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Abstract
Transformers rely on both content-based and
position-based addressing mechanisms to make
predictions, but existing positional encoding
techniques often diminish the effectiveness of
position-based addressing. Many current methods
enforce rigid patterns in attention maps, limit-
ing the ability to model long-range dependencies
and adapt to diverse tasks. Additionally, most
positional encodings are learned as general bi-
ases, lacking the specialization required for dif-
ferent instances within a dataset. To address this,
we propose conTextualized equivariAnt Position
Encoding (TAPE), a novel framework that en-
hances positional embeddings by incorporating
sequence content across layers. TAPE intro-
duces dynamic, context-aware positional encod-
ings, overcoming the constraints of traditional
fixed patterns. By enforcing permutation and or-
thogonal equivariance, TAPE ensures the stability
of positional encodings during updates, improv-
ing robustness and adaptability. Our method can
be easily integrated into pre-trained transformers,
offering parameter-efficient fine-tuning with min-
imal overhead. Extensive experiments show that
TAPE achieves superior performance in language
modeling, arithmetic reasoning, and long-context
retrieval tasks compared to existing positional em-
bedding techniques.

1. Introduction
Attention mechanisms are a core component of many mod-
ern deep learning architectures, enabling models to selec-
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tively focus on relevant information within a given context.
Transformer models (Vaswani et al., 2017) and their nu-
merous variants (Carion et al., 2020; Dosovitskiy et al.,
2021; Zhao et al., 2021), which are fundamentally driven
by attention, have revolutionized tasks involving sequential
and spatial data, such as text (Kitaev et al., 2020), image
(Dosovitskiy et al., 2021), and point cloud (Zhao et al.,
2021). More recently, large transformer models have be-
come dominant in natural language understanding, language
generation, and complex reasoning (Brown et al., 2020).

Delving into attention’s underlying paradigm, the prediction
made for each token is expressed as a weighted aggregation
over the representations of other tokens. Due to the softmax
function, attention often generates a sparse mask, extracting
a limited subset of tokens for interaction. Through this
interpretation, attention can be understood as an addressing
mechanism (Hopfield, 1982; Pagiamtzis & Sheikholeslami,
2006) that searches the context, locating and retrieving token
representations deemed most relevant or important.

Since the attention score is computed upon token features
and positions (see Sec. 2), transformers’ addressing ability
can be further decomposed into two fundamental mecha-
nisms: content-based addressing and position-based ad-
dressing. Content-based addressing recognizes relevant
tokens through feature similarity, while position-based ad-
dressing is facilitated by positional encoding techniques, de-
signed to (ideally) enable random access along the sequence
via indexing. It is important to let the two mechanisms
cooperate to tackle more complex tasks, such as in-context
retrieval (Hinton & Anderson, 2014; Ba et al., 2016), arith-
metic (Lee et al., 2023; McLeish et al., 2024b), counting
(Golovneva et al., 2024), logical computation (Liu et al.,
2024), and reasoning (Wei et al., 2022; Rajani et al., 2019;
Dziri et al., 2024). However, we contend that the role of
position-based addressing is limited, if not diminishing, in
modern transformer architectures (Ebrahimi et al., 2024).

It has not escaped our notice that most existing positional
encodings weakens the position-based addressing capabil-
ity. Recent works (Press et al., 2021b; Su et al., 2024; Chi
et al., 2022b; Sun et al., 2022) impose a fixed and some-
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what artisanal pattern on attention maps, typically adopting
a decaying pattern in relation to relative distances, thereby
enforcing a locality bias. This rigidity limits the ability of
positional encodings to model long-range dependencies and
makes it challenging to attend to distant query-key pairs.
Although some positional encodings have trainable param-
eters (Vaswani et al., 2017; Shaw et al., 2018; Chi et al.,
2022a; Li et al., 2023), the hypothesis space is often exces-
sively constrained. Perhaps more crucially, most existing
positional encodings are designed and learned as a general
bias across the entire dataset, lacking specialization and
adaptability to specific instances informed by the context.
The interplay between context and positional embeddings
has proven essential in LLMs for various compositional
tasks such as algorithmic (McLeish et al., 2024a), language
modeling and coding tasks (Golovneva et al., 2024). Re-
cent studies indicate that token indices can be reconstructed
through causal attention, suggesting the elimination of po-
sitional encoding (Haviv et al., 2022; Wang et al., 2024b;
Kazemnejad et al., 2024). However, their arguments require
a specific configuration of transformer weights, which may
not be achievable.

To unleash the power of position-based addressing, we en-
deavor to design a more universal and generic position en-
coding for language transformers. We introduce Contextu-
alized Equivariant Positional Encoding (TAPE), a novel
framework designed to contextualize positional embeddings
by incorporating sequence content. TAPE continually pro-
gresses information flow between positional embeddings
and token features via specialized attention and MLP layers.
To ensure the stability during model updates, we enforce per-
mutation and orthogonal group equivariance properties on
attention and MLP layers. This approach is inspired from
the studies for geometric deep learning which processes
graphs and point clouds by integrating token features with
their geometric properties while preserving inherent phys-
ical symmetries (Wang et al., 2024c; Huang et al., 2024).
By enforcing these properties, TAPE ensures robustness
to input permutations and translations in sequences, while
maintaining the relative relationships between encoded po-
sitions. This design greatly enhances the model’s capacity
to generalize across diverse domains.

Technically, we extend conventional vectorized positional
embeddings into a multi-dimensional tensor, which enriches
interactions between positional embeddings and token fea-
tures. In the attention mechanism, TAPE incorporates the
pairwise inner product between positional encodings, al-
lowing attention values to be computed based on not only
token similarities but also positional proximities. We addi-
tionally customize an MLP layer that directly mixes token
features with positional encodings, while preserving orthog-
onal equivariance.

We demonstrate the superior performance of TAPE on arith-
metic reasoning tasks (McLeish et al., 2024a), which require
LLMs to effectively locate/address and retrieve specific to-
kens, as well as on representative natural language tasks,
including SCROLLS (Shaham et al., 2022) and passkey
retrieval (Mohtashami & Jaggi, 2023), to validate the gener-
alizability of the framework.

Our contributions are summarized as follows:

• We introduce TAPE, a novel framework learning to
represent token positions in the feature space jointly
with sequential learning. TAPE contextualizes posi-
tional embeddings with sequence content across layers
to enhance the position-addressing ability of transform-
ers. We further enforce TAPE with permutation and
orthogonal equivariance to guarantee the stability of
positional encodings during the update.

• We propose practical implementations for our TAPE,
which extends conventional positional embeddings into
multi-dimensional and facilitates attention and MLP in
transformers with two levels of equivariance. We also
show that TAPE has hardware-efficient implementation
and can be used as a drop-in component into extant
pre-trained models for parameter-efficient fine-tuning.

• Extensive experiments showcase TAPE’s superiority
in both training from scratch and parameter-efficient
fine-tuning scenarios for language modeling as well
as downstream tasks such as arithmetic reasoning and
long-context retrieval. TAPE achieves state-of-the-art
performance in language modeling, surpassing base-
lines in perplexity reduction for long sequences. We
also report the state-of-the-art performance of TAPE in
long-context tasks such as passkey retrieval tasks with
LLM fine-tuning, and in arithmetic learning.

2. Preliminaries
In this work, we aim to design expressive and generalizable
positional embeddings for transformers to address complex
language tasks. Let X =

[
x1 · · ·xN

]⊤ ∈ RN×C represent
the input sequence of tokens, where N is the context length
and C is the feature dimension. Transformers learn token
representations using the attention mechanism (Vaswani
et al., 2017), which propagates information across tokens
by computing pairwise correlations. Since pure attention is
inherently permutation-equivariant, language models inte-
grate positional information into the attention computation
to differentiate tokens based on their positions.

2.1. High-Dimensional Features as Positional Encoding

One common approach is to leverage high-dimensional fea-
tures to represent positions. Positional encoding can be
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formulated as a series of embeddings attached to each token
index e1 · · · eN , with the shape of ei determined by the
specified positional encoding schemes. When computing
the attention value, the pre-softmax attention value can be
in general formulated as 1:

αi,j = q(xi, ei)
⊤k(xj , ej), (1)

where q(·, ·) and k(·, ·) are generalized query and key trans-
formations that incorporate positional features. The original
transformer paper (Vaswani et al., 2017) assigns each abso-
lute token index a vector of length identical to token embed-
dings, either learnable or fixed as sinusoidal waves: ei ∈
RC . The query and key transformations directly add the
positional information into token features at the first layer:
q(xi, ei) = WQ(xi+ei) and k(xj , ej) = WK(xj +ej)
for some query and key matrices WQ,WK ∈ RC×C .
Shaw et al. (2018) introduces learnable embeddings for
relative distances, which are applied to the key vector dur-
ing attention computation. More recently, Rotary Position
Encoding (RoPE) (Su et al., 2024) has gained widespread
adoption in modern LLMs (Touvron et al., 2023a;b; Bider-
man et al., 2023; Chowdhery et al., 2023; Jiang et al., 2023).
RoPE encodes absolute positions using a series of block-
wise rotation matrices E ∈ RN×C/2×2×2, while implicitly
capturing relative distances during dot-product attention.
Formally, the positional embeddings and the transformation
q(·, ·) are defined as shown below, with k(·, ·) adhering to a
similar formulation:

q(xi, ei) = RiWQxi, Ri = diag(ei,1, · · · , ei,C/2),

ei,m =

[
cos(θmi) − sin(θmi)
sin(θmi) cos(θmi)

]
, (2)

where diag(·) constructs a block-diagonal matrix by
concatenating the arguments on the diagonal. In
RoPE, the hyper-parameters θm ranges from θm =
−100002m/C ,m ∈ [C/2]. Subsequent works explore meth-
ods to extend the context length for RoPE-based LLMs
through the adoption of damped trigonometric series (Sun
et al., 2022), positional interpolation (Chen et al., 2023a) and
adjustments to coefficients{θm}m∈[C/2] (r/LocalLLaMA,
2023; Peng et al., 2023; Liu et al., 2023).

2.2. Attention Bias as Positional Encoding

An alternative method for encoding positional information
involves applying a bias to the attention map, conditioned
on the relative distances between tokens during the attention
computation. The pre-softmax attention value with bias can
be formulated as:

αi,j = (WQxi)
⊤(WKxj) + b(i, j), (3)

1For simplicity, we ignore the denominator
√
F by default.

where b(i, j) : N × N → R is a bias regarding the token
indices i and j. Many existing positional encoding methods
can be interpreted as various instantializations of b(i, j). We
follow Li et al. (2023) to summarize a few examples. (i)
In T5 (Raffel et al., 2020), b(i, j) = rmin{i−j,Lmax}, where
Lmax denotes the maximal relative distance considered, and
{ri ∈ R : i ∈ [0, Lmax]} are learnable scalars. (ii) Alibi
(Press et al., 2021b) simplifies the bias term to b(i, j) =
−r|i − j|, where r > 0 is a hyperparameter that acts as
the slope, imposing a linear decay pattern based on the
relative distance. (iii) Kerple (Chi et al., 2022a) enforces
a logarithmic or power decay rate: b(i, j) = −r1 log(1 +
r2|i − j|) and b(i, j) = −r1|i − j|r2 respectively, where
r1, r2 > 0 are hyperparameters. (iv) FIRE (Li et al., 2023)
learns a neural network with parameters θ to model the
bias: b(i, j) = fθ(ψ(i−j)/ψ(max{i, L})), where ψ(x) =
log(cx+ 1), and L > 0 is a hyperparameter.

3. Our Approach
3.1. Motivations and Design Principles

In the paper, we interpret the attention mechanism as an
addressing system, where row-wise attention scores can be
viewed as an indicator vector locating important tokens in
the context to inform predictions for the current token. The
underlying addressing mechanisms include both content-
based addressing, which locates tokens via feature similarity,
and position-based addressing, which leverages positional
encodings to extract location-based information. Content-
based addressing is often prioritized in language modeling
– which is evidenced by a series of simplifications on posi-
tional encoding in the literature (Press et al., 2021b; Haviv
et al., 2022; Wang et al., 2024b; Kazemnejad et al., 2024)
– due to the fact that natural language semantics primarily
depend on the meaning of constituent words rather than their
arrangement order (Sinha et al., 2021). However, position-
based addressing can sometimes be crucial for many ad-
vanced tasks. Ebrahimi et al. (2024) demonstrates that in
arithmetic tasks (Lee et al., 2023), a token’s position is as im-
portant as its value. An ideal attention map for performing
addition needs to exclusively rely on token indices.

Moreover, we observe that the interaction between token
features and positional embeddings is lacking in current
transformers. Golovneva et al. (2024) demonstrate that in-
corporating the interplay between context and positional
information allows for more flexible addressing, leading
to improvements in complex compositional tasks such as
algorithm execution and logical reasoning (Liu et al., 2024).
In domains with data characterized by intricate geometries,
such as graphs and point clouds, capturing the interaction
between node or point features and their geometric loca-
tions is essential for effectively learning structural patterns
relevant to tasks (Wang et al., 2024c; Huang et al., 2024).
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(b) TAPE with enhanced causal attention and feed forward layers.
Figure 1. Overview of our proposed TAPE in standard decoder-only architecture. Different from traditional positional encoding, TAPE
represents and updates positional features layer-wisely through interactions and joint training with token representations.

Based on above arguments, we aim to establish a more
expressive family of positional encoding, which can be ef-
fectively informed by the context to facilitate position-based
addressing in LLMs. The main idea is to customize atten-
tion and MLP modules in transformers such that they can
iteratively update positional embeddings at each layer with
sequence content, and use the updated embeddings as the
positional encoding for the next layer. We formally outline
a couple of key design principles below.

General Formulation. Let a tuple (X,E) represent a
language sequence, where X ∈ X ⊆ RN×C are the token
features, and E ∈ E ⊆ RN×D are the positional embed-
dings. We define a transformer block consisting of two
separate operations: token mixing and position contextu-
alization. The token mixing is formulated as a function
f : X × E → RN×C , which combines token features and
positional embeddings to represent each token. The position
contextualization g : X × E → RN×D encodes the context
information into the positional embeddings.

Tensorial Positional Encoding. Our first enhancement
extends positional encodings to a multi-dimensional for-
mat and diversifies their coupling with token features to
allow for richer interactions among token and position rep-
resentations, drawing inspiration from positional encodings
used in geometric learning (Deng et al., 2021; Wang et al.,
2024c; Huang et al., 2024). We first divide the hidden di-
mension into M blocks, resulting X = [x1, · · · ,xN ]⊤ ∈
RN×M×B with xi ∈ RM×B and B = C/M . We
propose to assign each block L-many R-dimension posi-
tional embeddings. Therefore, we reorganize positional
embeddings as E = [e1, · · · , eN ]⊤ ∈ RN×M×L×R with
ei ∈ RM×L×R and D =M × L×R.

Equivariance Principles. Second, we establish two fun-
damental criteria for the design of functions f and g. Con-
ceptually, by representing each token as a tuple comprising
its token and positional embedding, the entire sequence can
be viewed as an unordered set. This implies that permuting
these tuples arbitrarily will not alter the outputs of f and g,
aside from a corresponding change in order (Zaheer et al.,
2017; Lee et al., 2019). We note that this is an intrinsic
property of standard attention. Furthermore, we aim for
the positional embeddings to effectively model relative dis-
tances, necessitating that f remains invariant to translations
in the token positions (Sun et al., 2022). This invariance
can be achieved by structuring f and g to depend on the
positional embeddings in a manner invariant and equivari-
ant, respectively, to orthogonal transformations along the
last dimension (Villar et al., 2021). Formally, let us denote
Π(N) as a permutation group over N elements, and O(R)
as an orthogonal group over the R-dimension Euclidean
space. The two aforementioned criteria require f and g to
satisfy that: for ∀P ∈ Π(N),R ∈ O(R),

f(PX,PER) = P f(X,E) (4)
g(PX,PER) = P g(X,E)R (5)

where left-multiplication of P ∈ Π(N) permutes on the
first dimension of X and E, while right-multiplication of
R ∈ O(R) applies to the last dimension of tensor E. We
note that attention with RoPE inherently satisfies Eq. 4, with
the invariant orthogonal group being O(2). We formalize
the merits of orthogonal group invariance in Proposition 3.1
(proved in Appendix B).

Proposition 3.1 (Relativity of position encoding). Suppose
a transformer consists of f, g satisfying Eqs. 4 and 5. Given
inputs (X,E) with position encoding E initialized by RoPE
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or random Fourier features, then the transformer is invari-
ant to shift on token indices.

Proposition 3.1 indicates that even though positional encod-
ings are updated among intermediate layers, the attention
is computed based on relative distances between token po-
sitions (Sinha et al., 2022). This property is crucial for
stability and generalization to varying sequence lengths.

3.2. Contextualized Positional Encoding with
Equivariance

In this section, we instantiate design principles discussed
in Sec. 3.1 as a practical neural architecture. We note that
although there are lots of ways to achieve conditions in
Eq. 4 and 5 (Dym & Maron, 2020; Bogatskiy et al., 2020;
Yarotsky, 2022), the proposed method focuses on enhancing
existing components used in standard transformers with
consideration of computational efficiency. We term our
proposed approach of informing positional encoding with
context through enforcing equivariance as ConTextualized
EquivAriant Positional Encoding (TAPE).

Model Structure and Initialization. We adhere to
the conventional architecture of the standard trans-
former (Vaswani et al., 2017), wherein each layer comprises
an attention module for token mixing and a Multi-Layer
Perceptron (MLP) for channel mixing. Both the attention
and MLP components are tailored to update positional em-
beddings at each layer. We depict the overall architecture in
Fig. 1. The initial positional features may encompass a vari-
ety of representations, including but not limited to learnable
features (Vaswani et al., 2017), sinusoidal series (Vaswani
et al., 2017; Su et al., 2024; Sun et al., 2022), or random
Fourier features (Rahimi & Recht, 2007; Yu et al., 2016).
Among these, we select the widely-used sinusoidal series
embedding, RoPE (Su et al., 2024), as our initialization, as
detailed in Sec. 3.3.

O(R)-Invariant Token Mixing. In each transformer
block, f updates token features through attention and MLP
following the principles of permutation-equivariance and
O(R)-invariance. We define pre-softmax attention value
between the i-th and j-th tokens as:

αi,j =

M∑
m=1

αi,j,m,

αi,j,m = (WQxj)
⊤
mϕ(ej,me⊤i,m)(WKxi)m,

(6)

where ϕ(·) : RL×L → RB×B can be any function.
Permutation-equivariance is inherently preserved in pair-
wise attention, regardless of the method used to derive atten-
tion values. O(R)-invariance is achieved by computing the
inner product of positional embeddings (Villar et al., 2021;

Wang et al., 2022a; 2024a). We note that O(R)-invariance
stems from the separation of the inner product calculations
between features and positional embeddings, in contrast to
Vaswani et al. (2017). In practice, we can let B = L and ϕ
be an identity mapping, which simplifies Eq. 6 to a series
of tensor multiplications. After applying attention, a stan-
dard MLP layer is employed to transform token embeddings
without using positional embeddings.

O(R)-Equivariant Position Contextualization. The pri-
mary contribution of this work is the introduction of a
method to condition positional embeddings on sequence
content. We employ an O(R)-equivariant function g to en-
sure structure conservation of this update. A key insight
is that linearly combining positional coordinates preserves
O(R)-equivariance, provided the weights are invariant to
the orthogonal group (Villar et al., 2021; Wang et al., 2022a;
Huang et al., 2024). This observation leads us to leverage
attention maps, which capture content-based token rela-
tionships, to integrate positional embeddings. Hence, the
attention layer can update positional embedding via:

ẽj,m =

N∑
i=1

exp(αi,j,m)∑N
i=1 exp(αi,j,m)

ei,m, (7)

where {ẽj,m}j∈[N ],m∈[M ] denotes an intermediate output
of the attention layer. In practice, we share the attention map
between Eq. 6 and 7. We can re-use αi,j,m computed in Eq.
6 because we have shown that attention weights αi,j,m are
O(R)-invariant.

We further propose a layer similar to the function of MLP,
which directly transform matrix-form positional embed-
dings with token features incorporated. Specifically, we first
flatten the first two dimensions of ẽj ∈ RM×L×R to the
shape RML×R, then apply linear transformation constructed
by token features, and finally unflatten the first dimension
of the resultant matrix to êj ∈ RM×L×R,∀j ∈ [N ]:

êj = unflatten
(
W 2ψ(x̃j)W

⊤
1 flatten(ẽj)

)
, (8)

where we denote x̃j ∈ RC as the output of attention af-
ter token mixing. Let I be the intermediate dimension,
W 1 and W 2 have shape ML × I . We further define
ψ : RC → RI×I as a mapping between token features
to linear transformations. To reduce computation overhead,
we adopt an MLP to transform x̃j into an I-dimensional vec-
tor and form a diagonal matrix with the resultant vector as
its diagonal. The detailed computational flow is illustrated
in Fig. 4 in Appendix C. By applying linear transforma-
tions only to the first two dimensions, this layer maintains
O(R)-equivariance.

We summarize the overall geometric properties of our archi-
tecture in Proposition 3.2 below.
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Figure 2. Accuracy on addition task between different methods on 2× context length. The x- and y-axes represent the sequence lengths of
the two operands respectively. Models are trained on sequence with length up to 40 while tested on sequence with length up to 80. The
average accuracy across the heatmap is 26.32%, 26.56%, 22.45%, 26.98% and 32.82% respectively for RoPE (Su et al., 2024), RandPE
(Ruoss et al., 2023), NoPE (Kazemnejad et al., 2024), FIRE (Li et al., 2023), and our TAPE.

Proposition 3.2. The proposed TAPE including: (i) atten-
tion in Eq. 6 with normal MLP for token mixing, and (ii)
attention in Eq. 7 with MLP defined in Eq. 8 for position
contextualization, satisfies Eq. 4 and Eq. 5.

3.3. Parameter-Efficient Fine-tuning with TAPE

In this section, we demonstrate that our TAPE can
be seamlessly integrated into pre-trained models, en-
abling Parameter-Efficient Fine-Tuning (PEFT) to enhance
position-based addressing in existing architectures. Notably,
the widely adopted RoPE (Su et al., 2024) can be considered
a special case of TAPE. This can be seen by letting L =

R = 2 and ei,m,1 =
[
cos(θmi) − sin(θmi)

]⊤
, ei,m,2 =[

sin(θmi) cos(θmi)
]⊤

. With this configuration, Eq. 6
becomes equivalent to Eq. 2. As a result, RoPE can serve
as the initialization for TAPE, while the model is further
enhanced by incorporating the contextualization component
specified in Eq. 7 and 8. This initialization is applied across
all experiments, encompassing both pre-training and fine-
tuning stages. Specifically, during fine-tuning, to ensure
that the augmented model remains identical to the original
at initialization, we follow Hu et al. (2022) by setting the
initialization of W 2 in Eq. 8 to zero such that all updates to
the positional encoding inside the block will then be reset
via a residual connection. To allow for parameter-efficient
fine-tuning, we enable gradients to update the weights for
position encoding contextualization including W 1,W 2 and
the weights for the post-attention linear layer, while keeping
all other parameters frozen.

4. Experiments
In this section, we first validate our method on arithmetic
tasks, which relies on better position-addressing ability for
prediction (Sec. 4.1). We also show our effectiveness in
natural languages, in both pre-training (Sec. 4.2) and fine-
tuning case (Sec. 3.3). More experiments, visualization, and
model interpretation can be found in Appendix D and E.

4.1. Arithmetic Learning

As demonstrated by prior research (Lee et al., 2023; Zhou
et al., 2024), even large transformer models struggle with
arithmetic tasks. Recent studies suggest that this limita-
tion may stem from their constrained position-addressing
capabilities (Ebrahimi et al., 2024). In particular, arithmetic
tasks treat every digit as equally important to the equa-
tion, regardless of its distance from the output. In contrast,
traditional positional embeddings for language tasks often
assume a distance-decay effect, where words farther apart
have less significance in the output. Positional contextualiza-
tion potentially addresses this by dynamically reweighting
positional importance based on the task context. To evaluate
the ability of LLMs of performing arithmetic tasks with
our position embedding, we use the Addition Bucket 40
dataset (McLeish et al., 2024a) which contains 20 million
samples with i × i ( i < 40) operand lengths. We train
transformers from scratch using the arithmetic data, and
during evaluation, we sample 100 samples for each pair of
operand lengths. Following the existing attempt (McLeish
et al., 2024a), the operands in the training set are not nec-
essary to have the same length, but the maximum length of
two operands are the same. We then report model accuracy
for each (i, j) length pair. Note that accuracy is measured
strictly, counting only exact matches of all output digits as
correct. The transformers are standard decoder-only archi-
tecture with config detailed in Appendix B. We compare our
method with four baselines, including RoPE (Kitaev et al.,
2020), RandPE (Ruoss et al., 2023) NoPE (Kazemnejad
et al., 2024), and FIRE (Li et al., 2023).

The heatmaps further demonstrate TAPE’s superior gener-
alization to longer sequences, as indicated by the concen-
trated dark-colored regions representing higher accuracy
across a wider range of operand lengths. TAPE outper-
forms other methods with the highest average accuracy
of 32.82%. Compared to FIRE, which achieves 26.98%
and previously held the strongest length generalization in
arithmetic tasks (McLeish et al., 2024a; Zhou et al., 2024),
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Table 1. Performance comparison on seven datasets from SCROLLS benchmark. For all tasks, the performance is better if the reported
metric is higher (↑). We highlight the top-performing methods via bold font.

QAS CNLI NQA QuAL QMS SumS GovR

Metric (%) F1 (↑) EM (↑) F1 (↑) EM (↑) Rgm (↑) Rgm (↑) Rgm (↑)
Median length 5472 2148 57829 7171 14197 9046 8841

RoPE (Kitaev et al., 2020) 8.39 65.00 1.77 0.04 6.34 5.63 9.71
ALiBi (Press et al., 2021a) 8.25 69.62 4.11 0.0 9.92 9.78 18.81
RandPE (Ruoss et al., 2023) 13.44 62.01 4.63 0.38 8.43 8.31 8.93
FIRE (Li et al., 2023) 3.41 71.26 0.48 1.25 8.78 7.42 11.03
xPos (Sun et al., 2022) 9.02 71.75 4.83 0.24 10.73 9.38 16.38
TAPE (Ours) 11.52 72.80 6.79 11.60 12.42 10.34 15.18

TAPE shows a remarkable 21.6% relative improvement.
This shows TAPE’s effectiveness in maintaining accuracy
as sequence lengths increase, making it particularly suitable
for long-range dependency tasks.

4.2. Pre-Training from Scratch

Pre-training a language model on a corpus followed by fine-
tuning on downstream tasks is the standard methodology
for evaluating the performance of positional embeddings
in prior studies (Li et al., 2023; He et al., 2024). Simi-
larly, we first pre-train transformers with 1024 context win-
dow from scratch, using C4 dataset (Raffel et al., 2020),
and then fine-tune those models in long-context benchmark
SCROLLS (Shaham et al., 2022). We report three eval-
uation metrics for seven different tasks: unigram overlap
(F1) for Qasper and NarrativeQA, and exact match (EM)
for QuALITY (QAS) and ContractNLI (CNLI), and Rgm
score (the geometric mean of ROUGE-1,2,L) for the three
summarization tasks: GovReport (GovR), QMSum (QMS),
and SummScreenFD (SumS). We compare our methods
with RoPE (Kitaev et al., 2020), ALiBi (Press et al., 2021a),
RandPE (Ruoss et al., 2023), FIRE (Li et al., 2023) and
xPos (Sun et al., 2022), and report the results in Tab. 1.

Our method consistently outperforms all baselines, demon-
strating significant improvements, particularly in scenarios
with longer context lengths, as observed in QuAL and NQA.
In terms of overall performance, xPos is the closest competi-
tor to TAPE. While FIRE, RandPE, and ALiBi exhibit good
results on a few datasets, they fall short across the board.
RoPE struggles with all long-context datasets.

4.3. Context Window Extension by PEFT

We extend the context window of the pre-trained Llama2
7B model (GenAI, 2023) from 4096 to 8192, using the Red-
pajama (Computer, 2023). For validation, we then compare
the perplexity on sequence of length 8192, on the cleaned
ArXiv Math proof-pile dataset (Azerbayev et al., 2022; Chen
et al., 2023a) and the book corpus dataset PG19 (Rae et al.,
2019). To further evaluate the models’ performance of long

Table 2. Evaluation on perplexity across 1k to 8k context lengths.
Lower perplexity means better performance (↓). Top results are
marked bold. Each model is first pre-trained from scratch and later
fine-tuned on the downstream long-context datasets.

Method 1024 2048 4096 8192

Proof-pile

LoRA 3.828 3.369 3.064 2.867
LongLoRA 3.918 3.455 3.153 2.956
Theta Scaling 3.864 3.415 3.121 2.934
TAPE (Ours) 3.641 3.196 2.901 2.708

PG-19

LoRA 9.791 9.098 8.572 8.199
LongLoRA 9.989 9.376 8.948 8.645
Theta Scaling 9.257 8.640 8.241 7.999
TAPE (Ours) 8.226 7.642 7.278 7.063

context understanding, we report the accuracy of fine-tuned
models on passkey retrieval task which has been adopted
by many literature (Chen et al., 2023b;a; Tworkowski et al.,
2024). We choose a popular open-sourced LLM Llama2
7B (Touvron et al., 2023b), which uses RoPE, as the base
model and extend it to the 8192 context length. Three base-
lines are selected to compare to our TAPE method: vanilla
LoRA (Hu et al., 2022), LongLoRA (Chen et al., 2023b),
Theta Scaling (Liu et al., 2023).

As shown in Tab. 2, TAPE consistently outperforms the other
methods across all context lengths on both the Proof-pile
and PG19 datasets. On Proof-pile, TAPE achieves a perplex-
ity of 3.641 at 1024 tokens, improving over LoRA (3.828),
LongLoRA (3.918), and Theta Scaling (3.864). At 8192
tokens, TAPE’s advantage grows, reaching 2.708, surpass-
ing LongLoRA (2.956), LoRA (2.867), and Theta Scaling
(2.934). Similarly, on PG19, TAPE achieves 8.226 at 1024
tokens, improving up to 18.3% over competitors. At 8192
tokens, TAPE reaches 7.063, further showing superiority,
especially at longer context lengths.

We also evaluate the passkey retrieval accuracy of our model,
following Landmark Attention (Mohtashami & Jaggi, 2023),
which has also been adopted by other literature (Chen et al.,
2023a; Tworkowski et al., 2024; Chen et al., 2023b). In
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Figure 3. Accuracy on passkey retrieval from 1k to 8k context length with Llama2 7B. We adopt the parameter-efficient fine-tuning
strategy for TAPE (see Sec. 3.3). In contrast to other parameter-efficient fine-fining methods (e.g. LoRA (Hu et al., 2022) and LongLoRA
(Chen et al., 2023b)), TAPE achieves no accuracy drop at 8k context length. TAPE performs even on par with full-parameter tuning with
Theta Scaling (Liu et al., 2023).

Table 3. Comparison of FLOPS, MACs, and the number of param-
eters for models with different position embeddings.

Method TAPE RoPE FIRE T5’s relative bias

FLOPS (G) 365.65 321.10 331.97 321.10
MACs (G) 180.69 160.46 165.69 160.46
Params. (M) 155.33 154.89 154.90 154.90

this task, the models are required to locate and retrieve a
random passkey hidden in a long document. We test the
passkey retrieval accuracy ranging from 1k to 8k. The re-
sults of long-context passkey retrieval task is presented in
Fig. 3. As shown, TAPE consistently achieves near-perfect
accuracy across all context lengths, outperforming other
methods. Theta Scaling shows a relatively stable perfor-
mance while LoRA and LongLoRA exhibit fluctuating and
lower accuracy. Notably, Theta Scaling is widely employed
in popular open-source long-context models like Llama3
8B Instruct 262k (AI@Meta, 2024) and MistralLite (AWS,
2024). TAPE demonstrates a similar superior capability to
be applied in long-context tasks.

4.4. Efficiency Analysis

In this subsection, we analyze the complexity of our meth-
ods in comparison to traditional position embedding tech-
niques. Using the models from the pretraining experiment
in Sec. 4.2, we report three key metrics: FLOPs, MACs, and
the number of parameters. The metrics are evaluated with
a batch size of 1 and sequence length 1024. As shown in
Tab. 3, our architectural modifications introduce a negligible
increase in FLOPs, MACs and number of parameters, com-
pared to the standard Transformer with RoPE. Moreover,
our TAPE is fully compatible with Flash Attention (Dao
et al., 2022; Dao, 2024a), a widely adopted accelerated at-
tention mechanism with IO-awareness, which introduces
extra efficiency.

For simplicity, we evaluate the running time of attention
layers with different position embedding methods on a sin-

Table 4. System measurement. We report execution time per step
in the Time row and iteration per second in the Throughput row.
The values are averaged over 100 inference steps.

Method TAPE RoPE FIRE T5’s relative bias
w/ Fusion w/o Fusion

Time (×10−4) 2.56 5.63 2.08 5.56 6.90
Throughput 3910 1775 4810 1799 1449
Flash Attention ✓ ✓ ✓ ✗ ✗

gle A100 GPU. We run 100 inference steps and report the
average execution time. Both RoPE and TAPE leverage
the acceleration provided by Flash Attention (Dao, 2024b),
whereas FIRE and T5’s relative bias are not fully compatible
with Flash Attention, as it currently lacks support for gradi-
ent computation in relative bias. In contrast, we observe that
the computations for position embeddings and token fea-
tures in TAPE are highly parallelizable, making it suitable
for further acceleration using kernel fusion techniques. To
capitalize on this, we implemented a version of TAPE with
kernel fusion, referred to as TAPE w/ Fusion. As shown
in Tab. 4, the efficiency of the original TAPE (w/o Fusion)
already surpasses T5’s relative bias and is comparable to
FIRE. With additional kernel fusion applied, TAPE achieves
a 2.2× speedup, approaching the efficiency of RoPE with
Flash Attention.

5. Conclusion
This paper introduced TAPE, a framework that enhances
transformer models by contextualizing positional embed-
dings with sequence content across layers. Through incorpo-
rating permutation and orthogonal equivariance, we ensured
stability and adaptability in positional encoding updates.
TAPE can also be easily integrated into existing models,
introducing negligible computation and inference overhead.
Extensive experiments confirmed TAPE’s effectiveness in
both arithmetic reasoning and long context language model-
ing tasks. One current limitation lies in our exclusive focus
on decoder-only models, with limited training scale.
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A. More Related Work
Context Length Extrapolation. The length extrapolation ability of Transformers are limited mainly in two aspects:
(1) the high memory usage caused by quadratic memory usage; and (2) the poor generalizability to unseen sequence
length during inference. To address the memory usage during long sequences training, LongLoRA (Chen et al., 2023b)
introduced shifted sparse attention and leveraged parameter-efficient tuning. LoCoCo (Cai et al., 2024) introduce a KV
cache compression mechanism. To help generalizability of positional embedding to unseen sequence length, (Chen et al.,
2023a) explores zero-shot linear interpolation on rotary embedding; (r/LocalLLaMA, 2023; Peng et al., 2023) enhance
simple interpolation by retaining high-frequency encoding ability; (Liu et al., 2023) investigate the relationship between
rotary base and extrapolation ability. While the previously mentioned methods focus primarily on extending rotary positional
embeddings, Li et al. (2023) introduced a functional relative position encoding framework that enhances generalization to
longer contexts. However, these methods generally impose a fixed pattern on attention maps, often adopting a decaying
pattern based on distance. In contrast, we propose a learnable and generic position encoding framework that primarily
focuses on arithmetic reasoning.

Equivariant Learning. Equivariant machine learning is a broad field that leverages task-specific symmetries to introduce
inductive biases into neural networks, reducing learning complexity and improving generalization. Here, we focus on
foundational works in this domain that are highly relevant and provide key motivation for our study. Prior research has
primarily focused on data representations with intrinsic symmetries, such as graphs (Satorras et al., 2021; Schütt et al., 2021;
Batzner et al., 2022; Maron et al., 2018), hyper-graphs (Wang et al., 2022b; Chien et al., 2021), and point clouds (Zaheer
et al., 2017; Fuchs et al., 2020; Thomas et al., 2018; Hoogeboom et al., 2022), which primarily require permutation
equivariance. Recent progress models graph representation learning as a joint invariance of permutation and orthogonal
groups (Wang et al., 2022a; Huang et al., 2023; Wang et al., 2024c). Beyond geometric data, another stream of work (Worrall
et al., 2017; Zhang, 2019; Weiler & Cesa, 2019; Cohen et al., 2019) ensures symmetric inputs yield consistent outputs,
reflecting the same label under symmetric transformations. For instance, Worrall et al. (2017) introduce rotation-equivariant
feature transformations after mapping images to the continuous fourier domain, while Zhang (2019) enhance translation
invariance in CNNs by incorporating a low-pass filter in the pooling layer. To the best of our knowledge, we are the first to
introduce equivariance in language models, recognizing the symmetry in positional embeddings.

B. Proof of Proposition 3.1
We first formulate the computational paradigm of transformers with TAPE.

Inputs. Let X(0) ∈ RN×C be the input sequence of token embeddings. We consider two types of initialization of
positional encoding:

• RoPE. Construct positional embeddings as a tensor: E(0) ∈ RN×C/2×2×2. For every i ∈ [N ],m ∈ [C/2], we let

e
(0)
i,m =

[
cos(θmi) − sin(θmi)
sin(θmi) cos(θmi)

]
, where θm = −100002m/C .

• Reweighted Random Fourier Features. Construct positional embeddings as a tensor: E(0) ∈ RN×M×L×R. For every
i ∈ [N ],m ∈ [M ], l ∈ [L]

e
(0)
i,m,l =

√
2

R

[
· · · wm,l,r cos(θm,ri) wm,l,r sin(θm,ri) · · ·

]⊤
, r ∈ [R/2]

where {θm,r}m∈[M ],r∈[R/2] are often chosen as (quasi-)Monte-Carlo samples from a distribution, and
{wm,l,r}m∈[M ],l∈[L],r∈[R/2] are a collection of coefficients.

Model. We consider a transformer F : RN×C × RN×M×L×R → RN×C consisting of T transformer blocks. For the
t-th block, we consider it employs function f (t) : RN×C × RN×M×L×R → RN×C to update features, and function
g(t) : RN×C × RN×M×L×R → RN×M×L×R to update positional embeddings:

X(t) = f (t)(X(t−1),E(t−1)), E(t) = g(t)(X(t−1),E(t−1)), t ∈ [T ].

We denote X(T ) as the final output of F (X(0),E(0)). We assume f (t) and g(t) jointly satisfies our invariance properties
Eqs. 4 and 5.
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Phase Shift. We say a transformer is invariant to translation if the final outputs X(T ) remains unchanged when the input
token indices are shifted by an offset. This implies the attention mechanism inside depends on positional information based
on the relative distances instead of absolute indices. Formally, when an offset ∆ ∈ R is applied to all positions, the initial

positional embeddings undergo a phase shift. We denote the positional embeddings with translation ∆ as Ẽ
(0)

, whose
per-token representations {ẽ(0)i }i∈[N ] can be written as:

• RoPE. ẽ(0)i,m =

[
cos(θm(i+∆)) − sin(θm(i+∆))
sin(θm(i+∆)) cos(θm(i+∆))

]
for every i ∈ [N ],m ∈ [C/2].

• Random Fourier Features. For every i ∈ [N ],m ∈ [M ], l ∈ [L]

ẽ
(0)
i,m,l =

√
2

R

[
· · · wm,l,r cos(θm,r(i+∆)) wm,l,r sin(θm,r(i+∆)) · · ·

]⊤
.

We denote the intermediate outputs resultant by shifted positional embeddings as (X̃
(t)
, Ẽ

(t)
), for every t ∈ [T ].

Main Result. We provide a formal version and proof of Proposition 3.1 as below:

Proposition B.1 (Formal version of Proposition 3.1). Assume f (t) and g(t) satisfies Eqs. 4 and 5 for every t ∈ [T ]. Then

for any shift ∆ ∈ R, we have F (X(0),E(0)) = F (X(0), Ẽ
(0)

).

Proof. First, we observe that a shift on the token indices translates to an orthogonal transformation on the embedding space
for both RoPE and random Fourier features. For RoPE, this can be seen by:

ẽ
(0)
i,m =

[
cos(θmi) − sin(θmi)
sin(θmi) cos(θmi)

] [
cos(θm∆) − sin(θm∆)
sin(θm∆) cos(θm∆)

]
︸ ︷︷ ︸

ORoPE,∆,m

,

where the extracted matrix ORoPE,∆,m is an orthogonal matrix. For random Fourier features, we observe that ẽi,m =

e
(0)
i,mORFF,∆,m, where ORFF,∆,m = diag(ORFF,∆,m,1, · · ·ORFF,∆,m,R/2), and each ORFF,∆,r ∈ R2×2 is defined as:

ORFF,∆,m,r =

[
cos(θm,r∆) − sin(θm,r∆)
sin(θm,r∆) cos(θm,r∆)

]
,

which shows the orthogonality of ORFF,∆,m.

Now we apply the orthogonal invariance in an inductive argument. We make hypothesis that X(t) = X̃
(t)

and E(t) = Ẽ
(t)
O

for some t ∈ [T ] ∪ {0} with O corresponding to the initialization specific orthogonal transformation. It is obvious that
this holds for t = 0. Then by the orthogonal invariance and equivariant of f (t+1) and g(t+1), we have that for every
t ∈ [T − 1] ∪ {0}:

X̃
(t+1)

= f (t+1)(X̃
(t)
, Ẽ

(t)
) = f (t+1)(X(t),E(t)O) = f (t+1)(X(t),E(t)) = X(t+1)

Ẽ
(t+1)

= g(t+1)(X̃
(t)
, Ẽ

(t)
) = g(t+1)(X(t),E(t)O) = g(t+1)(X(t),E(t))O = E(t+1)O,

which concludes the proof by induction.

C. Implementation Details
Experiment Settings. In Sec.4.1, the model architecture includes 16 layers, a hidden dimension of 1024, an intermediate
dimension of 2048, and 16 attention heads, resulting in approximately 120M parameters. In Sec.4.2, the architecture features
12 layers, a hidden dimension of 768, an intermediate dimension of 3072, and 12 attention heads, totaling approximately
155M parameters. The training recipe in three experiments are presented in Tab. 5.
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Table 5. Training recipe for language model pre-training and fine-tuning in experiments.

Arithmetic (§4.1) C4 Pre-training (§4.2) SCROLLS (§4.2) Context Extension (§4.3)

Sequence length 40 + 40 1024 1024 8096
Batch size 512 512 64 64
Number of iterations 20k 10k 1k 1k
Attention dropout prob. 0.0 0.0 0.0 0.0
Optimizer AdamW AdamW AdamW AdamW
Learning rate 1× 10−4 1× 10−4 1× 10−5 2× 10−5

Masked Multi-Head Mechanism. The masked multi-head attention is a key design in the original Transformer and is
well compatible with our method. To enforce causality in language generation, the Transformer masks out (sets to −∞) all
values in the input to the softmax that correspond to illegal connections from future tokens to current tokens. This is similarly
implemented in our enhanced Transformer for language modeling. To allow the model to jointly attend to information
from different representation subspaces at different positions, multiple attention outputs are computed in parallel with
multiple attention heads, and then mixed through concatenation and a linear transformation. In our enhanced Transformer,
the head dimension is added to both token embeddings and positional embeddings, resulting in X ∈ RN×H×M×B and
E ∈ RN×H×M×L×R, where H denotes the number of heads.

Parameterization in Position Contextualization. The shapes of W 1 and W 2 allow for considerable flexibility. Given
ei ∈ RH×M×L×R. To achieve maximal expressiveness, ei can be flattened into RHML×R, with W 1 and W 2 ∈ RHML×I .
Alternatively, to minimize parameter usage, we set W 1 and W 2 as RH×I , with weights shared across the M and L
dimensions. ψ is implemented through a standard MLP and the I dimension is set to 4H in all experiments.

Visualization of Tensor Operations. To provide a clearer understanding of TAPE and the operation within the attention
and feed-forward layers, we visualize the process in Fig. 4.

Lin
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r

Lin
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r

Attention Feed Forward

L = R = 2
N = B = 3

I = 4

N = 3

B = 3

L = R = 2 I = 4

Figure 4. Visualization of TAPE’s operations. The channel dimension is omitted for simplicity as all operations can be channel-wise. In
the attention layer, the input token embeddings have a shape of N ×B, and the positional embeddings have a shape of N × L×R. For
the feed-forward layer, the N dimension is omitted as its operations are position-wise. The input token embeddings then have a shape of
B (or B × 1), and the positional embeddings have a shape of L×R.
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D. Additional Experiments
Ablation Study on Architecture. We ablate our architecture design for both attention layer and MLP layer in position
contextualization. We conduct ablation studies on our architectural design for both the attention layer and the MLP
layer in position contextualization. Additionally, we ablate two aspects of the design: rotation equivariance, by setting
W 1,W 2 ∈ RHR×I , which disrupts the O(R)-equivariance; the use of tensorial embeddings, by flattening L = R = 2 into
L = 1 and R = 4; and both properties simultaneously, by setting L = 4 and R = 1. We use the same pre-training setting as
Sec. 4.2 and directly report its perplexity in the test dataset of Github following He et al. (2024).

Table 6. Ablation study on TAPE architecture. We evalute pre-trained models’ perplexity across varying sequence lengths on the GitHub
test set.

Architecture Perplexity

Attention Feed Forward 128 256 512 1024

✗ ✗ 139.2 92.8 69.3 57.2
✗ ✓ 143.3 95.0 70.7 58.4
✓ ✗ 142.7 94.3 70.1 57.6
✓ ✓ 132.0 86.6 63.9 52.2

Rotation Equivariance Tensorial Embedding

✗ ✗ 140.7 92.1 68.2 56.2
✓ ✗ 138.4 91.3 67.8 55.7
✗ ✓ 132.9 87.8 65.4 54.1
✓ ✓ 132.0 86.6 63.9 52.2

As shown in Tab. 6 , incorporating position contextualization in both the attention layer and the MLP layer results in the
lowest perplexity across different positions within the training sequence length. Removing position contextualization from
either layer increases perplexity, even exceeding that of the traditional positional embedding without any architectural
modifications. This outcome is reasonable, as applying position contextualization to only one component introduces an
architectural inconsistency. Furthermore, ablating rotation equivariance allows all neurons in the positional embedding
to undergo linear transformations, increasing the number of parameters but leading to worse results compared to TAPE.
Similarly, reducing the tensorial embedding to a vector embedding leads to higher perplexities and a decline in performance.

Ablation Study on TAPE Hyperparameter. We aim to investigate the impact of varying I on learning performance.
Using the same pre-training settings as described in Section 4.2, we directly report the perplexity on the GitHub test dataset.
As shown in Tab. 7, there is no significant difference when using different values of I , although a trend of first decreasing
and then increasing can be observed. This suggests that a range of I values from 2H = 24 to 3H = 48 may yield better
performance compared to other settings. Therefore, as a general guideline, we recommend considering I ∈ {2, 3, 4}H to
optimize TAPE’s performance.

Table 7. Ablation study on TAPE hyperparameter I . We evalute pre-trained models’ perplexity across varying sequence lengths on the
GitHub test set.

TAPE Perplexity

Added Params. (M) I 128 256 512 1024

0.11 12 133.2 87.9 65.2 53.6
0.22 24 133.0 86.1 63.2 51.8
0.44 48 132.0 86.6 63.9 52.2
0.88 96 133.2 87.5 64.5 52.7
1.76 192 133.0 87.3 64.5 53.0

Stability of TAPE under Positional Shifts. Stability in this context refers to the consistency of a sequence’s representation
under positional shifts (Sun et al., 2022). To evaluate the stability of TAPE, we examine two types of positional shifts: (1)
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appending [BOS] tokens at the beginning of the sequence and (2) initializing positional indices with non-zero values to
simulate a phase shift (Sinha et al., 2022). We analyze two aspects of the representation: the attention weights and the dot
product of positional embeddings, quantifying their changes after applying positional shifts. For comparison, we include
RoPE, which also exhibits O(R)-equivariance (R = 2) and remains consistent across layers, as well as TAPE without
equivariance, as explored in previous ablations.

Table 8. Comparison of RoPE, TAPE, and TAPE without equivariance (w/o EQ) under positional shifts. The table shows differences in
attention weights (top) and positional embedding dot products (bottom) across layers for two shift methods: adding three [BOS] tokens
(“Add Tokens”) and starting position IDs at 3 (“Shift IDs”).

Atten. Diff.
(×10−2)

Add Tokens Shift IDs

Layer 1 Layer 2 Layer 4 Layer 8 Layer 1 Layer 2 Layer 4 Layer 8

RoPE 8.93 8.51 12.29 11.46 0.01 0.02 0.02 0.03
TAPE 9.08 11.24 12.23 13.78 0.01 0.02 0.04 0.04
w/o EQ 11.30 11.38 13.32 14.55 0.01 0.24 0.37 0.51

PE Dot Prod.
Diff. (%)

Add Tokens Shift IDs

Layer 1 Layer 2 Layer 4 Layer 8 Layer 1 Layer 2 Layer 4 Layer 8

RoPE 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03
TAPE 0.03 0.37 2.75 6.62 0.03 0.02 0.03 0.04
w/o EQ 0.03 2.29 3.34 6.37 0.03 0.54 0.44 0.86

As shown in Tab. 8, TAPE demonstrates stability comparable to RoPE, maintaining consistent attention weights and
positional embedding dot products across different layers. Among these, the near-zero change (not exactly zero, attributable
to numerical error observed in RoPE as well) in the dot-product when shifting IDs serves as empirical evidence for
Proposition 3.1. However, when equivariance is removed from TAPE, the differences increase significantly, especially in
deeper layers, highlighting the importance of equivariance in preserving stability.

Additional Evaluation on Fine-tuned Llama-7b. Modern benchmarks provide a comprehensive means to assess large
language models’ advanced capabilities in language understanding and reasoning. Accordingly, we further evaluate our
fine-tuned Llama-7b (Sec. 4.3) on standard benchmarks, including ARC (Clark et al., 2018) and MMLU (Hendrycks et al.,
2021).

Table 9. Accuracy in Percentage Across Methods and Benchmarks

Method MMLU (%) ARC (%)

Humanities Social Sciences STEM Other Challenge Easy

LoRA 39.09 ± 0.69 46.47 ± 0.88 33.65 ± 0.83 45.83 ± 0.89 45.31 ± 1.45 74.28 ± 0.90
LongLoRA 37.53 ± 0.69 43.55 ± 0.88 32.54 ± 0.83 43.84 ± 0.88 45.31 ± 1.45 74.16 ± 0.90
ThetaScaling 37.45 ± 0.69 43.16 ± 0.88 33.05 ± 0.83 44.64 ± 0.88 45.65 ± 1.46 74.24 ± 0.90
TAPE 37.96 ± 0.69 45.40 ± 0.88 33.27 ± 0.83 45.06 ± 0.88 46.25 ± 1.46 74.16 ± 0.90

As Tab. 9 shows, TAPE demonstrates notable performance compared to other methods on MMLU and ARC benchmarks.
While TAPE’s accuracy on MMLU is slightly lower than that of LoRA, it consistently outperforms others. On the ARC
benchmark, TAPE performs comparably to other methods on the “Easy” subset but exhibits an advantage on the “Challenge”
subset, underscoring its potential in complex reasoning tasks. Remarkably, these results are achieved using only fine-tuning,
without pretraining TAPE, despite the presence of a certain degree of architectural shift.

Additional Evaluation in Arithmetic Learning We also evaluate the effectiveness of TAPE in Sec. 4.1 using a different
training and testing length: 20/40 instead of 40/80. This setup is easier for the model to learn, with convergence achieved in
less than half the steps. As shown in Fig. 5, TAPE outperforms FIRE with a marginal improvement of 5%. However, this
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improvement is less pronounced compared to the case with a train/test length of 40/80, suggesting that TAPE may be more
effective in tackling complex and challenging tasks than simpler ones.
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Figure 5. Accuracy on addition task trained with length 20 test on 2× context length. The average accuracy across the heatmap is 26.12%,
26.12%, 39.44% and 41.42% respectively for RoPE, RandPE, FIRE and TAPE.
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Figure 6. Accuracy on addition task on 2× context length. The average accuracy is 26.98%, 32.82% and 33.92% respectively for FIRE,
TAPE and TAPE + YaRN.

Integration with Extrapolation Technique. Inspired by the demonstrated potential of NTK-based methods (Peng et al.,
2023) to enhance the length extrapolation ability of RoPE, we have explored integrating TAPE with such techniques when
initialized as RoPE. Specifically, we selected the most recent method, YaRN (Peng et al., 2023), and implemented its
integration with TAPE to evaluate its performance in length extrapolation. The experiments were conducted under the same
settings as described in Sec. 4.1. As shown in Fig. 6, the diagonal region exhibits darker colors, indicating higher accuracies.
Quantitatively, YaRN effectively enhances the length extrapolation performance of TAPE with RoPE initialization, achieving
a modest relative improvement of 3.4%. However, it still struggles to generalize to unseen sequences with significantly
longer digit lengths.

E. Illustrations and Interpretation
Visualization of PE Patterns. To better understand the impact of TAPE, we analyze its attention and positional embedding
(PE) dot-product patterns. Fig. 7 compares the patterns of TAPE and RoPE in the last layer, while Fig. 8 illustrates the
evolution of TAPE’s dot-product patterns from shallow to deeper layers. The x-axis and y-axis correspond to the token
positions of a sampled input sequence.

As shown in Fig. 7, TAPE demonstrates more evenly distributed long-range attention patterns, whereas RoPE tends to
emphasize token locality. In Fig. 8, TAPE behaves similarly to RoPE in the first layer but gradually reduces the dominance
of diagonal patterns as the depth increases. This transition results in the formation of grid-like patterns, indicating that the
model starts to focus on distant tokens in a structured and periodic manner.

Examples on QuALITY. To further validate TAPE’s superior performance on the SCROLLS benchmark, we present two
example questions from the QuALITY dataset within the SCROLLS benchmark. As shown in Tab. 10 and the detailed
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Table 10. Comparing answers of different methods on example questions in QuALITY.

Method Question A Question B

Answer EM Answer EM

Ground
Truth

The secret service budget was small ✓ Only the private quarters or
the office restroom

✓

TAPE The secret service budget was small ✓ Only the private quarters ✗
xPos They were all they were waiting for ✗ Only a tiny part of the right of

the right to leave foreverish
✗

RandPE Their human opinion was trusted by
others who have trust the services of
their people

✗ Only a handsome man ✗

RoPE Their orless them together with their
repories did not only they didn’s
never done was never done was
never done... (repeating)

✗ The/O only the full-College
All of the full-College All of
the full-College... (repeating)

✗

ALiBi Jimmy Carter is the president’s de
facto president

✗ Jimmy Carter is the presi-
dent’s de facto president

✗

((a) ) Dot-product patterns of positional embeddings of TAPE and RoPE. ((b) ) Difference between TAPE and RoPE

Figure 7. Comparison of TAPE and RoPE methods in terms of positional embedding dot-product patterns and their resulting attention
differences. (a) TAPE demonstrates a systematic attention to surrounding tokens with relatively small dynamic ranges, whereas RoPE
exhibits a highly significant diagonal pattern with distinctively black regions. (b) TAPE effectively attends to longer-range tokens, avoiding
excessive attention to the self-token, in contrast to RoPE.
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Figure 8. Dot-product patterns of positional embeddings in layers 1, 4, 8, and 12 (last) of TAPE.

questions in Tab. 11, TAPE consistently generates either the correct answer or a response similar to the correct answer,
even if not an exact match. In contrast, xPos and RandPE produce meaningful sentences that are unrelated to the specific

19



Rethinking Addressing in Language Models via Contextualized Equivariant Positional Encoding

question. RoPE and ALiBi, however, generate incoherent outputs: RoPE tends to repeat certain phrases, while ALiBi fails
to recognize the presence of a question, producing the same irrelevant answer regardless of the input.

Table 11: Example Questions in QuALITY

Qu. A (ID: 20007 RZDMZJYW 2) Qu. B (ID: 20007 RZDMZJYW 4)
What made it easier for previous presidents to get away
with adultery?

(A) Their staff did not know
(B) They always tried to hide it well
(C) The secret service budget was small
(D) The reporters never found out

Where in the White House is it feasible for the president to meet a
woman?

(A) Only the East Wing
(B) Only the private quarters
(C) Only the oval office, bowling alley, or East Wing
(D) Only the private quarters or the office restroom

Article Content:
The logistics of presidential adultery.
The Washington Times could hardly contain its excitement: “A former FBI agent assigned to the White House describes in a new book
how President Clinton slips past his Secret Service detail in the dead of night, hides under a blanket in the back of a dark-colored sedan,
and trysts with a woman, possibly a celebrity, at the JW Marriott Hotel in downtown Washington.” For Clinton-haters, Gary Aldrich’s tale
sounded too good to be true. And it was.
The not-so-Secret-Service agent’s “source” turned out to be a thirdhand rumor passed on by Clinton scandalmonger David Brock. Those
who know about White House security—Clinton staffers, the Secret Service, former aides to Presidents Reagan and Bush—demolished
Aldrich’s claims. Clinton couldn’t give his Secret Service agents the slip (they shadow him when he walks around the White House),
couldn’t arrange a private visit without tipping off hotel staff, and couldn’t re-enter the White House without getting nabbed. (Guards
check all cars at the gate—especially those that arrive at 4 a.m.)
Even so, the image resonates. For some Americans, it is an article of faith: Bill Clinton cheated on his wife when he was governor, and he
cheats on her as president. But can he? Is it possible for the president of the United States to commit adultery and get away with it? Maybe,
but it’s tougher than you think.
Historically, presidential adultery is common. Warren Harding cavorted with Nan Britton and Carrie Phillips. Franklin Roosevelt
“entertained” Lucy Rutherford at the White House when Eleanor was away. America was none the wiser, even if White House reporters
were.
Those who know Clinton is cheating often point to the model of John F. Kennedy, who turned presidential hanky-panky into a science.
Kennedy invited mistresses to the White House for afternoon (and evening, and overnight) liaisons. Kennedy seduced women on the White
House staff (including, it seems, Jackie’s own press
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secretary). Kennedy made assignations outside the White House, then escaped his Secret Service detail by scaling walls and ducking out
back doors. If Kennedy did it, so can Clinton.
Well, no. Though Clinton slavishly emulates JFK in every other way, he’d be a fool to steal Kennedy’s MO d’amour. Here’s why:
1) Too many people would know. Kennedy hardly bothered to hide his conquests. According to Kennedy mistress (and mob moll) Judith
Campbell’s autobiography, those who knew about their affair included: Kennedy’s personal aides and secretary (who pandered for him),
White House drivers, White House gate guards, White House Secret Service agents, White House domestic staff, most of Campbell’s
friends, a lot of Kennedy’s friends, and several Kennedy family members. Such broad circulation would be disastrous today because:
2) The press would report it. Kennedy conducted his affairs brazenly because he trusted reporters not to write about them. White House
journalists knew about, or at least strongly suspected, Kennedy’s infidelity, but never published a story about it. Ask Gary Hart if reporters
would exercise the same restraint today. Clinton must worry about this more than most presidents. Not only are newspapers and magazines
willing to publish an adultery story about him, but many are pursuing it.
For the same reason, Clinton would find it difficult to hire a mistress. A lovely young secretary would set off alarm bells in any reporter
investigating presidential misbehavior. Says a former Clinton aide, “There has been a real tendency to have no good-looking women on the
staff in order to protect him.”
3) Clinton cannot avoid Secret Service protection. During the Kennedy era, the Secret Service employed fewer than 500 people and had an
annual budget of about $4 million. Then came Lee Harvey Oswald, Squeaky Fromme, and John Hinckley. Now the Secret Service payroll
tops 4,500 (most of them agents), and the annual budget exceeds $500 million (up 300 percent just since 1980). At any given time, more
than 100 agents guard the president in the White House. Top aides from recent administrations are adamant: The Secret Service never lets
the president escape its protection.
So what’s a randy president to do? Any modern presidential affair would need to meet stringent demands. Only a tiny number of trusted
aides and Secret Service agents could know of it. They would need to maintain complete silence about it. And no reporters could catch
wind of it. Such an affair is improbable, but—take heart, Clinton-haters—it’s not impossible. Based on scuttlebutt and speculation from
insiders at the Clinton, Bush, Reagan, and Ford White Houses, here are the four likeliest scenarios for presidential adultery. 1) The White
House Sneak. This is a discreet variation of the old Kennedy/Campbell liaison. It’s late at night. The president’s personal aides have gone
home. The family is away. He is alone in the private quarters. The private quarters, a.k.a. “the residence,” occupy the second and third
floors of the White House. Secret Service agents guard the residence’s entrances on the first floor and ground floors, but the first family
has privacy in the quarters themselves. Maids and butlers serve the family there, but the president and first lady ask them to leave when
they want to be alone. The president dials a “friend” on his private line. (Most presidents placed all their calls through the White House
operators, who kept a record of each one; the Clintons installed a direct-dial line in the private quarters.) The president invites the friend
over for a cozy evening at the White House. After he hangs up with the friend, he phones the guard at the East Executive Avenue gate and
tells him to admit a visitor. He also notifies the Secret Service agent and the usher on duty downstairs that they should send her up to the
residence.
A taxi drops the woman near the East gate. She identifies herself to the guard, who examines her ID, runs her name through a computer (to
check for outstanding warrants), and logs her in a database. A White House usher escorts her into the East Wing of the White House. They
walk through the East Wing and pass the Secret Service guard post by the White House movie theater. The agent on duty waves them on.
The usher takes her to the private elevator, where another Secret Service agent is posted. She takes the elevator to the second floor. The
president opens the door and welcomes her. Under no circumstances could she enter the living quarters without first encountering Secret
Service agents.
Let us pause for a moment to demolish two of the splashier rumors about White House fornication. First, the residence is the only place in
the White House where the president can have safe (i.e., uninterrupted) sex. He can be intruded upon or observed everywhere else—except,
perhaps, the Oval Office bathroom. Unless the president is an exhibitionist or a lunatic, liaisons in the Oval Office, bowling alley, or East
Wing are unimaginable. Second, the much-touted tunnel between the White House and the Treasury Department is all-but-useless to the
presidential adulterer. It is too well-guarded. The president could smuggle a mistress through it, but it would attract far more attention
from White House staff than a straightforward gate entry would.
Meanwhile, back in the private quarters, the president and friend get comfortable in one of the 14 bedrooms (or, perhaps, the billiard room).
After a pleasant 15 minutes (or two hours?), she says goodbye. Depending on how long she stays, she may pass a different shift of Secret
Service agents as she departs. She exits the White House grounds, unescorted and unbothered, at the East gate.
The Risks: A gate guard, an usher, and a handful of Secret Service agents see her. All of them have a very good idea of why she was there.
The White House maid who changes the sheets sees other suspicious evidence. And the woman’s—real—name is entered in a Secret
Service computer. None of this endangers the president too much. The computer record of her visit is private, at least for several decades
after he leaves office. No personal aides know about the visit. Unless they were staking out the East gate, no journalists do either. The
Secret Service agents, the guard, the steward, and the maid owe their jobs to their discretion. Leaks get them fired.
That said, the current president has every reason not to trust his Secret Service detail. No one seriously compares Secret Service agents
(who are pros) to Arkansas state troopers (who aren’t). But Clinton might not trust any
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security guards after the beating he took from his Arkansas posse. Also, if other Secret Service agents are anything like Aldrich, they may
dislike this president. One Secret Service leak—the lamp-throwing story—already damaged Clinton. Agents could tattle again.
2) The “Off-the-Record” Visit. Late at night, after his personal aides and the press have gone home, the president tells his Secret Service
detail that he needs to take an “off-the-record” trip. He wants to leave the White House without his motorcade and without informing the
press. He requests two agents and an unobtrusive sedan. The Secret Service shift leader grumbles but accepts the conditions. Theoretically,
the president could refuse all Secret Service protection, but it would be far more trouble than it’s worth. He would have to inform the head
of the Secret Service and the secretary of the Treasury.
The president and the two agents drive the unmarked car to a woman friend’s house. Ideally, she has a covered garage. (An apartment
building or a hotel would raise considerably the risk of getting caught.) The agents guard the outside of the house while the president and
his friend do their thing. Then the agents chauffeur the president back to the White House, re-entering through the Southwest or Southeast
gate, away from the press station.
The Risks: Only two Secret Service agents and their immediate supervisor know about the visit. It is recorded in the Secret Service log,
which is not made public during the administration’s tenure. Gate guards may suspect something fishy when they see the car. A reporter or
passer-by could spy the president—even through tinted windows—as the car enters and exits the White House. The friend’s neighbors
might spot him, or they might notice the agents lurking outside her house. A neighbor might call the police to report the suspicious visitors.
All in all, a risky, though not unthinkable, venture.
3) The Camp David Assignation. A bucolic, safer version of the White House Sneak. The president invites a group of friends and
staffers—including his paramour but not his wife—to spend the weekend at Camp David. The girlfriend is assigned the cabin next to the
president’s lodge. Late at night, after the Hearts game has ended and everyone has retired to their cabins, she strolls next door. There is a
Secret Service command post outside the cabin. The agents on duty (probably three of them) let her enter. A few hours later, she slips back
to her own cabin.
The Risks: Only a few Secret Service agents know about the liaison. Even though the guest list is not public, all the Navy and Marine
personnel at Camp David, as well as the other guests, would know that the presidential entourage included an attractive woman, but not the
first lady. That would raise eyebrows if it got back to the White House press room.
4) The Hotel Shuffle. The cleverest strategy, and the only one that cuts out the Secret Service. The president is traveling without his family.
The Secret Service secures an entire hotel floor, reserving elevators and guarding the entrance to the president’s suite. The president’s
personal aide (a man in his late 20s) takes the room adjoining the president’s. An internal door connects the two rooms, so the aide can
enter the president’s room without alerting the agents in the hall. This is standard practice. Late in the evening, the aide escorts a comely
young woman back to the hotel. The
Secret Service checks her, then waves her into the aide’s room. She emerges three hours later, slightly disheveled. She kisses the aide in
the hall as she leaves. Someone got lucky—but who?
The Risks: The posted Secret Service agents might see through the charade. More awkwardly, the aide would be forced to play the seamy
role of procurer. (He would probably do it. Kennedy’s assistants performed this task dutifully.)
In short, presidential adultery is just barely possible in 1996. But it would be extremely inconvenient, extremely risky, and potentially
disastrous. It seems, in fact, a lot more trouble than it’s worth. A president these days might be wiser to imitate Jimmy Carter, not Jack
Kennedy, and only lust in his heart.
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