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Abstract
Bayesian optimization (BO) with preference-
based feedback has recently garnered significant
attention due to its emerging applications. We
refer to this problem as Bayesian Optimization
from Human Feedback (BOHF), which differs
from conventional BO by learning the best actions
from a reduced feedback model, where only the
preference between two actions is revealed to the
learner at each time step. The objective is to iden-
tify the best action using a limited number of pref-
erence queries, typically obtained through costly
human feedback. Existing work, which adopts
the Bradley-Terry-Luce (BTL) feedback model,
provides regret bounds for the performance of
several algorithms. In this work, within the same
framework we develop tighter performance guar-
antees. Specifically, we derive regret bounds of
Õ(
√

Γ(T )T ), where Γ(T ) represents the maxi-
mum information gain—a kernel-specific com-
plexity term—and T is the number of queries.
Our results significantly improve upon existing
bounds. Notably, for common kernels, we show
that the order-optimal sample complexities of
conventional BO—achieved with richer feedback
models—are recovered. In other words, the same
number of preferential samples as scalar-valued
samples is sufficient to find a nearly optimal solu-
tion.

1. Introduction
Optimizing a black-box function using only preference-
based feedback between pairs of candidate solutions has
recently emerged as an interesting problem. This approach
finds application, for instance, in prompt optimization (Lin
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et al., 2024), which aims to efficiently identify the best
prompt for black-box Large Language Models (LLMs),
thereby significantly enhancing their performance (Chen
et al., 2024; Lin et al., 2024; 2023). Obtaining a numeric
score to evaluate each prompt’s performance is often un-
realistic, but human users are generally much more reli-
able at providing preference feedback between pairs of
prompts (Lin et al., 2024). Since human feedback is costly,
it becomes essential to develop efficient methods that can se-
quentially select favorable pairs of actions while minimizing
the number of feedback instances required.

The theoretical framework for learning from preference-
based feedback (see, e.g., Pásztor et al., 2024; Xu et al.,
2024) can be modeled as Bayesian Optimization from Hu-
man Feedback (BOHF). Similarly to conventional BO (Fra-
zier, 2018; Shahriari et al., 2015; Srinivas et al., 2010),
the learner leverages previously collected samples through
kernel-based regression to learn an unknown black-box func-
tion. However, unlike conventional BO methods that rely
on direct evaluations of the target function, this approach
collects pairwise comparisons instead of direct evaluation
feedback, adding further complexities to the problem.

In the BOHF framework, at each time step t = 1, 2, · · · , T ,
the learner selects a pair of actions (xt, x

′
t) and receives

binary feedback yt ∈ {0, 1} representing the preference
between the two actions. This binary feedback is mod-
eled as a Bernoulli random variable, where the parameter
is determined by applying a link function (here, sigmoid)
to the difference in the unobserved utilities corresponding
to each action, quantifying the preference between them.
Performance is measured in terms of regret, defined as the
cumulative loss in the selected pairs of actions compared
to the optimal action (details are provided in Section 2).
Kernel-based models employed within the BOHF frame-
work allow for powerful and versatile modeling of prefer-
ences among actions, leveraging structures, and handling
continuous domains or very large action spaces.

Existing work establishes a regret bound of
Õ
(
Γ(T )κ2

√
T
)

for the BOHF problem (Pásztor

et al., 2024), where we use the O and the Õ notations
to hide constants and logarithmic terms respectively, for
simplicity of presentation. In this expression, κ is the
maximum of the derivative of the inverse link function (see
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Equation (2)) and Γ(T ) is the maximum information gain,
a kernel-specific and algorithm-independent complexity
term (see Equation (13)).

It is insightful to compare the existing BOHF regret bound
with the order-optimal regret bounds of Õ

(√
Γ(T )T

)
in

conventional BO. In comparison, an additional κ2 factor
arises due to the feedback model. While this constant is
independent of T , it can be very large. There is also an
extra

√
Γ(T ) factor, which introduces potential challenges.

To better understand this, let us take a closer look at Γ(T ).
For smooth kernels with exponentially decaying eigenval-
ues, such as the Squared Exponential (SE) kernel, Γ(T )
is polylogarithmic in T . However, for more general ker-
nels of both practical and theoretical interest, such as the
Matérn family (Borovitskiy et al., 2020) and Neural Tangent
(NT) kernels (Arora et al., 2019), Γ(T ) grows polynomially
with T , possibly faster than

√
T , making the regret bounds

vacuous (linear in T ).

Our contribution is that we establish regret bounds of
Õ
(√

Γ(T )T
)

for the BOHF problem (Theorem 4.1),

achieving a
√
Γ(T ) improvement and eliminating the depen-

dency on κ, resolving both issues and matching the regret
bounds of conventional BO. From our regret bounds, we
derive the sample complexities—the number of preference
query samples required to identify near-optimal actions.
Our sample complexities match the lower bounds obtained
in Scarlett et al. (2017) for conventional BO, which benefits
from a richer feedback model with a different noise distri-
bution. We will provide a technical discussion on this in
Section 4.

In summary, we establish the intriguing result that the
number of preferential feedback samples required to iden-
tify near-optimal actions is of the same order as the num-
ber of scalar-valued feedback samples. This is in sharp
contrast and a significant improvement over the existing
work (Pásztor et al., 2024; Xu et al., 2024).

To obtain the improved regret bounds, we propose an algo-
rithm referred to as Multi-Round Learning from Preference-
based Feedback (MR-LPF). The proposed algorithm pro-
ceeds in rounds. In each round, pairs of actions are sequen-
tially selected based on the highest uncertainty in their pref-
erence. This method effectively reduces uncertainties about
the preferences between actions by the end of each round.
The uncertainties are represented by kernel-based standard
deviations. At the end of each round, the kernel-based con-
fidence intervals are used to eliminate actions unlikely to
be the best. Our multi-round structure is inspired by the
BPE algorithm of Li & Scarlett (2022), though the details
and analysis differ significantly due to the preference-based
feedback model. Details are provided in Section 3. We show
that this structure allows for a more efficient use of kernel-

based confidence intervals, contributing to improvements in
both Γ(T ) and κ.

We present experimental results on the performance of MR-
LPF on synthetic functions that closely align with the ana-
lytical assumptions, as well as on a dataset of Yelp reviews,
demonstrating the utility of the proposed algorithm in real-
world applications (Section 5).

1.1. Related Work

Two works closely related to ours are Pásztor et al. (2024)
and Xu et al. (2024), which consider the exact same BOHF
framework. The work by Pásztor et al. (2024) proposed
the MaxMinLCB algorithm, which takes a game-theoretic
approach to selecting the pair of actions (xt, x

′
t) at each

time step t. Specifically, xt and x′
t are selected according

to a game, with the objective function defined as a lower
confidence bound (LCB) on the probability of favoring xt

over x′
t. Hence, the name: xt is chosen to Maximize and x′

t

to Minimize the LCB (see, Pásztor et al., 2024, Algorithm 1).
Their regret bound scales as Õ

(
Γ(T )κ2

√
T
)

, which may
be vacuous for some commonly used kernels and scales
with κ2, which can be a large constant.

Another closely related work is Xu et al. (2024), which
develops Principled Optimistic Preferential Bayesian Opti-
mization (POP-BO), an algorithm based on the optimism
principle. Specifically, at each time step t, x′

t is set to xt−1,
one of the actions from the previous time step, and xt is set
to the maximizer of an upper confidence bound on the pref-
erence between the two actions (see, Xu et al., 2024, Algo-
rithm 1). They establish a regret bound of Õ

(
(Γ(T )T )3/4

)
,

which is larger than the one in Pásztor et al. (2024) by a
factor of (T/Γ(T ))1/4 and similarly may be vacuous for
many cases of interest.1 Their definition of regret is based
directly on the utility function and slightly differs from ours.
However, it remains equivalent to our regret definition up to
a constant factor, as discussed in Pásztor et al. (2024).

Table 1. Comparison of regret bounds in BOHF.

(Pásztor et al., 2024) (Xu et al., 2024) This work
Õ

(
Γ(T )κ2

√
T
)

Õ
(
(Γ(T )T )3/4

)
Õ

(√
Γ(T )T

)

Some other preferential BO methods mainly propose heuris-
tics without formal theoretical guarantees on regret or con-
vergence proofs (González et al., 2017; Mikkola et al., 2020;
Takeno et al., 2023).

1Xu et al. (2024) does not explicitly report the scaling of the
regret bound with κ.
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1.1.1. CONVENTIONAL BO

Classical BO algorithms include strategies based on the
upper confidence bound (UCB), Thompson sampling
(TS) (Thompson, 1933), expected improvement (EI) (Jones
et al., 1998), and probability of improvement (PI) (Brochu
et al., 2010). A line of research has established regret bounds
for BO algorithms, including the Õ(Γ(T )

√
T ) bounds

for GP-UCB (Srinivas et al., 2010) and GP-TS (Chowd-
hury & Gopalan, 2017). Several works have achieved
tighter Õ(

√
Γ(T )T ) bounds, including Sup variations of

UCB (Valko et al., 2013), the domain-shrinking algorithm
GP-ThreDS (Salgia et al., 2021), and Batch Pure Explo-
ration (BPE) (Li & Scarlett, 2022). The latter also features
a multi-round structure and has inspired our MR-LPF algo-
rithm. However, there are differences in the inference pro-
cedure and analysis, due to the use of a reduced preference-
based feedback model, which introduces additional com-
plexities in both algorithm design and theoretical analysis.

1.1.2. DUELING BANDITS

The BOHF framework can be viewed as an extension of
bandits with preference-based feedback, also known as duel-
ing bandits (Yue & Joachims, 2009; Yue et al., 2012), where
the goal is to identify the best action from a set of actions
using only pairwise comparisons. For a comprehensive sur-
vey on dueling bandits, see Bengs et al. (2021). Dueling
bandit problems focus on multi-armed settings and learning
the pairwise preference matrix by applying noisy sorting
or tournament algorithms (Ailon et al., 2014; Zoghi et al.,
2014; Falahatgar et al., 2017; Zoghi et al., 2015). These
approaches are typically limited to scenarios where the num-
ber of arms is small, and their regret can become unbounded
as the number of arms approaches infinity. The simplest
structured variation is the linear contextual dueling ban-
dit, studied in Dudı́k et al. (2015); Saha & Krishnamurthy
(2022); Das et al. (2024); Li et al. (2024); Bengs et al. (2022),
which allows for a large number of actions but under the
limiting assumption of linear structure. Several works have
extended the dueling bandit problem to kernel-based set-
tings, which differ from our BOHF framework. For instance,
Xu et al. (2020a); Mehta et al. (2023a;b) consider the Borda
score, representing the probability that a selected action is
preferred over a uniformly sampled action from the domain.
They make strong assumptions about the Borda function,
which effectively reduces the problem to conventional BO.
In contrast, our analytical requirements are significantly dif-
ferent from these approaches. A recent extension (Verma
et al., 2025) considers neural dueling bandits with a wide
neural network for preference prediction. Their approach
differs in both modeling and action selection, with regret
bounds depending on the model’s effective dimension and
the curvature parameter κ.

1.1.3. REINFORCEMENT LEARNING FROM HUMAN
FEEDBACK (RLHF)

Another related line of work is RLHF (Griffith et al., 2013;
Novoseller et al., 2020; Xu et al., 2020b; Wu & Sun, 2024;
Saha et al., 2023; Chen et al., 2022), which has gained
popularity due to its success in fine-tuning LLMs (Ouyang
et al., 2022). In this context, preference-based feedback is
provided for Markov decision process trajectories or policies
rather than pairs of actions. However, these results are
primarily limited to tabular (finite state-action) or linear
settings and are not directly related to our kernel-based
setting.

2. Preliminaries and Problem Formulation
In this section, we provide details of the BOHF framework.
We also outline the methods used to predict preference func-
tions and estimate uncertainty, which form the foundation
of our algorithm’s design and analysis.

2.1. BOHF Framework

At each step t = 1, 2, · · · , T , the agent selects a pair of
actions xt and x′

t, from the set X , which can either be a
continuous space or a (possibly very large) discrete set. We
consider the following feedback model: Let yt ∈ {0, 1} be a
binary random variable indicating the preference between xt

and x′
t, defined as yt = 1{xt ≻ x′

t}. The notation xt ≻ x′
t

denotes that action xt is preferred over action x′
t and 1 is

the indicator function. Specifically, following the existing
work, for each pair (x, x′) ∈ X × X , the random variable
y = 1 {x ≻ x′} is modelled as a Bernoulli random vari-
able satisfying P(y = 1|x, x′) = µ (f(x)− f(x′)). Here,
µ : R → [0, 1] is a known monotonically increasing link
function satisfying µ(0) = 1

2 that is assumed to be the sig-
moid function µ(·) = (1 + e−·)−1, and f : X → R is an
unknown latent utility function that quantifies the value of
each action. This preference feedback model is referred to
as the Bradeley-Terry-Luce (BTL) model (Bradley & Terry,
1952) and is widely utilized in bandit and RL problems with
preference feedback (Pásztor et al., 2024; Xu et al., 2024;
Zhan et al., 2024; Wu & Sun, 2024).

We note that when f(x) > f(x′), we have P(x ≻ x′) =
P(y = 1|x, x′) = µ (f(x)− f(x′)) > 1

2 , and vice versa.
We also emphasize that this feedback model is weaker than
the standard BO where the per-step utility signal (the quan-
titative value of f ) is revealed, typically as a scalar value.

The goal is to sequentially select favorable action pairs over
a horizon of T steps, and converge to the globally preferred
action x⋆, defined as x⋆ = argmaxx∈X f(x). A common
objective adopted in the literature is to design an algorithm
with sublinear cumulative regret over the horizon T , defined
as the sum of the average sub-optimality gap between the
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selected pair and the globally optimal action:

R(T ) =

T∑
t=1

P(x⋆ ≻ xt) + P(x⋆ ≻ x′
t)− 1

2
. (1)

It can be shown that the value of regret above is equiv-
alent to a variation of regret defined on the utility func-
tion:

∑T
t=1 (f(x

⋆)− (f(xt) + f(x′
t)) /2)—used in Xu

et al. (2024)—up to constants that depend on the link func-
tion (Saha, 2021).

The notion of regret accounts for the entire sequence of
query points throughout steps t = 1, 2, . . . , T . Alternatively,
one may be interested solely in the final performance. In this
case, the algorithm outputs x̂T at the end of T samples, and
the performance is measured in terms of P(x⋆ ≻ x̂T )− 1

2 .
We refer to the number of samples T required to ensure
P(x⋆ ≻ x̂T )− 1

2 ≤ ϵ, for some 0 < ϵ < 1/2, as the sample
complexity and also remark on the sample complexity of
different algorithms.

An important quantity that appears in the analysis is

κ = sup
x,x′∈X

1

µ̇ (f(x)− f(x′))
, (2)

where µ̇ denotes the derivative of the link function µ and κ
captures its curvature. The dependence on κ has been exten-
sively studied in linear logistic bandits, with recent works
successfully removing the regret dependency on κ (Faury
et al., 2020). To emphasize the significance of this quantity,
consider the case where f is bounded within the interval
[−5, 5]. In this scenario, κ can become extremely large
(> 22028). When the algorithm selects an action pair (x, x′)
that are nearly equally favorable, f(x)− f(x′) will be close
to 0, in which case the inverse derivative of the sigmoid
function is almost a constant 4. However, when one action
is clearly preferred over the other, |f(x)− f(x′)| becomes
large, making the inverse derivative of the sigmoid function
very large. Therefore, a crucial aspect of algorithm design
is to remove the dependency on κ defined in (2) by ensuring
that the algorithm gradually queries only closely preferred
actions.

2.2. Preliminaries and Assumptions

Similar to Pásztor et al. (2024); Xu et al. (2024), we assume
that the utility function f belongs to a known Reproduc-
ing Kernel Hilbert Space (RKHS). This is a very general
assumption, considering that the RKHS of common ker-
nels can approximate almost all continuous functions on the
compact subsets of Rd (Srinivas et al., 2010) . Consider
a positive definite kernel k : X × X → R. Let Hk be
the RKHS induced by k, where Hk contains a family of
functions defined on X . Let ⟨·, ·⟩Hk

: Hk ×Hk → R and
∥ · ∥Hk

: Hk → R denote the inner product and the norm

ofHk, respectively. The reproducing property implies that
for all f ∈ Hk, and x ∈ X , ⟨f, k(·, x)⟩Hk

= f(x). Mercer
theorem implies, under certain mild conditions, k can be
represented using an infinite dimensional feature map:

k(x, x′) =

∞∑
m=1

γmφm(x)φm(x′), (3)

where γm > 0, and
√
γmφm ∈ Hk form an orthonor-

mal basis of Hk. In particular, any f ∈ Hk can be
represented using this basis and weights wm ∈ R as
f =

∑∞
m=1 wm

√
γmφm, where ∥f∥2Hk

=
∑∞

m=1 w
2
m. A

formal statement and the details are provided in Appendix A.
We refer to γm and φm as (Mercer) eigenvalues and eigen-
features of k, respectively.

Let us use the notation z = (x, x′) and h(z) = f(x)−f(x′),
for (x, x′) ∈ X × X . As shown in Pásztor et al. (2024), we
can define a dueling kernel

k(z1, z2) = k(x1, x2)+k(x′
1, x

′
2)−k(x1, x

′
2)−k(x′

1, x2),
(4)

where, we have: ∥f∥Hk
= ∥h∥Hk

(Pásztor et al., 2024,
Proposition 4).

Below is a formal statement of our assumptions on f .

Assumption 2.1. We assume that the utility function is
in the RKHS of a known kernel k satisfying ∥f∥Hk

≤ B
for some constant B > 0. Without loss of generality, we
assume that the kernel function is normalized k(., .) ≤ 1
everywhere in the domain.

2.3. Preference Function Prediction and Uncertainty
Estimation

The preference-based feedback model in BOHF is weaker
than the standard BO, where quantitative observations of
utility are available at each step. Before discussing the case
with preference feedback, we briefly review kernel ridge
regression in the standard BO setting.

Hypothetically, assume a dataset {(xi, oi)}ti=1 of observa-
tions of f is available, where oi = f(xi) + εi, with obser-
vation noise εi. Kernel ridge regression would provide a
powerful predictor and uncertainty estimate of f , as follows:

f̂t(x) = k⊤t (x)(Kt + λI)−1ot

σ̂2
t (x) = k(x, x)− k⊤t (x)(Kt + λI)−1kt(x), (5)

where kt(x) = [k(x, xi)]
t
i=1 represents the pairwise kernel

values between the prediction point x and the observation
points, Kt = [k(xi, xj)]

t
i,j=1 is the kernel (or covariance)

matrix, λ > 0 is a free parameter, and ot = [oi]
t
i=1 is

the vector of observation values. The prediction function f̂t
here is the solution to the following regularized least squares
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error optimization (see, e.g., Schölkopf et al., 2001):

f̂t = argmin
g∈Hk

t∑
i=1

(g(zi)− oi)
2 +

λ

2
∥g∥2Hk

, (6)

where λ is the same parameter as in (5). Confidence inter-
vals of the form |f(z)− f̂t(z)| ≤ β̂(δ)σ̂t(z), where β̂(δ) is
a confidence interval width multiplier for a 1− δ confidence
level, have been shown in several works (Abbasi-Yadkori,
2013; Chowdhury & Gopalan, 2017; Vakili et al., 2021a;
Whitehouse et al., 2024) under various assumptions, and
serve as key building blocks in the analysis and algorithm
design of standard BO.

In the absence of straightforward observations ot and
with preference-based feedback, a closed-form prediction
is no longer available. Intuitively, this case resembles
a classification-like problem with binary outputs, where
we can employ a logistic negative log-likelihood loss.
Specifically, for a history of preference feedback Ht =
(x1, x

′
1, y1), . . . , (xt, x

′
t, yt) in the BOHF framework, we

define the following loss:

Lk(h,Ht) =

t∑
i=1

−yi logµ(h(xi, x
′
i))

− (1− yi) log(1− µ(h(xi, x
′
i)) +

λ

2
||h||2Hk

A prediction ht of the preference function h (difference in
the utilities) can be obtained as:

ht = arg min
h∈Hk

Lk(h,Ht), (7)

which represents the minimizer of the regularized negative
log-likelihood loss.

To solve this minimization problem, we apply the Represen-
ter Theorem, similar to Pásztor et al. (2024), which provides
a parametric representation of ht:

ht(·) =
t∑

i=1

θik (·, (xi, x
′
i)) , (8)

in terms of θt = [θ1, θ2, · · · , θt]⊤ ∈ Rt. With a slight
abuse of notation, replacing h with θ in Lk, the regularized
negative log-likelihood loss can then be rewritten in terms
of the parameter vector θ as follows:

Lk(θ,Ht) =

t∑
i=1

−yi logµ(θ⊤kt(xi, x
′
i))

− (1− yi) log(1− µ(θ⊤kt(xi, x
′
i)) +

λ

2
||θ||22,

(9)

where kt(z) = [k(z, (xj , x
′
j))]

t
j=1 is the kernel values be-

tween the pair z and observation pairs.

Similar to (5), we have an uncertainty estimation for each
z ∈ X × X as follows

σ2
t (z) = k(z, z)− k⊤

t (z)(Kt + λκI)−1kt(z), (10)

where the notation Kt = [k
(
(xi, x

′
i), (xj , x

′
j)
)
]ti,j=1 repre-

sents the (dueling) kernel matrix on the space of pair obser-
vationsX×X . Note the subtle difference in the definition of
σ2
t above for the preference-based feedback case compared

to the conventional kernel-based regression case, where the
free parameter λ is multiplied by κ, reflecting the effect of
the sigmoid nonlinearity on the quality of prediction.

Centered around the prediction µ(ht(·)) and incorporating
the uncertainty estimate from kernel ridge regression, as
defined in Equation (10), we can construct 1− δ confidence
intervals of the form:

|µ(ht(z))− µ(h(z))| ≤ βt(δ)σt(z),

for a pair of interest z = (x, x′). In Theorem 4.7, we prove
a novel confidence interval of this form applicable to the
analysis of our algorithm.

3. Algorithm Description
In this section, we present the Multi-Round Learning from
Preference-based Feedback (MR-LPF) algorithm, inspired
by Li & Scarlett (2022), designed to achieve low regret
within the BOHF framework described in Section 2.1.

The algorithm partitions the time horizon T into R rounds,
indexed by r = 1, 2, . . . , R. During each round r, a to-
tal of Nr samples are collected, ensuring that the cumu-
lative number of samples across all rounds equals T , i.e.,∑R

r=1 Nr = T . We define tr =
∑r

j=1 Nj as the time
step at the end of round r. The size of each round is de-
termined as follows: N1 = ⌈

√
T ⌉, Nr = ⌈

√
Nr−1T ⌉ for

1 < r < R, and NR = min{⌈
√
NR−1T ⌉, T − tR−1}.

We introduce the notations σ(n,r)(x, x
′) and h(n,r)(x, x

′)
to represent the kernel-based uncertainty estimate and pre-
diction, respectively, from the first n samples in round r
according to Section 2.3.

MR-LPF maintains a setMr of actions in each round that
are likely to be the most preferable. Initially,M1 is set to
X and is updated at the end of each round while satisfying a
nested structure,Mr ⊆Mr−1, as subsequently described.

Within each round r, the n-th sample is chosen as the pair
of actions withinMr that maximizes uncertainty :

(x(n,r), x
′
(n,r)) = arg max

x,x′∈Mr

σ(n−1,r)(x, x
′). (11)

The preference feedback for this pair y(n,r) = 1{x(n,r) ≻
x′
(n,r)} is then revealed to the algorithm. The tuple

(x(n,r), x
′
(n,r), y(n,r)) is added to the observations specific

5



Bayesian Optimization from Human Feedback

to round r: Hn,r = Hn−1,r ∪ {(x(n,r), x
′
(n,r), y(n,r))},

which is initialized as an empty set at the beginning of
the round: H0,r = ∅.

At the end of round r, we compute the prediction function
h(Nr,r) based on observations HNr,r, following the method
of minimizing the regularized negative log-likelihood loss
described in Section 2.3. Subsequently, we update Mr

according to the following rule:

Mr+1 = {x ∈Mr|∀x′ ∈Mr :

µ(h(Nr,r)(x, x
′)) + β(r)σ(Nr,r)(x, x

′) ≥ 0.5}.
(12)

The round specific parameters β(r) are designed in a way
that the left hand side of the inequality is an upper confi-
dence bound on the probability of favoring x over x′ (the
values are given in Theorem 4.1). The rationale here is
that when an upper confidence bound on the probability of
preferring x to any x′ is greater than 0.5, x is plausible to
be the most preferred action. Therefore, we keep it in the
update ofMr+1. All other actions are removed as they are
unlikely to be the most preferred. More precisely, as we
will show in the analysis, with high probability, the removed
actions are not the most preferred, while the most preferred
actions remain within the setsMr and are not removed. A
pseudocode is provided in Algorithm 1.

When the confidence intervals shrink at a sufficiently fast
rate, only near-optimal actions remain inMr as the rounds
progress. This is a key aspect of our algorithm’s design,
which eliminates the dependency of regret scaling on κ by
ensuring that the algorithm gradually queries only closely
preferred actions. Recall the discussion following Equa-
tion (2). In the next section, we provide an analysis of the
performance guarantees of the algorithm.

4. Analysis of MR-LPF
In this section, we present our main results on the perfor-
mance of MR-LPF (Algorithm 1). The performance is given
in terms of the maximum information gain defined as

Γλ(T ) = max
(x1,x′

1),...(xT ,x′
T )

1

2
log det

(
I + λ−1KT

)
, (13)

whereKT is the kernel matrix of T observations.2

Theorem 4.1 (Regret bound for MR-LPF). Consider the
BOHF framework described in Section 2.1 and the MR-LPF
algorithm presented in Algorithm 1. For δ ∈ (0, 1), in
MR-LPF, let

β(r)(δ) = L

(
B +

√
κr

λ
log(

2R|X |
δ

)

)
, (14)

2Unlike in Section 1, where λ was omitted from the expression
of Γ, we include it here for clarity.

Algorithm 1 MR-LPF

Require: ∀r, β(r); time horizon T
M1 ← X , t← 1
for r = 1, 2, · · · , R do

Initialize H0,r = {}
for n = 1, 2, · · · , Nr do

Select the pair of actions (x(n,r), x
′
(n,r)) that maxi-

mizes the variance, with ties broken arbitrarily:
(x(n,r), x

′
(n,r)) = argmaxx,x′∈Mr

σ(n−1,r)(x, x
′)

t← t+ 1
if t ≥ T then

Terminate
end if
Observe y(n,r) = 1{x(n,r) ≻ x′

(n,r)}
Hn,r = Hn−1,r ∪ {(x(n,r), x

′
(n,r), y(n,r))}

end for
Update h(Nr,r) based on observations in HNr,r

Update the set of maximizersMr+1 by removing ac-
tions unlikely to be optimal:
Mr+1 = {x ∈ Mr|∀x′ ∈ Mr : µ(h(Nr,r)(x, x

′)) +
β(r)σ(Nr,r)(x, x

′) ≥ 0.5}
end for

where, B is the upper bound on the RKHS norm of f given
in Assumption 2.1, L = maxx,x′∈X µ̇(h(x, x′)), κ1 = κ
defined in Equation (2), ∀r > 1, κr = 6, λ is the regu-
larization parameter of the kernel-based regression. Then,
for some constant T0 > 0, independent of T (specified in
Appendix B), and for all T ≥ T0, with probability at least
1− δ:

R(T ) ≤ 2CRβ(R)(δ)
√

Γ(4λ)(T )
(
T 1/2 + 1

)
,

where R ≤ ⌈log2 log2(T )⌉+ 1 is the maximum number of

rounds and C = 2
√

2
log(1+4(6λ)−1) is a constant.

Remark 4.2. The value of Γλ(T ) is kernel-specific and
algorithm-independent. This term is a common complexity
measure that appears in the analysis of both BO and BOHF
in the existing literature (e.g., see Srinivas et al., 2010;
Pásztor et al., 2024; Xu et al., 2024). Bounds on Γλ(T ) have
been established for various kernels. In particular, for linear
kernels, Γλ(T ) = O(d log(T )). For kernels with exponen-
tially decaying Mercer eigenvalues, such as the Squared
Exponential (SE) kernel, Γλ(T ) = O(poly log(T )). For
kernels with polynomially decaying eigenvalues, Γλ(T )
grows polynomially (though sublinearly) with T . For exam-
ple, in the case of the Matérn family of kernels, Γλ(T ) =

Õ(T
d

2ν+d ), where d is the input dimension and ν > 0.5 is
the smoothness parameter (see, e.g., Vakili et al., 2021b). In
Proposition 4 of Pásztor et al. (2024), it is shown that the
eigenvalues of the dueling kernel k are exactly twice those
of the original kernel k (see their Appendix C.1). Since the
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maximum information gain Γλ(T ) scales with the decay
rate of the kernel eigenvalues (Vakili et al., 2021b), both
kernels exhibit the same scaling of the information gain
with T .
Remark 4.3. By substituting the value of β(R)(δ), the ex-
pression of the regret bound can be simplified to

R(T ) = Õ

(√
Γλ(T )T log(

|X |
δ

)

)
, (15)

as T becomes large. This represents a sublinear regret
growth rate for a broad class of commonly used kernels
where Γλ(T ) grows sublinearly with T .

Our regret bounds eliminate the dependency on κ. MR-LPF
gradually queries only closely preferred actions, reducing
the effective impact of the curvature of the link function.
Our regret bounds also show an O

(√
Γ(T )

)
improvement

compared to Pásztor et al. (2024) and an O
(
(Γ(T )T )1/4

)
improvement over Xu et al. (2024). This becomes particu-
larly crucial for kernels with polynomially decaying eigen-
values, where existing results may become vacuous, failing
to guarantee sublinear regret in T .

4.1. Sample Complexity and Simple Regret

In certain applications, the learner may be primarily con-
cerned with eventual performance, specifically the simple
regret after T observations. Accordingly, we can pose the
dual question: How many samples are required to achieve ϵ
simple regret? This aspect of our algorithm’s performance
is formalized in the following corollary.

Corollary 4.4. Under the setting of Theorem 4.1, assume
T = tR, the time step at the end of round R. For any action
x̂T ∈MR+1, we have, with probability at least 1− δ,

P(x⋆ ≻ x̂T )−
1

2
≤ 2β(R)(δ)C

√
RΓ(4λ)(T )

T
. (16)

The proof is given in Appendix B, that follows from Theo-
rem 4.1.

Corollary 4.5. As a consequence of Corollary 4.4, assume
we run MR-LPF for T = tR rounds and select x̂T ∈MR+1

arbitrarily. In the case of a linear kernel with some T =

Õ
(

d log( 1
δ )

ϵ2

)
, an SE kernel with some T = Õ

(
log( 1

δ )

ϵ2

)
,

and a Matérn kernel with some T = Õ
(

log( 1
δ )

ϵ2+
d
ν

)
, with

probability at least 1 − δ, at most ϵ error is guaranteed:
P (x⋆ ≻ x̂T )− 1

2 ≤ ϵ.

Remark 4.6. Our sample complexities match the Ω
(

1

ϵ2+
d
ν

)
lower bounds for conventional BO with Matérn kernels, as
established in Scarlett et al. (2017) (up to logarithmic terms).

These bounds apply to scalar-valued feedback, which is
richer than the binary preference feedback used in BOHF.

For technical details, consider a standard BO setting with
scalar observations oi = f(xi) + εi, where εi are i.i.d.,
zero-mean noise terms (following the notation in Sec-
tion 2.3). Suppose that at each step t, instead of observing
ot = f(xt) + εt and o′t = f(x′

t) + ε′t, we receive binary
preference feedback yt = 1{ot > o′t}. Under the BTL
model, this corresponds to the case where the noise differ-
ence ε′t−εt follows a logistic distribution, which can arise if
the individual noise terms εt are Gumbel-distributed. Thus,
the lower bound on sample complexity in the BOHF setting
should be at least half of that of conventional BO under
Gumbel noise for achieving at most ϵ loss in the value of
the target function.

Since the lower bound construction in Scarlett et al. (2017)
assumes Gaussian noise, a formal comparison is not strictly
valid (as the BTL model corresponds to Gumbel noise). We
therefore present this connection as an informal justifica-
tion of the tightness of our bounds, rather than a formal
optimality proof.

4.2. Confidence Intervals and Proofs

An important building block in analyzing the performance of
MR-LPF is the confidence intervals applied to the samples
collected in each round. We now present a formal statement
of this result.

Theorem 4.7 (Confidence Bounds). Consider the kernel-
based prediction ht and uncertainty estimate σt for a
dataset Ht and a known kernel k, as given in Equations (7)
and (10) satisfying Assumption 2.1. Assume the observa-
tion points {(xi, x

′
i)}ti=1 are independent of the observation

values {yi}ti=1. For a fixed (x, x′) ∈ X × X and for any
δ ∈ (0, 1), we have, with probability at least 1− δ,

|µ(ht(x, x
′))− µ(h(x, x′))| ≤ β(δ)σt(x, x

′), (17)

where β(δ) = L
(
B + 1

2

√
2κ
λ log(2/δ)

)
, L =

supx,x′∈X µ̇(h(x, x′)) as defined in Theorem 4.1, B is the
RKHS norm bound specified in Assumption 2.1, λ is the
parameter in kernel-based regression, and κ is defined in
Equation (2).

A key distinction in our results is that our confidence interval
is tighter than the one presented in Pásztor et al. (2024) by
a factor of O(

√
Γ(T )). This improvement comes from the

multi-round structure and action selection rule within each
round of the algorithm, which ensures that the observation
points used for confidence intervals at the end of rounds
are independent of the observation values within that round.
This removes certain intricate dependencies in deriving the
confidence interval. Recall that the observation points in
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(a) SE kernel (RKHS) (b) Matérn kernel with ν = 2.5 (RKHS) (c) Matérn kernel with ν = 1.5 (RKHS)

(d) SE kernel (Ackley) (e) Matérn kernel with ν = 2.5 (Ackley) (f) Matérn kernel with ν = 1.5 (Ackley)

Figure 1. Average Regret against T with RKHS test functions (top row) and Ackley test function (bottom row). The shaded area represents
the standard error.

each round, (x(n,r), x
′
(n,r)), are collected solely based on

the variance, which is independent of the observation values
by definition. In contrast, both the MaxMinLCB algorithm
in Pásztor et al. (2024) and the POP-BO algorithm in Xu
et al. (2024) select observation point at step t based on
statistics that depend on {yi}t−1

i=1 . We emphasize that our
algorithm is by no means a pure exploration algorithm; it
effectively balances exploration and exploitation by learning
and updatingMr at the end of each round.

Given the confidence intervals in Theorem 4.7, the update
rule ofMr in MR-LPF ensures that the best action is not
eliminated (Lemma B.2). Additionally, we can use the
confidence intervals to bound the regret for each action
inMr, based on the maximum variance in predictions from
previous rounds. By summing up the regret over all rounds,
we achieve the overall regret bound, with details provided
in Appendix B. For proof of Theorem 4.7, see Appendix C.

Figure 2. Average regret against T for the experiment with Yelp
Open Dataset. The shaded area represents the standard error.

5. Experiments
We run numerical experiments to evaluate the performance
of MR-LPF and compare it to MaxMinLCB (Pásztor et al.,

2024, Algorithm 1) on various test functions, including
both synthetic and real-world cases. Our implementation is
publicly available.3

We first select the test function f as an arbitrary function
in the RKHS of a known kernel. To do this, we choose 10
points in the [0, 1] interval and assign them random values.
We then fit a standard kernel ridge regression to these sam-
ples using a kernel k and use its mean as f . The kernel k is
set to the SE kernel and Matérn kernels with smoothness pa-
rameters ν = 2.5 and ν = 1.5. This is a common approach
to constructing functions in an RKHS (see, e.g., Chowd-
hury & Gopalan, 2017). We also test the algorithms on the
Ackley function, similar to Pásztor et al. (2024). The Ack-
ley function has a diverse optimization landscape, featuring
multiple local minima, flat plateaus, and valleys, making it a
popular choice in non-convex optimization literature (Jamil
& Yang, 2013).

To showcase the utility of our approach in real-world ap-
plications, we experimented using the Yelp Open Dataset4

of restaurant reviews. This serves as a proof of concept,
demonstrating both the potential integration of BOHF with
LLM-generated vector embeddings and the scalability of
the method to higher-dimensional domains. The objective
is to learn user preferences from comparative feedback and
recommend restaurants tailored to each user’s choices. Af-
ter data filtering and pre-processing, the dataset consists of
275 restaurants, 20 users, and 2563 reviews. Each restau-
rant is represented by a 32-dimensional vector embedding
of its text-based reviews, generated using OpenAI’s text-

3https://github.com/ayakayal/BOHF_code_
submission

4Yelp Open Dataset
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embedding-3-large model5. Users rate restaurants on a scale
from 1 to 5. We adopt the experimental setup and Yelp
data preprocessing from Pásztor et al. (2024) to ensure a
fair evaluation. While we implemented our own version
instead of using their code6 directly, we acknowledge their
contribution in establishing this benchmark, which inspired
our experiment. We frame this problem within the BOHF
framework, where the action set X consists of 275 restau-
rants, each represented as a 32-dimensional vector, and the
utility values f correspond to user ratings. SE kernel is used
for these experiments. For details on the experimental setup,
see Appendix D.

We plot the average regret at each time step, averaged over
60 independent runs. Figure 1 shows the results on the
RKHS and Ackley test functions, while Figure 2 presents
the results on the Yelp Open Dataset. MR-LPF consis-
tently achieves lower regret than MaxMinLCB across all
test functions. The initial regret of MR-LPF reflects highly
exploratory behavior during the early rounds. At the end
of each round r, suboptimal actions are removed fromMr,
leading to the sharp drops that eventually result in near-
optimal actions in later rounds. Relatively constant behavior
within rounds represents exploration, while sharp drops in-
dicate exploitation.

6. Conclusion
We proposed MR-LPF for the BOHF problem and proved
regret bounds and sample complexities, significantly im-
proving upon existing work. We established that the number
of preferential feedback samples required to identify near-
optimal actions is of the same order as the number of scalar-
valued feedback samples. Numerical experiments on both
synthetic and real-world examples support our analytical
results.
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A. RKHS and Mercer Theorem
Mercer’s theorem (Mercer, 1909) provides a way to represent a kernel using an infinite-dimensional feature map (see, e.g.,
Christmann & Steinwart, 2008, Theorem 4.49). Let Z be a compact metric space, and let ν be a finite Borel measure on Z
(in this context, we consider the Lebesgue measure in a Euclidean space). Denote by L2

ν(Z) the set of square-integrable
functions on Z with respect to ν. Additionally, we say that a kernel is square-integrable if∫

Z

∫
Z
k2(z, z′) dν(z)dν(z′) <∞.

Theorem A.1. (Mercer Theorem) Let Z be a compact metric space and ν be a finite Borel measure on Z . Let k be a
continuous and square-integrable kernel, inducing an integral operator Tk : L2

ν(Z)→ L2
ν(Z) defined by

(Tkf) (·) =
∫
Z
k(·, z′)f(z′) dν(z′) ,

where f ∈ L2
ν(Z). Then, there exists a sequence of eigenvalue-eigenfeature pairs {(γm, φm)}∞m=1 such that γm > 0, and

Tkφm = γmφm, for m ≥ 1. Moreover, the kernel function can be represented as

k (z, z′) =

∞∑
m=1

γmφm(z)φm (z′) ,

where the convergence of the series holds uniformly on Z × Z .

According to the Mercer representation theorem (e.g., see, Christmann & Steinwart, 2008, Theorem 4.51), the RKHS
induced by k can consequently be represented in terms of {(γm, φm)}∞m=1.

Theorem A.2. (Mercer Representation Theorem) Let {(γm, φm)}∞i=1 be the Mercer eigenvalue-eigenfeature pairs. Then,
the RKHS of k is given by

Hk =

{
f(·) =

∞∑
m=1

wmγ
1
2
mφm(·) : wm ∈ R, ∥f∥2Hk

:=

∞∑
m=1

w2
m <∞

}
.

Mercer representation theorem indicates that the scaled eigenfeatures {√γmφm}∞m=1 form an orthonormal basis forHk.

Definition A.3. A kernel k is said to have a polynomial (exponential) eigendecay if γm = O(m−p) (γm = O(cm)), for
some p > 1 (c < 1), where γm are the Mercer eigenvalues in decreasing order.

Specific kernel functions:

1. Linear kernel: k(x, x′) = xTx′

2. Squared Exponential (SE) kernel: k(x, x′) = σ2 exp
(
− |x−x′|2

2l2

)
where σ2 is a scalar and l > 0 is referred to as the

length-scale of the kernel.

3. Matérn kernel: k(x, x′) = 21−ν

Γ(ν)

(√
2ν |x−x′|

l

)ν
Kν

(√
2ν |x−x′|

l

)
where ν > 0.5 is the smoothness parameter of the

kernel, l is referred to as the length-scale, Kν is the modified Bessel function, and Γ is the Gamma function.

For the Matérn kernel, the eigenvalues decay polynomially with p = 1 + 2ν
d where d is the input dimension.

B. Proof of The Regret Bound and Sample Complexities
In this section, we provide a detailed proof of Theorem 4.1 on the regret bound of MR-LPF and following corollaries.

B.1. Proof of Theorem 4.1

To prove this theorem, we bound the regret for each round and then sum these bounds over all the rounds.

12
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Regret in the first round: The first round consists of N1 = ⌈
√
T ⌉ samples. We note that for all t,

P(x⋆ ≻ xt) + P(x⋆ ≻ x′
t)− 1

2
≤ 1

2
. (18)

Consequently, the regret incurred in the first round in bounded by 1
2⌈
√
T ⌉.

For the second round onwards (r ≥ 2), we introduce some notation and preliminaries that will assist in bounding the regret.

High probability events: Let us define the event Er as the event that all the confidence intervals used in the round r of the
MR-LPF algorithm hold true. Specifically,

Er =

{
∀x, x′ ∈Mr :

∣∣µ(h(Nr,r)(x, x
′))− µ(h(x, x′))

∣∣ ≤ β(r)(δ)σ(Nr,r)(x, x
′)

}
(19)

Recall that β(r)(δ) = L

(
B +

√
κr

λ log( 2R|X |
δ )

)
. We also define E =

⋃R
r=1 Er.

Sum of the posterior variances for a sequence of observations: We apply the following bound on the sum of posterior
variances in each round (see, e.g., Pásztor et al., 2024, Lemma 14).

Nr∑
n=1

σ2
(n−1,r)(x(n,r), x

′
(n,r)) ≤

8

log(1 + 4(λκr)−1)
Γ(λκr)(Nr). (20)

By the selection rule of (x(n,r), x
′
(n,r)) in MR-LPF as the points with the highest variance, we have that ∀x, x′ ∈Mr, and

∀n ≤ Nr, σ(Nr,r)(x, x
′) ≤ σ(n−1,r)(x(n,r), x

′
(n,r)). Combining this with Equation (20), we conclude that ∀x, x′ ∈Mr,

σ(Nr,r)(x, x
′) ≤

√
8

log(1 + 4(λκr)−1)

√
Γ(λκr)(Nr)

Nr
. (21)

The value of κr, r ≥ 2: Recall the update rule forMr in MR-LPF:

Mr+1 = {x ∈Mr|∀x′ ∈Mr : µ(h(Nr,r)(x, x
′)) + β(r)σ(Nr,r)(x, x

′) ≥ 1

2
} (22)

Assuming E1, for all x, x′ ∈M2, we have

µ(h(x, x′)) + 2β(1)σ(N1,1)(x, x
′) ≥ µ(h(N1,1)(x, x

′)) + β(1)σ(N1,1)(x, x
′)

≥ 1

2
, (23)

where the first inequality holds under E1 and the second inequality is a consequence of the update rule. Similarly, we have

µ(h(x′, x)) + 2β(1)σ(N1,1)(x
′, x) ≥ 1

2
. (24)

We note that ∀x, x′ ∈ X , µ(h(x′, x)) = 1− µ(h(x, x′)). Thus, Equation (24) implies that

µ(h(x, x′)) ≤ 1

2
+ 2β(1)σ(N1,1)(x

′, x). (25)

Combining with (23), we obtain that

−2β(1)σ(N1,1)(x, x
′) ≤ µ(h(x, x′))− 1

2
≤ 2β(1)σ(N1,1)(x

′, x). (26)

13
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We previously established a bound on the standard deviation at the end of rounds in (21). Applying this to the first
round, with length N1 = ⌈

√
T ⌉, we can bound µ(h(x, x′)) for all x, x′ ∈ M2 within the interval [ 14 ,

3
4 ] by ensuring

2β(1)σ(N1,1)(x
′, x) ≤ 1

4 . Specifically, let T0 be the smallest integer satisfying

2β(1)(δ)

√
8

log(1 + 4(λκ)−1)

√
Γ(λκ)(⌈

√
T0⌉)

⌈
√
T0⌉

≤ 1

4
. (27)

Then, for any T ≥ T0, for all x, x′ ∈M2, we have µ(h(x, x′)) ∈ [ 14 ,
3
4 ]. Recall that the derivative of the sigmoid function

is given by µ̇(x) = µ(·)(1− µ(·)). Consequently, the inverse of the derivative of the sigmoid applied to h, for the values of
x, x′ ∈M2, is bounded as follows. For all x, x′ ∈M2,

1

µ(h(x, x′))(1− µ(h(x, x′)))
≤ 16

3
< 6. (28)

Thus, we can use κr = 6 for all r ≥ 2, maintaining the validity of the confidence intervals.

Lemma B.1. For T ≥ T0 specified in Equation (27), we have P(E) ≤ 1− δ.

The proof follows from Theorem 4.7, a union bound over all action pairs and rounds, and the bound on κr derived above.
We condition the remainder of the proof on the event T ≥ T0 and E .

The best action x⋆ will not be removed. Assuming E , the best action will not be removed from the setsMr by the
MR-LPF algorithm in any round. We formalize this observation in the following lemma.

Lemma B.2. Under event E , x⋆ ∈MR.

The proof follows from the observation that µ(h(x⋆, x)) ≥ 1
2 for all x. Combining with the confidence intervals in E , ∀r,

∀x ∈Mr, µ(h(Nr,r)(x
⋆, x)) + β(r)(δ)σ(Nr,r)(x

⋆, x) ≥ 1
2 . Consequently, the best action x⋆ will not be removed.

We are now ready to bound the regret in rounds r ≥ 2.

Regret bound in each round r ≥ 2: For each x ∈Mr, we use the update rule ofMr in MR-LPF to bound the regret
with respect to the optimal action. Recall that in Lemma B.2, we showed that the optimal action remains inMr for all r.
We have

µ(h(x, x⋆)) + 2β(r−1)(δ)σ(Nr−1,r−1)(x, x
⋆) ≥ µ(h(Nr−1,r−1)(x, x

⋆)) + β(r−1)(δ)σ(Nr−1,r−1)(x, x
⋆)

≥ 1

2
, (29)

where the first inequality holds under E , and the second inequality follows from the update rule ofMr. Then, we have

µ(h(x⋆, x)) = 1− µ(h(x, x⋆))

≤ 1

2
+ 2β(r−1)(δ)σ(Nr−1,r−1)(x, x

⋆), (30)

The equality follows from µ(−·) = 1− µ(·), and the inequality follows from (29).

We thus have for all x ∈Mr,

µ(h(x⋆, x))− 1

2
≤ 2β(r−1)(δ)σ(Nr−1,r−1)(x, x

⋆)

≤ 2β(r−1)(δ)C

√
Γ(λκr−1)(Nr−1)

Nr−1
, (31)

where the second inequality is proven in (21), and we use C =
√

8
log(1+4(6λ)−1) to simplify the notation. This bound holds

for all points in round r. Therefore, to obtain the regret in round r, it is sufficient to multiply this bound by Nr. This results
in the following bound on the regret in round r:

14
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Regret in Round r ≤ 2β(r−1)(δ)CNr

√
Γ(λκr−1)(Nr−1)

Nr−1

≤ 2β(r−1)(δ)C

(√
TΓ(4λ)(T ) +

1√
Nr−1

√
Γ(4λ)(T )

)
≤ 2β(r−1)(δ)C

(√
TΓ(4λ)(T ) + T−1/4

√
Γ(4λ)(T )

)
, (32)

where the second inequality is obtained by substituting Nr = ⌈
√

Nr−1T ⌉ and using ⌈·⌉ ≤ · + 1. We also use that
Γ(λκr−1)(.) ≤ Γ(4λ)(.) since κr−1 ≥ 4. The third inequality follows from Nr ≥

√
T for all r ≥ 1.

Total regret: The number of rounds R is at most ⌈log log2(T )⌉+ 1 (Li & Scarlett, 2022, Proposition 1). Using the bound
on regret in each round, we can bound the total regret of MR-LPF algorithm as follows

R(T ) ≤ 2CRβ(R)(δ)
√
TΓ(4λ)(T ) + 2CRβ(R)(δ)T

−1/4
√
Γ(4λ)(T ). (33)

This completes the proof of Theorem 4.1.

B.2. Proof of Corollary 4.4

Since the size Nr of rounds increase with r, we have NR ≥ T/R. In the proof of Theorem 4.1, in (31), we showed that, for
all x ∈Mr

µ(h(x⋆, x))− 1

2
≤ 2β(r−1)(δ)C

√
Γ(λκr−1)(Nr−1)

Nr−1

Thus, for x ∈MR+1, we have

µ(h(x⋆, x))− 1

2
≤ 2β(R)(δ)C

√
Γ(4λ)(NR)

NR

≤ 2β(R)(δ)C

√
RΓ(4λ)(NR)

T
(34)

≤ 2β(R)(δ)C

√
RΓ(4λ)(T )

T
, (35)

where, for the second inequality, we used NR ≥ T
R , and for the third inequality, we used NR ≤ T .

B.3. Proof of Corollary 4.5

Following the bounds obtained in Corollary 4.4, we determine T that ensures µ(h(x̂T , x))− 1
2 ≤ ϵ, after T steps. For this,

we need specification of Γλ(T ).

In the case of linear kernels, we have Γλ(T ) = O(d log(T )). Consequently, a choice of T = Õ
(

d log( 1
δ )

ϵ2

)
ensures

µ(h(x⋆, x))− 1
2 ≤ ϵ.

In the case of SE kernel, we have Γλ(T ) = O(logd+1(T )). Consequently, a choice of T = Õ
(

log( 1
δ )

ϵ2

)
ensures

µ(h(x⋆, x))− 1
2 ≤ ϵ.

In the case of Matérn kernel, we have Γλ(T ) = Õ(T
d

2ν+d ). Consequently, a choice of T = Õ
(

log( 1
δ )

ϵ2+
d
ν

)
ensures

µ(h(x⋆, x))− 1
2 ≤ ϵ.

For the bound on Γλ(T ) see, e.g., Vakili et al. (2021b).
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C. Proof of Theorem 4.7
Recall the conventional kernel-based regression discussed in Section 2. Various confidence intervals of the form |f(z)−
f̂t(z)| ≤ β̂(δ)σ̂t(z), where f̂t(z) and σ̂t(z) are the conventional prediction and standard deviation, and β̂(δ) is a confidence
interval width multiplier for a 1 − δ confidence level, have been demonstrated in several works (Abbasi-Yadkori, 2013;
Chowdhury & Gopalan, 2017; Vakili et al., 2021a; Whitehouse et al., 2024). As discussed in the preference-based case,
the problem becomes more similar to a classification problem with binary feedback, and these confidence intervals are not
directly applicable. Moreover, a closed-form solution for ht is not available, as it is only provided as the minimizer of the
loss function given in Equation (7). Additionally, as discussed, this loss and its solution can be parameterized using the
representer theorem.

Lk(θ,Ht) =

t∑
i=1

−yi logµ(θ⊤kt(xi, x
′
i))

− (1− yi) log(1− µ(θ⊤kt(xi, x
′
i)) +

λ

2
||θ||22, (36)

and

ht(·) =
t∑

i=1

θik (·, (xi, x
′
i)) . (37)

For the remainder of the proof, and for simplicity of presentation, we use the notation z = (x, x′) and similarly zi = (xi, x
′
i).

In both Xu et al. (2020b) and Pásztor et al. (2024), confidence intervals for |h(z)− ht(z)| are derived, with Pásztor et al.
(2024) establishing tighter bounds. Their confidence intervals are based on the results of Faury et al. (2020) for logistic
bandits and Whitehouse et al. (2024) for confidence intervals in kernel bandits. In comparison, our confidence intervals are
tighter than those presented in Pásztor et al. (2024) by a factor of O(

√
Γλ(T )). We achieve this improvement by assuming

that the sequence of observation points {zi}ti=1 is independent of the observation values {yi}ti=1, inspired by Vakili et al.
(2021a). This assumption is made possible in our work due to the design of the MR-LPF algorithm, where within each
round, the observation points are selected based solely on kernel-based variance, which, by definition, does not depend on
the observation values.

The main steps of the proof are similar to those in the proof of the confidence interval in Pásztor et al. (2024), and we will
highlight the key differences in our proof. The key idea is that the derivative of the loss Lk, as given in Equation (36), is the
null operator at the minimizer of the loss:

∇L(θt,Ht) =

t∑
i=1

−yik(zi, ·) + gt(θt) = 0, (38)

where gt(θ) : Hk → Hk is a linear operator defined as

gt(θ) =

t∑
i=1

k(zi, ·)µ(θ⊤k(zi, ·)) + λθ. (39)

Recall that θt is the minimizer of the loss in Equation (36). Consequently, we have gt(θt) =
∑t

i=1 yik(zi, ·).

Then, confidence intervals are proven for the gradient and extended to the preference function itself. We now introduce some
auxiliary notation that will be helpful throughout the rest of the proof. Let Φt = [k(z1, ·),k(z2, ·), . . . ,k(zt, ·)]⊤, from
which we define the kernel matrixKt = ΦtΦ

⊤
t and the operator St = Φ⊤

t Φt. We also use It to denote the t-dimensional
identity matrix and IH to denote the identity operator in the RKHS. Finally, we define Vt = St + κλIH.

We also use the auxiliary notation Gt as in Appendix B of Pásztor et al. (2024), where

Gt(θ1,θ2) = λIH +

t∑
i=1

α(zi;θ1,θ2)ϕ(zi)ϕ
⊤(zi),

and

α(z,θ1,θ2) =

∫ 1

0

µ̇
(
ν θ⊤

2 ϕ(z) + (1− ν)θ⊤
1 ϕ(z)

)
dν

16



Bayesian Optimization from Human Feedback

is the coefficient arising from the mean value theorem, such that

µ(θ⊤
2 ϕ(z))− µ(θ⊤

1 ϕ(z)) = α(z,θ1,θ2)(θ2 − θ1)
⊤ϕ(z).

See Pásztor et al. (2024, Lemma 11) for details. It then follows that

gt(θ2)− gt(θ1) = Gt(θ1,θ2)(θ2 − θ1), (40)

as shown in the proof of Lemma 12 in Pásztor et al. (2024). We use this relation, along with the inequality

Gt(θ1,θ2) ⪰ κ−1Vt, (41)

where ⪰ denotes the Loewner order, also from the proof of Lemma 12, in our analysis.

We use the notation h(z) = ϕ⊤(z)θ⋆ for the underlying preference function and εi = yi − µ(h(zi)) to represent the
sequence of observation noise.

Inspired by the proof of confidence intervals in Vakili et al. (2021a), we express the prediction error as

|µ(ht(z))− µ(h(z))| ≤ L |ht(z)− h(z)|
= L

∣∣ϕ⊤(z)(θt − θ⋆)
∣∣

= L
∣∣ϕ⊤(z)Gt(θ

⋆,θt)
−1 (gt(θt)− gt(θ

⋆))
∣∣

= L

∣∣∣∣∣ϕ⊤(z)Gt(θ
⋆,θt)

−1

(
t∑

i=1

(yi − µ(h(zi)))ϕ(zi)− λθ⋆

)∣∣∣∣∣
= L

∣∣∣∣∣ϕ⊤(z)Gt(θ
⋆,θt)

−1

(
t∑

i=1

εi ϕ(zi)− λθ⋆

)∣∣∣∣∣
≤ L

∣∣∣∣∣ϕ⊤(z)Gt(θ
⋆,θt)

−1

(
t∑

i=1

εi ϕ(zi)

)∣∣∣∣∣︸ ︷︷ ︸
Stochastic Term

+Lλ
∣∣ϕ⊤(z)Gt(θ

⋆,θt)
−1θ⋆

∣∣︸ ︷︷ ︸
Bias Term

The first line follows from the Lipschitz continuity of the sigmoid function. The second line uses the representer theorem
to express ht(z) = ϕ⊤(z)θt and h(z) = ϕ⊤(z)θ⋆, where ϕ(z) = k(z, ·), defined similarly to (Pásztor et al., 2024,
Appendix A). The third line uses (40). The fourth line uses that θt is the minimizer of the loss in Equation (36). The fifth
line uses the notation εi = yi − µ(h(zi)) for the observation noise. Finally, the expression is split into a stochastic term and
a bias term, allowing us to follow the proof structure of the confidence bound in (Vakili et al., 2021a, Theorem 1).

The stochastic term is a sub-Gaussian random variable and can be bounded with high probability using standard concentra-
tion results. In particular, the sub-Gaussian parameter is determined by the norm of the coefficients applied to the independent
noise terms εi, which are 1/2-sub-Gaussian. This follows from the fact that εi = yi−µ(h(zi)) ∈ [−µ(h(zi)), 1−µ(h(zi))],
and therefore the noise sequence has bounded support of length 1.

1

2
L
∥∥ϕ⊤(z)Gt(θ

⋆,θt)
−1Φt

∥∥ ≤ 1

2
L∥ϕ(z)∥Gt(θ⋆,θt)−1∥ΦtGt(θ

⋆,θt)
−1Φ⊤

t ∥1/2op

≤ 1

2
Lκ∥ϕ(z)∥V −1

t
∥ΦtV

−1
t Φ⊤

t ∥1/2op

≤ 1

2
L

√
κ

λ
σt(z), (42)

where ∥ · ∥op denotes the operator (spectral) norm. The first inequality follows from matrix arithmetic and the definition of
operator norm. The second uses (41). The third uses the identity ∥ϕ(z)∥V −1

t
= 1√

λκ
σt(z) (see, e.g., Pásztor et al., 2024),

along with ∥ϕtV
−1
t ϕ⊤

t ∥op ≤ 1, which follows from the eigenvalue bounds of ϕtϕ
⊤
t and V −1

t .
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Therefore, by the concentration inequality for sub-Gaussian random variables (see, e.g., Vershynin, 2018), with probability
at least 1− δ,

L

∣∣∣∣∣ϕ⊤(z)Gt(θ
⋆,θt)

−1

(
t∑

i=1

εi ϕ(zi)

)∣∣∣∣∣ ≤ 1

2
L

√
κ

λ
σt(z)

√
2 log(2/δ).

The bias term is bounded as:

Lλ
∣∣ϕ⊤(z)Gt(θ

⋆,θt)
−1θ⋆

∣∣ ≤ Lλ∥ϕ(z)∥Gt(θ⋆,θt)−1∥θ⋆∥Gt(θ⋆,θt)−1

≤ Lλκ∥ϕ(z)∥V −1
t
∥θ⋆∥V −1

t

≤ LBσt(z), (43)

where the second line uses (41), and the third line uses ∥ϕ(z)∥V −1
t

= 1√
λκ

σt(z), as discussed above. It also uses the bound
∥θ⋆∥V −1

t
≤ 1√

λκ
B, which follows from:

λ∥θ⋆∥V −1
t
≤ λ√

λκ
∥θ⋆∥ ≤

√
λ

κ
B, (44)

where the first inequality follows from the fact that the smallest eigenvalue of Vt is at least λκ, and the second follows from
the RKHS norm bound ∥θ⋆∥ ≤ B.

Combining both bounds gives the following expression for β(δ):

β(δ) = LB +
L

2

√
2κ

λ
log(2/δ). (45)

D. Experimental Details
In this section, we provide details on the experimental setting. We describe the RKHS test functions, the Ackley function, and
the Yelp Open Dataset used in our experiments. Additionally, we outline the selected hyperparameters and the computational
resources utilized in our simulations. We also present the MaxMinLCB algorithm of Pásztor et al. (2024).

RKHS test functions: In Section 5, we outlined the procedure for generating the test function f as an arbitrary function
within the RKHS of a given kernel. In Figure 3, we display the test functions generated in the RKHS for the SE kernel and
the Matérn kernels with ν = 2.5 and ν = 1.5. The figure includes plots of the utility function f , the preference function
h(x, x′) = f(x)− f(x′), and the probability of preference µ(h(x, x′)).

Ackley test function: It is defined as follows (with d = 1 and X = [−5, 5]):

f(x) = −20 exp

−0.2
√√√√1

d

d∑
i=1

x2
i

 exp

(
1

d

d∑
i=1

cos(2πxi)

)
+ 20 + exp(1)

The preference function h (difference in utilities) is then scaled to the range [−3, 3]. The Ackley function is shown in
Figure 3.

Yelp Dataset We use a subset of the Yelp Dataset, filtering it to include only restaurants in Philadelphia, USA, with at least
500 reviews and users who review at least 90 restaurants. The final dataset consists of 275 restaurants, 20 users, and 2563
reviews. Reviews for each restaurant are concatenated and processed using OpenAI’s TEXT-EMBEDDING-3-LARGE
model to generate 32-dimensional vector embeddings, which serve as the action set in the BOHF framework. User ratings
(ranging from 1 to 5) are considered as the utility function f , which are then scaled to the range [−3, 3]. Missing ratings are
handled using collaborative filtering. In each experimental run, we sample a random user from the set of 20 and conduct the
experiment independently. We average the regret over 60 runs to produce the final plot.
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(a) f(x), SE kernel (b) h(x, x′), SE kernel (c) µ(h(x, x′)), SE kernel

(d) f(x), Matérn (ν = 2.5) (e) h(x, x′), Matérn (ν = 2.5) (f) µ(h(x, x′)), Matérn (ν = 2.5)

(g) f(x), Matérn (ν = 1.5) (h) h(x, x′), Matérn (ν = 1.5) (i) µ(h(x, x′)), Matérn (ν = 1.5)

(j) f(x), Ackley function (k) h(x, x′), Ackley function (l) µ(h(x, x′)), Ackley function

Figure 3. Plots of the utility function f(x), the preference function h(x, x′) = f(x)−f(x′), and the probability of preference µ(h(x, x′))
for synthetic experiments. The rows correspond to: (1st row) SE kernel (RKHS), (2nd row) Matérn kernel with ν = 2.5 (RKHS), (3rd
row) Matérn kernel with ν = 1.5 (RKHS), and (4th row) Ackley function.
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Loss function optimization: To minimize the loss function given in (9) and obtain the parameters θ, any standard optimiza-
tion algorithm can be used. In our experiments, we employ gradient descent. The learning rate is individually tuned for each
algorithm, kernel, and test function by selecting the best-performing value from the grid {0.01, 0.005, 0.001, 0.0005, 0.0001}
in each scenario.

Hyperparameters: We choose l = 0.1 as the length scale and λ = 0.05 as the kernel-based learning parameter across all
cases. The horizon T is set to 300 for RKHS test functions and 2000 for the Ackley function and the Yelp Dataset. For the
RKHS and Ackley functions, the confidence interval width β is fixed at 1 for both MR-LPF and MaxMinLCB. For the Yelp
dataset, we conduct a grid search to tune β over {0.01, 0.1, 0.5, 1, 2} for both MR-LPF and MaxMinLCB algorithms. We
determine β = 2 as optimal for MaxMinLCB and β = 0.1 for MR-LPF.

Computational Resources: For the experiments with the synthetic RKHS and Ackley functions, we utilize the Scikit-
Learn library (Pedregosa et al., 2011) for implementing Gaussian Process (GP) regression. The code is executed on a cluster
with 376.2 GiB of RAM and an Intel(R) Xeon(R) Gold 5118 CPU running at 2.30 GHz. In the case of the Yelp Dataset
experiments, we use the BoTorch library (Balandat et al., 2020) and its dependencies, including GPyTorch (Gardner et al.,
2018), which offer efficient GP regression tools with GPU support. The simulations are carried out on a computing node
equipped with an NVIDIA GeForce RTX 2080 Ti GPU featuring 11 GB of VRAM, an Intel(R) Xeon(R) Gold 5118 CPU
running at 2.40 GHz with 24 cores, and 92 GB of RAM.

MaxMinLCB algorithm: Pásztor et al. (2024) proposed a zero-sum Stackelberg (Leader–Follower) game for action
selection, where the leader xt maximizes the lower confidence bound (LCB), and the follower x′

t minimizes it, according to
the following:

xt = arg max
x∈Mt

µ(ht(x, x
′(x))− βtσt(x, x

′(x)),

x′(x) = arg min
x′∈Mt

µ(ht(x, x
′))− βtσt(x, x

′).
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