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ABSTRACT

Modern wearable devices can conveniently and continuously record various biosig-
nals in the many different environments of daily living, ultimately enabling a rich
view of individual health. However, not all biosignals are the same: high-fidelity
measurements, such as photoplethysmography (PPG), contain more physiological
information, but require optical sensors with a high power footprint. In a resource-
constrained setting, such high-fidelity biosignals may be unavailable. Alternatively,
a lower-fidelity biosignal, such as those from an accelerometer, has a significantly
smaller power footprint and is available in almost any wearable device. While
multi-modal modeling and cross-modal reconstruction of biosignals have been done
before, here, we demonstrate that we can distill representational knowledge across
biosignals with different levels of fidelity, i.e., from PPG to accelerometer, using 20
million minutes of unlabeled data collected from ∼172K participants in the Apple
Heart and Movement Study under informed consent. Our knowledge distillation
framework does not require labels; we pre-train PPG encoders via self-supervised
learning, and then distill the representational knowledge from the PPG encoders
to accelerometer encoders. We first demonstrate strong cross-modal alignment
on unseen data, e.g., 99.2% top-1 accuracy for retrieving PPG embeddings from
accelerometer embeddings. We show that distilled accelerometer encoders have
significantly more informative representations compared to self-supervised or su-
pervised encoders trained on accelerometer data for downstream targets, observed
by at least 23%-49% improved performance for predicting heart rate and heart rate
variability, and are readily predictive of a wide array of downstream targets in-
cluding demographic variables, health conditions, use of medications, and lifestyle
habits. We also demonstrate that our framework can be applied to different encoder
architectures with different pre-training strategies of the strong encoder, and can
be used to simultaneously do cross-modality distillation and model compression.
Additionally, we perform various ablations for augmentations, hyperparameters and
multi-modal training. We believe our proposed representational knowledge distilla-
tion framework may unlock new opportunities for developing digital biomarkers
from any wearable device with lower-fidelity biosignals, and help individuals track
their health more frequently and conveniently.

1 INTRODUCTION

The recent growth of wearable devices has empowered individuals to track their health more con-
veniently and frequently. Wearable devices can record various biosignals and provide individuals
with a continuous view of their health metrics in daily environments, a view which is hard to achieve
in clinical settings. While this unlocks new exciting opportunities for wearable devices, challenges
remain. High-fidelity biosignals that have substantial physiological information content tend to
require specific hardware and sensors for recording, therefore making them unavailable in some
wearable devices. Even when available, they may be difficult to collect frequently due to power
constraints of small wearable devices, or they may require active user engagement. An example of
such is photoplethysmography (PPG), which measures volumetric changes in arterial blood flow
and contains diverse physiological information but requires power-consuming optical sensors for
recording. On the other hand, lower-fidelity biosignals, such as those from an accelerometer, while
capable of detecting certain minute physiological movements (Inan et al., 2015; Kim et al., 2016), are
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known to be more susceptible to motion artifacts and thus more challenging to extract physiological
information from, compared to PPG. However, they are available on almost all wearable devices
and have a significantly smaller power footprint. Independently, another challenge for developing
digital biomarkers for wearable devices is the lack of large labeled medical datasets because they are
much more expensive and time-consuming to collect unlike in other domains. Given these challenges,
the question that remains is whether we can train powerful deep neural networks for lower-fidelity
biosignals, such as the accelerometer, without requiring labels and by leveraging information in
high-fidelity biosignals, such as PPG. In this work, we aim to address this question.

Unsupervised representation learning techniques, such as self-supervised learning, have been proven
successful in training deep encoders without requiring any explicit labels during training in various
domains of deep learning such as natural language processing (Devlin et al., 2019; OpenAI, 2023),
computer vision (Chen et al., 2020; 2021; Oquab et al., 2023), and speech recognition (Baevski
et al., 2020; 2022). In addition, there has been several works for training encoders for health and
wellness applications using biosignals (Cheng et al., 2020; Kostas et al., 2021; Sarkar & Etemad,
2022; Mohsenvand et al., 2020; Gopal et al., 2021; Kiyasseh et al., 2021; Mehari & Strodthoff,
2022; Wu et al., 2020; Spathis et al., 2021; Tang et al., 2021; Yuan et al., 2023; Lai et al., 2023;
Abbaspourazad et al., 2024; Liu et al., 2024). Independent to representation learning, knowledge
distillation has been extensively used for transferring knowledge from a neural network (teacher) to
another neural network (student) (Hinton et al., 2015), which can also unlock cross-modal distillation
(Gupta et al., 2015; Aytar et al., 2016; Tian et al., 2022). While knowledge distillation has been
traditionally often used in supervised settings (Hinton et al., 2015; Gupta et al., 2015; Aytar et al.,
2016; Tian et al., 2022), there is a growing interest in combining it with self-supervised learning via
self-distillation (Xie et al., 2020; Fang et al., 2021; Caron et al., 2021) or distillation from multiple
foundation models into one to improve and agglomerate their representations (Wei et al., 2022; Wang
et al., 2024; Ranzinger et al., 2024). See Section 2 for how our work relates to the existing work.

In this paper, using unlabeled sensor data collected under informed consent from the large longitudinal
Apple Heart and Movement Study (AHMS) (MacRae, 2021; Truslow et al., 2024), we demonstrate
cross-modal representational knowledge distillation to train accelerometer encoders distilled from
PPG teacher encoders. Our contributions are: 1) Representational knowledge distillation across
wearable biosignals in a large-scale dataset: While multi-modal modeling and cross-modal recon-
struction of biosignals have been done before, we study representational knowledge distillation across
wearable biosignals using a dataset at such large scale with 20M minutes of multi-modal sensor
data from ∼172K participants. 2) Fully unsupervised representational knowledge distillation
framework: We combine and adopt techniques inspired by uni-modal and multi-modal pre-training
frameworks from other domains of deep learning to create a fully unsupervised distillation framework
for biosignal time-series, which is particularly crucial for health applications where labeled data is
limited. 3) Studying representational alignment: We study representational alignment of PPG and
accelerometer encoders, by doing retrieval analysis. 4) Studying representational information:
We study the representational power of PPG and accelerometer encoders for critical health targets
such as heart rate and heart rate variability, across different available labeled data regimes, as well
as for demographic variables and 46 health targets including health conditions, use of medications
and lifestyle habits from AHMS survey questions. In addition to these contributions, to support
the robustness of the findings, we perform ablation studies to evaluate the efficacy of the encoder
architecture (Transformer and EfficientNet), the pre-training strategy of the PPG teacher model
(masked autoencoding and contrastive learning), the augmentations, and other training choices.

2 RELATED WORK

Uni-modal and multi-modal representation learning: Unsupervised representation learning tech-
niques, e.g., self-supervised learning, have been proven successful in training generalist models,
also known as foundation models, without requiring any explicit labels during training in various
domains of deep learning such as natural language processing (Devlin et al., 2019; OpenAI, 2023),
computer vision (Chen et al., 2020; 2021; He et al., 2021; Oquab et al., 2023), speech recognition
(Baevski et al., 2020; 2022), and health (Cheng et al., 2020; Kostas et al., 2021; Sarkar & Etemad,
2022; Mohsenvand et al., 2020; Gopal et al., 2021; Kiyasseh et al., 2021; Mehari & Strodthoff,
2022; Wu et al., 2020; Spathis et al., 2021; Tang et al., 2021; Yuan et al., 2023; Lai et al., 2023;
Abbaspourazad et al., 2024; Liu et al., 2024). While most of these works have been primarily on
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training uni-modal foundation models, there has been a recent shift in training multi-modal foundation
models to allow for leveraging information from multiple modalities, either to train a model that
simultaneously processes multiple modalities (Mizrahi et al., 2023; Meta, 2024), or to train and bind
multiple modality-specific foundation models (Radford et al., 2021; Girdhar et al., 2023; Thapa et al.,
2024), particularly with a contrastive objective. Similarly for health applications, there has been a
growing interest in cross-modal reconstruction of biosignals (Sarkar & Etemad, 2020), or modeling
and pre-training multiple biosignal modalities simultaneously (Deldari et al., 2022; Liu et al., 2024;
Deldari et al., 2024; Thapa et al., 2024).

Knowledge distillation: Knowledge distillation has been extensively used for transferring knowledge
from a neural network (teacher) to another neural network (student) in other domains (Hinton et al.,
2015; Tian et al., 2022), traditionally often in supervised settings to transfer knowledge from a large
neural network to a small neural network (Hinton et al., 2015; Tian et al., 2022) or from a high-fidelity
modality to a low-fidelity modality (Gupta et al., 2015; Aytar et al., 2016; Tian et al., 2022), or from
an ensemble network into a single one (Tian et al., 2022), by using the teacher’s output logits as
soft labels of the student model. Alternatively, knowledge distillation can also be performed using
intermediate representations. With the recent emergence of foundation models, there has been several
works for combining self-supervised learning and knowledge distillation via self-distillation (Xie
et al., 2020; Fang et al., 2021; Caron et al., 2021), or distilling one or several existing foundation
models to a single foundation model to improve and agglomerate their representations (Wei et al.,
2022; Wang et al., 2024; Ranzinger et al., 2024).

In this work, we adopt ideas from different related work in uni-modal and multi-modal representation
learning and knowledge distillation, for biosignal time-series. Similar to uni-modal foundation models,
we train our PPG teacher encoder using masked autoencoding (He et al., 2021) and contrastive learning
(Chen et al., 2020), with our own variation of these frameworks. We then transfer knowledge from
our PPG teacher encoders to accelerometer student encoders via a cross-modal knowledge distillation
framework (Tian et al., 2022) that bears similarity to multi-modal contrastive learning (Radford et al.,
2021; Girdhar et al., 2023) and self-distillation for model compression (Fang et al., 2021). There
has been prior work on training uni-modal foundation models for PPG and accelerometer (Spathis
et al., 2021; Yuan et al., 2023; Abbaspourazad et al., 2024) or multi-modal foundation models for
other biosignals (Deldari et al., 2022; Liu et al., 2024; Deldari et al., 2024; Thapa et al., 2024). These
multi-modal biosignal foundation models either take multiple modalities as input (Liu et al., 2024;
Deldari et al., 2024); or they “bind” multi-modality embeddings into a shared subspace (Deldari et al.,
2022; Thapa et al., 2024) similar to (Radford et al., 2021) from randomly-initialized encoders, which
is primarily different for our motivation of cross-modal representational knowledge distillation and
model compression from an existing high-fidelity teacher encoder. In fact, we show that training
both encoders of high-fidelity and low-fidelity modalities together degrades the quality of low-fidelity
embeddings (see Section 5.5). In line with our motivation, there has been prior work on leveraging
asymmetric information in biosignals, by cross-modal reconstruction of electrocardiogram (ECG)
from PPG, for a more accurate estimation of heart rate (Sarkar & Etemad, 2020). Also, our work
focuses on accelerometer during low-motion periods where it captures minute cardiovascular signals
such as the ballistocardiogram, which is distinct from modeling slower changes in accelerometer
during gross motion for health and fitness (Hallgrı́msson et al., 2018; Ni et al., 2019; Spathis et al.,
2021). All in all, while multi-modal modeling and cross-modal reconstruction of biosignals have been
done before, our work studies unsupervised representational knowledge distillation across wearable
biosignals using large-scale data collected from wearable consumer devices, to develop a single
encoder for accelerometer that is readily predictive of a wide array of downstream health targets.

3 METHODS AND IMPLEMENTATION DETAILS

Our representational knowledge distillation framework is fully unsupervised and consists of two
steps: teacher pre-training and cross-modal representational knowledge distillation as depicted in
Figure 1. Below, we go over the details of each of these steps as well as their implementation details.

3.1 TEACHER PRE-TRAINING

The first step of our representational knowledge distillation framework is to pre-train the PPG teacher
encoder via self-supervised learning without any labels. To show that our knowledge distillation
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Figure 1: Overview of our representational knowledge distillation framework, in two major steps.
Teacher pre-training: we first pre-train an encoder for the high-fidelity biosignal, PPG, using masked
autoencoding, this step can be alternated with other self-supervised learning techniques, such as
contrastive learning, for which we do an ablation in the text. We turn the multi-channel PPG input
into tokens from non-overlapping sequential patches. The encoder Transformer processes only a
small proportion of the input tokens (20%), and the decoder Transformer takes the encoder’s output
tokens interleaved with learnable mask tokens to reconstruct the PPG signal at masked patches.
Cross-modal representational knowledge distillation: we then distill the representational knowl-
edge from the PPG teacher encoder to an accelerometer student encoder using a paired PPG-
accelerometer dataset. In each mini-batch of data, we first augment PPG and accelerometer signals
independently, the teacher (frozen) and student encoders process these augmented views into em-
beddings, which are then down-projected to a lower-dimensional subspace. The down-projected
embeddings are then aligned using a multi-modal contrastive loss.

framework is agnostic to the pre-training of the PPG teacher encoder and study its efficacy, we
investigated two popular pre-training strategies: masked autoencoding (MAE) as the main framework
and contrastive learning (CL) as an ablation, which we explain in detail below.

Masked autoencoding: Our masked autoencoding pre-training framework is adopted from the prior
work on images (He et al., 2021), for time-series. We turn the multi-channel PPG input (4-channels
and 60s-long, as explained in Section 4.1) into patches using non-overlapping fixed-length windows,
and then project the patches with a learnable linear tokenizer into tokens, which results in 192 256-D
tokens. Sinusoidal positional embeddings are added to the input tokens, then 80% of input tokens
are randomly dropped and the 38 kept tokens are passed through the encoder Transformer to get
encoder output tokens. Learnable mask tokens, initialized with a 256-D token drawn from a uniform
distribution ∼ U(0, 1), are added back to the encoder output tokens at positions where input tokens
where dropped, followed by adding sinusoidal positional embeddings. These 192 new tokens are
then processed by the decoder Transformer to generate the decoder output tokens. Finally, with a
linear projection, the decoder output tokens are projected to the multi-channel PPG output, with the
objective of reconstructing PPG “pixel” values in those indices whose patches/tokens were dropped
in the encoder’s input. For maximum learning rate, we used 2e-4 and batch size was set to 512.
A complete list of other architectural and training hyperparameters that are shared across methods
using Transformers can be found in Appendix Table 4. As a baseline for our distilled accelerometer
encoders, we also train masked autoencoders for accelerometer in the same way explained above.

Contrastive learning: While our main pre-training framework for the teacher encoder is masked
autoencoding, we perform ablation in regards to the teacher pre-training method and architecture via
contrastive learning with EfficientNets. We would like to emphasize that contrastive learning can also
be done with Transformer models without any meaningful difference (Appendix Table 13), but we
choose EfficientNets for the main results to simultaneously demonstrate an ablation on changing the
teacher pre-training strategy and student/teacher architecture. Our contrastive pre-training framework
closely follows a prior work for PPG signals (Abbaspourazad et al., 2024), with the major difference
that the positive pairs are selected as two augmented views of the same sample. This choice is made to

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

enforce the encoders to contain more segment-level information necessary for the main downstream
targets used in this study, as opposed to participant-level positive pair selection which was investigated
in the prior work (Appendix Table 14). Our stochastic augmentation module consists of a stochastic
cascade of several standard individual augmentations (Iwana & Uchida, 2021) including {cut out: 0.4,
magnitude warp: 0.25, add Gaussian noise: 0.25, channel permute: 0.25, time warp: 0.15}, where
the values are the assigned probabilities of whether the augmentation is applied for each segment
or not. During pre-training, we augment each sample twice; the two augmented views are then
passed through a joint-embedding architecture, where one encoder is an exponential moving average
(m = 0.99 for momentum updates) of the other encoder that is updated via backpropagation. The
256-D embeddings of each encoder are then projected to a lower dimensional subspace (128-D) via
multi-layer perceptron projection heads. The training objective is maximizing the mutual information
of the down-projected embeddings of the two views of the same PPG segment, and minimizing that for
different PPG segments, implemented by a regularized InfoNCE loss. We use Kozachenko-Leonenko
(KoLeo) differential entropy estimator (Sablayrolles et al., 2019; Oquab et al., 2023) with the weight
of 0.1 for regularization, and temperature of 0.04 for scaling similarity scores in the InfoNCE loss.
For the maximum learning rate, we used 1e-3, while batch size was set to 256. Other common
hyperparameters for training EfficientNets is available in Appendix Table 5. As a baseline for our
distilled accelerometer encoders, we also train contrastive learned encoders for accelerometer in the
same way explained above.

3.2 CROSS-MODAL REPRESENTATIONAL KNOWLEDGE DISTILLATION

After pre-training the PPG encoder in Section 3.1, we distill its representational knowledge to an
accelerometer encoder in a dataset of paired PPG-accelerometer segments (Section 4.1). This second
stage is also fully unsupervised without requiring any explicit labels. We perform representational
knowledge distillation via multi-modal contrastive learning similar to a technique used previously
to weakly supervise an image encoder with text (CLIP) (Radford et al., 2021), but here we use
it to transfer knowledge. To do this, unlike standard approaches (Radford et al., 2021), we first
perform augmentations on both modalities, PPG and accelerometer, using our stochastic augmentation
(see Section 3.1), where the augmentations are independently drawn for each modality in a PPG-
accelerometer pair. We found that augmentations were crucial for the quality of the embeddings (see
Ablation 5.5). The augmented PPG and accelerometer signals are then processed by the PPG teacher
encoder (frozen) and accelerometer student encoder, respectively, to get 256-D output embeddings.
To calculate the objective, we first down-project the embeddings to 128-D with trainable multi-layer
perceptron projection heads (one 1024-D hidden layer) for both the student and teacher encoders. We
found separate learnable projection heads to a smaller subspace was necessary to avoid representation
collapse. The student encoder is trained to generate embeddings similar to the teacher encoder, where
the objective is contrastive and maximizes the mutual information of paired PPG and accelerometer
embeddings, while minimizing the mutual information of an accelerometer embedding with other
PPG embeddings. For each batch of embeddings h from N positive pairs for student and teacher (ht,
hs), we define multi-modal InfoNCE, where the teacher embeddings are selected as anchors:

L
(t→s)
contrastive = − 1

N

N∑
i=1

log
exp(sim(hi

t, h
i
s)/τ)∑N

j=1 exp(sim(hi
t, h

j
s)/τ)

. (1)

Here, sim(·, ·) is the cosine similarity function and L
(t→s)
contrastive can be viewed as a N -way classifi-

cation problem (N = batch size), such that hi
s is the correct pair to hi

t compared to all other potential
pairs in the batch {hj

s|1 ≤ j ≤ N, j ̸= i}. The final objective is computed as the weighted sum of
InfoNCE, from teacher to student and from student to teacher:

L = λL
(t→s)
contrastive + (1− λ)L

(s→t)
contrastive, (2)

where λ is the scalar weight between 0 and 1. In our experiments, the temperature parameter is
set to 0.04, and unless otherwise specified we set λ to 1, to emphasize more on alignment when
PPG embeddings are anchors (see Ablation on λ in Section 5.5). For the maximum learning rate,
we used 1e-3, while batch size was set to 256. As mentioned above, our main encoders are with
Transformers whose common hyperparameters are in Appendix Table 4, and we perform ablations
with EfficientNets whose common hyperparameters are in Appendix Table 5.
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Table 1: Retrieval analysis for PPG embeddings from accelerometer demonstrates near perfect
alignment. Numbers are reported as average (std) across 100 bootstrap candidate pools.

Embedding Top-1 Acc. ↑ Top-3 Acc. ↑ Top-5 Acc. ↑ Mean Rank ↓
Accel-KD via PPG-MAE 99.17 (0.23) 99.72 (0.08) 99.98 (0.02) 1.02 (0.01)

Accel-MAE (+ Procrustes alignment) 0.18 (0.03) 0.47 (0.05) 0.73 (0.06) 2808.86 (68.95)
Chance-level performance 0.01 0.02 0.03 9551.64

4 EXPERIMENTS

4.1 DATASETS

We used the PPG and accelerometer signals recorded on Apple Watch from participants in the Apple
Heart and Movement Study (AHMS) (MacRae, 2021; Truslow et al., 2024). AHMS is an ongoing
research study designed to explore the links between physical activity and cardiovascular health,
which is sponsored by Apple and conducted in partnership with the American Heart Association and
Brigham and Women’s Hospital. To be eligible for the Study, participants must be of legal age to
provide informed consent (18, 19, or 21 based on location), reside in the United States, have access
to an iPhone with the Research app, have an Apple Watch, and provide informed consent within the
Research app to participate (Shapiro et al., 2023).

We created a paired PPG-accelerometer pre-training dataset that we used for pre-training uni-modal
and distilled models. Apple Watch intermittently and passively records simultaneous green PPG and
accelerometer signals during low-motion periods multiple times per day. PPG and accelerometer
signals are recorded simultaneously at a 256Hz or 64Hz sampling rate and are 60 seconds in duration.
PPG signals consist of four optical channels corresponding to different combinations of transmitting
and receiving diodes, and accelerometer signals consist of 3 channels corresponding to 3 spatial
dimensions (see Figure 1 for signal examples). We curated a pre-training dataset of paired PPG-
accelerometer segments from ∼172K participants, where ∼20M paired segments were randomly
drawn from the full dataset given two conditions: 1) each participant had at least four segments in
the pre-training dataset, and 2) the number of segments per participant was as uniform as possible.
PPG segments were pre-processed using dark subtraction (to reject signals introduced by ambient
light). Both PPG and accelerometer segments were further pre-processed by bandpass filtering,
down-sampling to 64Hz if needed, and temporal channel-wise z-scoring for each segment. For PPG
teacher pre-training, we use only the PPG segments of the same dataset. Brief statistics of our curated
dataset are in Table 6, and AHMS demographics can be found in prior publications (Shapiro et al.,
2023; Abbaspourazad et al., 2024; Truslow et al., 2024). The training and evaluation splits were
stratified based on participants such that there were no overlapping participants in these two splits.

4.2 EVALUATION METRICS

PPG-accelerometer pair embeddings retrieval: To assess the quality of the PPG-distilled ac-
celerometer embeddings (256-D representations after the encoder), we perform a retrieval experiment
to see how well the accelerometer embeddings can retrieve their corresponding matched PPG seg-
ment on unseen test data. For a batch of paired PPG and accelerometer segments on held-out test
participants, we compute the cosine similarity between each distilled accelerometer embedding and
PPG embedding, which generates a ranked list that can be used for retrieval. We evaluate retrieval
quality using top-K accuracy for K = 1, 3, 5 (i.e., for a given query accelerometer embedding, how
often is its paired PPG embedding in the top K most similar embeddings). We also report the mean
rank, i.e., the mean position of the true paired PPG segment in the rankings; smaller values are better,
with 1 indicating perfect retrieval as the correct segment is always ranked first. As an ablation, we
repeated the same retrieval analysis from PPG to accelerometer embeddings.

Linear probing for downstream targets: As our main targets, we perform linear probing for
predicting heart rate (HR), and two popular measures of heart rate variability: standard deviation
of normal-to-normal intervals (SDNN) and root mean square of successive differences (RMSSD)
(Natarajan et al., 2020; Shaffer & Ginsberg, 2017). In addition, we perform linear probing for
predicting self-reported age, body mass index (BMI), biological sex, and 46 health targets including
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Figure 2: Cross-modal representational knowledge distillation improves the quality of accelerometer
embeddings. We compare the representational quality of accelerometer encoders via their downstream
prediction of heart rate,SDNN and RMSSD. We sweep the number of training segments/labels
for supervised training and linear probing training, from 0.1% to 100% in the x axis. Distilled
accelerometer encoders, “Accel-KD (via PPG MAE)” and “Accel-KD (via PPG-CL)”, are better than
their baseline uni-modal accelerometer encoders, “Accel-MAE” and “Accel-CL”, and better than
a supervised encoder (“Accel-supervised”). The bound of improvement with the dotted arrows is
determined as the difference between the best uni-modal vs. the best distilled accelerometer encoder
(Appendix Tables 9, 10 and 11). Compared to the supervised encoder, all pre-trained accelerometer
encoders, including distilled ones, demonstrated robustness to the number of available training labels.

health conditions, medication use, and lifestyle habits, for participants in AHMS. Detailed explanation
of our linear probing evaluation metrics is explained in Appendix A.2.

5 RESULTS

5.1 REPRESENTATIONAL KNOWLEDGE DISTILLATION RESULTS IN STRONG
ACCELEROMETER-PPG EMBEDDING ALIGNMENT

We first visually inspected the embeddings of 200 random PPG-accelerometer pairs (20 from 10
participants) from our test split, embedded via PPG teacher encoder trained with MAE (“PPG-MAE”)
and 2 accelerometer encoders: 1) accelerometer encoder trained with MAE (“Accel-MAE”), 2)
distilled accelerometer encoder (“Accel-KD via PPG-MAE”) from “PPG-MAE”, by projecting them
into 2D t-sne (Maaten & Hinton, 2008) representation subspace as shown in Appendix Figure 4.
We observed a marked difference in the alignment of PPG-accelerometer embeddings for PPG
teacher encoder and distilled accelerometer encoder (Appendix Figure 4-right) compared to the
uni-modal encoders, visually validating the knowledge transfer from PPG to accelerometer via our
representational knowledge distillation framework.

To quantify the quality of the cross-modality embedding alignment, we performed retrieval analysis
from accelerometer embeddings to PPG embeddings (Section 4.2), where PPG embeddings are
from the PPG teacher encoder (“PPG-MAE”) and accelerometer embeddings are from the distilled
accelerometer encoder (“Accel-KD via PPG-MAE”). To do this, we sample 1,000 random participants
from the ∼17.5K participants in the test set (no overlap with training), each with an average of 19 PPG
and accelerometer segments, and we repeat this procedure 100 times to report standard deviations of
our metrics (Table 1). We observed near-perfect alignment of the PPG and accelerometer embeddings
after distillation, indicated by the results in Table 1: we achieve an average 99.17 top-1 accuracy, 99.98
top-5 accuracy, and 1.02 mean rank in random batches of ∼ 19K candidates, orders of magnitude
better than the baseline encoders. We obtain similarly strong results when repeating this experiment
but switching the retrieval task to be instead from PPG embeddings to accelerometer embeddings (see
Appendix Table 8). To rule out that this near perfect retrieval performance was simply achievable with
uni-modal encoder embeddings, we repeated the retrieval analysis using the uni-modal accelerometer
embeddings from “Accel-MAE” by applying optimal translation, rotation and scaling via Procrustes
alignment (Krzanowski, 2000) to make them as close as possible to “PPG-MAE” embeddings, and
observed marked difference in the retrieval performance (Table 1 and Appendix Table 8). Overall,
very high retrieval performance (e.g., 99.17 top-1 accuracy) demonstrates the effectiveness of our
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Table 2: Distilled accelerometer encoders are predictive of age, BMI and biological sex with high
accuracy, and better than baseline accelerometer encoders. Age and BMI metrics are reported with
mean absolute error and biological sex with ROC AUC.

Encoder Age (years) ↓ BMI (kg/m2) ↓ Biological Sex ↑
Accel-KD via PPG-MAE 4.04 2.48 0.99
Accel-KD via PPG-CL 4.74 2.82 0.97

Accel-MAE 7.73 3.84 0.87
Accel-CL 4.96 2.62 0.98

representational knowledge distillation framework and how well the distilled accelerometer encoder
embeddings match with PPG teacher encoder embeddings. Importantly, these results indicate that
distilled accelerometer embeddings may achieve improved performance for predicting downstream
targets due to their high alignment with the high-fidelity PPG embeddings, which we will investigate
in the next two sections.

5.2 REPRESENTATIONAL KNOWLEDGE DISTILLATION FROM PPG IMPROVES THE QUALITY OF
ACCELEROMETER EMBEDDINGS

To gain additional insight about the quality of accelerometer embeddings after knowledge distillation,
we compared several encoders in terms of their downstream performance: 1) “Accel-MAE”, 2)
“Accel-KD via PPG-MAE”, and 3) supervised encoder trained directly on each target from scratch
(“Accel-supervised”). In the meantime, to study the label efficiency of these models, we sweep
the proportion of available training segments/labels for linear probing and supervised training from
0.1% to 100% while keeping the number of test segments/labels the same. Figure 2a represents the
performance of these encoders, as well as the performance of the “PPG-MAE” teacher encoder (see
Appendix Tables 9, 10 and 11 for extended numbers). We observed that the distilled accelerometer
encoder (“Accel-KD via PPG-MAE”) not only outperformed “Accel-MAE”, but also was better than
the supervised encoder in all targets and all label availability regimes, being particularly robust to the
amount of training labels (Figure 2a across x axis) as it retained strong performance even with 1000×
smaller-sized labeled data. This robustness to the amount of labeled data is a major motivation behind
keeping our knowledge distillation framework fully unsupervised.

Additionally, to show that our representational knowledge distillation framework is not unique to the
pre-training of the teacher encoder or architecture of the teacher/student encoders, we repeated the
pre-training and downstream performance comparison between: 1) accelerometer encoder trained
with contrastive learning (“Accel-CL”), 2) distilled accelerometer encoder (“Accel-KD via PPG-CL”)
from a PPG teacher encoder trained with CL (“PPG-CL”). To simultaneously show robustness to
the architecture, in these experiments, we also changed the teacher and student architectures to
EfficientNet (Section 3.1). We made similar observations with EfficientNet encoders trained via
CL: the distilled accelerometer encoder not only outperformed “Accel-CL” encoder, but also was
better than the supervised encoder in all targets and all label availability regimes (Figure 2a; see
Appendix Tables 9, 10 and 11 for extended numbers). Interestingly, we made the observation that in
uni-modal pre-training, “PPG-MAE” was better than “PPG-CL”, while “Accel-CL” was better than
“Accel-MAE” (Figure 2a; see Appendix Tables 9, 10 and 11 for extended numbers), where we further
discuss in Appendix A.4.

5.3 DISTILLED ACCELEROMETER ENCODERS ARE SIGNIFICANTLY MORE PREDICTIVE OF
DEMOGRAPHIC VARIABLES AND HEALTH TARGETS

We next questioned whether the distilled accelerometer encoders are predictive of other health-related
targets that require capturing waveform information as opposed to pulse timing information that may
be sufficient for heart rate and heart rate variability. To this end, we evaluated their downstream
prediction performance of a wide array of targets including age, biological sex, BMI and 46 binary
health targets derived from AHMS self-reported questionnaires (see Appendix Section A.3). We
observed that distilled accelerometer encoders are better predictive of the demographic variables
(Table 2) and health targets (Appendix Table 12), compared to the baseline uni-modal accelerometer
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Figure 3: Cross-modal representational knowledge distillation can be used for model compression.
We show the downstream prediction of heart rate, SDNN and RMSSD while compressing the distilled
accelerometer encoder. We observe that even small accelerometer encoders maintain information and
are still even better than the baseline accelerometer encoders, while being ∼ 5× smaller.

encoders. This indicates the generalizability of the distilled accelerometer encoders to a wide range
of tasks. To the best of our knowledge, this is the first work demonstrating that a single accelerometer
encoder is predictive of demographic variables with remarkably high accuracy (Table 2), and is
readily predictive of variety of health targets (Appendix Table 12).

5.4 CROSS-MODAL REPRESENTATIONAL KNOWLEDGE DISTILLATION CAN SIMULTANEOUSLY
ENABLE MODEL COMPRESSION

One important aspect of models for wearable devices is that they should be compact in size for
on-device inference with a minimal power footprint. This allows more frequent estimation of digital
biomarkers throughout the day, and makes them available from resource-constrained wearable devices.
Therefore, we questioned whether we can perform model compression during the representational
knowledge distillation from PPG to accelerometer. To show this, we reduced the size of accelerometer
student encoder to 4 new smaller sizes by shrinking the depth and width of the Transformer backbone
during the distillation (Figure 3 and Table 7). We observed that our distillation framework robustly
maintains the information quantified by downstream performance, even in encoders with significantly
smaller sizes. Particularly, our small encoder (“S” in Table 7) is still better than the baseline uni-modal
accelerometer encoders (“Accel-MAE” and “Accel-CL”), while having ∼ 5× less parameters.

5.5 ADDITIONAL ABLATION STUDIES

Unless otherwise specified, we performed the following ablation studies with “Accel-KD via PPG-
MAE” as it is our main method (Figure 1), without loss of generalization given similar qualitative
conclusions to “Accel-KD via PPG-CL” (Section 5.2 and Appendix Table 13). We also performed
several other ablations presented in Appendix A.3.

Augmentations: During our cross-modal knowledge distillation, both pairs of signals, PPG and
accelerometer, are augmented with our stochastic cascade augmentation module (Section 3.2). While
prior works have investigated augmentations for uni-modal contrastive learning of biosignals, the
effect of augmentations for multi-modal knowledge distillation of biosignals remains unknown.
Therefore, we investigated the importance of augmentations and observed that they were critical for
our cross-modal knowledge distillation as shown in Appendix Table 17. For instance, we observed
45% higher mean absolute error for heart rate prediction when the augmentations were absent during
the distillation stage. In addition, we investigated the importance of individual augmentation functions
during knowledge distillation (Appendix A.3 and Appendix Table 17).

Multi-modal pre-training of both PPG and accelerometer encoders simultaneously results in
significantly reduced performance: As discussed in Section 2, there are prior works for multi-
modal pre-training of biosignals where they bind different modality embeddings via multi-modal
contrastive learning (Deldari et al., 2022; Thapa et al., 2024), which does not involve pre-training
a uni-modal teacher encoder (stage 1 in Figure 1). While, our motivation here is different for we
use multi-modal contrastive learning to enable unsupervised representational knowledge distillation,
we questioned whether we get the same improvement for the accelerometer encoders when binding

9
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Table 3: Ablation on simultaneous PPG-accelerometer multi-modal pre-training as opposed to two-
stage representational knowledge distillation.

Pre-training framework Eval. ↓ λ = 0 λ = 0.5 λ = 1

Simultaneous multi-modal contrastive learning
Heart rate (BPM) 2.81 2.59 2.36

SDNN (ms) 11.01 10.37 9.68
RMSSD (ms) 12.55 11.90 11.30

Cross-modal knowledge distillation
(ours, Accel-KD via PPG-MAE)

Heart rate (BPM) 1.25 1.25 1.21
SDNN (ms) 6.80 6.77 6.58

RMSSD (ms) 8.78 8.68 8.40

PPG and accelerometer embeddings in a multi-modal pre-training setup. Therefore, we did an
ablation of multi-modal contrastive learning where both PPG/accelerometer encoders are trainable
during training, and to do a fair comparison, we experimented with different λ values. For all
different λ values, we observed that the learned accelerometer encoder had significantly lower quality
embeddings (see Table 3) as quantified by a significant drop of performance in all downstream targets
(95%, 47% and 35% higher mean absolute error for heart rate, SDNN, and RMSSD, respectively).
In addition, to emphasize the importance of freezing the teacher encoder in knowledge distillation,
we did the multi-modal training where we initialized the PPG encoder using the pre-trained weights
of “PPG-MAE” encoder, and still observed significant degrade in performance (Appendix Table
19). We believe that this is due to the asymmetric amount of information present in the PPG and
accelerometer, such that allowing the PPG encoder to update results in more trivial embeddings and
degraded performance for the accelerometer encoder. Overall, this observation further demonstrates
the importance of two-stage representational knowledge distillation and freezing the teacher encoder
to allow maximal knowledge transfer.

6 DISCUSSION, LIMITATIONS AND FUTURE WORK

Here, we introduced a fully unsupervised representational knowledge distillation framework to
transfer knowledge from high-fidelity to low-fidelity biosignals. We showed that our knowledge
distillation framework is not unique to the teacher/student architecture, or teacher pre-training method,
and it results in near-perfect alignment of PPG and accelerometer embeddings as quantified by our
retrieval analysis. In addition, it improves the quality of the representations in the low-fidelity
biosignal compared to self-supervised and supervised baselines, while maintaining label efficiency
for downstream targets. We demonstrated that a single accelerometer encoder is predictive of heart
rate, heart rate variability, demographic variables and a wide array of downstream health targets. We
also showed that it can be used to simultaneously compress the student model while transferring
knowledge across modalities. We also performed ablations with respect to several training choices.
Our work primarily focused on accelerometer signals during low-motion and sedentary periods
(Section 4.1), where accelerometer captures ballistocardiogram and therefore minute cardiovascular-
related information (Inan et al., 2015; Kim et al., 2016). Future work can investigate models that
take slower-scale activity metrics on wearable devices such as steps, speed, sleep, and slow changes
in accelerometer, as well as minute changes in accelerometer at sedentary settings to improve the
performance for downstream targets (Hallgrı́msson et al., 2018; Ni et al., 2019; Spathis et al., 2021).
In addition, another interesting area of investigation for future work could be experimenting with
modality specific augmentations (Qian et al., 2022; Demirel & Holz, 2023). One caveat of our work
is that it currently supports two modalities, while future work can consider statistical objectives
for mutual information maximization, when there are more than one teacher or student modalities
(Shidani et al., 2024), or by binding all student modalities to a single teacher modality (Girdhar
et al., 2023). Another caveat is that while this work can be used for knowledge transfer or retrieval
of the high-fidelity modality embeddings, it does not provide a generative model across modalities
(Sarkar & Etemad, 2020); future work can consider recent techniques to incorporate generative
capabilities using unified encoder and decoder Transformers (Mizrahi et al., 2023; Meta, 2024).
Ideally, future work can also consider modeling other modalities such as text, images and videos to
leverage information from these other input sources and weakly supervise biosignal representations,
similar to prior work for modeling accelerometer during motion and other modalities such as video
and text (Moon et al., 2022; Tan et al., 2023).
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REPRODUCIBILITY STATEMENT

The aggregated data that support the findings of this study can be made available on request from the
corresponding author. Request for data will be evaluated and responded to in a manner consistent
with the specific language in the study protocol and informed consent form (ICF). Similarly, code for
all data analyses may be available upon request from the corresponding author. Requests for code
will be evaluated and responded to in a manner consistent with policies intended to protect participant
confidentiality and language in the study protocol and ICF.
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A APPENDIX

A.1 IMPLEMENTATION DETAILS

The common architectural and training hyperparameters for training Transformer and EfficientNet
models, can be found in Tables 4 and 5, respectively. The changes in Transformer model architecture
for ablation on compressing the Transformer model size (Section 5.4) can be found in Table 7.

A.2 DATASET AND EVALUATIONS

Dataset statistics: Brief statistics for our curated PPG-accelerometer dataset from AHMS is available
in Table 6.

Linear probing for heart rate and heart rate variability: We perform linear probing for predicting
heart rate (HR), and two popular measures of heart rate variability: standard deviation of normal-to-
normal intervals (SDNN) and root mean square of successive differences (RMSSD). These targets
are from Apple Watch’s generated values during low-motion periods where PPG peaks are reliably
detected, resulting in accurate prediction of heart rate and heart rate variability. These targets are
chosen because they are widely used in wearable devices (Natarajan et al., 2020) and are indicative
of health status (Shaffer & Ginsberg, 2017), training load in athletes (Plews et al., 2013) and stress
levels (Kim et al., 2018). Being able to predict them via low-fidelity biosignals will enable a more
frequent prediction of such targets, giving the users a broader view of their health-related changes in
different scenarios of their daily life. We formulate this problem as a regression task, where we use
ridge regression to predict the continuous value of these targets and we use mean absolute error to
quantify performance. For heart rate, we report error in beats per minute (BPM), and for SDNN and
RMSSD, we report error in milliseconds (ms). For these targets given that they change from segment
to segment, we perform the linear probing at segment granularity: each segment contributes one and
only one sample in the downstream training/evaluation. However, the downstream training/evaluation
splits are stratified based on participants such that the evaluation split’s participants have no overlap
with those in the training split of the linear probing or pre-training.

Linear probing for age, BMI, biological sex, and health targets from AHMS survey questions:
We perform linear probing for predicting self-reported age, body mass index (BMI), biological sex
(sex assigned at birth), and health targets from survey questions for participants in AHMS. During
AHMS, participants fill out multiple questionnaires containing various questions regarding their
historical health record and demographics (Truslow et al., 2024; Abbaspourazad et al., 2024). The
response to these questions are usually in form of ‘yes’ or ‘no’ for whether the participant has had
a history of a health condition (e.g., asthma), or whether they take specific medications (e.g., anti-
depressants), or regarding their lifestyle habits (e.g., smoking). For the classification tasks, we use
ridge regression to predict scores for binarized targets (0/1) and we quantify the performance with area
under curve of receiver’s operating curve (AUC). For biological sex, we classify male versus female,
and for health targets we classify ‘yes’ versus ‘no’. For regression tasks (age and BMI), we use ridge
regression to predict continuous targets and we use mean absolute error to quantify performance.
Age is reported in years and BMI is reported in kg/m2. In all these subject-related targets that do
not vary from segment to segment, we perform the linear probing at participant granularity: we
mean-aggregate all the embeddings associated to each participant so that each participant contributes
one and only one sample in the downstream training/evaluation. Similar to the heart rate and heart
rate variability linear probing, the downstream training/evaluation splits for these targets are stratified
based on participants such that the evaluation split’s participants have no overlap with those in the
training split of the linear probing or pre-training.

AHMS survey is formed of multiple questionnaires which participants fill out over the course of their
participation in the study. Tables 20 and 21 contain AHMS survey questions about medical conditions
and medications, respectively, in addition to the corresponding target labels used in Appendix Table
12. Table 22 includes AHMS survey questions about drinking and smoking habits, and Table 23
defines our logic to summarize these questions into binary labels for the related targets used in
Appendix Table 12.
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A.3 RESULTS AND ABLATION STUDIES

Visual inspection of the T-SNE representations: The visual inspection of the T-SNE embeddings
for the random, uni-modal and distilled accelerometer encoder as well as the PPG teacher encoder is
shown in 4.

Retrieval analysis: Retrieval analysis for accelerometer embeddings from PPG embeddings is shown
in Table 8.

Extended numbers for linear probing of heart rate, SDNN and RMSSD: Linear probing and
supervised evaluation performance numbers at 0.1% and 100% data availability in Figure 2, as well
as root mean squared error and Pearson’s R metrics, can be found in Appendix Tables 9, 10 and 11.

Ablation on choice of positive pairs in teacher pre-training with contrastive learning: We
selected the positive pairs as two augmented views of the same sample, as opposed to two different
segments of the same participants proposed in (Abbaspourazad et al., 2024). This choice was made to
enforce the encoders to contain more segment-level information necessary for the main downstream
targets used in this study (heart rate and heart rate variability). Appendix Table 14 demonstrates the
performance of heart rate, SDNN and RMSSD for the “PPG-CL” trained with two different positive
pair selection strategies.

Ablation on number of PPG channels in teacher pre-training: We performed an ablation about
the effect of the number of PPG channels in teacher pre-training on downstream evaluations in Table
15, where we only kept one of the PPG channels for modeling and observed a drop in performance.

Ablation on larger model sizes for teacher pre-training: We made several optimizations to keep
our model sizes small for feasibility on running wearable devices with power and resource constraints.
Interestingly, we observed signs of overfitting as we increased our encoder size, which is why our
encoder sizes are not larger. This could be due to the fact that one needs to scale the model and data
size simultaneously to gain benefits of scaling laws (Kaplan et al., 2020; Zhai et al., 2022). As an
example, when we increased the encoder size in “PPG-MAE” (from 6.3M to 12.7M) by increasing
the number of layers from 8 to 16, we observed initial signs of overfitting as shown in Table 16. We
believe future work can investigate the scaling laws for encoder models of wearable biosignals by
growing the encoder and data size simultaneously (Kaplan et al., 2020; Zhai et al., 2022).

Ablation on augmentations: In addition to comparing knowledge distillation with and without aug-
mentations (Section 5.5), we studied the importance of individual augmentations during knowledge
distillation. To this end, we performed the knowledge distillation from PPG to accelerometer, where
we only kept one of the augmentation functions during distillation (applied in every forward pass),
one at a time. This was done while maintaining all other training choices the same to control for
the effect of augmentations. We observed that: 1) our stochastic augmentation module achieved the
highest accuracy (Appendix Table 17), likely because it captures more diverse range of distortions
during training, 2) among the individual augmentations, ”add Gaussian noise” and ”Cut out” had the
highest importance, while ”Time warp” had the least importance.

In general, our hypothesis for why augmentations are important for knowledge distillation across
PPG and accelerometer is that given the relationship between arterial blood flow present in PPG and
ballistocardiogram in accelerometer (Inan et al., 2015; Kim et al., 2016), particularly for aligned
PPG-accelerometer segments during low-motion periods which is the focus of our work, knowl-
edge distillation without augmentations is a relatively easier pre-training task compared to that with
augmentations. Therefore, we think distillation without augmentations, and even very simple augmen-
tations as shown by individual augmentations results in Appendix Table 17, leads to capturing less
minute information, which is relatively similar to why and how the amount and type of augmentations
in uni-modal contrastive learning is critical as demonstrated in prior work (Chen et al., 2020).

Ablation on impact of λ in the multi-modal contrastive objective λ: We studied the impact
of λ in Equation 2 for our representational knowledge distillation. We observed that while the
improvements of accelerometer embeddings via distillation were robust to λ, higher values of λ
(λ = {0.75, 1}) were the most optimal (Appendix Table 18), indicating that keeping PPG embeddings
as anchor embeddings provided the most knowledge transfer, perhaps due to the fact that PPG is the
higher-fidelity modality.
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Figure 4: 2D T-SNE projections of embeddings for PPG pre-trained teacher encoder (“PPG-MAE”)
and 2 accelerometer encoders: 1) uni-modal encoder pre-trained with masked autoencoding (“Accel-
MAE”, left), 3) distilled encoder from the PPG teacher encoder (“Accel-MAE via PPG-KD”, right).
We can visually see marked alignment after distillation in the right panel. Each marker represents
an individual segment, where markers are colored based on participants and segments are identical
across panels. See retrieval analysis numbers in Table 1.

Ablation on initialization of the PPG encoder in multi-modal pre-training: In multi-modal
pre-training mentioned in Section 5.5, even if we initialize the PPG encoder with PPG-MAE (Table
19), the downstream predictions are not as good as knowledge distillation in Table 3, indicating the
importance of freezing the teacher encoder.

A.4 DISCUSSION

Discussion for why in uni-modal pre-training with contrastive learning was better for accelerom-
eter, and with masked autoencoding was better for PPG: Our hypothesis for this is that given that
accelerometer is noisier than PPG (see Figure 1 for examples), reconstructing accelerometer in the
output space via MAE is a rather difficult pre-training method that bottlenecks the quality of extracted
representations, as opposed to that for a signal such as PPG which is more structured and less noisier
to reconstruct. Therefore, we think MAE pre-training may be more suitable for less noisy biosignals,
and CL pre-training is more suitable for noisier biosignals. This, in fact, is a major motivation and
difference for pre-training strategies that reconstruct in the representation space versus output space
(Littwin et al., 2024). All in all, for both pre-training frameworks and Transformer/EfficientNet
architectures, our representational knowledge distillation framework robustly distills the information
from PPG to accelerometer, and improves the information in the accelerometer embeddings.
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Table 4: Common hyperparameters for pre-training experiments involving Transformers.

Hyperparameters Value

Patch window 0.3125s (non-overlapping)
Tokenizer Learnable linear
Token dim 256
Number of layers 8
Attention heads 8
MLP feedforward hidden dim 1024
Normalization Layer norm (pre)
Positional embedding Sinusoidal
Activation GeLU
Output aggregation Global average pooling

Optimizer AdamW
Max learning rate Variable (refer to text)
Weight decay 1e-5
Learning rate scheduling Warmup for 20K iters, then exp. decay with γ = 0.985 every 1K iters
Gradient clipping Max norm at 3

Table 5: Common hyperparameters for pre-training experiments involving EfficientNet (Tan & Le,
2020), adapted for time-series as proposed in (Abbaspourazad et al., 2024). Here, MBConv1D refers
to the 1D version of Mobile Inverted Bottleneck, the standard building block of EfficientNet.

Hyperparameters Value

Encoder Architecture
Input layer Conv1D, BN, Swish
Number of MBConv1D blocks 16
Output layer Conv1D, BN, Swish, Avg. pooling

MBConv1D
Number of Conv1D layers 5
Expansion factor 7
Activation Swish
Normalization Batchnorm (BN)
Kernel size 3 (first 8 blocks), 5 (last 8 blocks)

Optimizer Adam
Max learning rate 1e-3
Weight decay 1e-5
Learning rate scheduling Step decay with γ = 0.5 every 125K iters
Gradient clipping -

Table 6: Number of participants/segments, average number of calendar days per participant, and
total dataset time span (time between the earliest to the latest recorded segment) in our pre-training
datasets. We used the data from 80% of the participants for training, 10% for validation and 10% for
test.

Number of participants 172,318
Number of segments 19,993,427

Average number of calendar days per participant 84.12
Total dataset time span (days from 2019-09-21 to 2023-08-29) 1,439

Table 7: Changes in Transformer architecture parameters when scaling its size. Size names (”XS” to
”XL”) are picked arbitrarily and are just relative.

Transformer size XS S M L XL

Token dim 128 128 192 256 256
Number of layers 4 6 6 6 8

MLP feedforward hidden dim 512 512 1024 1024 1024
Attention heads 4 4 6 8 8

Number of parameters 800K 1.2M 3.3M 4.8M 6.3M
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Table 8: Retrieval analysis for accelerometer embeddings from PPG demonstrates near perfect
alignment. Numbers are reported as average (std) across 100 bootstrap candidate pools. We would
like to note that due to strong alignment of PPG and accelerometer embeddings in “Accel-KD via PPG-
MAE”, the statistics of retrieval analysis for accelerometer embeddings from PPG embeddings in this
table is very similar to that in Table 1 for retrieval analysis of PPG embeddings from accelerometer
embeddings.

Embedding Top-1 Acc. ↑ Top-3 Acc. ↑ Top-5 Acc. ↑ Mean Rank ↓
Accel-KD via PPG-MAE 99.17 (0.23) 99.72 (0.08) 99.98 (0.02) 1.02 (0.01)

Accel-MAE (+ Procrustes alignment) 0.31 (0.04) 0.80 (0.07) 1.22 (0.09) 2311.50 (60.74)
Chance-level performance 0.01 0.02 0.03 9551.64

Table 9: Linear probing and supervised evaluation for 100% (0.1%) data availability of heart rate
(reported in BPM) in Figure 2a for accelerometer and PPG encoders. Best performance based on
0.1% data availability is shown in bold, separately for each modality.

Encoder Mean absolute error ↓ Root mean squared error ↓ Pearson’s R ↑
Accel-supervised 1.60 (3.94) 4.28 (7.76) 0.87 (0.30)

Accel-MAE 4.47 (4.72) 7.63 (7.90) 0.70 (0.67)
Accel-CL 2.33 (2.54) 4.58 (4.80) 0.89 (0.88)

Accel-KD via PPG-MAE 1.19 (1.34) 3.12 (3.20) 0.96 (0.95)
Accel-KD via PPG-CL 1.37 (1.58) 3.45 (3.56) 0.94 (0.93)

PPG-MAE 0.34 (0.36) 0.55 (0.59) 0.99 (0.98)
PPG-CL 1.20 (1.28) 1.63 (1.74) 0.98 (0.97)

Table 10: Linear probing and supervised evaluation for 100% (0.1%) data availability of SDNN
(reported in ms) in Figure 2a for accelerometer and PPG encoders. Best performance based on 0.1%
data availability is shown in bold, separately for each modality.

Encoder Mean absolute error ↓ Root mean squared error ↓ Pearson’s R ↑
Accel-supervised 7.82 (22.38) 14.86 (32.30) 0.77 (0.12)

Accel-MAE 14.31 (15.38) 22.74 (23.80) 0.47 (0.42)
Accel-CL 9.93 (10.64) 16.47 (17.23) 0.72 (0.70)

Accel-KD via PPG-MAE 6.54 (6.95) 12.62 (13.11) 0.84 (0.83)
Accel-KD via PPG-CL 7.16 (8.04) 13.21 (14.04) 0.82 (0.80)

PPG-MAE 4.46 (4.92) 7.51 (8.07) 0.94 (0.93)
PPG-CL 7.17 (7.55) 11.09 (11.72) 0.87 (0.86)

Table 11: Linear probing and supervised evaluation for 100% (0.1%) data availability of RMSSD
(reported in ms) in Figure 2a for accelerometer and PPG encoders. Best performance based on 0.1%
data availability is shown in bold, separately for each modality.

Encoder Mean absolute error ↓ Root mean squared error ↓ Pearson’s R ↑
Accel-supervised 9.61 (22.60) 18.74 (36.01) 0.70 (0.08)

Accel-MAE 15.70 (17.00) 27.03 (28.17) 0.40 (0.35)
Accel-CL 10.95 (12.39) 19.83 (21.01) 0.68 (0.64)

Accel-KD via PPG-MAE 8.47 (9.17) 16.70 (17.33) 0.77 (0.75)
Accel-KD via PPG-CL 8.42 (9.57) 16.82 (17.63) 0.76 (0.74)

PPG-MAE 6.34 (7.05) 11.18 (12.00) 0.90 (0.88)
PPG-CL 8.02 (8.71) 13.67 (14.86) 0.85 (0.83)
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Table 12: Downstream target evaluations reported in ROC AUC for AHMS survey questions. We
observed that the distilled accelerometer encoders consistently better predicted these targets compared
to the uni-modal accelerometer encoders. Asterisks indicate statistical significance for the comparison
between the best distilled accelerometer encoder (“Accel-KD via PPG-MAE”) versus the best
uni-modal accelerometer encoder (“Accel-CL”). For statistical significance, we calculated 200
bootstrapped ROC AUC values for each evaluation, and then performed one-sided Wilcoxon Rank-
Sum test to compute the p-value of the statistical comparison. We report “***” for P < 5e−4, “**”
for 5e−4 ≤ P < 5e−3, “*” for 5e−3 ≤ P < 5e−2 and “n.s.” for P ≥ 5e−2, where P is the
p-value of the comparison.

Name Accel-KD via PPG-MAE Accel-KD via PPG-CL Accel-MAE Accel-CL

ACE-inhibitors 0.802 (***) 0.794 0.731 0.791
Active alcohol user 0.681 (***) 0.675 0.616 0.665
Active smoker 0.810 (***) 0.801 0.735 0.784
Afib 0.816 (***) 0.804 0.765 0.798
Allergy 0.652 (***) 0.648 0.619 0.644
Anti-anxiety 0.713 (***) 0.707 0.641 0.696
Anti-psychotics 0.796 (***) 0.785 0.705 0.767
Anticoagulants 0.818 (***) 0.809 0.759 0.801
Antidepressants 0.795 (***) 0.782 0.685 0.761
Antiplatelets 0.784 (***) 0.781 0.732 0.776
Anxiety 0.767 (***) 0.759 0.679 0.747
Artery disease 0.880 (*) 0.869 0.822 0.873
Arthritis 0.781 (***) 0.773 0.733 0.774
Asthma 0.634 (***) 0.630 0.596 0.621
Beta-blockers 0.759 (***) 0.747 0.690 0.736
Blood pressure 0.798 (***) 0.789 0.732 0.787
Blood pressure med. 0.710 (***) 0.697 0.651 0.694
Calcium-channel blockers 0.772 (***) 0.759 0.703 0.757
Cancer 0.800 (***) 0.791 0.743 0.793
Chemotherapy 0.735 (***) 0.704 0.626 0.714
Cholesterol 0.755 (***) 0.747 0.703 0.746
Chronic bronchitis 0.725 (***) 0.725 0.683 0.714
Depression 0.740 (***) 0.735 0.665 0.722
Diabetes 0.829 (***) 0.818 0.767 0.810
Diuretics 0.756 (***) 0.747 0.701 0.743
Hearing 0.719 (***) 0.713 0.676 0.709
Heart attack 0.835 (*) 0.832 0.771 0.831
Heart disease 0.857 (***) 0.845 0.801 0.843
Heart failure 0.857 (n.s.) 0.838 0.789 0.855
Heart rhythm 0.678 (***) 0.664 0.634 0.663
Hip/Knee 0.844 (*) 0.842 0.790 0.841
Kidney 0.694 (***) 0.687 0.646 0.678
Liver 0.729 (***) 0.713 0.615 0.696
Lower back 0.685 (***) 0.681 0.651 0.674
Neck disorder 0.724 (***) 0.717 0.676 0.714
Neuropathy 0.802 (***) 0.793 0.747 0.791
Opioid painkillers 0.769 (***) 0.763 0.667 0.748
Osteoporosis 0.854 (***) 0.849 0.807 0.851
Pacemaker 0.910 (***) 0.884 0.835 0.885
Painkillers 0.602 (***) 0.599 0.578 0.597
Sleep apnea 0.798 (***) 0.798 0.729 0.783
Sleep medication 0.673 (***) 0.661 0.622 0.652
Stroke or TIA 0.790 (n.s.) 0.779 0.743 0.789
Thyroid 0.750 (***) 0.746 0.712 0.743
Urinary 0.799 (***) 0.790 0.748 0.787
Vision 0.657 (***) 0.655 0.627 0.651
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Table 13: Ablation on training contrastive learning based models with Transformer. Here, we report
linear probing performance (mean absolute error) for 100% (0.1%) data availability equivalent to
Figure 2, and Appendix Tables 9, 10 and 11 when the encoder architecture in “PPG-CL”, “Accel-CL”
and “Accel-KD via PPG-CL” is Transformer. We observed no meaningful difference between these
methods when we replaced the architecture and all of our conclusions remains the same.

Heart rate (BPM) ↓ SDNN (ms) ↓ RMSSD (ms) ↓
Accel-CL (EfficientNet) 2.33 (2.54) 9.93 (10.54) 10.95 (12.39)
PPG-CL (EfficientNet) 1.20 (1.28) 7.17 (7.55) 8.02 (8.71)

Accel-KD via PPG-CL (EfficientNet) 1.37 (1.58) 7.16 (8.04) 8.42 (9.57)

Accel-CL (Transformer) 2.28 (2.48) 9.81 (10.43) 10.87 (12.09)
PPG-CL (Transformer) 1.13 (1.20) 7.23 (7.58) 8.08 (8.73)

Accel-KD via PPG-CL (Transformer) 1.41 (1.59) 7.17 (7.92) 8.67 (9.67)

Table 14: Ablation on the choice of positive pair selection in teacher pre-training with contrastive
learning (“PPG-CL”).

Eval. ↓ Participant-level positive pairs Segment-level positive pairs
Heart rate (BPM) 2.51 1.21

SDNN (ms) 12.24 6.58
RMSSD (ms) 11.76 8.40

Table 15: Ablation on number of PPG channels in teacher pre-training (“PPG-MAE”).

Eval. ↓ PPG-MAE w/ 1 PPG channels PPG-MAE w/ 4 PPG channels
Heart rate (BPM) 0.39 0.34

SDNN (ms) 5.04 4.46
RMSSD (ms) 7.30 6.34

Table 16: Ablation on larger model size for “PPG-MAE”.

Eval. ↓ PPG-MAE (12.7M) PPG-MAE (6.3M)
Heart rate (BPM) 0.34 0.34

SDNN (ms) 5.05 4.46
RMSSD (ms) 7.52 6.34

Table 17: Ablation on augmentations during cross-modal knowledge distillation.

Eval. ↓ W/o augs. W augs. Cut out Gauss. noise Mag. warp Channel perm. T. warp
Heart rate (BPM) 1.76 1.21 1.38 1.29 1.76 1.79 1.84

SDNN (ms) 6.98 6.58 6.96 6.66 6.97 6.77 10.47
RMSSD (ms) 8.82 8.40 8.51 8.84 8.96 8.67 12.83

Table 18: Ablation on λ in the multi-modal contrastive objective (Equation 2).

Eval. ↓ λ = 0 λ = 0.25 λ = 0.5 λ = 0.75 λ = 1

Heart rate (BPM) 1.25 1.26 1.25 1.19 1.21
SDNN (ms) 6.80 6.69 6.77 6.80 6.58

RMSSD (ms) 8.78 8.59 8.68 8.78 8.40

Table 19: Ablation on not freezing the PPG encoder in cross-modal knowledge distillation in Table 3.

Pre-training framework Eval. ↓ λ = 0 λ = 0.5 λ = 1

Simultaneous multi-modal contrastive learning
(PPG encoder initialized with “PPG-MAE” weights)

Heart rate (BPM) 2.73 2.61 2.23
SDNN (ms) 10.97 10.29 9.63

RMSSD (ms) 12.56 11.89 11.06
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Table 20: AHMS survey questions about medical conditions. The main question is in form of ’Have
you ever been diagnosed with any of the following conditions?’ and participants can answer ’Yes’
or ’No’ or ’I prefer not to answer’ or ’I don’t know’. The question for vision and hearing loss is
different, which we explicitly mention in the corresponding rows. Third column indicates the number
of left out participants for evaluation – the reason for variations is that for each target we exclude
participants whose answers were ’I prefer not to answer’ or ’I don’t know’ or missing.

Target label Medical condition N (test)
Heart attack Heart attack (myocardial infarction) 26,806
Heart disease Coronary heart disease or angina pectoris 26,584
Blood pressure High blood pressure (hypertension) 26,326
Stroke or TIA Stroke (cerebral hemorrhage, cerebral thrombosis) or tran-

sient ischemic attack (ministroke)
26,805

Afib Atrial fibrillation 26,342
Heart rhythm Heart rhythm problem other than atrial fibrillation 26,068
Pacemaker Pacemaker 26,916
Artery disease Peripheral artery disease 26,429
Heart failure Heart failure 26,843
Diabetes Diabetes 26,661
Cholesterol High cholesterol 26,238
Arthritis Arthritis 26,429
Hip/Knee Hip or knee replacement 26,948
Lower back Low back disorder or other chronic back defect 26,480
Neck disorder Neck disorder or other chronic neck defect 26,628
Osteoporosis Osteoporosis 26,554
Asthma Asthma 26,762
Chronic bronchitis Chronic bronchitis, chronic obstructive pulmonary disease,

or emphysema
26,707

Allergy Rhinitis, hay fever, eye inflammation, dermatitis, food allergy
or other allergy (allergic asthma excluded)

26,626

Kidney Kidney problems 26,640
Thyroid Thyroid disease 26,502
Cancer Cancer 26,783
Liver Cirrhosis of the liver 26,784
Urinary Urinary incontinence 26,728
Neuropathy Neuropathy 26,370
Depression Depression 26,110
Anxiety Anxiety disorder 25,989
Hearing Do you have hearing loss? 25,633
Vision Do you have vision loss? 25,895
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Table 21: AHMS survey questions about medications. The main question is in form of ’Do you
currently take any of the following types of medications?’ and participants can answer ’Yes’ or ’No’
or ’I prefer not to answer’. The formatting for the medications is similar to their presentation in the
study, but may not exactly match the format in the study application. Third column indicates the
number of left out participants for evaluation – the reason for variations is that for each target we
exclude participants whose answers were ’I prefer not to answer’ or missing. Third party trademarks
used herein are trademarks of their respective owners.

Target label Medications N (test)
ACE-inhibitors ACE-inhibitors or ARBs (for blood pressure) such as capto-

pril, enalapril, lisinopril, losartan, ramipril, or valsartan
11,043

Anti-anxiety Anti-anxiety aids such as alprazolam (Xanax®), clonazepam
(Klonopin®), clorazepate (Tranxene®), diazepam (Valium®),
or lorazepam (Ativan®)

15,876

Anti-psychotics Anti-psychotics such as haloperidol (Haldol®), aripiprazole
(Abilify®), risperidone (Risperdal®), quetiapine (Seroquel®),
olanzapine (Zyprexa®), clozapine (Clozaril®), or lurasidone
(Latuda®)

15,914

Anticoagulants Anticoagulants (blood thinners) such as warfarin
(Coumadin®), apixaban (Eliquis®), betrixaban (Bevyxxa®),
dabigatran (Pradaxa®), edoxaban (Lixiana®), or rivaroxaban
(Xarelto®)

15,906

Antidepressants Antidepressants such as amitriptyline (Elavil®), bupro-
pion (Wellbutrin®), citalopram (Celexa®), duloxetine
(Cymbalta®), escitalopram (Lexapro®), fluoxetine (Prozac®),
paroxetine (Paxil®), mirtazapine (Remeron®), sertraline
(Zoloft®), or venlafaxine (Effexor®)

15,919

Antiplatelets Antiplatelets (blood thinners) such as aspirin, clopidogrel
(Plavix®), prasugrel (Effient®), or ticagrelor (Brilinta®)

15,891

Beta-blockers Beta-blockers (for blood pressure or heart rhythm) such
as atenolol (Tenormin®), bisoprolol (Zebeta®), carvedilol
(Coreg®), labetalol, metoprolol (Lopressor®, Toprol-XL®),
nadolol (Corgard®), nebivolol (Bystolic®), propranolol
(Inderal®), or sotalol (Betapace®)

15,868

Blood pressure med. Other medications for lowering blood pressure such as
clonidine, hydralazine, minoxidil, or sacubitril/valsartan
(Entresto®)

15,835

Calcium-channel
blockers

Calcium-channel blockers (for blood pressure or heart
rhythm) such as amlodipine (Norvasc®), diltiazem, or ve-
rapamil

15,812

Chemotherapy Certain types of chemotherapy such as carboplatin, cisplatin,
oxaliplatin, vincristine, or vinblastine

11,084

Diuretics Diuretics (water pills) such as chlorthalidone, furosemide
(Lasix®), hydrochlorothiazide, or spironolactone

15,929

Opioid painkillers Opioid painkillers such as codeine, fentanyl, hydrocodone,
hydromorphone (Dilaudid®), meperidine (Demerol®), mor-
phine, oxycodone, Percocet®, or Vicodin®

15,941

Painkillers Non-steroidal anti-inflammatories (painkillers) such as as-
pirin, celecoxib (Celebrex®), diclofenac (Cambia®), ibupro-
fen (Motrin®/Advil®), or naproxen (Aleve®)

15,919

Sleep medication. Sleeping aids such as eszopiclone (Lunesta®), zaleplon
(Sonata®), or zolpidem (Ambien®)

15,892
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Table 22: AHMS survey questions about drinking and smoking habits. These are standardized
questions from the AUDIT-C questionnaire (Bush et al., 1998) and All of US research program
(Denny et al., 2019; Ramirez et al., 2022).

# Question Answer choices
Q1 In your entire life, have you had at

least 1 drink of any kind of alcohol,
not counting small tastes or sips?

’Yes’/’No’/’I don’t know’/’I prefer not
to answer’

Q1b [If yes to Q1] How often did you
have a drink containing alcohol in
the past year?

’Never’/’Monthly or less’/’Two to four
time a month’/’Two to three times a
week’/’Four or more times a week’/’I
prefer not to answer’

Q1c [If yes to Q1] On a typical day when
you drink, how many drinks do you
have?

’1 or 2’/’3 or 4’/’5 or 6’/’7 to 9’/’10 or
more’/’I prefer not to answer’

Q2 Have you smoked at least 100
cigarettes in your entire life?

’Yes’/’No’/’I don’t know’/’I prefer not
to answer’

Q2b [If Yes or Do not know to Q2] Do
you now smoke cigarettes every day,
some days, or not at all?

’Every day’/’Some days’/’Not at all’/’I
prefer not to answer’

Table 23: Our logic for defining drinking and smoking targets from questions in Table 22. Third
column indicates the number of left out participants for evaluation – the reason for variations is that
for each target we exclude participants whose answers did not conclude in our binary ’yes’ or ’no’
mappings or were missing.

Target label Logic N (test)
Active alcohol user ’Yes’: answer to Q1 is ’Yes’ and answer to Q1b is ’Two to

three times a week’/’Four or more times a week’
23,472

’No’: answer to Q1 is ’No’, or answer to Q1b is
’Never’/’Monthly or less’/’Two to four time a month’

Active smoker ’Yes’: answer to Q2 is ’Yes’ and answer to Q2b is ’Every
day’/’Some days’

23,452

’No’: answer to Q2 is ’No’, and answer to Q2b is ’Not at all’
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