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Abstract

Following its success for vision and text, the “foundation model” (FM) paradigm—
pretraining large models on massive data, then fine-tuning on target tasks—has
rapidly expanded to domains in the sciences, engineering, healthcare, and beyond.
Has this achieved what the original FMs accomplished, i.e. the supplanting
of traditional supervised learning in their domains? To answer we look at
three modalities—genomics, satellite imaging, and time series—with multiple
recent FMs and compare them to a standard supervised learning workflow:
model development, hyperparameter tuning, and training, all using only data
from the target task. Across these three specialized domains, we find that it is
consistently possible to train simple supervised models—no more complicated
than a lightly modified wide ResNet or UNet—that match or even outperform the
latest foundation models. Our work demonstrates that the benefits of large-scale
pretraining have yet to be realized in many specialized areas, reinforces the need
to compare new FMs to strong, well-tuned baselines, and introduces two new,
easy-to-use, open-source, and automated workflows for doing so.

1 Introduction
Recent years have witnessed a shift towards large-scale pretraining across domains like computer
vision and natural language processing. This workflow generally consists of two stages: pretraining
on vast amounts of domain-specific data to capture general knowledge followed by fine-tuning
on target tasks (Radford and Narasimhan, 2018). This pretrain-then-finetune paradigm has been
tremendously successful, enabling foundation models (Bommasani et al., 2021) to consistently
outcompete traditional supervised learning methods on a wide variety of downstream tasks in the
vision and language domains (Dosovitskiy et al., 2021; Liu et al., 2021; Devlin et al., 2019).

Driven by this success, the foundation model approach has been adapted to various specialized
domains, which we define to be ML application areas—e.g. genomics, satellite imaging, and time
series—whose data modalities lie outside those of classical AI tasks, i.e. natural images and text.
These domains have seen the introduction of many new FMs claiming to leverage large, domain-
specific pretraining datasets to achieve breakthrough performance on downstream tasks (Dalla-Torre
et al., 2023; Nguyen et al., 2024; Zhou et al., 2023b; Avsec et al., 2021; Ji et al., 2021; Fuller et al.,
2023; Cong et al., 2022; Mendieta et al., 2023). These claims underlie our study’s motivating question:
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Figure 1: Across three domains—genomics, satellite imaging, and time series—specialized FMs fail to signif-
icantly improve upon tuned supervised learning despite using two-to-five orders of magnitude more data. In con-
trast, breakthrough FMs such as BERT dramatically outperformed supervised baselines in NLP (top left), causing
the field to switch to fine-tuning as the default approach. For each domain we plot total pretraining and fine-tuning
data used vs. the mean improvement across tasks over the supervised state-of-the-art. Specifics of our evaluations
on the last three domains are in Section 4, while the NLP results are derived from the GLUE benchmark (Wang
et al., 2019). Note that in the x-axis of the top left figure we ignore tokens used to pretrain word embeddings.

Do these new specialized FMs outperform traditional supervised learning applied to the same tasks?

Answering this question is critical because supervised workflows are usually much less expensive to
implement and deploy, but FMs that allow for effective transfer learning have the potential to funda-
mentally transform these domains, as we have seen with language and vision processing in the past
decade. However, despite ongoing efforts to promote their fair and comprehensive evaluation (Liang
et al., 2022; Bommasani and Liang, 2021), many new FMs have not been adequately compared to
simpler, often more efficient baselines. Indeed, we found that many works only benchmark their
proposed models against other FMs, essentially creating a comparison echo chamber (Fuller et al.,
2023; Mendieta et al., 2023; Nguyen et al., 2024; Zhou et al., 2023b).

We answer our motivating question by considering a reasonably representative set of three specialized
domains—chosen according to the presence of multiple FMs and a standard set of evaluation
tasks—and comparing their performance on those tasks with that of a traditional supervised learning
workflow. As depicted in Figure 2, the latter is a model development, hyperparameter tuning, and
training process in which all steps use only data from the target task, in contrast to the FM workflow,
which uses vast amounts of pretraining data. By leveraging model selection tools ranging from
classical information criteria to cutting-edge architecture search, we build automated pipelines that
efficiently develop and train strong supervised models on over fifty tasks across three distinct domains.

Our main result is negative: we find that, despite being pretrained on massive datasets, specialized
FMs struggle and very often fail to outperform models trained exclusively on downstream task
data with traditional supervised learning (c.f. Figure 1). Specifically, we show that lightly
adapted convolutional neural network (CNN) architectures such as wide ResNet and UNet attain
state-of-the-art on the Nucleotide Transformer benchmark in genomics and match the latest
pretrained satellite FMs on downstream classification. Furthermore, we show that tuned linear
auto-regression (AR) matches or outperforms every open-source time series FM on a standard suite
of seven forecasting tasks, despite using four or more orders of magnitude fewer parameters and data.

These results demonstrate that genomics, satellite imaging, and time series have not yet had their
“BERT moment” (Devlin et al., 2019), i.e. these domains have not yet pretrained FMs that dominate
traditional supervised approaches. This is despite the fact that all them have BERT-scale1 FMs and
the fact that many of them are already witnessing a shift towards not comparing with supervised

1Models with 100M+ parameters trained on 100x or more data than supervised tasks in the domain are given.
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Figure 2: Our goal is to compare the pretrain-then-fine-tune paradigm (top) with a standard supervised
workflow (bottom) on the tasks on which specialized FMs are evaluated. While for time series we go through
a traditional process of developing and tuning a supervised model, this manual approach does not scale to many
domains; as a result, in Section 3.1 we develop a way to simulate it using architecture search. Note that FM
fine-tuning hyperparameters are not always tuned in practice, but we assume their creators make a best-effort
attempt to present their own method in the best light.

approaches, as was seen in natural language processing (NLP) post-BERT. More broadly, since
these domains are among the most high-profile areas with specialized FMs, our results challenge
the prevailing assumption that pretrained models yield superior performance. They also reinforce the
need for robust and well-tuned baselines, with surprising findings such as (a) simply tuning kernel
sizes and dilation rates in standard CNN backbones dominates a genomics classification benchmark
and (b) rescuing the century-old AR forecaster from obsolescence is as easy as considering lookback
parameters larger than five and training on a GPU. To facilitate ongoing research in these and
other domains, we make code associated with both our CNN-tuning pipeline (DASHA2) and our
AR-on-GPU workflow (Auto-AR3) publicly available.

2 Related work
Foundation models have been trained in numerous specialized domains beyond vision and text,
including genomics (Ji et al., 2021), satellite imaging (Cong et al., 2022), time series (Goswami et al.,
2024), weather (Bodnar et al., 2024), pathology (Zimmermann et al., 2024), differential equation
solving (Sun et al., 2024), web traffic (Zhao et al., 2023), and beyond. To get a representative sense
of their success, we focus on domains that combine the following properties: (a) multiple BERT-scale
FMs, (b) a standard suite of evaluation tasks, and (c) significant applied interest. These restrictions
suggest looking at three domains, all of which have at least five FMs evaluated on at least nine
tasks: genomics (which has some of the largest-available non-text FMs (Dalla-Torre et al., 2023)),
satellite imaging (which has a large ongoing benchmarking effort (Lacoste et al., 2024)), and time
series (which has already seen significant industry interest (Cohen et al., 2024)). The remainder of
this section examines how different learning workflows approach problems in these domains.

2.1 Specialized foundation models

Collectively our three target domains have more than twenty-five FMs, many developed via the
“lift-and-shift” approach—borrowing terminology from Rolf et al. (2024)—in which techniques from
core AI areas such as vision and language processing are applied with modest tailoring to specialized
domains. In particular, many methods are built on out-of-domain models such as BERT, Swin, and
Hyena (Ji et al., 2021; Mendieta et al., 2023; Nguyen et al., 2024; Shen et al., 2024a), with adaptations
such as specialized tokenizations, embeddings, and model modifications for handling domain-specific
considerations such long-range dependencies (Dalla-Torre et al., 2023; Zhou et al., 2023b; Das et al.,
2023; Cohen et al., 2024; Shen et al., 2024b) or multispectral data (Cong et al., 2022).

2https://github.com/ritvikgupta199/DASHA
3https://github.com/Zongzhe-Xu/AutoAR
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While the “lift-and-shift” approach can often be useful or at least a good starting point, its widespread
use underlines the need for strong in-domain baselines to make sure that the combination of out-of-
domain tooling and massive pretraining data is actually helpful. Such comparisons are not always
conducted, e.g. the satellite FM SatMAE (Cong et al., 2022) is compared to ImageNet-initialized and
randomly initialized ResNet-50 (He et al., 2015), while most of the time series FMs we consider only
do a full comparison to one linear baseline, DLinear (Zeng et al., 2023). While this can sometimes be
justified—e.g. in the case of NLP post-BERT—our results suggest that for now, specialized FMs
should still compare to in-domain supervised model development.

Lastly, we note that we are not the first to take a somewhat critical look at specialized FMs. For
example, Yang et al. (2024) questioned the dominance of Transformers for protein sequence FMs by
showing that convolutions could do just as well, which is related to our discovery that (supervised)
CNNs were competitive with (largely Transformer-based) genomics FMs. Another study by Kedzier-
ska et al. (2023) found that training an in-domain generative model could outperform pretraining
one in single-cell biology applications, a finding generalized by our own results, which demonstrate
that the underperformance of specialized FMs relative to in-domain training may be a broader trend
across multiple domains. In the time series domain, Tan et al. (2024) show that the popular approach
of fine-tuning text-pretrained LLMs on time series tasks often underperforms supervised models (in
their case randomly initialized attention); our results generalize this to other time series FMs and use
an even simpler supervised model (AR) to do so.

2.2 Specialized baselines

Both of the automated supervised learning pipelines we develop are heavily influenced by successful
in-domain model development. In particular, the NAS-based pipeline we use to achieve our results in
genomics and satellite imaging is inspired by the success of the human-driven specification of kernel
sizes and dilation rates in successful architectures like TCN (Lea et al., 2016) and ConvNeXt (Liu
et al., 2022). At the same time, for time series our approach is based upon a well-tuned GPU
implementation of perhaps the most basic forecasting model, AR.

2.3 AutoML for specialized domains

While often evaluated on domains such as vision, automated techniques have long been used in
specialized domains as well. An important example is Auto-ARIMA (Hyndman and Khandakar,
2008) for time series, although it has been found to underperform on the specific suite of tasks we
consider (Challu et al., 2022). However, to avoid requiring significant expertise in any one domain,
we also make use of AutoML methods developed specifically for diverse tasks (Roberts et al., 2021b;
Shen et al., 2023), in particular the NAS method DASH (Shen et al., 2022) that can discover good
kernel sizes and dilation rates for a CNN backbone faster than it can be trained from scratch.

3 Methodology
Recall that our goal is to conduct a robust comparison between traditional supervised learning and
specialized FMs; the natural way to do this is to take existing benchmarks used to evaluate FMs in our
three target domains and run a typical supervised workflow on the same tasks. As depicted in Figure 2,
this pipeline involves three steps: (1) model development, (2) hyperparameter tuning, and (3) training.
The first stage involves using both reasoning and trial-and-error to find a good architecture to tune and
train on the data; for example, Lea et al. (2016) developed the temporal convolutional network (TCN)
architecture with a multi-layer dilation rate pattern specifically suited to sequential data, while Liu
et al. (2022) designed the breakthrough ConvNeXt architecture by methodically exploring ways to
make CNNs more like Transformers without introducing attention. The second stage (hyperparameter
tuning) can also be done via human-driven iteration, but there exist effective automated procedures
for it as well (Li et al., 2020). Lastly, the third step of the pipeline involves simply training the
selected model with the selected configuration on the data of the target task.

While it is standard to automate the last two steps of the procedure, model development is typically
done by hand and so is difficult to do for fifty tasks across three domains. As a result, we settle for
approximating the traditional supervised learning workflow by simulating the model development
component using neural architecture search. To ensure fair comparison and reduce computational
costs, we restrict ourselves to low-fidelity NAS methods that return an architecture in less time than it
takes to train it. The results we obtain using NAS can therefore be viewed as lower bounds on the
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Algorithm 1: Pseudocode for the DASHA workflow. Starting with a set of backbone CNNs,
we use DASH (Shen et al., 2022) to set the right kernel size and dilation rate for each of its
convolutional layers and then use ASHA (Li et al., 2020) to configure a training routine for the
resulting architecture. Lastly, we pick the best backbone using validation data and train it.
Input: target task dataset D, candidate CNN backbone architectures A
for CNN backbone a ∈ A do

// set a kernel size and dilation rate for each layer of a
archa ← DASH(D, a)
// tune hyperparameters for the discovered architecture archa
configa, val_scorea ← ASHA(D, archa)

// train the architecture with the highest validation score
a← argmaxa∈A val_scorea
Output: train(D, archa, configa)

performance of supervised learning, as the model development might be significantly improved using
less-heuristic or human-driven architecture design.

In the remainder of this section we detail how we handle the different steps of the supervised learning
pipeline. Note that our NAS-dependent supervised workflow (DASHA)—which we cover in the first
part of this section—yields our main results for genomics and satellite imaging but not for time series;
in that domain we find its performance to be less competitive. There we instead focus on an even
simpler approach based on linear auto-regression, whose model development and tuning we describe
in the second subsection.

3.1 DASHA: Simulating the supervised workflow using NAS

To simulate model development we need a search space over architectures that is (a) efficient,
(b) flexible, and (c) applicable to the types of high-dimensional unstructured data that arise in domains
targeted by specialized FMs; these requirements make CNN-based search spaces a natural choice.
In particular, inspired by the success of hand-tuned kernel sizes and dilation rates in traditional
model development (Lea et al., 2016; Bai et al., 2018; Liu et al., 2022), we apply DASH (Shen et al.,
2022), a NAS method that starts with an existing CNN backbone—e.g. a wide ResNet (Zagoruyko
and Komodakis, 2017)—and uses the weight-sharing heuristic (Liu et al., 2018) to determine the
right kernel size and dilation rate to use at each convolutional layer. DASH has been successfully
used in AutoML competitions (Roberts et al., 2021a) and to advance the state-of-the-art on NAS
benchmarks (Tu et al., 2022), making it likely to be useful beyond the domains we consider.

As described in Algorithm 1, we augment the existing DASH approach in two ways: (1) trying
more than one CNN backbone (e.g. both wide ResNet and UNet (Ronneberger et al., 2015)) and
(2) using the well-known hyperparameter tuner ASHA (Li et al., 2020) to configure architecture-
specific training settings. This combination gives our workflow its name. Following the NAS and
hyperparameter tuning stages, we train the discovered architecture with the selected configuration on
the target data. Further details, including the resources given to the three steps of the pipeline and the
exact search spaces used by DASH and ASHA, are provided in Appendix B.1. Note that, while our
focus is on data-efficient baselines, we do ensure that the entire workflow is never substantially more
computationally expensive than fine-tuning an FM.

3.2 Auto-AR: Making a baseline stronger by making it simpler

While DASHA can be applied to forecasting tasks, it is not competitive with state-of-the-art time series
FMs. At the same time, the field of time series forecasting has long employed automated workflows,
notably the Auto-ARIMA approach of Hyndman and Khandakar (2008) that uses statistical tests
and information criteria to tune ARIMA’s lookback and differencing parameters. Auto-ARIMA was
evaluated on the time series tasks we consider by Challu et al. (2022), who found that it performed
poorly compared to deep learning approaches. However, their implementation does not make use of
multi-channel data and tunes up to a lookback window of at most five, which is much less data than
used by time series FMs. While tuning ARIMA with larger lookback parameters is computationally
costly, we find the following simplified tuning pipeline to be effective:

5



1. use the KPSS test (Kwiatkowski et al., 1992) to decide whether to take first differences
2. use the Bayesian Information Criterion to select the maximum lookback parameter of the

auto-regressive (AR) component of ARIMA, ignoring the moving average (MA) part
3. maximize the multi-channel likelihood of AR with the chosen differencing and lookback

By dropping the MA component of the model and running the procedure on GPU, we are able to
tune the lookback windows up to the maximum allowable length (usually 512); we find that longer
lookbacks are critical for performance. Note that this is just a tuned version of the classic AR model.

4 Empirical results
We now present the results of applying the automated pipelines described in the previous section
to our three target domains. For each domain, we provide a brief justification of the specific FMs
and evaluation tasks that we consider, followed by details on how we apply our workflows; further
information can be found in Appendices A and B. As there are too many separate results to present
outside the appendix, in this section we mainly present aggregate statistics that summarize our
findings for each domain, with detailed results relegated to Appendix C. The domains have different
performance metrics, but they can all be aggregated via the following quantities: average score,
average rank, and mean / median percentage improvement over a baseline. For each domain,
we define a domain-specific baseline and measure the improvement of FMs and our approach relative
to it. This standardizes comparisons across tasks of varying scales.

4.1 Genomics

We begin our investigation in the genomics domain, which has witnessed the development of
numerous FMs, including the early Enformer Avsec et al. (2021), the DNABERT series (Ji et al.,
2021; Zhou et al., 2023b), the HyenaDNA family (Nguyen et al., 2024), GENA-LM4 (Fishman
et al., 2024), the recent Caduceus family (Schiff et al., 2024), and the NT family (Dalla-Torre et al.,
2023); The latter includes models with up to 2.5B parameters. To evaluate them, we consider the
Nucleotide Transformer (NT) benchmark of Dalla-Torre et al. (2023), which contains eighteen tasks
in three main categories: regulatory elements, RNA production, and histone modification. We use this
benchmark because of its diversity and because it has been evaluated on by all of the aforementioned
FMs, allowing us to include eight of them in the comparison.

Our numbers for these models are taken from Dalla-Torre et al. (2023, Supplementary Table 6);
Following Dalla-Torre et al. (2023, Supplementary Table 5), We use F1 score and accuracy to evaluate
a subset of regulatory elements and RNA production tasks, and we use Matthew’s Correlation
Coefficient (MCC) as the main metric for evaluation on the remaining datasets.

4.1.1 Baselines
CNNs have long been used for genomics tasks (Avsec et al., 2020; Zhou and Troyanskaya, 2015)
and so constitute natural supervised baselines; in particular we include 1D variants of Wide
ResNet (WRN) and UNet, which we find perform better than some domain-specific CNNs. We use
these same two backbones as the candidate CNNs tuned and selected from by our DASHA workflow.
4.1.2 Results
Our genomics results are displayed in Table 1, which shows that our supervised workflow (DASHA)
consistently outperforms all FMs across all aggregate metrics. As discussed in Appendix C, our
strong performance is driven in large part by outstanding performance on the histone modification
tasks (c.f. Table 9). The more detailed results also highlight the importance of considering
diverse baselines, with Wide ResNet usually being the selected architecture but UNet performing
significantly better for promoter and splice site classification tasks. Overall, DASHA arguably sets
a new state-of-the-art on the NT benchmark and certainly demonstrates that supervised methods
remain quite competitive in genomics, despite the availability of massive pretraining datasets.

4.2 Satellite imaging

While they do not get as large as those in genomics, numerous BERT-scale FMs have also been
introduced for satellite imaging, including SeCo (Manas et al., 2021), the SatMAE family (Cong et al.,

4We compare to GENA-LM in Appendix C, as its reported metrics differ from the NT benchmark.
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Model Model Pretraining Avg. Avg. Mean Median
Size Base-Pairs Score ↑ Rank ↓ %Imp.↑ %Imp.↑

Foundation Models
Enformer 252M 4B 0.569 11.86 27.73 27.91
NT-1000G (500M) 500M 20.5T 0.625 10.52 33.48 36.74
NT-1000G (2.5B) 2.5B 20.5T 0.656 7.0 36.58 40.86
NT-Multispecies (500M) 500M 174B 0.700 3.81 40.76 45.07
NT-Multispecies (2.5B) 2.5B 174B 0.697 4.08 40.51 45.52
DNABERT-2 117M 32.5B 0.680 6.88 38.65 43.59
HyenaDNA-1K 1.6M 3.2B 0.708 6.92 41.2 43.36
HyenaDNA-32K 1.6M 3.2B 0.630 10.22 33.96 36.93
Caduceus-PS 1.9M 35B 0.689 6.69 39.08 41.38
Caduceus-PH 1.9M 35B 0.725 4.69 42.63 45.01

Supervised Methods
Wide ResNet 2.0M 0 0.694 6.83 37.16 43.08
UNet 4.5M 0 0.68 7.78 38.67 42.69
DASHA (our workflow) 10.5M 0 0.761 3.69 46.33 49.08

Table 1: Aggregate performance on genomics tasks, showing that our supervised workflow (DASHA)
attains state-of-the-art on the NT benchmark, outperforming all FMs according to most measures
while using no pretraining data and oftentimes many fewer parameters. For Mean/Median %Imp.,
we report percentage improvement over the Raw Probe baseline from Dalla-Torre et al. (2023), and
for DASHA the model size refers to the largest configuration across tasks. “-” indicates unknown
quantities.

2022), the CROMA family (Fuller et al., 2023), GFM (Mendieta et al., 2023), Scale-MAE (Reed
et al., 2023), Satlas (Bastani et al., 2023), Prithvi (Jakubik et al., 2023), and SkySense (Guo et al.,
2024). Because our evaluation includes GeoBench (Lacoste et al., 2024), a recently introduced
satellite benchmark that has not been considered by many of these FMs, we obtain all results using
our own fine-tuning; therefore we only consider a restricted subset of top-performing, open-source,
and compatibly-formatted models. In all cases we use the fine-tuning workflow suggested by the
authors of each FM plus some automated hyperparameter tuning; note that even with the original
code and extra tuning our reproductions on previous benchmarks systematically underperformed
results reported in the original works. We take our tasks mainly from GeoBench’s five classification
tasks and then add four additional tasks—BigEarthNet (Sumbul et al., 2019), EuroSAT (Helber et al.,
2019), Canadian Cropland (Jacques et al., 2023), and fMoW-Sentinel (Cong et al., 2022)—that are
commonly used to evaluate other FMs.5 As we focus on classification—sometimes with multiple
labels—we report top-1 accuracy or mAP as appropriate.

Model Model Pretraining Average Average Mean Median
Size Images Score ↑ Rank ↓ %Imp.↑ %Imp.↑

Foundation Models
SatMAE-Base 85.6M 700K 76.99 6.22 5.27 3.59
SatMAE-Large 303M 700K 77.75 4.5 6.52 4.62
GFM 86.8M 1.3M 77.18 5.56 5.77 4.08
SwinT-Base 86.8M 14M 76.69 5.28 4.86 1.43
CROMA-Base 90.6M 2M 77.39 4.33 5.85 4.22
CROMA-Large 312M 2M 78.03 3.33 6.90 6.09
Supervised Methods
ResNet50 23.5M 0 73.76 8.34 0.30 00.07
Wide ResNet 17.2M 0 73.97 8.22 0.00 0.00
UNet 17.3M 0 75.73 5.89 3.01 1.07
DASHA (our workflow) 32.4M 0 77.85 3.33 6.67 5.16

Table 2: Aggregate performance on satellite imaging tasks, demonstrating that a supervised learning
workflow (DASHA) can match the performance of state-of-the-art specialized FMs, all while using
no pretraining data and having two-to-ten times fewer parameters. For Mean/Median %Imp. we
report percentage improvement over a vanilla Wide ResNet, and for DASHA the model size refers
to the largest configuration across tasks.

5In Appendix C we report results when excluding tasks where missing channels may affect performance.
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Model Model Pretraining Average Average Mean Median
Size Series RMSE ↓ Rank ↓ %Imp.↑ %Imp.↑

Foundation Models
GPT4TS (OFA) 87M 8M 0.555 6.70 31.29 22.71
TEST (Few Shot) 345M 8M 0.603 10.70 25.23 14.59
MOMENT 385M 13M 0.550 5.14 31.95 23.14
TTM (B) 1M 1M 0.543 2.89 32.92 25.36
TTM (A) 5M 1M 0.538 2.21 33.38 24.96
S2IP-LLM 345M 8M 0.545 3.54 32.59 24.63
CALF 86M 8M 0.568 8.95 29.89 21.60
TEMPO (Zero Shot) 345M 8M 0.598 10.54 26.69 22.30
TimesFM (Zero Shot) 200M 5M 0.574 7.38 28.50 19.56

Supervised Methods
DLinear 700K 0 0.567 8.13 29.68 23.18
Auto-ARIMA 10 0 0.896 12.82 0.00 0.00
AR 513 0 0.556 6.57 31.17 24.31
Auto-AR (our workflow) 513 0 0.551 5.45 31.91 25.36

Table 3: Aggregate performance on time series tasks across seven tasks. The latter evaluation
demonstrates that simply tuning a classical AR model is competitive with state-of-the-art FMs while
using no pretraining data and tens of thousands of times fewer parameters. For Mean/Median %Imp.
we report percentage improvement over Auto-ARIMA, and for Auto-AR, the model size refers to the
largest configuration across tasks. “-” indicates unknown quantities.

4.2.1 Baselines

Since satellite imaging resembles RGB imaging, it is common to “lift-and-shift” vision models to this
domain (Rolf et al., 2024). As a result we use several CNN backbones as baselines and wide ResNet
as the candidate architecture for our DASHA workflow. Lastly, we also consider the performance
of fine-tuning the ImageNet-pretrained vision FM SwinT-base (Liu et al., 2021).

4.2.2 Results

Table 2 shows that our supervised workflow attains the best or second-best performance across
all aggregate metrics and is only ever slightly outperformed by CROMA-large. Notably, unlike in
genomics, the FMs here consistently outperform CNN backbones, likely because the associated papers
compare to them as baselines. However, the frequently superior performance of DASHA suggests
that domain-aware model development would yield good supervised models in this field. Another
contrast with genomics is that the larger versions of the FMs consistently attain superior performance
here, suggesting they are making at least somewhat effective use of the pretraining data. Nevertheless,
that this improvement can also be attained by DASHA, which uses no pretraining and produces a
model that is ten times smaller, suggests that there remains significant room for improvement.

4.3 Time series

Our last domain is time series, which has many FMs, including those that use the standard
pretrain-then-fine-tune workflow: GPT4TS (OFA) (Zhou et al., 2023a), LLM4TS (Chang et al.,
2023), MOMENT (Goswami et al., 2024), TEST (Sun et al., 2023), S2IP-LLM (Pan et al., 2024),
CALF (Liu et al., 2024), TTM (Ekambaram et al., 2024), and Time-LLM (Jin et al., 2024); and others
that evaluate in a zero-shot (ZS) regime: TEMPO (Cao et al., 2024), TimesFM (Das et al., 2024),
Moirai (Woo et al., 2024), and Toto (Cohen et al., 2024). As we are comparing to supervised baselines,
our evaluation of ZS models will be in a less challenging setting than the one they report numbers
for. We study the performance of these FMs and our baselines on the problem of long-horizon
forecasting, which has a standard set of tasks (Goswami et al., 2024, Table 11), of which we consider
seven.6 Note that each task consists of four settings corresponding to different time horizons, so
in total this yields twenty-eight tasks. Lastly, we compute aggregate metrics using RMSE, not MSE,
so that performance scales linearly with prediction error; this choice has no effect on average rank.

Note that we do not include four of the above time series FMs in our main analysis. One of them,
Time-LLM, reports strong results but has had difficulty being reproduced by both us and past efforts,
as we detail in Appendix C.3.1. The three others—Moirai, LLM4TS, and Toto—either evaluate

6The two we do not consider, Exchange and ILI, are not evaluated on by most time series FMs.
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on only a subset of the seven tasks or are closed-source (or both); we list their reported numbers in
Table 14. As discussed in Appendix C.3.2, Moirai underperforms Auto-AR and LLM4TS performs
roughly on par with TTM (A). The most recently released FM, Toto, does have strong aggregate
metrics, but this is mainly due to a dominant performance on a sinle task, ETTh2 (c.f. Figure 4).
As a result we do not view these excluded FMs as significantly affecting our conclusions.

4.3.1 Baselines

To baseline these FMs we use mainly linear forecasting methods, including the classical (untuned)
linear auto-regression (AR), the automated workhorse Auto-ARIMA (Hyndman and Khandakar,
2008), the more recent DLinear (Zeng et al., 2023), and our own workflow Auto-AR described in
Section 3.2. Lastly, we also evaluate our other approach, DASHA, on six of the tasks (c.f. Table 14).

4.3.2 Results

Table 3 shows that on the full seven-dataset evaluation our Auto-AR workflow always attains compet-
itive performances across all aggregate metrics considered, and in particular attains the best median
improvement over Auto-ARIMA. Specifically, our Auto-AR workflow achieves competitive perfor-
mances with two other recent time series FMs, namely MOMENT and S2IP-LLM, and outperforms
the rest of the FMs. Although TTM surpasses all other methods across three aggregated metrics, the
improvements remain relatively marginal. This observation aligns with our assertion that the substan-
tial increase in pretraining dataset size and model scale has not yet resulted in significant advancements
in model performance. Notably, the three best performing methods are not zero-shot, which is perhaps
not surprising given the extra data. However, it does reinforce the intuition that settings with high
data availability should prefer supervised methods, including simple ones like AR. Notably, even
our untuned implementation of AR that uses no differencing and a large lookback window is quite
effective, doing better than ZS FMs across all aggregate metrics and even MOMENT on some of them.

5 Discussion

At a high level, our results show that the foundation models in these three domains have not yet
surpassed supervised learning, and thus more broadly that the latter remains a strong baseline for
specialized FMs. This is a surprising and consequential finding due the paradigm’s popularity and
the data and compute costs associated with large-scale pretraining. In this section we discuss lessons
and implications for the development of machine learning in these and other application areas.

5.1 The importance of diverse, well-tuned, and domain-specific baselines

The main lesson of our work is to select a diverse array of baselines, drawing from both “lift-and-shift”
and domain-specific approaches, and then to carefully tune them. For example, in genomics the vanilla
wide ResNet baseline does remarkably well, with the majority of FMs doing worse than even this
“lift-and-shift” baseline on the typical task in the NT benchmark. While satellite FMs do outperform
such baselines, lightly modifying these CNNs via different kernel sizes and dilation rates was enough
to match state-of-the-art models there as well. Lastly, our time series results demonstrate in dramatic
fashion the need to carefully tune domain-specific approaches, as we show that simply allowing the
classical AR forecaster to make use of long lookback windows and GPU-based optimization leads
better forecasting than all open-source FMs.

5.2 Computational efficiency considerations

While not our main focus, we nevertheless highlight that any performance gains from FMs must be
balanced against their additional cost. In addition to the extensive GPU-hours used for pretraining,
the resulting models are often much bigger and so lead to much more costly inference. Indeed, apart
from the special case of HyenaDNA, the CNN architectures discovered and trained using our DASHA
workflow are typically over ten times smaller than FMs in the case of genomics and three to ten
times smaller in the case of satellite imaging. Moreover, for time series our Auto-AR approach is
quick-to-train and yields simple models with less than 1K parameters—over two-thousand times
smaller than any FM—while attaining performance that is often competitive even with closed-source
models. In aggregate, these examples further demonstrate the efficiency of supervised approaches
and the resulting high performance bar that FMs need to clear before they can be deemed useful.
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5.3 The power of tuning kernel sizes and dilation rates
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Figure 3: PCA visualization of the ar-
chitectures discovered for three different
tasks when the DASHA workflow is run
multiples times. The spatial clustering
across tasks demonstrates the within-
task consistency of the workflow’s archi-
tecture search component and the utility
of using diverse models as baselines.

Our results for genomics and satellite imaging are driven
by the DASHA workflow, whose crucial component is the
tuning of kernel sizes and dilation rate in CNN backbones
such as wide ResNet. Its success demonstrates that the
procedure is an effective surrogate for human-driven model
development, enabling the automated discovery of the types
of diverse, domain-specific baselines stressed in Section 5.1.
To understand this further, we study whether the architecture
search component selects different kernel sizes and dilation
rates for different tasks, and whether it does so in a consistent
manner. Specifically, we run DASHA on three of the
smaller datasets in the NT benchmark with fifteen different
random seeds, construct eighteen-dimensional vectors of
the discovered kernel sizes and dilation rates assigned to
each of the nine layers, and project these to two dimensions
using principal component analysis (PCA). The result in
Figure 3 reveals that the architectures are clustered by
task, demonstrating that the procedure selects different but
consistent-within-task kernel parameters. This visualization
suggests that architecture search is a useful surrogate for model development, and consequently that
the DASHA workflow may also be useful for automating similar studies and baselining FMs in other
domains with high-dimensional, unstructured data.

5.4 The surprising effectiveness of linear auto-regression

Perhaps our most surprising finding is the competitiveness of linear auto-regression (AR), a very
old method, on long-horizon forecasting. It is likely that the lack of comparison with this baseline
was driven by existing evaluations (e.g. by Challu et al. (2022)) of Auto-ARIMA (Hyndman and
Khandakar, 2008), which is perceived to be a stronger baseline because it both combines AR with
another model (MA) and tunes the lookback and differencing parameters. However, in most Auto-
ARIMA packages the default maximum lookback is around five, whereas we often found much
(hundred-fold) larger settings to work best. Since these implementations are also generally too slow
to support such long lookbacks, the possibility of expanding the hyperparameter space was more
likely to be ignored. By implementing an efficient tuning procedure over a larger space of lookback
parameters, our Auto-AR workflow comprises a significant contribution to forecasting baselines.

5.5 Limitations

While our findings are significant according to measures set by past work, they should not be
misinterpreted to address all possible scenarios where FMs may be useful. This is most salient for
time series FMs motivated by zero-shot concerns, a setting we do not study, and to some extent for
genomics FMs, which are often used for exploratory science and not supervised learning. We are also
of course computationally limited and there are many other domains where FMs have been pretrained,
and even in our three there are other tasks beyond classification and forecasting. Nevertheless, our
evaluation is extensive—over twenty-five FMs and over fifty tasks—and so are at least strongly
suggestive of the state of a field that uses benchmark performance to motivate and justify pretraining.

6 Conclusion
We conduct a thorough investigation to evaluate whether the cost of training specialized foundation
models across three major domains are justified by their superior performance relative to traditional
supervised learning. Our results demonstrate that FMs in these domains have not yet surpassed
supervised workflows and are often outperformed by fairly simple methods, including lightly modified
CNN backbones (in genomics and satellite imaging) and classical linear forecasters (for time series).
As part of our study, we introduce two automated workflows—DASHA for simulating in-domain
model development of CNNs and Auto-AR for tuning linear auto-regression on GPUs—that we
believe will be useful tools for evaluating future work in these and other areas. The code for these
pipelines and to reproduce our results is publicly available.

10



Acknowledgments

We thank Mononito Goswami, Esther Rolf, and Stephan Xie for useful feedback. This work was
supported in part by the National Science Foundation grants IIS1705121, IIS1838017, IIS2046613,
IIS2112471, a TCS Presidential Fellowship, and funding from Meta, Morgan Stanley, Amazon,
Google, and Scribe. Any opinions, findings and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily reflect the views of any of these funding
agencies.

References
Avsec, Ž., Weilert, M., Shrikumar, A., Krueger, S., Alexandari, A., Dalal, K., Fropf, R., McAnany, C., Gagneur,

J., Kundaje, A., and Zeitlinger, J. (2020). Base-resolution models of transcription factor binding reveal soft
motif syntax. bioRxiv.

Avsec, , Agarwal, V., Visentin, D., Ledsam, J. R., Grabska-Barwinska, A., Taylor, K. R., Assael, Y., Jumper,
J., Kohli, P., and Kelley, D. R. (2021). Effective gene expression prediction from sequence by integrating
long-range interactions. Nature Methods, 18(10):1196–1203.

Bai, S., Kolter, J. Z., and Koltun, V. (2018). An empirical evaluation of generic convolutional and recurrent
networks for sequence modeling. arXiv.

Bastani, F., Wolters, P., Gupta, R., Ferdinando, J., and Kembhavi, A. (2023). Satlaspretrain: A large-scale dataset
for remote sensing image understanding. In IEEE/CVF International Conference on Computer Vision, ICCV
2023, Paris, France, October 1-6, 2023, pages 16726–16736. IEEE.

Bodnar, C., Bruinsma, W. P., Lucic, A., Stanley, M., Brandstetter, J., Garvan, P., Riechert, M., Weyn, J., Dong, H.,
Vaughan, A., et al. (2024). Aurora: A foundation model of the atmosphere. arXiv preprint arXiv:2405.13063.

Bommasani, R., Hudson, D. A., Adeli, E., Altman, R., Arora, S., von Arx, S., Bernstein, M. S., Bohg, J.,
Bosselut, A., Brunskill, E., Brynjolfsson, E., Buch, S., Card, D., Castellon, R., Chatterji, N. S., Chen, A. S.,
Creel, K. A., Davis, J., Demszky, D., Donahue, C., Doumbouya, M., Durmus, E., Ermon, S., Etchemendy,
J., Ethayarajh, K., Fei-Fei, L., Finn, C., Gale, T., Gillespie, L. E., Goel, K., Goodman, N. D., Grossman, S.,
Guha, N., Hashimoto, T., Henderson, P., Hewitt, J., Ho, D. E., Hong, J., Hsu, K., Huang, J., Icard, T. F., Jain,
S., Jurafsky, D., Kalluri, P., Karamcheti, S., Keeling, G., Khani, F., Khattab, O., Koh, P. W., Krass, M. S.,
Krishna, R., Kuditipudi, R., Kumar, A., Ladhak, F., Lee, M., Lee, T., Leskovec, J., Levent, I., Li, X. L., Li,
X., Ma, T., Malik, A., Manning, C. D., Mirchandani, S. P., Mitchell, E., Munyikwa, Z., Nair, S., Narayan,
A., Narayanan, D., Newman, B., Nie, A., Niebles, J. C., Nilforoshan, H., Nyarko, J. F., Ogut, G., Orr, L.,
Papadimitriou, I., Park, J. S., Piech, C., Portelance, E., Potts, C., Raghunathan, A., Reich, R., Ren, H., Rong,
F., Roohani, Y. H., Ruiz, C., Ryan, J., R’e, C., Sadigh, D., Sagawa, S., Santhanam, K., Shih, A., Srinivasan,
K. P., Tamkin, A., Taori, R., Thomas, A. W., Tramèr, F., Wang, R. E., Wang, W., Wu, B., Wu, J., Wu, Y., Xie,
S. M., Yasunaga, M., You, J., Zaharia, M. A., Zhang, M., Zhang, T., Zhang, X., Zhang, Y., Zheng, L., Zhou,
K., and Liang, P. (2021). On the opportunities and risks of foundation models. ArXiv.

Bommasani, R. and Liang, P. (2021). Reflections on foundation models.

Box, G. and Jenkins, G. M. (1976). Time Series Analysis: Forecasting and Control. Holden-Day.

Cao, D., Jia, F., Arik, S. O., Pfister, T., Zheng, Y., Ye, W., and Liu, Y. (2024). Tempo: Prompt-based generative
pre-trained transformer for time series forecasting.

Challu, C., Olivares, K. G., Oreshkin, B. N., Garza, F., Mergenthaler, M., and Dubrawski, A. (2022). N-HiTS:
Neural hierarchical interpolation for time series forecasting. In Proceedings of the 37th AAAI Conference on
Artificial Intelligence.

Chang, C., Peng, W.-C., and Chen, T.-F. (2023). Llm4ts: Two-stage fine-tuning for time-series forecasting with
pre-trained llms. arXiv preprint arXiv:2308.08469.

Cohen, B., Khwaja, E., Wang, K., Masson, C., Ramé, E., Doubli, Y., and Abou-Amal, O. (2024). Toto: Time
series optimized transformer for observability. arXiv preprint arXiv:2407.07874.

Cong, Y., Khanna, S., Meng, C., Liu, P., Rozi, E., He, Y., Burke, M., Lobell, D. B., and Ermon, S. (2022).
SatMAE: Pre-training transformers for temporal and multi-spectral satellite imagery. In Oh, A. H., Agarwal,
A., Belgrave, D., and Cho, K., editors, Advances in Neural Information Processing Systems.

11



Dalla-Torre, H., Gonzalez, L., Revilla, J. M., Carranza, N. L., Grzywaczewski, A. H., Oteri, F., Dallago, C., Trop,
E., Sirelkhatim, H., Richard, G., Skwark, M., Beguir, K., Lopez, M., and Pierrot, T. (2023). The nucleotide
transformer: Building and evaluating robust foundation models for human genomics. bioRxiv.

Das, A., Kong, W., Sen, R., and Zhou, Y. (2023). A decoder-only foundation model for time-series forecasting.
arXiv preprint arXiv:2310.10688.

Das, A., Kong, W., Sen, R., and Zhou, Y. (2024). A decoder-only foundation model for time-series forecasting.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2019). Bert: Pre-training of deep bidirectional transformers
for language understanding. In North American Chapter of the Association for Computational Linguistics.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer,
M., Heigold, G., Gelly, S., Uszkoreit, J., and Houlsby, N. (2021). An image is worth 16x16 words:
Transformers for image recognition at scale.

Ekambaram, V., Jati, A., Nguyen, N. H., Dayama, P., Reddy, C., Gifford, W. M., and Kalagnanam, J. (2024).
Ttms: Fast multi-level tiny time mixers for improved zero-shot and few-shot forecasting of multivariate time
series. arXiv preprint arXiv:2401.03955.

Fishman, V., Kuratov, Y., Shmelev, A., Petrov, M., Penzar, D., Shepelin, D., Chekanov, N., Kardymon, O., and
Burtsev, M. (2024). Gena-lm: A family of open-source foundational dna language models for long sequences.
bioRxiv.

Fuller, A., Millard, K., and Green, J. R. (2023). Croma: Remote sensing representations with contrastive
radar-optical masked autoencoders. In Thirty-seventh Conference on Neural Information Processing Systems.

Goswami, M., Szafer, K., Choudhry, A., Cai, Y., Li, S., and Dubrawski, A. (2024). Moment: A family of open
time-series foundation models.

Guo, X., Lao, J., Dang, B., Zhang, Y., Yu, L., Ru, L., Zhong, L., Huang, Z., Wu, K., Hu, D., et al. (2024). Sky-
sense: A multi-modal remote sensing foundation model towards universal interpretation for earth observation
imagery. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
27672–27683.

He, K., Zhang, X., Ren, S., and Sun, J. (2015). Deep residual learning for image recognition.

Helber, P., Bischke, B., Dengel, A., and Borth, D. (2019). Eurosat: A novel dataset and deep learning benchmark
for land use and land cover classification.

Hyndman, R. and Khandakar, Y. (2008). Automatic time series forecasting: The forecast package for R. Journal
of Statistical Software, 27(3).

Jacques, A. A. B., Diallo, A. B., and Lord, E. (2023). The canadian cropland dataset: A new land cover dataset
for multitemporal deep learning classification in agriculture.

Jakubik, J., Roy, S., Phillips, C. E., Fraccaro, P., Godwin, D., Zadrozny, B., Szwarcman, D., Gomes, C., Nyirjesy,
G., Edwards, B., Kimura, D., Simumba, N., Chu, L., Mukkavilli, S. K., Lambhate, D., Das, K., Bangalore,
R., Oliveira, D. A. B., Muszynski, M., Ankur, K., Ramasubramanian, M., Gurung, I., Khallaghi, S., Li,
H., Cecil, M., Ahmadi, M., Kordi, F., Alemohammad, H., Maskey, M., Ganti, R. K., Weldemariam, K.,
and Ramachandran, R. (2023). Foundation models for generalist geospatial artificial intelligence. CoRR,
abs/2310.18660.

Ji, Y., Zhou, Z., Liu, H., and Davuluri, R. V. (2021). DNABERT: pre-trained Bidirectional Encoder Representa-
tions from Transformers model for DNA-language in genome. Bioinformatics, 37(15):2112–2120.

Jin, M., Wang, S., Ma, L., Chu, Z., Zhang, J. Y., Shi, X., Chen, P., Liang, Y., Li, Y., Pan, S., and Wen, Q. (2024).
Time-llm: Time series forecasting by reprogramming large language models. In The Twelfth International
Conference on Learning Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net.

Kedzierska, K. Z., Crawford, L., Amini, A. P., and Lu, A. X. (2023). Assessing the limits of zero-shot foundation
models in single-cell biology. bioRxiv.

Kwiatkowski, D., Phillips, P. C., Schmidt, P., and Shin, Y. (1992). Testing the null hypothesis of stationarity
against the alternative of a unit root: How sure are we that economic time series have a unit root? Journal of
Econometrics, 54(1):159–178.

Lacoste, A., Lehmann, N., Rodriguez, P., Sherwin, E., Kerner, H., Lütjens, B., Irvin, J., Dao, D., Alemohammad,
H., Drouin, A., et al. (2024). Geo-bench: Toward foundation models for earth monitoring. Advances in
Neural Information Processing Systems, 36.

12



Lea, C., Vidal, R., Reiter, A., and Hager, G. D. (2016). Temporal convolutional networks: A unified approach to
action segmentation. In Computer Vision–ECCV 2016 Workshops: Amsterdam, The Netherlands, October
8-10 and 15-16, 2016, Proceedings, Part III 14, pages 47–54. Springer.

Li, L., Jamieson, K., Rostamizadeh, A., Gonina, E., Ben-Tzur, J., Hardt, M., Recht, B., and Talwalkar, A. (2020).
A system for massively parallel hyperparameter tuning. Proceedings of Machine Learning and Systems,
2:230–246.

Liang, P., Bommasani, R., Lee, T., Tsipras, D., Soylu, D., Yasunaga, M., Zhang, Y., Narayanan, D., Wu, Y.,
Kumar, A., et al. (2022). Holistic evaluation of language models. arXiv preprint arXiv:2211.09110.

Liu, H., Simonyan, K., and Yang, Y. (2018). Darts: Differentiable architecture search. arXiv preprint
arXiv:1806.09055.

Liu, P., Guo, H., Dai, T., Li, N., Bao, J., Ren, X., Jiang, Y., and Xia, S.-T. (2024). Taming pre-trained llms for
generalised time series forecasting via cross-modal knowledge distillation. arXiv preprint arXiv:2403.07300.

Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., and Guo, B. (2021). Swin transformer: Hierarchical
vision transformer using shifted windows. In Proceedings of the IEEE/CVF international conference on
computer vision, pages 10012–10022.

Liu, Z., Mao, H., Wu, C.-Y., Feichtenhofer, C., Darrell, T., and Xie, S. (2022). A convnet for the 2020s. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 11976–11986.

Manas, O., Lacoste, A., Giró-i Nieto, X., Vazquez, D., and Rodriguez, P. (2021). Seasonal contrast: Unsupervised
pre-training from uncurated remote sensing data. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 9414–9423.

Mendieta, M., Han, B., Shi, X., Zhu, Y., and Chen, C. (2023). Towards geospatial foundation models via
continual pretraining. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages
16806–16816.

Nguyen, E., Poli, M., Faizi, M., Thomas, A., Wornow, M., Birch-Sykes, C., Massaroli, S., Patel, A., Rabideau, C.,
Bengio, Y., et al. (2024). Hyenadna: Long-range genomic sequence modeling at single nucleotide resolution.
Advances in neural information processing systems, 36.

Pan, Z., Jiang, Y., Garg, S., Schneider, A., Nevmyvaka, Y., and Song, D. (2024). S2 ip-llm: Semantic space
informed prompt learning with llm for time series forecasting. arXiv preprint arXiv:2403.05798.

Radford, A. and Narasimhan, K. (2018). Improving language understanding by generative pre-training.

Reed, C. J., Gupta, R., Li, S., Brockman, S., Funk, C., Clipp, B., Keutzer, K., Candido, S., Uyttendaele, M., and
Darrell, T. (2023). Scale-mae: A scale-aware masked autoencoder for multiscale geospatial representation
learning. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 4088–4099.

Roberts, N., Guo, S., Xu, C., Talwalkar, A., Lander, D., Tao, L., Cai, L., Niu, S., Heng, J., Qin, H., Deng, M.,
Hog, J., Pfefferle, A., Shivakumar, S. A., Krishnakumar, A., Wang, Y., Sukthanker, R., Hutter, F., Hasanaj,
E., Le, T., Khodak, M., Nevmyvaka, Y., Rasul, K., Sala, F., Schneider, A., Shen, J., and Sparks, E. R.
(2021a). AutoML Decathlon: diverse tasks, modern methods, and efficiency at scale. In Advances in Neural
Information Processing Systems: Competition Track.

Roberts, N., Khodak, M., Dao, T., Li, L., Ré, C., and Talwalkar, A. (2021b). Rethinking neural operations for
diverse tasks. Advances in Neural Information Processing Systems, 34:15855–15869.

Rolf, E., Klemmer, K., Robinson, C., and Kerner, H. (2024). Mission critical–satellite data is a distinct modality
in machine learning. arXiv preprint arXiv:2402.01444.

Ronneberger, O., Fischer, P., and Brox, T. (2015). U-net: Convolutional networks for biomedical image
segmentation.

Schiff, Y., Kao, C.-H., Gokaslan, A., Dao, T., Gu, A., and Kuleshov, V. (2024). Caduceus: Bi-directional
equivariant long-range dna sequence modeling. arXiv preprint arXiv:2403.03234.

Shen, J., Khodak, M., and Talwalkar, A. (2022). Efficient architecture search for diverse tasks. In Advances in
Neural Information Processing Systems (NeurIPS).

Shen, J., Li, L., Dery, L. M., Staten, C., Khodak, M., Neubig, G., and Talwalkar, A. (2023). Cross-modal
fine-tuning: Align then refine. In International Conference on Machine Learning, pages 31030–31056.
PMLR.

13



Shen, J., Marwah, T., and Talwalkar, A. (2024a). Ups: Towards foundation models for pde solving via
cross-modal adaptation. arXiv preprint arXiv:2403.07187.

Shen, J., Tenenholtz, N., Hall, J. B., Alvarez-Melis, D., and Fusi, N. (2024b). Tag-llm: Repurposing general-
purpose llms for specialized domains. arXiv preprint arXiv:2402.05140.

Sumbul, G., Charfuelan, M., Demir, B., and Markl, V. (2019). Bigearthnet: A large-scale benchmark archive for
remote sensing image understanding. In IGARSS 2019 - 2019 IEEE International Geoscience and Remote
Sensing Symposium. IEEE.

Sun, C., Li, H., Li, Y., and Hong, S. (2023). Test: Text prototype aligned embedding to activate llm’s ability for
time series. arXiv preprint arXiv:2308.08241.

Sun, J., Liu, Y., Zhang, Z., and Schaeffer, H. (2024). Towards a foundation model for partial differential equation:
Multi-operator learning and extrapolation. arXiv preprint arXiv:2404.12355.

Tan, M., Merrill, M. A., Vinayak Gupta, T. A., and Hartvigsen, T. (2024). Are language models actually useful
for time series forecasting? In Advances in Neural Information Processing Systems.

Tu, R., Roberts, N., Khodak, M., Shen, J., Sala, F., and Talwalkar, A. (2022). NAS-Bench-360: Benchmarking
diverse tasks for neural architecture search. In Advances in Neural Information Processing Systems: Datasets
and Benchmarks Track.

Wang, A., Singh, A., Michael, J., Hill, F., Levy, O., and Bowman, S. R. (2019). GLUE: A multi-task benchmark
and analysis platform for natural language understanding. In Proceedings of the 7th International Conference
on Learning Representations.

Wang, Y., Wu, H., Dong, J., Liu, Y., Long, M., and Wang, J. (2024). Deep time series models: A comprehensive
survey and benchmark.

Woo, G., Liu, C., Kumar, A., Xiong, C., Savarese, S., and Sahoo, D. (2024). Unified training of universal time
series forecasting transformers.

Yang, K. K., Fusi, N., and Lu, A. X. (2024). Convolutions are competitive with transformers for protein sequence
pretraining. Cell Systems, 15(3):286–294.

Zagoruyko, S. and Komodakis, N. (2017). Wide residual networks.

Zeng, A., Chen, M., Zhang, L., and Xu, Q. (2023). Are transformers effective for time series forecasting? In
Proceedings of the AAAI conference on artificial intelligence, volume 37, pages 11121–11128.

Zhao, R., Zhan, M., Deng, X., Wang, Y., Wang, Y., Gui, G., and Xue, Z. (2023). Yet another traffic classifier: A
masked autoencoder based traffic transformer with multi-level flow representation. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 37, pages 5420–5427.

Zhou, J. and Troyanskaya, O. G. (2015). Predicting effects of noncoding variants with deep learning–based
sequence model. Nature Methods, 12(10):931–934.

Zhou, T., Niu, P., Wang, X., Sun, L., and Jin, R. (2023a). One fits all:power general time series analysis by
pretrained lm.

Zhou, Z., Ji, Y., Li, W., Dutta, P., Davuluri, R., and Liu, H. (2023b). Dnabert-2: Efficient foundation model and
benchmark for multi-species genome.

Zimmermann, E., Vorontsov, E., Viret, J., Casson, A., Zelechowski, M., Shaikovski, G., Tenenholtz, N., Hall,
J., Klimstra, D., Yousfi, R., Fuchs, T., Fusi, N., Liu, S., and Severson, K. (2024). Virchow2: Scaling
self-supervised mixed magnification models in pathology. arXiv.

A Tasks

A.1 Genomics

For the Genomics domain, we use the eighteen classification tasks from the Nucleotide Transformer
benchmark (Dalla-Torre et al., 2023) that has widely been used for other genomics FMs. The
benchmark datasets consist of nucleotide base sequences ranging from 200 to 600 bases in
length. It provides a realistic and biological meaningful benchmark across four main categories:
promoter (human/mouse), enhancer (human), splice site (SS; human/multispecies) and histone mod-
ification (yeast). Within the benchmark, the enhancers_types and splice_sites_all tasks are
classification tasks with three classes each, while the remaining tasks are binary classification tasks.
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Dataset # of classes # of samples Maximum Metrictrain test sequence length

enhancers 2 14968 400 200 MCC
enhancers_types 3 14968 400 200 MCC
promoter_all 2 53276 5920 300 F1
promoter_no_tata 2 47767 5299 300 F1
promoter_tata 2 5509 621 300 F1
splice_sites_acceptors 2 19961 2218 600 F1
splice_sites_all 3 27000 3000 400 Accuracy
splice_sites_donors 2 19775 2198 600 F1
H3 2 13468 1497 500 MCC
H3K14ac 2 29743 3305 500 MCC
H3K36me3 2 31392 3488 500 MCC
H3K4me1 2 28509 3168 500 MCC
H3K4me2 2 27614 3069 500 MCC
H3K4me3 2 25953 2884 500 MCC
H3K79me3 2 25953 2884 500 MCC
H3K9ac 2 25003 2779 500 MCC
H4 2 13140 1461 500 MCC
H4ac 2 30685 3410 500 MCC

Table 4: Statistics for Genomics datasets

A.2 Satellite imaging

In the satellite imaging domain, we aim to conduct evaluations with real-world relevance to Earth
science. To achieve this, we include a variety of data from different sources to cover a diverse range
of tasks, such as brick kiln identification, deforestation prediction, and photovoltaic monitoring. We
utilize five classification tasks provided by the GeoBench dataset (Lacoste et al., 2024), a recently
developed benchmark that offers a clean and carefully curated collection of tasks specifically designed
for satellite imaging. In addition to GeoBench, we evaluate our model on three additional datasets
(Helber et al., 2019; Jacques et al., 2023; Sumbul et al., 2019) commonly used in the literature as
benchmarks for this domain . This brings the total to eight datasets, encompassing a wide range
of features. These tasks vary in complexity, with single-class classification ranging from binary to
62-class problems, as well as two multilabel classification tasks. The datasets are further characterized
by diverse input channels, ranging from 3 RGB channels to 18 channels that integrate data from both
Sentinel-1 and Sentinel-2 formats.

For Geo-Bench datasets, we do not use any mixup and cutmix augmentations. For other datasets,
we universally use mixup = 0.8, cutmix = 1.0, and a switch probability of 0.5. Following Fuller
et al. (2023), we use only 10% of training set from BigEarthNet and fMoW-Sentinel while using the
full evaluation set for validation.

Dataset Image # of classes # of samples # of
Size train val test channels

m-bigearthnet 120 × 120 43 20000 1000 1000 12
m-brickkiln 64 × 64 2 15063 999 999 13
m-so2sat 32 × 32 17 19992 986 986 18
m-forestnet 332 × 332 12 6464 989 993 6
m-pv4ger 320 × 320 2 11814 999 999 3
BigEarthNet 120 × 120 19 31166 103944 103728 12
EuroSAT 64 × 64 13 16200 10800 5400 13
Canadian Cropland 120 × 120 10 53884 11414 11674 12
fMoW-Sentinel 96 × 96 62 71287 84939 84966 13

Table 5: Statistics for Satellite datasets
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A.3 Time series

In the time series domain, we focus on the long horizon forecasting task. We use a subset of the com-
mon benchmark datasets for evaluating models across different domains (ETT, Electricity, Weather,
Illness, Traffic, Exchange Rate) (Wang et al., 2024), specifically, the ETT, Weather, Electricity, Ill-
ness (ILI), and Traffic datasets. Note that the ETT dataset is actually a collection of four series: ETTh1,
ETTh2, ETTm1, and ETTm2; we follow the rest of the literature in treating each series as a separate
dataset. Each dataset contains measurements of one or more channels at evenly spaced time steps.

Dataset # of # of samples
channels train val test

ETTh1 7 8033 2785 2785
ETTh2 7 8033 2785 2785
ETTm1 7 33953 11425 11425
ETTm2 7 33953 11425 11425
Weather 21 36280 5175 10444
Electricity 321 17805 2537 5165
ILI 7 69 2 98
Traffic 862 11673 1661 3413

Table 6: Statistics for Time Series datasets

B Implementation details

B.1 DASHA

Following the architecture search, we perform hyperparameter tuning using ASHA. The hyperpa-
rameter search space includes learning rate, weight decay, momentum, drop rate, and random seed
for model initialization. We define a continuous search space, with further specific details provided in
Table 7. Using ASHA, we evaluate 200 sample configurations over a maximum of 20 epochs, using a
reduction factor of 2. The low-performing configurations are pruned based on their validation scores.

Before retraining the final model, we load the model checkpoint corresponding to the optimal
hyperparameter configuration. The model is then trained for 200 epochs on the training data, with the
best-performing checkpoint selected based on validation performance. This process is repeated for
each backbone architecture, and the best-performing backbone is selected using the validation score.
Finally, the checkpoint for the selected backbone is evaluated on the test set to obtain the final score.

Hyperparameter Search Space Type of Search Space

random_seed [0, 500] Integer
lr [10−5, 5× 10−1] Log Uniform
drop_rate {0, 0.05, 0.1} Discrete
weight_decay [5× 10−7, 5× 10−3] Log Uniform
momentum [0.9, 1] Uniform

Table 7: Hyperparameter Search Space

B.2 Auto-AR

A fairly complete description is provided in Section 3.2. Here we note only that, because we minimize
the total maximum likelihood across (independent) channels, to determine the amount of differencing
used for each task we run the KPSS test separately on each channel and use the differencing needed
by the majority of the channels. Notably, this results in a differencing of one for each task.
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C Detailed results

C.1 Genomics

We include all FMs listed in Dalla-Torre et al. (2023, Supplementary Table 6) with addition of the
two recently released models, Caduceus (Schiff et al., 2024) and Gena-LM (Fishman et al., 2024);
note that the last row of tasks in the NT paper(promoter and splice sites) are mislabeled, but we
infer an order in combination with previous information obtained from a (now-deleted) Huggingface
leaderboard.7 In alignment with the leaderboard, we apply a 0.1 validation split for DASHA during
our evaluation. Additionally, we use an architecture set that includes both Wide ResNet and UNet for
the search with DASHA on these datasets. We use batch size= 128 for all datasets, and cross entropy
loss for all the training and finetuning. Individual scores for each task in the benchmark are provided
in Tables 9 and 8.

Model
Regulatory Elements RNA Production

enhancers enhancers promoter promoter promoter splice_sites splice_sites splice_sites
types all no_tata tata acceptors all donors

Enformer 0.454 0.312 0.955 0.955 0.959 0.915 0.847 0.906
NT-1000G (500M) 0.509 0.395 0.951 0.951 0.936 0.965 0.968 0.971
NT-1000G (2.5B) 0.546 0.432 0.965 0.967 0.957 0.98 0.976 0.979
NT-Multispecies (500M) 0.559 0.438 0.976 0.976 0.965 0.981 0.984 0.987
NT-Multispecies (2.5B) 0.545 0.444 0.975 0.977 0.959 0.986 0.982 0.987
DNABERT-1 0.495 0.367 0.961 0.962 0.956 – 0.975 –
DNABERT-2 0.525 0.423 0.972 0.972 0.955 0.975 0.939 0.963
HyenaDNA-1K 0.52 0.403 0.959 0.959 0.944 0.959 0.956 0.947
HyenaDNA-32K 0.489 0.352 0.956 0.954 0.939 0.96 0.962 0.957
Caduceus-PS 0.491 0.416 0.967 0.968 0.957 0.936 0.927 0.874
Caduceus-PH 0.546 0.439 0.97 0.969 0.953 0.937 0.94 0.948

Wide ResNet 0.525 0.416 0.952 0.946 0.93 0.821 0.457 0.815
UNet 0.49 0.366 0.956 0.954 0.95 0.956 0.955 0.968

DASHA 0.527 0.432 0.958 0.962 0.957 0.978 0.979 0.978

Table 8: Regulatory Elements and RNA Production Downstream Tasks

Model H3 H3K14ac H3K36me3 H3K4me1 H3K4me2 H3K4me3 H3K79me3 H3K9ac H4 H4ac

Enformer 0.724 0.284 0.345 0.291 0.207 0.156 0.498 0.415 0.735 0.275
NT-1000G (500M) 0.736 0.381 0.468 0.38 0.26 0.235 0.562 0.479 0.755 0.342
NT-1000G (2.5B) 0.754 0.453 0.53 0.418 0.278 0.311 0.574 0.491 0.787 0.408
NT-Multispecies (500M) 0.786 0.549 0.624 0.55 0.32 0.406 0.63 0.567 0.799 0.496
NT-Multispecies (2.5B) 0.793 0.538 0.618 0.541 0.324 0.408 0.623 0.547 0.808 0.492
DNABERT-1 0.763 0.403 0.474 0.396 0.282 0.258 0.578 0.505 0.784 0.359
DNABERT-2 0.785 0.515 0.591 0.512 0.333 0.353 0.615 0.545 0.797 0.465
HyenaDNA-1K 0.781 0.608 0.614 0.512 0.455 0.55 0.669 0.586 0.763 0.564
HyenaDNA-32K 0.747 0.405 0.479 0.387 0.276 0.291 0.567 0.472 0.761 0.379
Caduceus-PS 0.799 0.541 0.609 0.488 0.388 0.44 0.679 0.604 0.789 0.525
Caduceus-PH 0.815 0.631 0.601 0.523 0.487 0.544 0.697 0.622 0.811 0.621

Wide ResNet 0.798 0.667 0.670 0.554 0.541 0.660 0.706 0.620 0.754 0.657
UNet 0.797 0.647 0.482 0.541 0.553 0.292 0.562 0.624 0.760 0.389

DASHA 0.790 0.683 0.630 0.528 0.640 0.714 0.721 0.709 0.776 0.744

Table 9: Histone Modification Downstream Tasks

The performance of the models on individual tasks is detailed in Tables 8 and 9. In the regulatory
elements domain (c.f. Table 8), DASHA performs slightly behind the largest models like NT-
Multispecies (Dalla-Torre et al., 2023) on the enhancers tasks but consistently outperforms models
such as DNABERT-1 (Ji et al., 2021), Enformer (Avsec et al., 2021), and HyenaDNA (Nguyen
et al., 2024); in the promoters task in generally performs worse than all reported FMs. In the RNA
production domain, DASHA performs near the middle of the FMs. However, where DASHA truly
excels is in the histone modification tasks (in Table 9), where it not only competes with, but often
outperforms, the other FMs, consistently achieving top scores in nearly all tasks.

Note that because GENA-LM reports using MCC on all datasets, which is different than the metrics
used by NT and Caduceus paper, we compare its results with DASHA in a separate table, where all
datasets are evaluated through MCC. As shown in Table 10 and Table 11, DASHA also outperform
GENA-LM by a large margin in terms of average MCC.

7https://huggingface.co/spaces/InstaDeepAI/nucleotide_transformer_benchmark

17

https://huggingface.co/spaces/InstaDeepAI/nucleotide_transformer_benchmark


Model H3 H3K14ac H3K36me3 H3K4me1 H3K4me2 H3K4me3 H3K79me3 H3K9ac H4 H4ac

GENA-LM 0.79 0.6 0.61 0.53 0.46 0.55 0.67 0.61 0.78 0.59
DASHA 0.79 0.68 0.63 0.53 0.64 0.71 0.72 0.71 0.78 0.74

Table 10: Histone Modification for GENA-LM (all scores are obtained using MCC)

Model enhancers enhancers promoter promoter promoter splice_sites splice_sites splice_sites Averagetypes all no_tata tata acceptors all donors

GENA-LM 0.55 0.45 0.94 0.94 0.91 0.92 0.91 0.91 0.707
DASHA 0.53 0.43 0.92 0.92 0.90 0.97 0.96 0.96 0.755

Table 11: Regulatory Elements and RNA Production for GENA-LM. (all scores are obtained using
MCC) The last column shows the average MCC across all 18 datasets.

C.2 Satellite imaging

Training on satellite datasets requires relatively large computational resources due to the high number
of channels and the size of the datasets. To ensure a fair comparison, we fine-tuned all the foundation
models ourselves by sweeping across a fixed set of base learning rates [5e− 3, 2e− 3, 2e− 4, 4e− 5].
We then calculate the actual learning rate from base learning rate following previous work by
lr = base_lr · batch_size

256 . This approach ensures that approximately the same amount of resources
were used as during the DASHA tuning process, allowing for a balanced evaluation of model
performance.

We closely followed the reported evaluation processes from previous studies on FMs (Cong et al.,
2022; Fuller et al., 2023; Mendieta et al., 2023). These models do not employ a validation set for
hyperparameter tuning or model selection, and we adhered to this same approach when fine-tuning the
FMs. However, for DASHA, since we performed extensive hyperparameter optimization over a large
search space, we used a validation set to ensure fair and accurate comparisons between DASHA and
the FMs. This is a less favorable setting for DASHA, as it relies on extensive hyperparameter tuning,
but we demonstrate that, even under these conditions, DASHA matches the performance of the FMs.

It is also important to note that SatMAE only accepts 3-channel and 12-channel inputs, while CROMA
is limited to 12-channel inputs. GeoBench, however, includes a wide range of tasks with varying
numbers of input channels, ranging from 3 to 18. Despite these differences, we include all datasets in
our evaluation because they are valuable benchmarks in the satellite image domain, and it is crucial
for FMs in this field to generalize across diverse datasets. For datasets where the input size does not
match the model requirements, we pad missing channels with zeros and prune any extra channels.
However, to ensure a fair comparison, in addition to reporting the average scores across all datasets,
we also provide average scores excluding m-pv4ger and m-forestnet, where missing channels may
affect the performance of the FMs. The aggregate scores excluding m-pv4ger and m-forestnet are
presented in Figure 12.

Model Average Average Mean Median
Score ↑ Rank ↓ %Imp.↑ %Imp.↑

Foundation Model
SatMAE-Base 77.71 6.00 6.74 4.56
SatMAE-Large 78.44 4.07 7.87 6.75
GFM 76.95 5.57 5.40 4.08
SwinT-Base 76.12 6.50 3.98 1.43
CROMA-Base 77.98 3.57 6.95 5.30
CROMA-Large 79.06 2.14 8.84 6.26

Supervised Methods
ResNet50 73.25 9.00 -0.27 -0.38
Wide ResNet 73.90 8.00 0.00 0.00
UNet 75.29 6.57 2.33 0.87
DASHA 78.00 3.57 7.02 5.16

Table 12: Aggregated metrics on Satellite imaging tasks
excluding the m-pv4ger and m-forestnet.
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For training and finetuning, we universally use batch_size = 16 and loss function as cross entropy
with 0.1 label smoothing for single label classification, and multi-label soft margin loss for multilabel
classification. Individual scores for each task are provided in Table 13.

Model Average m-bigearthnet m-brickkiln m-so2sat m-forestnet m-pv4ger BigEarth EuroSAT Canadian fMoW
Net Cropland Sentinel

SatMAE-Base 76.99 72.3 98.22 54.56 51.89 97.0 86.04 98.69 74.64 59.55
SatMAE-Large 77.75 73.82 98.6 55.79 53.7 96.92 86.75 98.86 75.38 59.89
GFM 77.18 71.97 98.35 57.52 59.38 96.54 85.93 99.02 72.03 53.84
SwinT-Base 76.69 70.14 98.81 56.49 59.78 97.54 85.91 98.99 70.15 52.37
CROMA-Base 77.39 72.07 98.99 60.04 54.07 96.6 86.94 98.81 75.87 53.14
CROMA-Large 78.03 73.36 99.01 59.22 51.96 96.9 87.98 98.98 76.56 58.32

ResNet50 73.76 60.31 98.4 51.83 54.29 96.79 79.16 98.23 72 52.84
Wide ResNet 73.97 69.15 98.95 49.04 52.14 96.34 80.48 98.6 72.05 49.00
UNet 75.73 69.89 98.6 56.87 57.18 97.39 83.9 98.99 72.68 46.11

DASHA 77.85 72.72 98.92 56.28 57.24 97.4 86.09 99.07 75.69 57.20

Table 13: Satellite Imaging Tasks

C.3 Time series

The long horizon forecasting task for a time series can be summarized as follows: at every timestep t,
take the L historical observations at times (t − L + 1, ..., t) for each channel and predict the next
H observations (t+ 1, ..., t+H) for every channel. Following the literature, we evaluate models
on H ∈ {24, 36, 48, 60} for the Illness dataset and H ∈ {96, 192, 336, 720}. For most methods, we
report results when L = 512.

Model ETTh1 ETTh2 ETTm1 ETTm2

Horizon 96 192 336 720 96 192 336 720 96 192 336 720 96 192 336 720

GPT4TS (OFA) 0.376 0.416 0.442 0.477 0.285 0.354 0.373 0.406 0.292 0.332 0.366 0.417 0.173 0.229 0.286 0.378
TEST (Few shot) 0.455 0.572 0.611 0.723 0.332 0.401 0.408 0.459 0.392 0.423 0.471 0.552 0.233 0.303 0.359 0.452
LLM4TS 0.371 0.403 0.42 0.422 0.269 0.328 0.353 0.383 0.285 0.324 0.353 0.408 0.165 0.22 0.268 0.35
MOMENT 0.387 0.41 0.422 0.454 0.288 0.349 0.369 0.403 0.293 0.326 0.352 0.405 0.17 0.227 0.275 0.363
TTM (B) 0.36 0.392 0.401 0.436 0.269 0.336 0.359 0.39 0.291 0.325 0.363 0.419 0.164 0.219 0.277 0.35
TTM (A) 0.363 0.392 0.413 0.442 0.262 0.324 0.351 0.392 0.283 0.332 0.353 0.393 0.158 0.213 0.269 0.369
S2IP-LLM 0.366 0.401 0.412 0.44 0.278 0.346 0.367 0.4 0.288 0.323 0.359 0.403 0.165 0.222 0.277 0.363
CALF 0.369 0.427 0.456 0.479 0.279 0.353 0.362 0.404 0.323 0.374 0.409 0.477 0.178 0.242 0.307 0.397
TEMPO (Zero Shot) 0.4 0.426 0.441 0.443 0.301 0.355 0.379 0.409 0.438 0.461 0.515 0.591 0.185 0.243 0.309 0.386
TimesFM (Zero Shot) 0.421 0.472 0.51 0.514 0.326 0.399 0.434 0.451 0.357 0.411 0.441 0.507 0.205 0.294 0.367 0.473
Moirai (Zero Shot) 0.375 0.399 0.412 0.413 0.281 0.34 0.362 0.38 0.404 0.435 0.462 0.49 0.205 0.261 0.319 0.415
Toto (Zero Shot) 0.307 0.329 0.396 0.419 0.093 0.135 0.16 0.294 0.306 0.328 0.39 0.463 0.2 0.269 0.264 0.354

ARIMA 0.646 0.704 0.732 0.738 0.324 0.411 0.456 0.462 1.131 1.172 1.197 1.231 0.225 0.298 0.37 0.478
AR (d=0) 0.358 0.39 0.41 0.424 0.271 0.334 0.361 0.395 0.299 0.336 0.368 0.426 0.163 0.218 0.271 0.366
DLinear 0.375 0.405 0.439 0.472 0.289 0.383 0.448 0.605 0.299 0.335 0.369 0.425 0.167 0.224 0.281 0.397

Auto-AR 0.357 0.39 0.41 0.422 0.269 0.332 0.359 0.394 0.299 0.336 0.368 0.426 0.163 0.218 0.271 0.367
DASHA 0.369 0.401 0.430 0.478 0.284 0.377 0.396 0.745 0.305 0.335 0.367 0.418 0.169 0.224 0.290 0.378

Model Weather Electricity ILI Traffic

Horizon 96 192 336 720 96 192 336 720 96 192 336 720 96 192 336 720

GPT4TS (OFA) 0.162 0.204 0.254 0.326 0.139 0.153 0.169 0.206 2.063 1.868 1.79 1.979 0.388 0.407 0.412 0.45
TEST (Few shot) 0.163 0.23 0.278 0.301 0.143 0.158 0.176 0.23 - - - - 0.415 0.425 0.436 0.489
LLM4TS 0.147 0.191 0.241 0.313 0.128 0.146 0.163 0.2 – – – – 0.372 0.391 0.405 0.437
MOMENT 0.154 0.197 0.246 0.315 0.136 0.152 0.167 0.205 2.728 2.669 2.728 2.883 0.391 0.404 0.414 0.45
TTM (B) 0.146 0.19 0.242 0.323 0.129 0.149 0.163 0.2 - - - - 0.368 0.403 0.395 0.431
TTM (A) 0.149 0.192 0.24 0.318 0.128 0.144 0.162 0.191 - - - - 0.352 0.359 0.375 0.419
S2IP-LLM 0.145 0.19 0.243 0.312 0.135 0.149 0.167 0.2 - - - - 0.379 0.397 0.407 0.44
CALF 0.164 0.214 0.269 0.355 0.145 0.161 0.175 0.222 - - - - 0.407 0.43 0.444 0.477
TEMPO (Zero Shot) 0.211 0.254 0.292 0.37 0.178 0.198 0.209 0.279 3.0 2.956 2.651 2.701 0.476 0.496 0.503 0.538
TimesFM (Zero Shot) 0.122 0.169 0.242 0.391 0.119 0.137 0.158 0.206 2.595 2.984 3.34 3.227 0.327 0.353 0.378 0.42
Moirai (Zero Shot) 0.173 0.216 0.26 0.32 0.205 0.22 0.236 0.27 – – – – – – – –
Toto (Zero Shot) 0.18 0.235 0.252 0.356 0.124 0.138 0.155 0.211 – – – – – – – –

ARIMA 0.217 0.263 0.33 0.425 1.22 1.264 1.311 1.364 5.554 6.94 7.192 6.648 1.997 2.044 2.096 2.138
AR (d=0) 0.171 0.215 0.263 0.332 0.138 0.153 0.17 0.212 2.084 2.04 2.004 2.011 0.398 0.413 0.426 0.464
DLinear 0.176 0.22 0.265 0.323 0.14 0.153 0.169 0.203 2.215 1.963 2.13 2.368 0.41 0.423 0.436 0.466

Auto-AR 0.172 0.215 0.263 0.332 0.138 0.153 0.17 0.212 2.084 2.04 2.004 2.011 0.398 0.413 0.426 0.464
DASHA 0.163 0.205 0.251 0.314 0.136 0.151 0.165 0.200 – – – – – – – –

Table 14: Time Series Forecasting Tasks

In addition to the results for DASHA, Auto-AR, DLinear, and FMs, we evaluate the performance of
two simple baselines

1. Vanilla Autoregressive Model (Box and Jenkins, 1976): This model predicts the (scalar)
value of a time series at t+ 1 as a linear combination of the last L timesteps and a constant,
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i.e. x̂t+1 = α0 + α1xt + α2xt−1 + ... + αLxt−L+1 for learnable parameters α0, ..., αL.
We fit these parameters using standard maximum likelihood techniques.

2. ARIMA is a statistical method used for time series forecasting that combines three compo-
nents: AutoRegressive (AR), Integrated (I), and Moving Average (MA). The AR component
models the relationship between an observation and its lagged (past) values, assuming
that past values have a linear influence on future ones. The Integrated component applies
differencing to the data to remove trends or seasonality, making the time series stationary
by stabilizing its mean over time. The MA component models the relationship between an
observation and the residual errors from a moving average model applied to previous obser-
vations. ARIMA is characterized by three parameters: p (the number of lag observations),
d (the number of differencing steps to achieve stationarity), and q (the number of lagged
forecast errors). This model is particularly effective for univariate time series forecasting
where patterns like trends or seasonality are present.

All results are reported on a 70/10/20 train/validation/test split for each datasets, except for the ETT
datasets which have predefined splits. MSE is reported after all datasets have been scaled by the mean
and variance of the training data. Both autoregressive models have only one tunable hyperparameter
(number of lags). Similarly, the linear model has only one tunable hyperparameter (number of training
epochs).

The baselines as described can handle only univariate time series, while all of the benchmark datasets
are multivariate (multiple channels). These baselines are trained under channel independence: each
channel of a time series is treated independently. While channel independence fails to take into
account cross-channel dependencies, we note that developing methods that leverage cross-channel
dependencies for a variable number of channels remains an open problem.

C.3.1 Time-LLM

Due to differences in the results reported for Time-LLM between the original paper and reproductions
in several works (Goswami et al., 2024; Ekambaram et al., 2024; Pan et al., 2024; Tan et al., 2024),
we to attempt our own partial reproduction in order to determine whether to include their numbers.
To do so, we used code provided by the authors and looked at ETTh1 with input lengths from 96, 192
and ILI with input lengths from 24, 36, 48, 90 (going beyond this was infeasible due to the resources
required to finetune LLaMA-7B).

Our reproduced MSE for ETTh1 with an input length of 96 was 0.405 as compared to that of 0.362
reported by Jin et al. (2024), while for input length of 192 it was 0.431 vs. 0.398. On ILI the average
increase in MSE across time horizons from their reported results to our reproduction was more than
0.4. Due to these large discrepancies we chose to exclude their model from our analysis.
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Figure 4: Scatterplot of improvement in RMSE (averaged across time horizons) of two closed-source
FMs, LLM4TS and Toto, on a subset of datasets in Table 14. It shows that both FMs usually perform
similarly to the Auto-AR baseline, with Toto attaining strong aggregate metrics due to a dominant
performance on ETTh2.
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C.3.2 Closed-source models

In Table 14 we consider three additional FMs that either do not report complete set of results (Moirai)
on all 7 datasets or are closed-source (Toto and LLM4TS). While the performance of Auto-AR
is comparably to that of LLM4TS, Toto dominates the three aggregated metrics we considered in
Table 15; impressively, it does this despite being zero-shot. However, a look at Figure 4 reveals that
Toto is not superior across all six tasks, with the aggregated metrics being strongly boosted by its
dramatically better performance on one of them (ETTh2). Thus, while its ZS performance is quite
good, it is unclear whether this result would be maintained with additional tasks.

Model
Partial setting (6 datasets / 24 tasks)

Model Pretraining Avg. Avg. Median
Size Series RMSE ↓ %Imp.↑ %Imp.↑

Moirai (Zero Shot) 14M 6M 0.566 24.53 18.52
LLM4TS 60M 8M 0.526 29.25 20.96
TTM (A) 5M 1M 0.525 29.38 19.87
Toto (Zero Shot) 103M - 0.505 32.40 31.35
Auto-AR 513 0 0.534 28.12 19.63
DASHA 480K 0 0.549 25.94 16.78

Table 15: Additional time series results on the 6 datasets setting
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