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MOTIVATION 

Nowadays, big data, deep learning models, optimization methods, and computational 

power are essential elements in promoting the development of artificial intelligence. 

Recent advances have brought a new focus on generative artificial intelligence 

(GenAI), which paves promising paths to exploring the creation of texts, images, 

videos, or other contents, rather than simply performing discriminative learning tasks.  

GenAI's emergence, e.g., the large model, has changed the landscape of deep 

learning research, influenced individuals’ work and life, holding tremendous potential 

to reshape robotics research, national governance, and life sciences. Consequently, a 

pressing question arises: "How will GenAI inspire technological revolution?" In answer 

to this question, this commentary highlights the fascinating functions of GenAI, stresses 

the importance of experimental design, discusses critical inductive biases as the 

geometric prior, identifies multi-views in the evaluation, and nominates large-scale 
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generative simulation artificial intelligence (LS-GenAI) as the next hotspot for GenAI 

to connect. Throughout the commentary, we use 𝑥 ∈ 𝒳, 𝑦 ∈ 𝒴, and 𝑧 ∈ 𝒵 to denote 

the explanatory variable, response variable, and latent variable, respectively. For tasks 

or operators on datasets 𝜏, we represent them in distributions 𝑝(𝜏). 
GenAI can do more than AIGC 

Widespread popularity of GenAI models stems from their ability of artificial 

intelligence generated content (AIGC). Technically, the deep generative model 

empowers GenAI's numerous utilities beyond standard AIGC. Among them, we list 

three practical ones in Figure 1A data compression, representation disentanglement, 

and causal inference. 

Minimizing the number of required bits to store and transmit information is crucial, 

known as data compression. This utility is particularly essential in time-sensitive 

services with memory constraints, such as edge computing. Some generative models, 

such as the vector quantized variational autoencoder or deep variational information 

bottleneck models, excel in data compression by finding insufficient statistics of high-

dimensional signals. Representation disentanglement refers to the ability to infer 

statistically independent latent variables that explain different aspects of data 

generation, e.g., style, color, and pose. It closely relates to the controllable generation, 

e.g., obtaining samples with only one aspect varied. Causality is also an arising 

consideration in GenAI, and generative models are advantageous in handling high-

dimensional variables and discovering structures of causal graphs for understanding 

causal effects. Importantly, GenAI with causality enables counterfactual predictions, 

which renders the potential consequences of a specific intervention that we have yet to 

execute. For example, with 𝑝(𝑦|𝑥,do(𝑧 = 𝑧0)) , policy makers can evaluate the 

influence of socio-economic policies denoted by 𝑧0, without incurring additional costs. 

Despite these fascinating utilities, there remain several tricky questions in the field. (i) 

Is fully representation disentanglement achievable with generative models? (ii) How 
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can we identify causal generative models in the presence of small-scale datasets and 

many unobserved confounders? 

Experimental design matters in GenAI's adaptability and robustness 

Let us rethink the critical factors contributing to GPT-like models' success. In 

addition to prompt engineering, the languages’ generative process must be capable of 

capturing the masked input-output coupling pattern in the corpus, mapping linked 

entities to a knowledge earth, and continually updating by incorporating new input-

output pairs. Hence, when users initiate queries for specific contextual terms, the built 

knowledge earth can effectively locate and feedback the precise information. 

The above process inspires the task distribution design for GenAI. Task diversity 

nurtures models’ generalization capability across various scenarios in zero-shot or few-

shot learning, as aligned with traditional statistical learning theory. However, 

increasing task complexity requires larger model sizes and comes at the cost of higher 

computational expenses. For instance, GPT-3 has 175 billion parameters and has been 

trained on over 570GB of text data from numerous tasks. Generating tasks is problem-

specific, and masked learning has emerged as one of the most popular heuristics. 

Nevertheless, exhaustively exploring all scenarios in training large models can be 

computationally demanding. As an example, consider Figure 1B, where the masking 

scenario number grows exponentially with respect to the dataset complexity |𝒳| in a 

combinatorial sense. 

Conversely, we raise two related issues to address in the future: (i) Is there a principle 

to balance average performance and adaptability to worst-case scenarios, particularly 

when loss values exhibit heavy tails? (ii) How can we automatically design task 

distributions in a dataset or instance-wise sense to improve generalization? 

Geometric priors can be powerful inductive biases in boosting GenAI 
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Generally, we refer to constraints or incorporated knowledge in hypotheses space as 

inductive bias. As stated in Max Welling's comment1 on the Bitter Lesson,2 machine 

learning cannot generalize well without inductive biases. Inductive biases are 

particularly beneficial when dealing with data insufficiency, as it guides the learning 

process in a more reasonable direction.  

Here we concentrate on the geometric inductive bias. At a high level, these structures 

resort to symmetry and scale separation principles,3 particularly necessary in generative 

modeling of special datasets. Take the equivariance in symmetry as an example: Human 

cognitive systems can naturally capture the rotation, translation, reflection, and scaling 

of signals, implying that the reasonable abstraction of concepts is equivariant to these 

transformations, as shown in Figure 1C). Another way to apply geometric priors is 

selective data augmentation by imposing transformation in the data space, meaning that 

data itself can be inductive bias in modeling. Recent advances have verified the 

effectiveness of geometric priors for scientific discoveries, e.g., molecule design and 

drug development, better capturing the complex interactions between atoms and 

predicting the properties of drug candidates. This constitutes a promising avenue for 

the application of geometric priors in the field of AI4Science. 

While geometric priors show promise in GenAI, important questions still need 

answers to facilitate their use: (i) Are there universal routines to automatically generate 

geometric priors in GenAI applications? (ii) How can we alleviate the computation 

burden from constraints or data augmentation?  

Multi-views are required to evaluate performance of models for GenAI 

Primarily, GenAI counts more on the data generation mechanism. Given the inherent 

subjectivity and variability of specific applications, there exist no universally applicable 

criteria to evaluate generative performance. 

For reliability and usefulness, we propose a multi-view evaluation system that considers 

fidelity, diversity, and safety in Figure 1D. The generation fidelity is critical in risk-
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sensitive applications like dialogue systems in medical science, and standard metrics 

are log-likelihoods or statistical divergence such as inception score. Diversity is nature 

of generative modeling, with the purpose of capturing the complete possible samples. 

At least two factors influence diversity: observability extent and semantic complexity 

of the dataset. Observability extent refers to the accessible context information. For 

example, in image inpainting, the diversity of generated images decreases as more 

pixels are observed. Empirically in large language models, increasing the corpus’ size 

and semantic complexity brings more varied and creative text generation. When using 

the Bayesian framework, efficient probabilistic programming requires stochastic 

optimization algorithms to avoid posterior or conditional prior collapse to guarantee the 

diversity.4 Additionally, security is an increasingly important concern in GenAI. For 

example, dataset bias, such as deliberate manipulation or unintentional sampling bias, 

can significantly affect the performance and orientation of large language models. 

Notably, the trend of GenAI is to allow interactions with open environments, 

incrementally access Internet information, and evolve in a continual learning way; 

securing generative models from attacks at a data level seems urgent. Undoubtedly, 

there is a solid allure for exploring a model-agnostic and domain-agnostic evaluation 

schema that is end-to-end and integrates multi-views at both the sample and distribution 

levels. 

LS-GENAI IS ON THE WAY 

The concept of GenAI has been developed for decades. Until recently, it has 

impressed us with substantial breakthroughs in natural language processing and 

computer vision, actively engaging in industrial scenarios. Noticing generalization 

challenges, e.g., limited learning resources and overly dependencies on scientific 

discovery empiricism, we propose to scale large models to more practical scenarios 

with LS-GenAI.  

The roadmap of LS-GenAI in Figure 1 relies on above practical considerations and can 

be framed as the doubly generative paradigm for simulation and decision-making. 
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Specifically, the identifiable simulation systems or scenarios need to be generated with 

a few observations (Component #1), and the decision-making modules can afford fast 

adaptation utility in time-sensitive scenarios (Component #2), e.g., autonomous 

driving. At the intersection of simulation science and artificial intelligence, LS-GenAI 

has particular use in robotics and life systems, reducing realistic sampling complexity, 

accelerating scientific progress, and catalyzing discoveries. One prime example of LS-

GenAI's potential originates from clinical research. In this context, a high-fidelity 

biomedical simulation system, operating at the individual level, can create 

environments to allow the examination of the treatment effects on patients and reduce 

dependencies on expert experience.  

Despite numerous realistic benefits, developing LS-GenAI is nontrivial. The 

demands of massive real-world data, the lack of high-fidelity world models, and the 

weak adaptability of these world models have complicated the process of constructing 

ubiquitous decision-making systems, e.g., in interventional clinical research. In service 

of the utilities in LS-GenAI, more sophisticated simulation and learning tools must be 

integrated. Apart from building high-fidelity simulation environments, or world 

models,5 it is essential to support customization for different decision-making tasks 

such that the task of our interest can be among them. The world exhibits a hierarchical 

structure, such as the atomic, cellular, tissue, and organismal levels in human body 

systems or spatiotemporal scales, and retaining multi-scale in generation augmented by 

symbolic computation can reveal more accurate complex dynamics. Other demands lie 

in handling partial observability with the inaccessible inherent system state and 

unpacking the black box to separate function approximation and causal effects. The 

primary goals of LS-GenAI are to assist in meaningful experimental design and enable 

fast adaptation of learned skills. Achieving these will ultimately enrich the utilities of 

GenAI in a broader range of real-world scenarios. 
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Figure 1. Practical Considerations and the Roadmap of LS-GenAI. The left supports the utilities of 
LS-GenAI, while the right is the roadmap to achieve via the doubly generative paradigm. 
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