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ABSTRACT

When federated learning (FL) meets trustworthy and reliable large-scale models,
two critical challenges come: data distribution heterogeneity and high resource
costs. Specifically, the non-IID data in different clients make existing FL algo-
rithms hard to converge while the high resource costs, including computational
and communication costs, increase the deployment difficulty in real-world sce-
narios. In this paper, we propose an effective yet simple method, named FedCLIP,
to achieve fast generalization and personalization for CLIP in federated learning.
Concretely, we design an attention-based adapter for the large model, CLIP, and
the rest operations merely depend on adapters. Lightweight adapters can make
the most use of pretrained model information and ensure models be adaptive for
clients in specific tasks. Simultaneously, small-scale operations can mitigate the
computational burden and communication burden caused by large models. Exten-
sive experiments are conducted on three datasets with distribution shifts. Qualita-
tive and quantitative results demonstrate that FedCLIP significantly outperforms
other baselines (9% overall improvements on PACS) and effectively reduces com-
putational and communication costs (283x faster than FedAVG).

1 INTRODUCTION

Federated learning (FL) makes it possible to perform model aggregation without directly accessing
the raw user data from different clients (Yang et al., 2019). This paper studies FL in the scenario
of large models. For trustworthy and reliable large-scale model learning, traditional FL methods,
e.g., FedAVG (McMahan et al., 2017), encounter two problems, including data distribution shifts
and huge resource demands. On the one hand, data distribution shifts widely exist in the real world,
e.g., Figure 1(a). When facing heterogeneous data, FL methods suffer from slow convergence and
low accuracy due to inconsistent optimization directions, local optima, or some other factors (Gao
et al., 2022). A qualified FL model can cope with both various clients and unseen targets, i.e. per-
sonalization and generalization. On the other hand, huge resource demands of increasingly popular
large models lead to conflicts with realistically constrained resources, as shown in Figure 1(b). In
addition to high computational costs, communication cost is also a critical metric in federated learn-
ing. For instance, the CLIP (Radford et al., 2021) model based on VIT-B/32 contains more than 108

trainable parameters and most existing networks cannot afford to transmit it quickly. Achieving fast
generalization and personalization with minimal resource costs is an urgent issue to be addressed.
Therefore, in this paper, we focus on: how to perform effective and efficient federated learning using
these large models? Specifically, we use CLIP (Radford et al., 2021) as an example.

Some existing work tried to address the issues mentioned above (Lu et al., 2022; Yuan et al., 2022;
Guo et al., 2022). FedAP (Lu et al., 2022) attempted to learn the similarity among clients and then
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Figure 1: Existing issues in federated learning. In Figure 1(a), circles denote participated clients
while squares denote unseen targets.

leveraged the learned similarity matrix to guide aggregation. FedAP could achieve acceptable per-
sonalization results but it ignored generalization. Another paper (Yuan et al., 2022) discussed two
gaps, including the out-of-sample gap and the participation gap. These two gaps correspond to goals
of generalization and personalization respectively. This paper performed extensive empirical stud-
ies to analyze these issues but it did not offer a possible solution for large models. PromptFL (Guo
et al., 2022) only updated the prompts instead of the whole model to accelerate the whole process.
However, clients still require large amounts of computation and PromptFL is not designed for per-
sonalization and generalization.

In this paper, we propose FedCLIP to achieve fast generalization and personalization for CLIP in fed-
erated learning. Since larger pretrained models, e.g. CLIP, have contained enough prior information,
our goal is to find where we should focus in specific tasks. The core part of FedCLIP is AttAI, an
attention-based adapter for the image encoder in CLIP. Instead of finetuning whole networks, AttAI
directly utilizes fixed features extracted by pretrained models and explores where FedCLIP should
pay attention to for specific tasks. Simply training AttAI can ensure FedCLIP preserving prior in-
formation as much as possible while it allows models adapted for specific tasks. Through AttAI,
FedCLIP does not rely on pretrained models anymore once obtaining diversified and robust features
and thus FedCLIP can save large amounts of computational costs and communication costs. There-
fore, FedCLIP is extensible and can be deployed to many applications. Comprehensive experimental
results prove that FedCLIP significantly outperforms other baselines (9% overall improvements on
PACS) and effectively reduces computational and communication costs (283x faster).

2 METHOD

2.1 PROBLEM FORMULATION

In a generalization and personalization federated learning setting, N different clients, denote
as {C1, C2, · · · , CN}, participate in exchanging information and they have data, denoted as
{D1,D2, · · · ,DN} with different distributions, which means P (Di) ̸= P (Dj). In this paper,
we only focus on homogeneous data with the same input space and output space, i.e. Xi =
Xj ,Yi = Yj ,∀i ̸= j. Each dataset, Di = {(xi,j , yi,j)}ni

j=1, consists of three parts, a training

dataset Dtrain
i = {(xtrain

i,j , ytraini,j )}n
train
i

j=1 , a validation dataset Dvalid
i = {(xvalid

i,j , yvalidi,j )}n
valid
i

j=1

and a test dataset Dtest
i = {(xtest

i,j , ytesti,j )}n
test
i

j=1 . Three sub-datasets in each client have no overlap
and ni = ntrain

i +nvalid
i +ntest

i ,Di = Dtrain
i ∪Dvalid

i ∪Dtest
i . Our goal is to aggregate all clients’

information with preserving data privacy and security and learn a good model f for each client Di:

min
f

1

N

N∑
i=1

1

ntest
i

ntest
i∑
j=1

ℓ(f(xtest
i,j ), ytesti,j ), (1)

where ℓ is a loss function. Moreover, for generalization, we assume that there exist M
different clients, denote as {F1, F2, · · · , FM}, with data {DF

1 = {(xi,j , yi,j)}m1
j=1,DF

2 =

2
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{(xi,j , yi,j)}m2
j=1, · · · ,DF

N = {(xi,j , yi,j)}mM
j=1}. These M clients do not participate in training,

and we hope f can also be able to perform well on these clients.

min
f

1

M

M∑
i=1

1

mi

mi∑
j=1

ℓ(f(xi,j), yi,j), (2)

2.2 FEDCLIP
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Figure 2: The framework of FedCLIP.

A simple CLIP model reg-
ularly contains two parts,
an image encoder f I and
a text encoder fT . Text
feature vectors, T are ex-
tracted from these sen-
tences via fT . Concur-
rently, images are encoded
into visual feature vectors,
I, via f I .

To reduce computational
costs and communications
and make the most use of
existing pretrained model
information, we propose FedCLIP. Pretrained models already have abilities to extract robust and
diversified features. Tuning whole networks with limited data can compromise the original ability
of pretrained models. What we need to do is to try our best to preserve useful prior knowledge
and let it be used to a suitable extent for our task. Besides, tuning large networks is impractical in
federated learning due to limited resources in reality. Therefore, instead of operating on the whole
model, FedCLIP concentrates on a simple attention-based adapter for the image encoder, AttAI.

Figure 2 gives the framework of FedCLIP while Algorithm 1 gives the detailed steps.

Algorithm 1 FedCLIP
Input: N clients’ datasets {Di}Ni=1, a pretained CLIP model consist of an image encoder, f I , and a
text encoder, fT

Output: An adapter g
1: For client i, computer the corresponding features Ii = f I(Xi), Ti = fT (Yi)
2: For client i, train the local adapter, gi
3: Send the current adapter gi to the server
4: Aggregate adapters’ parameters via Eq. 3 and obtain wg∗

5: Transmit wg∗ to each client
6: Repeat steps 2 ∼ 5 until convergence

In Line 1, directly obtaining generalized and diversified features with fixed CLIP make it possible
to utilize more prior knowledge of pretrained models. In Line 2, with adapters, we can concentrate
on valuable information and eliminate the influence of redundant information in specific tasks. We
introduce an attention-based adapter, g, to locate where we should concentrate on. Particularly, we
utilize one linear layer, Tahn activation function, one linear layer, and Softmax activation function
to construct g. Once we obtain the attention vector att = g(I), we utilize it to update the visual
feature via a dot multiply operation, I∗ = g(I) · I. Then, similar to (Radford et al., 2021), we
normalize I∗ and T to compute the final logits. Rich prior knowledge and targeted attention make the
ultimately extracted features more robust, effective, and adaptable, resulting in our method having
good generalization and personalization capabilities. We only exchange parameters of adapters, wg ,

wg,∗ =

N∑
i=1

ni∑N
j=1 nj

wg
i . (3)
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Since wg contains substantially less amount of trainable parameters than w, FedCLIP saves compu-
tational costs and communication costs. From Line 2 to Line 5, performing computation and trans-
mission merely with adapters can save a lot of resources and ensure the efficiency of our method.

Adapter is a common technique in transfer learning (Hou et al., 2022). In this paper, we mainly
focus on adaptations to image encoders. Actually, we also can add adapters to text encoders. We
can even change the inputs of text encoders to incorporate more semantic information.

3 EXPERIMENTS

We extensively evaluate FedCLIP in three common visual image classification benchmarks,
PACS (Li et al., 2017), VLCS (Fang et al., 2013), and Office-Home (Venkateswara et al., 2017).
We use the CLIP pre-trained model with ViT-B/32 (Dosovitskiy et al., 2021) as the image encoder
and compare our method with FedAVG (McMahan et al., 2017) and FedProx (Li et al., 2020).

3.1 DATASETS

PACS PACS (Li et al., 2017) is a popular object classification benchmark. It is composed of four
sub-datasets, including photo, art-painting, cartoon, and sketch. There exist 9, 991 images in total
and the dataset contains 7 classes, including dog, elephant, giraffe, guitar, horse, house, and person.
Large discrepancies in image styles widely exist among different sub-datasets. In this paper, we
view each sub-dataset as a client. We choose three sub-datasets as participated clients while the rest
served as the target client to evaluate generalization ability. For each participated client, we split the
corresponding sub-dataset into three parts, 60% for training, 20% for validation, and the rest 20%
for testing. Validation parts of data are used for model selection.

Office-Home Office-Home (Venkateswara et al., 2017) is a larger image classification benchmark,
which contains 65 classes. Office-Home comprises four sub-datasets (Art, Clipart, Product, and
Real World) with about 15, 500 images. The feature shifts from Office-Home mainly come from
image styles and viewpoints, but they are much smaller than PACS. We assess methods on Office-
Home in a similar manner to PACS.

3.2 IMPLEMENTATION DETAILS AND COMPARISON METHODS

For these three common image classification benchmarks, For model training, we utilize cross-
entropy loss and Adam optimizer. The learning rate is tuned from 5 × 10−5 to 5 × 10−3. We set
local update epochs as E = 1 where E means the number of training epochs in one round while we
set the total communication round number as R = 200. Since, at each time, we set one sub-dataset
as the target, i.e. upcoming client, there exist four tasks for each benchmark. We run three trials to
record the average results. To better illustrate the function and necessity of using larger pretrained
models, we also utilize a related small architecture, AlexNet (Krizhevsky et al., 2012), to perform
some base federated learning methods.

We compare our method with two methods including a common federated learning method, Fe-
dAVG, and a method designed for non-iid data, FedProx.

1. FedAVG (McMahan et al., 2017). The server aggregates all client models’ parameters.
FedAVG will aggregate networks with several layers for AlexNet while FedAVG will ag-
gregate both image encoders and text encoders for CLIP.

2. FedProx (Li et al., 2020). It adds a proximal term to FedAVG and allows the existence of
slight differences between clients and the server.

3.3 RESULTS

Taking into account the performance of both personalization and generalization, we provide an
overall performance in Table 11. Without a doubt, our method achieves the best overall performance

1For more results, please refer to Sec. A.2
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Table 1: Comprehensive average accuracy. Bold means the best
Datasets PACS Office-Home
Backbone AlexNet CLIP Backbone AlexNet CLIP
Methods FedAVG FedProx FedAVG FedProx Ours Methods FedAVG FedProx FedAVG FedProx Ours

A 60.93 59.89 64.65 77.81 95.04 A 42.18 43.77 71.97 71.97 80.51
C 57.99 58.88 84.50 87.95 95.06 C 35.96 36.60 73.08 73.08 79.46
P 59.68 59.41 87.87 89.42 95.43 P 36.42 34.90 72.26 72.26 80.55
S 56.14 55.89 89.16 90.08 94.99 R 39.73 39.13 72.12 72.12 80.55
AVG 58.69 58.52 81.55 86.32 95.13 AVG 38.57 38.60 72.36 72.36 80.27

with significant improvements (about 9% for PACS and 8% for Office-Home). Compared to methods
based on AlexNet, corresponding methods based on CLIP perform better.
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Figure 3: Analysis on PACS.

3.4 ANALYSIS

Can more adapters bring better performance? In our method, we only add one adapter to the
image encoder. We can add another adapter to the text encoder. As shown in Figure 3(a), adding
more adapters brings slight improvements. However, the improvements are so small that we need to
assess whether it is necessary to do so since more adapters regularly mean more computational costs
and more communication costs. Can more trainable parameters bring better performance? If
we train both adapters and the backbones, the results could be worse. Since CLIP models have a
wealth of good information, it is not suitable to change parameters with only a few data for a specific
task. Changes in CLIP with few data can destroy the feature extraction capabilities. As shown in
Figure 3(b), we train more parameters but achieve worse performance. Will finetuning bring better
personalization? According to (Yu et al., 2020), finetuning can be a useful technique for better
personalization. We also add experiments with finetune. As shown in Figure 3(c), finetune has no
advance in personalization, which demonstrates that our method can be remarkable and robust when
meeting non-iid. Resource Cost Comparison The number of trainable parameters represents how
many resources we need to cost in federated learning. As shown in Figure 3(d), our method merely
has 5.3E5 parameters while FedAVG with CLIP requires 1.5E8 trainable parameters. Common
methods via training whole networks have 283 times as many parameters as ours, which illustrates
that our method is fast and resource-efficient.

4 CONCLUSION AND FUTURE WORK

In this article, we propose FedCLIP, a fast generalization and personalization learning method for
CLIP in federated learning. FedCLIP designs an attention based adapter to replace updating the
whole model. Therefore, FedCLIP makes the most use of prior knowledge and saves computational
costs and communication costs. Comprehensive experiments have demonstrated the superiority of
FedCLIP. In the future, we plan to embed FedCLIP into more architectures and design more flexible
adapters for different tasks. We also plan to apply FedCLIP for heterogeneous architectures and
more realistic applications.
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Table 2: Generalization accuracy. Bold means the best.
Dataset PACS Office-Home
Backbone Method A C P S AVG Backbone Method A C P R AVG

AlexNet FedAVG 31.54 43.69 44.55 36.29 39.02 AlexNet FedAVG 15.70 17.00 31.56 28.99 23.31
FedProx 29.79 46.80 44.67 35.12 39.09 FedProx 16.48 17.66 29.83 27.98 22.99

CLIP
FedAVG 53.08 80.08 90.00 76.99 75.04

CLIP
FedAVG 65.60 57.64 71.64 75.42 67.57

FedProx 66.06 87.33 91.68 78.42 80.87 FedProx 65.60 57.64 71.64 75.42 67.57
Ours 96.34 97.91 99.76 85.59 94.90 Ours 78.00 63.69 87.52 87.79 79.25

Table 3: Personalization accuracy. Bold means the best.
Dataset PACS Office-Home

Target BackBone Method C P S AVG Target BackBone Method C P R AVG

A

AlexNet FedAVG 72.86 61.08 78.22 70.72

A

AlexNet FedAVG 50.74 63.47 38.81 51.01
FedProx 71.37 56.89 81.53 69.93 FedProx 51.78 66.74 40.07 52.86

CLIP
FedAVG 76.28 86.83 42.42 68.51

CLIP
FedAVG 64.38 79.14 78.76 74.09

FedProx 90.81 90.42 63.95 81.73 FedProx 64.38 79.14 78.76 74.09
Ours 97.65 99.40 86.75 94.60 Ours 68.61 87.37 88.06 81.35

C

A P S AVG

C

A P R AVG

AlexNet FedAVG 46.45 66.17 75.67 62.76 AlexNet FedAVG 23.51 61.78 41.56 42.28
FedProx 47.19 64.07 77.45 62.90 FedProx 24.54 64.04 40.18 42.92

CLIP
FedAVG 84.11 92.81 81.02 85.98

CLIP
FedAVG 73.81 80.38 80.48 78.23

FedProx 86.06 92.81 85.61 88.16 FedProx 73.81 80.38 80.48 78.23
Ours 96.33 99.10 86.88 94.10 Ours 78.97 87.60 87.60 84.72

P

A C S AVG

R

A C R AVG

AlexNet FedAVG 37.65 75.00 81.53 64.73 AlexNet FedAVG 23.30 49.94 40.87 38.04
FedProx 35.45 73.93 83.57 64.32 FedProx 21.03 48.91 39.84 36.59

CLIP
FedAVG 83.13 93.38 84.97 87.16

CLIP
FedAVG 70.93 68.73 77.73 72.46

FedProx 83.86 93.59 88.54 88.66 FedProx 70.93 68.73 77.73 72.46
Ours 97.56 97.65 86.75 93.99 Ours 78.35 68.38 87.94 78.23

S

A C P AVG

P

A C P AVG

AlexNet FedAVG 53.30 68.80 66.17 62.76 AlexNet FedAVG 22.27 49.14 58.51 43.31
FedProx 52.32 69.66 66.47 62.82 FedProx 20.21 50.06 58.29 42.85

CLIP
FedAVG 90.71 94.02 94.91 93.21

CLIP
FedAVG 69.07 66.21 77.79 71.02

FedProx 91.44 94.66 95.81 93.97 FedProx 69.07 66.21 77.79 71.02
Ours 97.31 97.65 99.40 98.12 Ours 78.56 68.50 87.37 78.14

A APPENDIX

A.1 DATASETS

VLCS VLCS (Fang et al., 2013) is another widely accepted public image classification bench-
mark. It also consists of four sub-datasets (VOC2007, LabelMe, Caltech10, and SUN09). It con-
tains 10, 729 instances with 5 classes. Feature shifts exist generally among different sub-datasets.
Similar to PACS, four sub-datasets correspond to four clients. Three sub-datasets play the roles of
participants while the rest one act as an upcoming client.

A.2 RESULTS

Generalization Ability We first evaluate the generalization ability of each method via accuracy
on clients that do not participate in training. Table 2 shows the generalization results for each task
on PACS and Office-Home. We have the following observations from these results. 1) Our method
achieves the best generalization ability on average with remarkable improvements (about 14% for
PACS and about 12% for Office-Home). Moreover, our method achieves the best generalization abil-
ity in each task, which demonstrates the excellent generalization ability of our method. 2) Compared
to methods with AlexNet as the backbone, methods with CLIP as the backbone can obtain better per-
formance. It demonstrates that large well-trained models can be able to bring better generalization.
3) Compared to methods with CLIP as the backbone, our method has a further improvement, which
demonstrates that our method leverages prior knowledge better.

Personalization Ability Then, we evaluate the personalization ability of each method via the ac-
curacy on test data of each participating client. Table 3 shows the personalization results for each
task on PACS and Office-Home. We also have some insightful observations. 1)Although all clients
share the same adapter in our method, our method still achieves the best average accuracy. More-
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Table 4: Comprehensive average accuracy on VLCS. Bold means the best
Backbone AlexNet CLIP
Methods FedAVG FedProx FedAVG FedProx Ours

C 62.13 61.37 72.48 68.57 83.68
L 63.01 63.77 75.04 76.50 82.62
S 63.15 63.59 68.13 75.50 82.82
V 62.32 62.04 69.55 70.09 83.30
AVG 62.65 62.69 71.30 72.67 83.11

over, FedCLIP almost achieves the best performance on each client for every task. 2) Compared to
methods with AlexNet, corresponding methods with CLIP perform better overall. For CLIP-based
methods, results are quite sensitive to hyperparameters, e.g. learning rate. And FedAVG has disap-
pointing results on some specific clients. 3) Our method has the most use of prior knowledge since
it achieves the stablest results.

More results on VLCS We also report comprehensive ability on VLCS. As shown in Table 4, our
method still achieves the best performance with improvements of over 10%. Moreover, our method
achieves the best in each task. The results prove the superiority of our method again.
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