0.01 × 10 × 100 0.193 0.126 2.662 2.419 13.704 11.538
13 × 0.1 × 1 × 100 × 10 × 100 33.090 25.892 0.030 0.029 86.968 80.081
14 × 100 × 100 × 10 × 100 × 100 0.064 0.038 1.335 1.199 9.859 8.240
15 × 100 × 0.01 × 100 × 10 × 1 4.302 4.304 1.216 1.020 63.564 62.475
16 × 0.01 × 0.1 × 0.1 × 10 × 0.01 2.210 1.844 6.875 6.230 38.485 30.460
17 × 0.01 × 0.1 × 1 × 100 × 1 5.560 5.916 6.561 6.098 62.960 67.416
18 × 0.01 ×10 × 1 × 1 × 0.01 0.053 0.031 1.196 1.077 8.565 7.080
19 × 0.1 × 0.01 × 1 × 1 × 10 0.510 0.166 2.905 2.099 25.228 15.788

Ours × 1 × 1 × 1 × 1 × 1 0.067 0.039 1.239 1.138 10.333 8.404

Table S.15: Ablation study: quantitative evaluation of shape reconstruction on random hyperparameter settings.
µ indicates the mean value of the measurements; M indicates the median of the measurements. The shadowed
line is what we report in the main text. Bold text indicates the hyperparameter settings which produce a relatively
low chamfer distance (<0.1).

ablations Volume Difference ↓
without covariates with covariatesMethods LDirichlet_on_surf LDirichlet_off_surf LNeumann LEikonal Llat µ M µ M

10 × 0.1 × 1 × 1 × 0.01 × 0.1 10.891 8.929 11.800 9.095
14 × 100 × 100 × 10 × 100 × 100 15.260 13.312 12.424 10.632
18 × 0.01 ×10 × 1 × 1 × 0.01 18.164 17.261 20.980 19.932
Ours × 1 × 1 × 1 × 1 × 1 12.820 8.837 11.227 9.653

Table S.16: Ablation study: quantitative evaluation of shape transfer on successful randomized hyperparameter
settings for reconstruction task. µ indicates the mean value of the measurements; M indicates the median of the
measurements. The shadowed line is what we report in the main text.

Doing a full grid search over all 5 or 6 hyperparameters would be prohibitive. Instead, we test based
on random configurations from the full hyperparameter grid. We tested 20 random configurations
to 1) demonstrate our setting is reasonable; and to 2) provide some possible guidance from failure
settings. Specifically, we created a grid by multiplying our 5 coefficients by [0.01, 0.1, 1, 10, 100].
Then, we randomly chose 20 grid points to test our model’s robustness for different hyperparameter
settings, as shown in Table S.15 and Table S.16. Our randomized grid-search analysis shows that our
chosen hyperparameters provide good performance.

S.3.3 SHAPE RECONSTRUCTION

Figure S.6 and Figure S.7 visualize more reconstructed hippocampi and airway shapes respectively.
We observe that NAISR produces detailed and complete reconstructions from noisy and incomplete
observations.

Each shape reconstruction method, except for A-SDF, successfully reconstructs airways and hip-
pocampi. As discussed in Section 4.2, we suspect A-SDF overfits the training set by memorizing
shapes with their covariates. We investigate this by evaluating shape reconstruction on the training
set for A-SDF and NAISR as shown in Table S.17. From Table S.17, we can see that A-SDF overfits
the training set.

S.3.4 SHAPE TRANSFER

Table S.18 shows the transferred airways using NAISR without covariates as input (following
Equation 10). The predicted shapes from Equation 9 and Equation 10 look consistent in terms of
appearance and development tendency. Table S.19 and Table S.20 show the transferred hippocampi.
Due to the limited observation time span of patients in the ADNI hippocampus dataset, the volume
stays almost constant.
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DeepSDF A-SDF DIT NDF Ours Ours (c)Gold Standard

Figure S.6: Visualizations of airway shape reconstructions with different methods. The red and blue circles show
the structure in the black circle from two different views. NAISR produces detailed and accurate reconstructions
and imputes missing airway parts.

DeepSDF A-SDF DIT NDF Ours Ours (c)Gold Standard

Figure S.7: Visualizations of hippocampus shape reconstructions with different methods. The red and blue
circles show the structure in the black circle from two different views. All methods except for A-SDF are able to
reconstruct well.

S.3.5 SHAPE DISENTANGLEMENT AND EVOLUTION

Fig. S.9 shows an example of airway shape extrapolation in covariate space for a patient in the testing
set. Fig. S.10 shows an example of hippocampus shape extrapolation in covariate space for a patient
in the testing set. We observe that in the range of observed covariates (inside the purple shade), shape
extrapolation produces realistic-looking and reasonable growing/shrinking shapes in accordance with
clinical expectations. Further, NAISR is able to extrapolate shapes outside this range, but the quality
is lower than within the range of observed covariates.

S.3.6 VISUALIZATION OF TEMPLATE LEARNING

Fig. S.11 shows the learned Starman, airway and hippocampus templates across epochs. We did not
use a fixed atlas. Instead, the atlas is learned as the best shape explaining the shape population given
the covariate-specific deformations. This estimated template shape is by-design expected to be the
a population-average shape at the average age and average weight in the dataset. NAISR quickly
converges and capture a reasonable template shape already within the first epochs.
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Training Set Testing Set
CD ↓ EMD ↓ HD ↓ CD ↓ EMD ↓ HD ↓Methods

µ M µ M µ M µ M µ M µ M
A-SDF 0.014 0.010 0.770 0.699 5.729 4.762 2.647 1.178 10.307 8.992 47.172 37.835
Ours 0.038 0.025 0.975 0.883 8.624 7.538 0.067 0.039 1.246 1.128 10.333 8.404

Table S.17: Comparison of NAISR and A-SDF on the training set. A-SDF performed well on the training set
but failed on the testing set.

#time 0 1 2 3 4 5 6 7 8 9 10

{St}
# time 0 1 2 3 4 5 6 7 8 9 10
age 154 155 157 159 163 164 167 170 194 227 233
weight 55.2 60.9 64.3 65.25 59.25 59.2 65.3 68 77.1 75.6 75.6
sex M M M M M M M M M M M
p-vol 91.08 92.47 93.57 94.26 94.35 94.59 96.28 97.34 102.59 104.75 104.51
m-vol 86.33 82.66 63.23 90.65 98.11 84.35 94.14 127.45 98.81 100.17 113.84

Table S.18: Airway shape transfer without covariates as input for the patient shown in the main text. Blue: gold
standard shapes; red: transferred shapes with NAISR. The table below lists the covariates (age/month, weight/kg,
sex) for the shapes above. P-vol(predicted volume) is the volume (cm3) of the transferred shape by NAISR with
covariates following Eq. equation 9. M-vol (measured volume) is the volume (cm3) of the shapes based on the
actual imaging. The transferred shapes show similar growth trends in pediatric airways as shown in Table. 4.

# time 0 1 2 3 4

{St}

# time 0 1 2 3 4
age 64.7 65.2 65.2 65.7 65.7
AD No No No No No
sex F F F F F
edu 14 14 14 14 14
p-vol 1.55 1.55 1.55 1.55 1.55
m-vol 1.49 1.56 1.55 1.45 1.55

Table S.19: Hippocampus shape transfer with covariates as input. Blue: gold standard shapes; red: transferred
shapes with NAISR. The table below lists the covariates (age/yrs, AD, sex, edu(education length)/yrs for the
shapes above. P-vol(predicted volume) is the volume (cm3) of the transferred shape by NAISR with covariates
following Equation 10. M-vol (measured volume) is the volume (cm3) of the shapes based on the actual imaging.
The transferred shapes stay almost the same in the one-year time period for this patient.
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# time 0 1 2 3 4

{St}

# time 0 1 2 3 4
age 64.7 65.2 65.2 65.7 65.7
AD No No No No No
sex F F F F F
edu 14 14 14 14 14
p-vol 1.6 1.6 1.6 1.6 1.6
m-vol 1.49 1.56 1.55 1.45 1.55

Table S.20: Hippocampus shape transfer without covariates as input. Blue: gold standard shapes; red: transferred
shapes with NAISR. The table below lists the covariates (age/yrs, AD, sex, edu(education length)/yrs for the
shapes above. P-vol(predicted volume) is the volume (cm3) of the transferred shape by NAISR with covariates
following Equation 9. M-vol (measured volume) is the volume (cm3) of the shapes based on the actual imaging.
The transferred shapes stay almost the same in the one-year period space for this patient.
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Figure S.8: Individualized Starman shape extrapolation in covariate space. The blue shapes are the groundtruth
shapes and the red shapes are the reconstructions. The purple shadows over the space indicate the covariate
range that the dataset covers. The latent code z is kept constant to create an individualized covariate shape space.
The shapes in the green and yellow boxes are plotted with {Φi} (see Section 3.4), representing the disentangled
shape evolutions along the arm and leg respectively. Shapes extrapolated from zi look realistic and smooth
across different covariates.
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A-SDF, Pediatric Airway

Ours, Pediatric Airway

Figure S.9: Individualized airway shape extrapolation in covariate space. Example shapes in the covariate space
are visualized with their volumes (cm3) below. Cyan points represent male and purple points female children
in the dataset. The points represent the covariates of all children in the dataset. The purple shadows over the
space indicate the covariate range that the dataset covers. The colored shades at the boundary represent the
covariate distributions stratified by sex. The latent code z is kept constant to create an individualized covariate
shape space. The shapes in the green and yellow boxes are plotted with {Φi} (see Section 3.4), representing the
disentangled shape evolutions along weight and age respectively. Shapes extrapolated from zi look realistic and
smooth across different covariates.
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A-SDF, ADNI Hippocampus

Ours, ADNI Hippocampus

Figure S.10: Individualized hippocampus shape extrapolation in covariate space. Example shapes in the covariate
space are visualized with their volumes (cm3) below. Cyan points represent male and purple points female
patients in the dataset. The points represent the covariates of all patients in the dataset. The purple shadows over
the space indicate the covariate range that the dataset covers. The colored shades at the boundary represent the
covariate distributions stratified by sex. The latent code z is kept constant to create an individualized covariate
shape space. The shapes in the green and yellow boxes are plotted with {Φi} (see Section 3.4), representing the
disentangled shape evolutions along AD and age respectively. Shapes extrapolated from zi look realistic and
smooth across different covariates.
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Figure S.11: Learned Starman, airway, and hippocampus templates across epochs. The blue Starmans are the
ground truth while the red ones are our learned templates across epochs.
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