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Abstract

Byzantine-resistant aggregations detect poi-001
sonous clients and discard them to ensure that002
the global model is not poisoned or attacked003
by malicious clients. However, these aggrega-004
tions are mainly conducted on the parameter005
space, and the parameter distances cannot re-006
flect the data distribution divergences between007
clients. Therefore, existing Byzantine-resistant008
aggregations cannot defend against backdoor009
injection by malicious attackers in federated010
natural language tasks. In this paper, we pro-011
pose the client embedding for malicious client012
detection to enhance Byzantine-resistant aggre-013
gations. The distances between client embed-014
dings are required to reflect the data distribution015
divergences of the corresponding clients. Ex-016
perimental results validate the effectiveness of017
the proposed client embeddings.018

1 Introduction019

Byzantine attacks are a kind of threat to federated020

learning security, and therefore a line of Byzantine-021

resistant aggregation algorithms (Blanchard et al.,022

2017; Mhamdi et al., 2018; Zhang et al., 2022) are023

designed to defend against Byzantine attacks.024

The core of Byzantine-resistant aggregations025

is to detect poisonous clients and discard them026

to ensure that the global model is not poisoned027

or attacked by malicious clients. These aggrega-028

tions are mainly conducted on the parameter space,029

namely, these aggregations determines suspected030

poisonous clients based on the distances between031

client parameters. Existing Byzantine-resistant ag-032

gregations can defend against adversaries caused033

by software bugs, hardware bugs, network asyn-034

chrony, or datasets biases (Blanchard et al., 2017;035

Mhamdi et al., 2018), while Zhang et al. (2022)036

point out that they cannot defend against backdoor037

injection by malicious attackers in federated natu-038

ral language tasks. Zhang et al. (2022) point out039

the limitation of the malicious client detection in040

the parameter space. 041

In this paper, we argue that for better detection of 042

malicious clients, we should not apply Byzantine- 043

resistant aggregations in the parameter space di- 044

rectly, because the parameter distances of clients 045

cannot directly reflect the distribution divergences 046

between clients. Therefore, we propose the client 047

embedding for malicious client detection. We as- 048

sume that the distances between client embeddings 049

can reflect the distribution divergences of the cor- 050

responding client data distributions. According 051

to this assumption, we propose to sovle the low- 052

dimension embeddings according to Proposition 1. 053

As demonstrated in Fig. 1, enhanced with the 054

proposed client embedding, Byzantine-resistant ag- 055

gregations detect malicious clients according to em- 056

bedding distances instead of parameter distances. 057

Aggregation algorithms can better detect malicious 058

clients enhanced with client embedding, since ma- 059

licious and clean clients are easier to distinguish in 060

the embedding space than the parameter space. 061

To validate the effectiveness of the proposed 062

client embedding, we conduct the defense and de- 063

tection experiments algorithms on typical NLP 064

Byzantine attacks, including adversaries (Blan- 065

chard et al., 2017; Mhamdi et al., 2018) and back- 066

doors (Chen et al., 2020b; Dai et al., 2019). Ex- 067

perimental results show that defense performance 068

of existing Byzantine-resistant aggregations can be 069

improved enhanced with client embedding. Fur- 070

thermore, the results of malicious detection also 071

show that the client embedding can prove the de- 072

tection performance of Byzantine-resistant aggre- 073

gations, which indicates that the improvement of 074

defense performance does come from better de- 075

tection performance brought by client embedding. 076

The detection ability of client embedding comes 077

from the ability of client embeddings to model the 078

dataset distributions of clients. 079
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Byzantine-Resistant Aggregations enhanced with Client Embedding:
Detect malicious clients in the embedding spaces instead of 
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Can easily detect 
malicious clients:
MAP = 58.9%

Cannot detect 
malicious clients:
MAP = 21.9%

Figure 1: Illustration of the client embedding. Byzantine-resistant aggregations enhanced with client embedding
detect malicious clients in embedding spaces instead of parameter spaces (adopted by traditional Byzantine-resistant
aggregations, e.g., Krum) because embedding distances model the data distribution divergences between clients.

2 Background and Related Work080

In this section, we first introduce the concept of081

federated learning and Byzantine-resistant aggre-082

gations. Then we introduce some NLP Byzantine083

attacks adopted in experiments.084

2.1 Federated Learning Paradigm085

Suppose the federated learning process includes T086

learning rounds. In every round, suppose there are087

n clients training the local model with parameters088

θ
(i)
t on client i ∈ [1, n], then the server needs to089

update the global θServer
t according to {θ(i)

t }Tt=1.090

Byzantine attack means that malicious clients091

among n clients send poisonous clients for mali-092

cious purposes. To defend against byzantine at-093

tacks, Byzantine-resistant aggregations (Blanchard094

et al., 2017; Mhamdi et al., 2018; Zhang et al.,095

2022) choose a secure client index set S and only096

aggregate secure clients to update the global model:097

θServer
t =

1

|S|
∑
i∈S

θ
(i)
t . (1)098

2.2 Byzantine-Resistant Aggregations099

Traditional Byzantine-resistant aggregations (Blan-100

chard et al., 2017; Mhamdi et al., 2018; Zhang101

et al., 2022) detect malicious clients and choose the102

set S according to parameters distances or other103

metrics in the parameter space. In this section, we104

take the classic multi-Krum (Blanchard et al., 2017)105

algorithm as an instance.106

Suppose dij = ∥θ(i)
t − θ

(j)
t ∥ denotes the pa-107

rameter distance of client i and j, Ni denotes the108

neighbors of client i which includes ⌈n+1
2 ⌉ clients109

with the smallest distances dij (including client110

i itself). Suppose i∗ denotes the client with the111

smallest distance sum of its neighbors Ni: 112

i∗ = argmin
i

∑
j∈Ni

dij . (2) 113

The multi-Krum algorithm trusts the neighbors 114

of i∗, namely chooses S = Ni. Other Byzantine- 115

resistant aggregations adopt different algorithms to 116

determine the set S, but all according to parameters 117

distances dij in parameter space. 118

We choose four Byzantine-resistant aggrega- 119

tions as baselines: they are Krum (Blanchard 120

et al., 2017), Multi-Krum (Blanchard et al., 121

2017), Bulyan (Mhamdi et al., 2018), and Dim- 122

Krum (Zhang et al., 2022) algorithms. In addition 123

to Byzantine-resistant aggregations, there are also 124

a line of other robust aggregations without explic- 125

itly detecting malicious clients and choosing the 126

set S. In our experiments, we also adopt the sta- 127

tistical median (Median) (Chen et al., 2020a; Yin 128

et al., 2018), the geometric median (RFA) (Pillutla 129

et al., 2019), certifiably robust federated learning 130

(CRFL) (Xie et al., 2021), FoolsGold (Fung et al., 131

2020), and Residual-based (Residual) (Fu et al., 132

2019) algorithms as baselines. 133

2.3 NLP Byzantine Attacks 134

Blanchard et al. (2017) first consider adversaries as 135

Byzantine attacks: the attacker can add a Guassian 136

noise (Blanchard et al., 2017) or fixed bias (Blan- 137

chard et al., 2017) on the parameters. In our experi- 138

ments, we adopt both Guassian and bias attacks as 139

adversaries. Beside adversaries, attacker can also 140

poison the local dataset (Muñoz-González et al., 141

2017; Chen et al., 2017) to inject backdoors (Gu 142

et al., 2019) to control the model’s behaviors for 143

malicious purposes. We two typical federated NLP 144
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backdoor attacks: BadWord (Chen et al., 2020b)145

and BadSent (Dai et al., 2019; Chen et al., 2020b).146

3 Federated Client Embedding147

Suppose v(i) denotes the federated client embed-148

ding of client i, and E = [v(1);v(2); · · · ;v(n)] is149

the embedding matrix. We have only one assump-150

tion for client embedding:151

Assumption 1. The embedding distances can152

model the data divergences:153

∥v(i) − v(j)∥2 = Df (p
(i)||p(j)), (3)154

here Df (p
(i)||p(j)) denotes the f-divergences of155

data distributions p(i) and p(j) on client i and j,156

and we adopt the f-divergence indicator (Zhang157

et al., 2024) to estimate it.158

In Assumption 1, if we assume ∥v(i)−v(j)∥p =159

Df (p
(i)||p(j)), to ensure the linearity of embed-160

dings, namely the corresponding embedding of161

mixed p∗ = αp(i) + (1− α)p(j) is approximately162

αv(i) + (1 − α)v(j), we can only choose p = 2163

since Df (p
∗||p(j)) ≈ α2Df (p

(i)||p(j)).164

Suppose the matrix F denotes the divergence165

matrix, namely Fij ≈ Df (p
(i)||p(j)) is the f-166

divergence indicator (Zhang et al., 2024). In Propo-167

sition 1, we prove we can find (n− 1)-dimension168

embeddings satisfying Assumption 1.169

Proposition 1. There exists an (n− 1)-dimension170

solution for ∥v(i) − v(j)∥2 = Fij , which can171

be solved with the following Cholesky decompo-172

sition (Dereniowski and Kubale, 2004):173

ETE = F̂ :=
FJ+ JF− F− JFJ

2
, (4)174

where 1 is an n-dimension vector full of ones, J =175
11T

n , and rank(F̂) ≤ n− 1.176

Proposition 1 guides us how to solve a low-177

dimensional client embeddings E to enhance178

Byzantine-resistant aggregations. More theoretical179

details are deferred to Appendix.A. For example,180

multi-Krum algorithm enhanced with client embed-181

ding chooses S according to dij = ∥v(i)
t −v

(j)
t ∥ in182

embedding spaces instead of dij = ∥θ(i)
t − θ

(j)
t ∥183

in parameter spaces. The direct advantage of our184

proposed method is that embedding distances can185

directly reflect the data distribution divergence be-186

tween clients according to Assumption 1.187

4 Experiments 188

Our experiments include defense and detection ex- 189

periments. The target of defense is to train a model 190

with low Attack Success Rate (ASR) or high Accu- 191

racy (ACC) under Byzantine attacks, and the target 192

of detection is to detect malicious clients precisely 193

in one training round. We introduce experiment 194

setup and report experimental results in this sec- 195

tion. Due to space limit, supplementary results are 196

reported in Appendix B. 197

4.1 Experiment Setups 198

We train an LSTM on two typical text classifica- 199

tion tasks, i.e., SST-2 (Stanford Sentiment Tree- 200

bank) (Socher et al., 2013) and Amazon (Amazon 201

reviews) (Blitzer et al., 2007). 202

As introduced in Sec. 2.2, we adopt four 203

Byzantine-resistant baselines: Krum (Blanchard 204

et al., 2017), Multi-Krum (Blanchard et al., 2017), 205

Bulyan (Mhamdi et al., 2018), Dim-Krum (Zhang 206

et al., 2022); and other aggregations: Fe- 207

dAvg (McMahan et al., 2017), Median (Chen et al., 208

2020a; Yin et al., 2018), RFA (Pillutla et al., 2019), 209

CRFL (Xie et al., 2021), FoolsGold (Fung et al., 210

2020), and Residual (Fu et al., 2019). In Dim- 211

Krum, we choose the ratio as ρ = 10−3 and the 212

adaptive noise scale λ = 2. 213

As introduced in Sec. 2.3, we adopt two adver- 214

saries (i.e., Guassian (Blanchard et al., 2017) and 215

bias (Mhamdi et al., 2018)) and two backdoor 216

attacks (i.e. BadWord (Chen et al., 2020b) and Bad- 217

Sent (Chen et al., 2020b; Dai et al., 2019)) as the 218

Byzantine attacks. In BadWord, the trigger words 219

are “cf”, “mn”, “bb”, “tq” and “mb”. In BadSent, 220

the trigger sentence is “I watched this 3d movie”. 221

The target label is label 0. 222

In adversary attacks, the defense target is to 223

avoid the Accuracy (ACC with adversaries) de- 224

crease with adversaries. In backdoor attacks, the de- 225

fense target is to gain a low Backdoored Attack Suc- 226

cess Rate (Backdoored ASR) with less Backdoored 227

Accuracy (Backdoored ACC) decreases. The detec- 228

tion target of all six Byzantine attacks is to detect 229

malicious precisely, and we adopt some detection 230

metrics to evaluate different aggregations: FAR 231

(false acceptance rate), FRR (false rejection rate), 232

Precision, Recall, F1-score, ACC (accuracy), MR 233

(mean rank), and MAP (mean average precision). 234

We adopt Adam (Kingma and Ba, 2015) opti- 235

mizer with a learning rate of 10−3 and a batch size 236

of 32. The attacker number and total client number 237
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Aggregations Metric Clean Training FedAvg Median FoolsGold RFA CRFL Residual

Baseline
ACC with adversaries 86.16 50.32 86.14 50.05 86.34 74.86 86.24

Backdoored ACC 86.16 86.03 85.71 86.15 86.23 75.00 86.14
Backdoored ASR 16.22 98.86 97.95 98.35 98.66 95.92 99.00

Aggregations Metric Clean Training FedAvg Krum Multi-Krum Bulyan Dim-Krum Byzant. Ave.

Byzantine-resistant
ACC with adversaries 86.16 50.32 79.56 86.27 85.79 85.27 84.22

Backdoored ACC 86.16 86.03 77.82 86.07 85.80 85.12 83.70
Backdoored ASR 16.22 98.86 99.95 98.78 98.84 46.58 86.04

Aggregations Metric Clean Training FedAvg Krum Multi-Krum Bulyan Dim-Krum Byzant. Ave.

Byzantine-resistant, ACC with adversaries 86.16 50.32 83.77 86.21 85.46 84.96 85.10
enhanced with Backdoored ACC 86.16 86.03 83.23 86.20 86.01 84.82 85.07

Client Embedding Backdoored ASR 16.22 98.86 18.17 26.05 64.55 36.02 36.20

Table 1: Average defense results of baseline aggregations and Byzantine-resistant aggregations enhanced with
client embedding. Higher ACCs with adversaries and Backdoored ACCs are better, while lower Backdoored ASRs
are better. Results of Byzantine-resistant aggregations enhanced with client embedding are in bold if they have
statistically significant improvements.

Aggregations FAR FRR Precision Recall F1-score ACC MR MAP

Krum/Multi-Krum/Bulyan 15.1 94.1 8.3 5.8 6.8 70.0 23.5 21.9
enhanced with Client Embedding 10.0 72.5 38.9 27.4 32.1 78.2 12.3 58.9

Dim-Krum 10.1 72.6 38.9 27.5 32.2 78.2 16.5 57.4
enhanced with Client Embedding 8.4 65.7 48.6 34.3 40.2 80.7 11.5 70.9

Table 2: Average detection results of Byzantine-resistant aggregations and those enhanced with client embedding.
Higher metrics except FARs, FRRs, and MRs are better. Results of Byzantine-resistant aggregations enhanced with
client embedding are in bold if they have statistically significant improvements.

is 1 and 10 in the defense experiments. In detec-238

tion experiments, the client number is 30, and we239

enumerate the attacker number from 1 to 10. We240

report the average metrics and the metrics with241

statistically significant improvement are in bold.242

4.2 Defense Results and Analysis243

It is maybe because adversaries are conducted on244

the parameter spaces directly (Blanchard et al.,245

2017; Mhamdi et al., 2018), and thus easy to de-246

tect for traditional Byzantine-resistant aggregations.247

However, the backdoor attacks are more stealthy,248

since they poison the clients’ dataset and hard to249

detect according to the parameter space. Enhanced250

with our proposed client embedding, Byzantine-251

resistant aggregations can model the distributional252

variations between clients, and thus can detect ma-253

licious clients with poisonous dataset.254

4.3 Detection Results and Analysis255

Existing Byzantine-resistant aggregations calculate256

parameter distances dij = ∥θ(i)
t − θ

(j)
t ∥ directly257

(Krum (Blanchard et al., 2017), Multi-Krum (Blan-258

chard et al., 2017), and Bulyan (Mhamdi et al.,259

2018)), or calculate parameter distances on some260

suspicious dimensions like Dim-Krum (Zhang261

et al., 2022). We try both in our experiments and 262

label the discarded clients in Byzantine-resistant 263

aggregations as the malicious clients. 264

As shown in Table 2, enhanced with client em- 265

bedding, existing Byzantine-resistant aggregations, 266

the detection performance of both parameter dis- 267

tance calculating mechanisms improve. It shows 268

that the improvement of defense performance does 269

come from better detection performance brought 270

by our proposed client embedding that can model 271

the clients’ data divergences more accurately. 272

5 Conclusion 273

In this paper, we propose the client embedding to 274

enhance Byzantine-resistant aggregations. The pro- 275

posed client embedding can model the dataset dis- 276

tributions of corresponding clients, namely the em- 277

bedding distances can model the data divergences 278

of clients. Experimental results show that the de- 279

fense performance of Byzantine-resistant aggrega- 280

tions can be improved enhanced with client em- 281

bedding. Further analyzes show that the improve- 282

ments of defense performance come from better 283

detection performance of client embedding, which 284

demonstrates that the proposed client embedding 285

can model the data divergences of clients. 286
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Ethical Considerations and Limitations287

In this paper, the proposed client embeddings are288

proposed to enhance the Byzantine-Resistant aggre-289

gations for more secure federated language learn-290

ing. At the same time, since the proposed client291

embeddings have lower dimensions, the risk of pri-292

vacy leakage is much lower.293

This paper focuses on explaining the theoretical294

motivation and preliminary experimental valida-295

tion. Although experimental results show that the296

proposed client embeddings can enhance existing297

Byzantine-Resistant aggregations, we only validate298

the proposed client embeddings on several classic299

NLP models and tasks. Further detailed experi-300

ments on the latest NLP model architectures, espe-301

cially large language models, need to be conducted302

in the future work.303
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A Theoretical Details426

In this section, we introduce theoretical details.427

A.1 The Estimation of Data Divergences428

In Assumption 1, we assume:429

∥v(i) − v(j)∥2 = Df (p
(i)||p(j)). (5)430

Following Zhang et al. (2024), we use the431

f-divergence indicator Fij to estimate the f-432

divergence Df (p
(i)||p(j)) of p(i) and p(j):433

Df (p
(i)||p(j)) ∝ Fij := ∆T

ijH∆ij , (6)434

where ∆ij = θ(i) − θ(j), and H denotes the es-435

timated diagonal Hessian matrix. We follow the436

same estimating methods as Zhang et al. (2024).437

Since scaling our embeddings E into αE does not438

affect the detection, we assume ∥v(i) − v(j)∥2 =439

Df (p
(i)||p(j)) ≈ Fij .440

A.2 The Proof of Proposition 1 441

Proof. The objective of Proposition 1 is to find 442

the embedding matrix E = [v(1);v(2); · · · ;v(n)] 443

satisfying ∥v(i) − v(j)∥2 = Fij , 1 ≤ i, j ≤ n. 444

Denote a · b as the inner product of vectors 445

a,b, namely a · b = aTb. Denote v̄ = 1
n

n∑
i=1

v(i), 446

v · v = 1
n

n∑
i=1

v(i) · v(i). Note that v · v ̸= v̄ · v̄. 447

Denote F∗j = 1
n

n∑
i=1

Fij , Fi∗ = 1
n

n∑
j=1

Fij , and 448

F∗∗ =
1
n2

n∑
i=1

n∑
j=1

Fij . We have: 449

Fij = v(i) · v(i) + v(j) · v(j) − 2v(i) · v(j), (7) 450

F∗j = v · v + v(j) · v(j) − 2v̄ · v(j), (8) 451

Fi∗ = v(i) · v(i) + v · v − 2v(i) · v̄, (9) 452

F∗∗ = 2v · v − 2v̄ · v̄. (10) 453

Therefore, 454

Fi∗ + F∗j − Fij − F∗∗
2

(11) 455

=(v(i) − v̄) · (v(j) − v̄). (12) 456

Since moving our embeddings v(i) into v(i) + 457

vDelta does not affect the detection, we also assume 458

that v̄) is the zero vector. Therefore, 459

ETE = F̂ :=
FJ+ JF− F− JFJ

2
, (13) 460

where F̂ij =
Fi∗+F∗j−Fij−F∗∗

2 ∈ Rn×n. 461

Then we prove that rank(F̂) ≤ n − 1, then we 462

can solve the (n − 1)-dimension embeddings E 463

with Cholesky decomposition. 464

2F̂ (14) 465

=FJ+ JF− F− JFJ (15) 466

=(I− J)(−F)(I− J), (16) 467

since (I − J)1 = 1 − 1 = 0 · 1, it is easy to 468

prove that the matrix I− J has an eigenvalue of 0, 469

namely rank(I−J) ≤ n−1. Therefore, rank(F̂) ≤ 470

n− 1. 471

B Supplementary Experimental Results 472

We provide supplementary experimental results 473

in Fig. 2. It can be concluded that, enhanced 474

with client embedding, Byzantine-resistant aggre- 475

gations, take Krum (Blanchard et al., 2017) algo- 476

rithm as an instance can better distinguish clean and 477

malicious clients, thus resulting in better defense 478

and detection performances. 479
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Malicious
Clean

(a) Krum (5/30, run 1).

Malicious
Clean

(b) Krum Enhanced with Client Embedding (5/30, run 1).

Malicious
Clean

(c) Krum (5/30, run 2).

Malicious
Clean

(d) Krum Enhanced with Client Embedding (5/30, run 2).

Malicious
Clean

(e) Krum (10/30, run 1).

Malicious
Clean

(f) Krum Enhanced with Client Embedding (10/30, run 1).

Malicious
Clean

(g) Krum (10/30, run 2).

Malicious
Clean

(h) Krum Enhanced with Client Embedding (10/30, run 2).

Figure 2: Illustrations of parameter (a,c,e,g) and embedding spaces (b,d,f,h). Malicious/total clients are provided.
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