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Abstract

Hand gesture recognition plays a crucial role in the do-001
main of computer vision, as it enhances human-computer002
interaction by enabling intuitive, touch-free control and003
communication. While offline methods have made sig-004
nificant advances in isolated gesture recognition, real-005
world applications demand online and continuous process-006
ing. Skeleton-based methods, though effective, face chal-007
lenges due to the intricate nature of hand joints and the008
diverse 3D motions they induce. This paper introduces009
AG-MAE, a novel approach that integrates anatomical con-010
straints to guide the self-supervised training of a spatio-011
temporal masked autoencoder, enhancing the learning of012
3D keypoint representations. By incorporating anatomical013
knowledge, AG-MAE learns more discriminative features014
for hand poses and movements, subsequently improving on-015
line gesture recognition. Evaluation on standard datasets016
demonstrates the superiority of our approach and its po-017
tential for real-world applications. Code is available at:018
https://github.com/lambda-xyz-01/AGMAE.019

1. Introduction020

Online recognition of dynamic hand gestures plays an es-021
sential role in computer vision, human-computer interac-022
tion (HCI) and virtual reality (VR) applications, enabling023
seamless, intuitive and natural interactions between users024
and machines. Unlike traditional offline gesture recognition025
systems [15, 20, 25], which focus on discrete segmented026
gestures, the framework of continuous dynamic gesture027
recognition requires interpreting hand movements in a con-028
tinuous stream of data, enabling real-time interactions and029
feedbacks.030

Online gesture recognition raises significant challenges031
due to the intricate nature of hand movements and the di-032
verse range of motions (ROM) occurring within a contin-033
uous flow of non-segmented gestures. Unlike offline sce-034
narios, online recognition demands precise localization of035

Figure 1. Hand models (a) without, (b) with anatomical con-
straints: joint angles (θ), bone lengths (l), finger curvature (κ).

gestures within this continuous flow, necessitating accu- 036
rate identification of their start and end timings. Further- 037
more, real-world applications necessitate real-time process- 038
ing, implying rapid inference algorithms without compro- 039
mising accuracy. Ensuring high precision in classification 040
while minimizing false positives is crucial for ensuring a 041
natural and reliable interaction experience, particularly in 042
critical scenarios such as medical operations. 043

Recent advancements in self-supervised learning have 044
shown promise in deriving discriminative representations 045
from unlabeled hand pose data [8, 23, 24, 42]. We ar- 046
gue that this approach holds significant potential, particu- 047
larly in the domain of dynamic and continuous hand ges- 048
ture recognition. Therefore, we propose a method that com- 049
bines the power of self-supervised learning with anatomi- 050
cal constraints guidance to overcome the limitations inher- 051
ent in traditional fully supervised approaches. By integrat- 052
ing self-supervised skeletal learning and anatomical infor- 053
mation during pre-training, we aim to extract rich and dis- 054
criminative representations of hand poses. As illustrated in 055
Figure 1, anatomical constraints such as bone length, bone 056
curvature and joint angles can be incorporated as a prior in- 057
formation into the learning model to ensure consistency in 058
hand joint position estimation. Ultimately, improving the 059
discrimination of learned 3D keypoint representations. 060

Existing few self-supervised learning methods [8, 23, 061
24] often prioritize model accuracy in matching ground 062
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truth hand poses while neglecting anatomical correctness.063
By incorporating anatomical constraints into the learning064
process, as evidenced in prior studies on hand pose esti-065
mation [26, 38] and hand tracking [1], we demonstrate im-066
proved model capabilities in learning richer representations067
of various hand poses and movements.068

The following are the primary contributions of our work:069

• A spatio-temporal ViT-based model with Fourier em-070
bedding: We integrate Fourier feature embedding [40]071
into a spatio-temporal vision transformer (ViT) model072
to project spatial and temporal coordinates into a high-073
frequency domain. This enhancement captures intricate074
spatial and temporal dependencies and nuanced patterns075
in hand joint data, improving representation accuracy.076

• Anatomical guidance for pre-training: We introduce077
anatomical constraints into the loss function to guide the078
pre-training of the masked autoencoder, ensuring anatom-079
ical consistency and learning discriminative features for080
various hand poses.081

2. Related Work082

2.1. Online Hand Gesture Recognition083

Online gesture recognition methods extend beyond the084
scope of offline methods, which primarily focus on discrete,085
segmented gestures. In contrast, online gesture recogni-086
tion involves two key tasks: segmenting the continuous data087
stream to identify the start and end frames of each gesture,088
and accurately labeling these gestures using prior informa-089
tion while minimizing delays and avoiding false positives.090
Online recognition of hand gestures has been approached091
through two main methods:092

Full sequence-based methods: analyze an entire se-093
quence at once to detect gesture boundaries before forward-094
ing the identified segmented candidates to a classification095
module. They employ specialized heuristics based on ve-096
locity, energy, or trained networks to segment sequence and097
subsequently classify each frame subset. Traditional meth-098
ods utilized the Histogram of Oriented Gradient (HOG) al-099
gorithm in conjunction with an SVM classifier [33]. In con-100
trast, recent advancements have predominantly focused on101
time-driven models. Köpüklü et al. [28] proposed a two-102
model hierarchical architecture based on lightweight CNNs.103
Seg-LSTM [7] employs an LSTM with a specialized seg-104
mentation network, while the ST-GCN method [6] utilizes105
an energy-based segmentation approach with additional ad-106
hoc rules. The 2ST-GCN method [2, 6, 17] integrates an107
energy-based detection module with a fine-grained classi-108
fier for gesture/non-gesture discrimination.109

Sliding window-based methods: perform continuous110
and simultaneous detection and labeling, often using pre-111
trained classifiers with fixed-size input subsequences and112
sliding-window models. Sliding window techniques are113

common, as shown by the [16] strategy, where a modified 114
DDNet [46] is trained with segmented and resampled ges- 115
tures and randomly sampled non-gestural windows. Sim- 116
ilarly, a modified version of DeepGRU [32] demonstrated 117
notable performance. TN-FSM [17] uses transform net- 118
works to classify 10-frame windows, while Causal TCN 119
trains a temporal convolutional network on 20-frame win- 120
dows labeled with gesture classes or non-gestures accord- 121
ing to their intersections with the annotated ground truth 122
[16, 17]. In addition, OO-dMVMT [12] exploits multiple 123
temporal views of hand pose and movement to generate 124
complete gesture descriptions. 125

2.2. Skeleton-based Self-Supervised Learning 126

Self-supervised learning has primarily been successful in 127
image analysis, especially due to the emergence of masked 128
autoencoders (MAEs) [22], which have been proven suc- 129
cessful in a variety of applications [3, 9, 22]. Accordingly, 130
the field of skeletal data has recently seen a growing interest 131
in exploiting the potential of self-supervised learning. 132

Contrastive learning methods [29, 34] apply momen- 133
tum encoders for contrastive learning using single-stream 134
skeleton sequences. Aiming for more generalized represen- 135
tations, AimCLR [21] implemented an extreme data aug- 136
mentation strategy to increase the number of contrastive 137
pairs and thus improve feature extraction. To prevent over- 138
fitting and improve feature generalization for action recog- 139
nition, Ms2l [31] introduced a multitasking self-supervised 140
framework that focuses on the extraction of joint represen- 141
tations via motion prediction and puzzle recognition. 142

MAE-based methods have received considerable atten- 143
tion. D-MAE [27] introduced a dual MAE focusing on 144
token completion in a skeletal context, crucial for robust 145
motion capture. Similarly, SkeletonMAE [44] proposed a 146
graph-based MAE, emphasizing pre-training with skeleton 147
sequences. Generative learning techniques such as LongT 148
GAN [48] and P&C [39] emphasized encoder-decoder ar- 149
chitectures to refine skeleton sequence representation. 150

Despite advances, self-supervised learning in hand ges- 151
ture recognition, especially online, remains underexplored. 152
Chen et al. [8] focused on 3D hand reconstruction, Sign- 153
BERT [23] pre-trained hand-aware representations for sign 154
language, while [24] pre-trained a MAE to encode separate 155
individual hand poses without considering temporal corre- 156
lation. Our work extends self-supervised skeleton learn- 157
ing to improve online gesture recognition, by incorporating 158
spatio-temporal encoding and relying on prior knowledge 159
and anatomical constraints to inform the learning process. 160

3. Methodology 161

We propose a comprehensive end-to-end framework for on- 162
line hand gesture recognition, which is divided into two 163
main phases. First, a spatio-temporal MAE (STMAE) is 164
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Figure 2. (A) Proposed AG-MAE: a ratio of joints are masked in a given window, the unmasked joints are encoded by the encoder and
then concatenated with the mask tokens and passed through the decoder to reconstruct the masked joints. (B) Masking strategies.

pre-trained to encode a sequence of skeletal hand gesture165
frames into a robust feature representation. Subsequently,166
a spatio-temporal graph convolutional network (STGCN) is167
fine-tuned to classify gestures within a real-time data stream168
using the learned representations. Figure 2-A illustrates169
the architecture of our proposed bio-mechanically guided170
spatio-temporal masked autoencoder (AG-MAE).171

3.1. Pretraining172

In pre-training, given an input window of hand poses X ∈173
RW×N×3, where W is the number of frames, N is the174
number of hand joints, and 3 corresponds to the 3D coor-175
dinates (x, y, z), we first project the 3D joint coordinates176
into a higher-dimensional space Rd using a Fourier embed-177
ding map, while incorporating positional encoding to main-178
tain spatial and temporal order. A ratio mr (mask ratio) of179
joints is masked according to one of the strategies in Fig-180
ure 2-B. Each joint is represented as a token of dimension181
d in the Fourier embedding space. The unmasked joints are182
processed by a ViT-based MAE encoder, mapping them to183
a latent space Rl. The encoded unmasked joints are con-184
catenated with the mask tokens and fed to the ViT-based185
MAE decoder to reconstruct the masked joint coordinates,186
producing X̃ ∈ RW×N×3. Reconstruction quality is evalu-187
ated using the mean squared error, along with the anatom-188
ical loss, which assesses the anatomical correctness of the189
reconstructed hand poses. This process enhances the en-190
coding of hand poses window into a more discriminative191
feature space, enhancing their utility for subsequent tasks192
such as gesture spotting and classification.193

Fourier Embedding. Fourier Feature Embedding (FFE) 194
improves the ability of the model to capture spatial and tem- 195
poral relationships between hand joints. It projects spatial 196
and temporal coordinates into a high-frequency domain us- 197
ing sine and cosine functions of varying frequencies. This 198
technique allows the model to discern nuanced patterns 199
in 3D keypoint motions [40]. Unlike linear embeddings, 200
which may overlook fine details, FFE preprocesses the in- 201
put to capture higher-frequency details and intricate spa- 202
tial dependencies, leading to more accurate representations 203
[24, 40]. The FFE embeds the 3D coordinates v(x, y, z) 204
into a 256-dimensional space: 205

γ(v) = [a1 cos(2πb
T
1 v), a1 sin(2πb

T
1 v),

. . . , . . . ,

am cos(2πbTmv), am sin(2πbTmv)]T
(1) 206

where b are the Fourier basis frequencies, and a are the cor- 207
responding Fourier series coefficients, resulting in a feature 208
transformation with m distinct frequency components. 209

Positional Encoding. Positional encoding aims to pre- 210
serve both spatial and temporal dimensions within the data. 211
Specifically, a spatial positional encoding is added to each 212
joint and maintained across all frames to retain the spatial 213
structure. Additionally, a temporal positional encoding is 214
applied to each frame, with the same encoding assigned 215
to all joints within a frame to ensure temporal consistency. 216
These encodings enable the model to effectively track and 217
correlate spatial and temporal relationships. 218
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Figure 3. Hand anatomy constrains the biomechanics of hand mo-
tions, including joint angles (θ) and bone lengths (l).

Masking Strategy. Different masking strategies, illus-219
trated in Figure 2-B, are employed to enhance the self-220
supervised learning model for characterizing hand poses.221

• Random spatial masking: is a joint-level masking strategy222
that involves masking a given ratio of the same joints over223
time, i.e. the same set of random joints is masked in each224
frame of the sequence.225

• Random temporal masking: is a frame-level masking226
strategy that involves masking a random number of227
frames in the sequences, i.e. all joints of the hand are228
masked in a given random set of frames.229

• Random spatio-temporal masking: is a widely adopted230
and highly effective strategy in image- and skeleton-231
based self-supervised learning [22, 44] involving ran-232
domly masking a number of joints at both the frame- and233
joint-level in the sequence.234

3.2. Anatomical Constraints235

The hand is anatomically constrained by biomechanical236
limitations [11], allowing it to perform certain poses while237
limiting its ROM. Each joint has a specific degree of free-238
dom (DoF) that defines its movement capabilities. For ex-239
ample, the index, middle, ring, and little fingers are consid-240
ered planar manipulators, meaning that their DIP, PIP, and241
MCP joints move primarily in one plane since the DIP and242
PIP joints only have 1 DoF for flexion (see Figure 3). The243
anatomical constraints can be categorized into two primary244
categories: dynamic and static constraints.245

Dynamic constraints can be subdivided into intrafinger246
and interfinger constraints. Intrafinger constraints refer to247
limitations on movement between different joints within the248
same finger [13]. For instance, Cobos et al. [11] outlined249
several constraints, such as the requirement that to bend the250
DIP joints, the PIP joints must also be bent for the index,251
middle, ring, and little fingers, mathematically expressed as252
θDIP = 2

3θPIP . While these constraints are not rigid, indi-253
viduals generally adhere to them under normal conditions,254

though there is some variation in the ability to control spe- 255
cific joints across individuals. 256

Interfinger constraints involve correlations between 257
joints across different fingers, often resulting in coupled 258
movements among fingers [30]. For example, when the 259
pinky finger bends, the ring finger also bends to a certain ex- 260
tent, reflecting a proportional relationship. However, vari- 261
ations exist among individuals regarding these constraints. 262
Some constraints can be overcome, while others are inher- 263
ent and cannot be explicitly represented in equations [38]. 264

Static constraints define the normal ROM for hand 265
joints, setting limits on parameter values in models. These 266
constraints [11], provide crucial guidelines for understand- 267
ing and modeling hand biomechanics. Despite individual 268
variations, static constraints play a significant role in defin- 269
ing the anatomical capabilities of the hand. The limits for 270
each constraint can be obtained manually from measure- 271
ments, from the literature (e.g., [10, 35]), or acquired in a 272
data-driven way from 3D annotations. Two main constraints 273
are commonly considered [11], as illustrated in Figure 3: 274
bone lengths, reflecting intra-finger constraints, and joint 275
angles, covering both intra- and inter-finger constraints. 276

For bone lengths, we define an interval [bmin
i , bmax

i ] for 277
each bone i and penalize deviations if the length ∥bi∥2, 278
which corresponds to the Euclidean distance between the 279
extremities of the bone at the joints, lies outside this inter- 280
val. Mathematically, given a hand pose P , we define the 281
bone length loss as: 282

LBL(P ) =
1

Nb

Nb∑
i=1

I(∥bi∥2; bmin
i , bmax

i ) (2) 283

where Nb is the number of bones, and I(∥bi∥2; bmin
i , bmax

i ) 284
is an indicator function that penalizes the bone length ∥bi∥2 285
if it falls outside the defined interval [bmin

i , bmax
i ]. 286

For joint angles, each joint has its specific range of free- 287
dom. For instance, as cited by Cobos et al. [11]: 288

0◦ ≤ θMCP ≤ 90◦; 0◦≤ θPIP ≤ 110◦; 0◦ ≤ θDIP ≤ 90◦. 289

We propose to compute the ranges of angles for each joint 290
based on the data. To compute the joint angles, we first need 291
to define a reference point relative to which the angles are 292
measured. The wrist joint appears to be the most suitable 293
as it has 0 DoF in the hand plane, and its movements are 294
minimal or almost negligible. 295

To constrain the angles, we consider each angle indepen- 296
dently (e.g., θ1 between the Index MCP and Middle MCP 297
in Figure 3) and penalize them if they lie outside the cor- 298
responding interval. This corresponds to constraining them 299
within a box in a 2D space, where the endpoints are the 300
min/max limits. The angles are constrained to lie within this 301
structure by minimizing their distance to it. For angles, we 302
consider the angles between all pairs of joints in the hand, 303

4



3DV
#60

3DV
#60

3DV 2025 Submission #60. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

even those within the same hand, leading to the following304
definition of the loss with regards to angles:305

LJA(P ) =
2

N(N − 1)

N∑
i=2

N∑
j=i+1

I(∠(
−−→
JwJi,

−−−→
JwJj); a

min
ij , a

max
ij ),

(3)306

where ∠(
−−→
JwJi,

−−−→
JwJj) is the angle between joint i and joint307

j considering the wrist joint (Jw) as the vertex, amin
ij ∈308

Amin and amax
ij ∈ Amax are the minimum and maximum309

angle values between joint i and j. The number of pairs310
(Jw, Ji) and (Jw, Jj) where i and j are distinct joints in-311

dices is given by the binomial coefficient:
(
N
2

)
= N(N−1)

2 .312
Given the potential for error and inaccuracy in annotated313

hand gesture datasets, the lack of a common hand kinemat-314
ical model across dataset and the lack of explicit equations315
for some dynamic angles, we propose to rely primarily on316
static constraints. These constraints offer a more accessible317
and straightforward approach to defining ROMs for individ-318
ual joints and the hand as a whole. The ROM is character-319
ized by its minimum and maximum values, determined by320
the angles between the various joints, with the wrist joint321
serving as the reference point, as well as by considerations322
of the distances between these joints. We argue that con-323
sidering the angles between all pairs of joints in the hand324
provides the model with a rich feedback on the anatomical325
correctness of the hand.326

Integrating these constraints into the loss function en-327
courages keypoint predictions that yield valid bone lengths328
and valid angles, thus ensuring accurate hand anatomy. The329
anatomical loss can be formulated as:330

LA(P ) = LBL(P ) + LJA(P ) (4)331

where LBL and LJA denote the bone length and joint angle332
losses, respectively.333

3.3. Model Architecture334

The AG-MAE model is designed to process temporal hand335
skeleton data. It is based on an asymmetric encoder-decoder336
architecture, both built upon the ViT model [41].337

Encoder. The encoder is built to encode a given window338
of Fourier embedded hand non-masked tokens XF

nmask =339
γ(X) ∈ RNnmask×256, where Xnmask ∈ RNnmask×3 is the340
window of hand poses and Nnmask is the number of non-341
masked joints across the window, into a latent space Xenc ∈342
RNnmask×dl , where dl is the latent space dimension.343

The MAE encoder is implemented based on a ViT model344
with a depth of 6, featuring attention mechanisms in each345
layer. This architecture utilizes 8 heads for multi-head at-346
tention and incorporates feed-forward networks with a di-347
mension of 512. The embedding dimension is set to 256,348
encoding each 3D hand joint coordinate into a 256-element349
vector (dl = 256).350

Decoder. The MAE decoder is designed to complement 351
the encoder. It receives a complete set of tokens, which 352
includes encoded visible patches and mask tokens (see to 353
Figure 2). Mask tokens are shared, learned vectors that de- 354
note the presence of a missing patch that needs to be pre- 355
dicted. To ensure that mask tokens have location informa- 356
tion, spatial and temporal positional embeddings are added 357
to all tokens in this set. Subsequently, the decoder attends 358
to this combined sets of tokens using attention mechanism 359
and predicts the coordinates of the missing joints. 360

The MAE decoder is utilized exclusively during pre- 361
training for the purpose of skeleton reconstruction, with 362
only the encoder being employed to generate hand poses 363
representations for downstream tasks. 364

Loss. During pre-training, the reconstruction loss com- 365
prises the Mean Squared Error (MSE) loss alongside the 366
anatomical loss, represented by the ROM constraints for 367
each joint and finger calculated given the training data. The 368
total loss, denoted as L, is expressed as L = LMSE +λLA. 369

Here, LMSE = E
[
||X − X̂||2

]
, and LA signifies the 370

anatomical loss, and λ denotes a weighting factor. 371

Minimizing this loss enables the MAE model to refine its 372
predictions, striving to closely match the ground-truth co- 373
ordinates while respecting anatomical correctness of hand 374
skeleton. This iterative process facilitates the learning of 375
discriminative representations across different hand poses 376
within the latent space. 377

3.4. Fine-Tuning for Dynamic Recognition 378

To evaluate the effectiveness of our AG-MAE model 379
in learning discriminative hand pose representations, we 380
employ the spatio-temporal graph convolutional network 381
(STGCN) [45] as the backbone architecture for classifying 382
skeleton sequences. The STGCN excels at capturing tempo- 383
ral relationships, allowing it to extract complex patterns in 384
sequential data. Additionally, it uses an edge-attention adja- 385
cency matrix constructed with a learnable mask, enhancing 386
its ability to capture spatial dependencies. 387

Online Recognition. We implement a sliding-window- 388
based model to identify the boundaries of gestures (start 389
and end) and the gesture performed within the window of 390
frames. The start and end are defined as the transitions be- 391
tween gesture classes and the non-gesture class. 392

The online model is based on an STGCN architecture 393
and incorporates a classification head to predict the gesture 394
(including the non-gesture class) within the window. Fol- 395
lowing [12], two regression heads are integrated: one for 396
identifying the start and another for identifying the end of 397
any detected gesture. 398
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A cross-entropy loss is applied to the gesture class out-399
put, and an MSE loss is applied to the two regression out-400
puts (start and end of the gesture, if any).401

Offline Recognition. The offline model, on the other402
hand, is trained on segmented, isolated gestures. We use an403
STGCN model with a single classification head to output a404
gesture label for each segmented sequence. All sequences405
are padded to the dataset maximum length for uniform pro-406
cessing, and training is conducted using cross-entropy loss.407

For both online and offline settings, given a 3D hand408
joint sequence, we utilize the pre-trained MAE encoder409
to extract the corresponding learned representations (la-410
tent space), which serve as the foundation for training the411
STGCN models. No masking is applied during finetuning.412

4. Experimental Setup413

4.1. Evaluation Protocols and Metrics414

Unlike offline evaluation, which focuses mainly on recog-415
nition accuracy, online evaluation relies on more in-depth416
metrics to assess performance in real time, including:417

Detection Rate (DR) measures the ratio of correctly de-418
tected gestures to the total number of gestures, consider-419
ing temporal overlap with ground truth and duration consis-420
tency. A gesture is correctly detected if its temporal overlap421
exceeds 50% of the true interval, does not exceed twice the422
actual duration, and matches the label.423

Levenshtein Accuracy (LA) captures recognition accu-424
racy regardless of early or late detection. It’s also known as425
minimum edit distance, meaning it measures the minimum426
number of single-label insertions, deletions, and substitu-427
tions needed to transform a set of labels into another.428

Jaccard Index (JI) refers to the average relative over-429
lap between ground truth and predicted labels, providing430
insights into the alignment of detected gestures with the431
ground truth gestures.432

False Positive rate (FP) quantifies the ratio of false pos-433
itive predictions to the total number of gestures, highlight-434
ing the ability of the model to minimize erroneous detec-435
tions. Minimal false positives are desirable for robust ges-436
ture recognition systems.437

Inference Time (IT) denotes the duration required for438
the model to perform inference and label a single frame,439
crucial for assessing real-time applicability.440

Normalized Time to Detect (TNtD) quantifies the frac-441
tion of the sequence duration, from start to end, before442
the system successfully detects the gesture. Normalization443
aids in comparing detection performance across different444
sequence lengths.445

4.2. Datasets 446

The key characteristics of the datasets used for online eval- 447
uation are given in Table 1. 448

Dataset #S #G #J #G/S MeanT StdT

SHREC21 [6] 180 17 20 3-5 77 61
IPN Hand [4] 4000 14 21 21 140 94
ODHG [14] 280 14 22 10 58 27

Table 1. Statistics for evaluation datasets: S (sequences), G (ges-
tures), J (joints), G/S (continuous gestures per sequence), MeanT
(average gesture duration), StdT (standard deviation).

SHREC’21: The SHREC’2021 Track dataset [6] meets 449
to practical application scenarios requiring real-time gesture 450
recognition within continuous hand movement sequences. 451
It includes 18 gesture classes categorized as static, coarse 452
dynamic, and fine dynamic gestures. Evaluation metrics in- 453
clude DR, FP rate, JI and IT. 454

IPN Hand: The IPN Hand dataset [4] comprises over 455
4,000 gesture instances from 50 subjects. Each subject ex- 456
ecuted 21 gestures continuously, interspersed with random 457
pauses, in a single video We use the provided training/test 458
split for evaluation. Evaluation is based on LA and IT. 459

ODHG: Online Dynamic Hand Gesture (ODHG) [43] 460
is the online version of the SHREC’17 track [14], provid- 461
ing 280 sequences of 10 non-segmented gestures occurring 462
sequentially and performed by 28 subjects in a continuous 463
online environment. Evaluation is based on LA and TNtD. 464

Due to the variability in hand models across datasets, 465
particularly regarding the number of joints, we propose 466
a dataset-specific approach for inferring anatomical con- 467
straints. Specifically, we derive the ranges for these con- 468
straints, namely the minimum and maximum values for 469
bone lengths and joint angles, based on the training set. 470

4.3. Implementation Details 471

For the STMAE model, key hyperparameters include learn- 472
ing rates. We employed the AdamW optimizer with a learn- 473
ing rate of 2 × 10−4 and weight decay of 5 × 10−2. The 474
learning rate is gradually reduced during training, with the 475
biomechanical loss weighting factor (λ) set to 1.0. The win- 476
dow size is set to W = 16. Similarly, for both STGCN 477
models, we utilized the AdamW optimizer with a learning 478
rate of 1×10−3 and weight decay of 5×10−2. The learning 479
rate undergoes gradual reduction throughout training. We 480
employed cross-entropy for training loss with label smooth- 481
ing during fine-tuning, with a smoothing rate of 0.1. We use 482
a sliding window W = 16 as we found it to be an optimal 483
choice. All experiments are conducted using an NVIDIA 484
GeForce RTX 2080 GPU. 485
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Figure 4. Left: example of an anatomically correct generated hand pose. Middle: example of a non-anatomically correct generated hand
pose (thumb tip is extended beyond the normal range). Right: minimum and maximum bone lengths in the IPN Hand dataset.

5. Experimental Results486

5.1. Ablation Studies487

We conduct ablation studies to assess the effectiveness of488
various components and enhancements in our method. All489
experiments are conducted using the SHREC’21 dataset.490

Masking Strategy. Our analysis of different masking491
strategies provides valuable insights (Table 2). Random492
spatio-temporal masking with a ratio of 0.6 (mr = 60%)493
proves to be the most effective, achieving 91.9% DR and494
a minimum FP rate of 0.033, highlighting its effectiveness495
for classification tasks. In contrast, random spatial mask-496
ing achieves the highest JI with a ratio of 0.7, highlight-497
ing its strength in detection tasks. However, the random498
temporal masking shows comparatively lower performance,499
which can be attributed to its limited effectiveness in online500
gesture recognition. This reduced performance is likely due501
to the disruption of critical sequential patterns and tempo-502
ral context that are essential for accurate real-time gesture503
recognition. In particular, the random nature of temporal504
masking can lead to masking of contiguous frames with-505
out intermediate information, disrupting the temporal flow.506
We argue that a guided temporal masking approach, such507
as one informed by joint motion, may be more effective as508
it reduces randomness and ensures that masking does not509
obscure important sequential information.510

Masking strategy Ratio DR ↑ FP ↓ JI ↑

Random spatial
0.5 90.3% 0.0490 0.6346
0.6 87.1% 0.0414 0.6228
0.7 90.5% 0.0626 0.7257

Random temporal
0.5 74.5% 0.5331 0.5024
0.6 80.8% 0.0516 0.5707
0.7 81.6% 0.0753 0.5380

Random spatio-temporal
0.5 88.3% 0.0694 0.5568
0.6 91.9% 0.0330 0.6800
0.7 88.3% 0.0406 0.6412

Table 2. Ablation study on masking strategy and ratio in pre-
training phase (SHREC’21).

Feature Embedding. We compare FFE against learned 511
linear mapping using a fully connected layer (Table 3 - 512
Line 1). Our experiments show that FFE significantly out- 513
performs linear mapping. This enhancement is due to the 514
ability of FFE to capture intricate spatial and temporal rela- 515
tionships among joints in skeletal data. By projecting input 516
coordinates into a high-frequency domain, FFE allows the 517
network to encode finer details, thereby improving the qual- 518
ity of learned representations. 519

Anatomical Loss. The inclusion of anatomical con- 520
straints significantly improves model performance, as evi- 521
denced by improvements in all evaluation metrics (Table 3 522
- Line 2). The anatomical loss provides critical anatomical 523
feedback during the pre-training phase that improves model 524
robustness without impacting inference time. This loss term 525
helps generate anatomically correct hand poses, reducing 526
misinterpretation of joint positions that could lead to confu- 527
sion between gestures, especially in non-gesture frames that 528
involve random hand movements. 529

Figure 4 illustrates the differences between correct and 530
incorrect hand poses; the latter is shown with an exagger- 531
ated thumb extension, which is effectively penalized by the 532
anatomical loss. In addition, the anatomical constraints 533
adapt to different hand shapes and sizes by defining bound- 534
ing ranges for bone lengths and joint angles. 535

Method DR ↑ FP ↓ JI ↑ IT (ms) ↓

AG-MAE w/o FE 83.1% 0.082 0.573 0.41
AG-MAE w/o LA 84.4% 0.065 0.571 0.63

AG-MAE 91.9% 0.033 0.680 0.63

Table 3. Ablation studies on different components of AG-MAE
model (SHREC’21).

5.2. Comparison with State-of-the-Art Methods 536

Offline Evaluation. We first assess our approach in an of- 537
fline setting, focusing on segmented hand gesture sequences 538
from three distinct datasets: SHREC’21, IPN Hand, and 539
ODHG. The results, as detailed in Table 4, particularly em- 540
phasizing the critical role of self-supervised learning and 541
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Method Accuracy

DDNet [46] 87.8%
Stronger [16] 97.5%

AG-MAE 98.5%

SHREC’21 Dataset.

Method Accuracy

ResNeXt-101 [4] 86.3%
Dist-Time [18] 87.5%

AG-MAE 93.7%

IPN Hand Dataset.

Method Accuracy

G Spotter[36] 95.3%
DSTA-Net [37] 97.0%

AG-MAE 93.6%

ODHG Dataset.

Table 4. Offline results on evaluation datasets.

pretraining in learning spatio-temporal representations of542
hand skeleton data. Notably, our model achieves SOTA per-543
formance on the SHREC’21 and IPN Hand datasets.544

Online Evaluation. For online evaluation, we adhere545
to the proposed evaluation protocol and metrics for each546
dataset. Table 5 shows the comparative performance of dif-547
ferent methods on the SHREC’21 dataset. Our approach548
achieves SOTA results in terms of DR and FP rate. No-549
tably, while group 4 of the original SHREC’21 paper also550
uses the STGCN backbone, our model, augmented with a551
masked autoencoder (MAE) for better representation learn-552
ing, achieves an improved recognition rate of 91.9% with a553
notable reduction in false positives to 0.033.554

However, we observe a notable decrease in the JI com-555
pared to the STGCN-based method from Group 4 (G4)556
of the SHREC’21 paper. This difference may stem from557
Group 4’s use of two separate models—one for detection558
and one for classification—as well as their incorporation of559
handcrafted similarity evaluations. Such handcrafted fea-560
tures can be highly effective for specific gestures, contribut-561
ing to their higher JI scores [6].562

Method Backbone DR ↑ FP ↓ JI ↑ IT(ms) ↓

G1 [Shrec21] [6] Transformer 79.2% 0.257 0.603 1.36
G2 [Shrec21] [6] CNN 48.6% 0.927 0.277 0.41
G3 [Shrec21] [6] GRU 75.7% 0.340 0.619 3e-6
G4 [Shrec21] [6] STGCN 89.9% 0.066 0.853 0.16
Stronger [16] CNN 90.6% 0.347 0.740 0.10
G Spotter [36] LSTM 90.3% 0.053 0.852 -
AG-MAE STGCN 91.9% 0.033 0.680 0.63

Table 5. Online recognition results on SHREC’21 dataset.

Method Modality LA ↑ IT (ms) ↓

ResNet50 [4] RGB-Seg 33.27% 29.2
ResNet50 [4] RGB-Flow 39.47% 43.1
ResNeXt-101 [4] RGB-Seg 39.01% 39.9
ResNeXt-101 [4] RGB-Flow 42.47% 53.7
TMMF [19] RGB-Flow 68.12% -
TSN-TSM [5] RGB-Seg 65.27% 15.2

AG-MAE 3D keypoints 73.93% 19.4∗

Table 6. Online evaluation on the IPN Hand dataset. (*) indicates
that IT includes both keypoint extraction and inference times.

Table 6 demonstrates SOTA results of our model in terms563
of LA. Despite the relatively high reported inference time,564

it is important to note that this includes the additional time 565
required for the extraction of 21 3D keypoints using Medi- 566
aPipe [47]. Specifically, the 3D keypoints extraction con- 567
tributes approximately 19.33 ms to the overall inference 568
time, while the inference time of our model alone is on the 569
order of 10−1ms. This suggests that the observed inference 570
time is primarily influenced by the keypoints extraction pro- 571
cess rather than the model itself. 572

For the ODHG dataset, due to the lack of a standard eval- 573
uation split protocol, we follow the authors approach and 574
employ a random k-fold split, allocating 70% of the data 575
for training and 30% for testing. Our model achieves an LA 576
of 82.0% and an NTtD of 0.34. The original paper reported 577
comparable results, with an LA of 82.2% and an NTtD of 578
0.21 using depth images. 579

Limitations. Despite the notable performance of our 580
method, some limitations should be acknowledged. A key 581
limitation is the trade-off between DR, FP rate, and JI de- 582
pending on the masking strategy and ratio employed (see 583
Table 2). This trade-off indicates that the optimal masking 584
strategy and ratio may depend on the specific application re- 585
quirements, highlighting the need for a balanced approach 586
to achieve the best overall performance. Additionally, inte- 587
grating the MAE with the STGCN backbone increases com- 588
putational complexity, resulting in longer inference times. 589
This may constrain the practical deployment of the model 590
in real-time scenarios where processing speed is crucial. 591

6. Conclusion and Future Work 592

In this work, we introduce a novel framework for online 593
hand gesture recognition combining self-supervised learn- 594
ing with anatomical constraints. By pre-training a spatio- 595
temporal masked autoencoder with anatomical guidance, 596
our approach transforms 3D hand keypoints into highly 597
discriminative representations, enhancing performance in 598
online gestire recognition. Comprehensive evaluations on 599
SHREC’21, IPN Hand, and ODHG datasets shows that our 600
method achieves SOTA results. 601

Future research will focus on refining adaptive mask- 602
ing strategies to further improve overall performance in 603
online scenarios. Additionally, we will work on reducing 604
model complexity to develop faster, more efficient mod- 605
els for deployment in resource-constrained environments. 606

607
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[28] Okan Köpüklü, Ahmet Gunduz, Neslihan Kose, and Gerhard735
Rigoll. Real-time hand gesture detection and classification736
using convolutional neural networks. In 2019 14th IEEE in-737
ternational conference on automatic face & gesture recogni-738
tion (FG 2019), pages 1–8. IEEE, 2019. 2739

[29] Linguo Li, Minsi Wang, Bingbing Ni, Hang Wang,740
Jiancheng Yang, and Wenjun Zhang. 3d human action rep-741
resentation learning via cross-view consistency pursuit. In742
Proceedings of the IEEE/CVF conference on computer vi-743
sion and pattern recognition, pages 4741–4750, 2021. 2744

[30] John Lin, Ying Wu, and Thomas S Huang. Modeling the745
constraints of human hand motion. In Proceedings workshop746
on human motion, pages 121–126. IEEE, 2000. 4747

[31] Lilang Lin, Sijie Song, Wenhan Yang, and Jiaying Liu. Ms2l:748
Multi-task self-supervised learning for skeleton based action749
recognition. In Proceedings of the 28th ACM International750
Conference on Multimedia, pages 2490–2498, 2020. 2751

[32] Mehran Maghoumi and Joseph J LaViola. Deepgru: Deep752
gesture recognition utility. In Advances in Visual Computing:753
14th International Symposium on Visual Computing, ISVC754
2019, Lake Tahoe, NV, USA, October 7–9, 2019, Proceed-755
ings, Part I 14, pages 16–31. Springer, 2019. 2756

[33] Eshed Ohn-Bar and Mohan Manubhai Trivedi. Hand gesture757
recognition in real time for automotive interfaces: A multi-758
modal vision-based approach and evaluations. IEEE trans-759
actions on intelligent transportation systems, 15(6):2368–760
2377, 2014. 2761

[34] Haocong Rao, Shihao Xu, Xiping Hu, Jun Cheng, and Bin762
Hu. Augmented skeleton based contrastive action learning763
with momentum lstm for unsupervised action recognition.764
Information Sciences, 569:90–109, 2021. 2765

[35] Chr Ryf and A Weymann. The neutral zero method—a prin-766
ciple of measuring joint function. Injury, 26:1–11, 1995. 4767

[36] Junxiao Shen, John Dudley, George Mo, and Per Ola Kris-768
tensson. Gesture spotter: A rapid prototyping tool for key769
gesture spotting in virtual and augmented reality applica-770
tions. IEEE transactions on visualization and computer771
graphics, 28(11):3618–3628, 2022. 8772

[37] Lei Shi, Yifan Zhang, Jian Cheng, and Hanqing Lu. Decou-773
pled spatial-temporal attention network for skeleton-based774
action-gesture recognition. In Proceedings of the Asian con-775
ference on computer vision, 2020. 8776

[38] Adrian Spurr, Umar Iqbal, Pavlo Molchanov, Otmar Hilliges,777
and Jan Kautz. Weakly supervised 3d hand pose estimation778
via biomechanical constraints. In European conference on779
computer vision, pages 211–228. Springer, 2020. 2, 4780

[39] Kun Su, Xiulong Liu, and Eli Shlizerman. Predict & cluster: 781
Unsupervised skeleton based action recognition. In Proceed- 782
ings of the IEEE/CVF Conference on Computer Vision and 783
Pattern Recognition, pages 9631–9640, 2020. 2 784

[40] Matthew Tancik, Pratul Srinivasan, Ben Mildenhall, Sara 785
Fridovich-Keil, Nithin Raghavan, Utkarsh Singhal, Ravi Ra- 786
mamoorthi, Jonathan Barron, and Ren Ng. Fourier features 787
let networks learn high frequency functions in low dimen- 788
sional domains. Advances in Neural Information Processing 789
Systems, 33:7537–7547, 2020. 2, 3 790

[41] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko- 791
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia 792
Polosukhin. Attention is all you need. Advances in neural 793
information processing systems, 30, 2017. 5 794

[42] Ben Veldhuijzen, Remco C Veltkamp, Omar Ikne, Ben- 795
jamin Allaert, Hazem Wannous, Marco Emporio, Andrea Gi- 796
achetti, Joseph J LaViola Jr, Ruiwen He, Halim Benhabiles, 797
et al. Shrec 2024: Recognition of dynamic hand motions 798
molding clay. Computers & Graphics, page 104012, 2024. 799
1 800

[43] Hazem Wannous and Jean-Philippe Vandeborre. Continuous 801
hand gesture recognition using deep coarse and fine hand 802
features. In The 33rd British Machine Vision Conference– 803
BMVC 2022, 2022. 6 804

[44] Hong Yan, Yang Liu, Yushen Wei, Zhen Li, Guanbin Li, 805
and Liang Lin. Skeletonmae: Graph-based masked autoen- 806
coder for skeleton sequence pre-training. arXiv preprint 807
arXiv:2307.08476, 2023. 2, 4 808

[45] Sijie Yan, Yuanjun Xiong, and Dahua Lin. Spatial tempo- 809
ral graph convolutional networks for skeleton-based action 810
recognition. In Proceedings of the AAAI conference on arti- 811
ficial intelligence, 2018. 5 812

[46] Fan Yang, Yang Wu, Sakriani Sakti, and Satoshi Naka- 813
mura. Make skeleton-based action recognition model 814
smaller, faster and better. In Proceedings of the ACM multi- 815
media asia, pages 1–6. 2019. 2, 8 816

[47] Fan Zhang, Valentin Bazarevsky, Andrey Vakunov, Andrei 817
Tkachenka, George Sung, Chuo-Ling Chang, and Matthias 818
Grundmann. Mediapipe hands: On-device real-time hand 819
tracking. arXiv preprint arXiv:2006.10214, 2020. 8 820

[48] Nenggan Zheng, Jun Wen, Risheng Liu, Liangqu Long, Jian- 821
hua Dai, and Zhefeng Gong. Unsupervised representation 822
learning with long-term dynamics for skeleton based action 823
recognition. In Proceedings of the AAAI Conference on Ar- 824
tificial Intelligence, 2018. 2 825

10


	. Introduction
	. Related Work
	. Online Hand Gesture Recognition
	. Skeleton-based Self-Supervised Learning

	. Methodology
	. Pretraining
	. Anatomical Constraints
	. Model Architecture
	. Fine-Tuning for Dynamic Recognition

	. Experimental Setup
	. Evaluation Protocols and Metrics
	. Datasets
	. Implementation Details

	. Experimental Results
	. Ablation Studies
	. Comparison with State-of-the-Art Methods

	. Conclusion and Future Work

