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ABSTRACT

Contrastive learning models have demonstrated impressive abilities to capture se-
mantic similarities by aligning representations in the embedding space. However,
their performance can be limited by the quality of the training data and its in-
herent biases. While Preference Optimization (PO) methods such as Reinforce-
ment Learning from Human Feedback (RLHF) and Direct Preference Optimiza-
tion (DPO) have been applied to align generative models with human preferences,
their use in contrastive learning has yet to be explored. This paper introduces a
novel method for training contrastive learning models using different PO methods
to break down complex concepts. Our method systematically aligns model behav-
ior with desired preferences, enhancing performance on the targeted task. In par-
ticular, we focus on enhancing model robustness against typographic attacks and
inductive biases, commonly seen in contrastive vision-language models like CLIP.
Our experiments1 demonstrate that models trained using PO outperform standard
contrastive learning techniques while retaining their ability to handle adversarial
challenges and maintain accuracy on other downstream tasks. This makes our
method well-suited for tasks requiring fairness, robustness, and alignment with
specific preferences. We evaluate our method for tackling typographic attacks on
images and explore its ability to disentangle gender concepts and mitigate gender
bias, showcasing the versatility of our approach.

1 INTRODUCTION

In recent years, Vision-Language Models (VLMs) such as CLIP (Radford et al., 2021) have revo-
lutionized downstream vision-language tasks like classification (Conde & Turgutlu, 2021), object
detection (Zhong et al., 2021), segmentation (Xu et al., 2022), and image generation (Saharia et al.,
2022). These models are trained on large-scale web data, such as the 400 million text-image pairs
used for training CLIP. However, despite their success, VLMs exhibit several vulnerabilities. For
instance, adversarial attacks (Goodfellow et al., 2015; Moosavi-Dezfooli et al., 2016) and backdoor
vulnerabilities (Bai et al., 2024; Liang et al., 2024a) can lead to erroneous classifications with high
confidence. CLIP has also been shown to be vulnerable to typographic attacks, where text within im-
ages causes misclassification (Goh et al., 2021). Additionally, biases such as gender and racial bias

∗Equal contribution.
1The code is available on GitHub.
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(Ruggeri & Nozza, 2023; Zhang et al., 2022; Bolukbasi et al., 2016; Jialu Wang et al., 2021) can be
amplified by these models due to biases in their training datasets. Another dispreferred behavior oc-
curs when models focus on tasks unrelated to the intended objective, as highlighted by (Menon et al.,
2022). These challenges underscore the need for alignment methods in large pre-trained models.

Generative models, including Large Language Models (LLMs), have also been widely adopted
for solving complex problems across various domains. Examples in the literature include GPT-4
(Achiam et al., 2023), Mistral (Albert Q. Jiang et al., 2023), and LLaMA (Touvron et al., 2023).
These models are trained on massive datasets of unlabeled text, learning general language repre-
sentations. Some of these LLMs require additional Supervised Fine-Tuning (SFT) to specialize
for specific tasks using labeled data. However, even with fine-tuning, LLMs can produce outputs
that misalign with human values or safety expectations, such as the unreliability of LLMs in au-
tonomous driving (Chen et al., 2024). To mitigate this, alignment techniques are applied, where
models are further trained using a reward model that captures human preferences (Stiennon et al.,
2022; Ouyang et al., 2022; Bai et al., 2022). Popular alignment approaches include Reinforcement
Learning from Human Feedback (RLHF) (Christiano et al., 2023) and Direct Preference Optimiza-
tion (DPO) (Rafailov et al., 2024), both of which extend the capabilities of these models beyond
what SFT alone can achieve. These alignment techniques have improved the safety and relevance of
LLM outputs by making them more aligned with human preferences.

Alignment methods have been explored in VLMs (Sun et al., 2023; Gallego, 2023; Clark et al.,
2023), but to the best of our knowledge, they have not been extensively applied to contrastive
learning models like CLIP. In this work, we extend the preference optimization paradigm to non-
generative VLMs. Our approach builds on the contrastive learning framework while simultaneously
aiming to preserve the pretrained knowledge—a concept known as continual learning (Garg et al.,
2024; Wang et al., 2023).

In this work, we extend the preference optimization paradigm to contrastive learning models, exem-
plified on enhancing robustness against typographic attacks and mitigating gender biases in image
classification and retrieval. By systematically aligning the model’s behavior with human prefer-
ences, we aim to preserve its pretrained knowledge while improving its performance in sensitive
areas such as fairness and robustness. The main contributions of this paper are as follows:

• We extend and compare three PO methods, originally developed for aligning generative
models, to non-generative contrastive learning models. This way, we improve model align-
ment, preserving the pretrained model knowledge while optimizing for desired behaviors.

• We propose controlling model behavior by adjusting the singular values of a learnable
linear transformation. This allows fine-tuning regarding specific concepts.

• Our experiments demonstrate the benefits of applying preference optimization in con-
trastive learning tasks, such as training for robustness against typographic attacks and dis-
entangling gender information from the embedding space, mitigating gender bias.

2 FOUNDATIONS & RELATED WORK

Preference Optimization and RLHF. Reinforcement Learning from Human Feedback (RLHF)
aligns model behavior with human preferences by training the model based on feedback from human
annotators. In the standard RLHF paradigm, annotators rank model responses. For example, given
an input prompt x, a preference inequality might be expressed as yl ≺ yw, meaning response yw
is preferred over response yl for prompt x. These preferences are structured into datasets D =
{(x, yw, yl)}. The preference modeling often follows energy-based methods like the Bradley-Terry
model (Bradley & Terry, 1952), where the probability of preferring yw over yl is modeled as below,
where r∗ is the “true” reward function underlying the preferences:

P ∗(yw ≻ yl | x) =
er

∗(x,yw)

er∗(x,yw) + er∗(x,yl)
= σ (r∗(x, yw)− r∗(x, yl)) . (1)

Since obtaining the true reward r∗ from a human is impossible, a reward model rϕ is learned by
approximating the true reward function. This model is optimized by minimizing the negative log-
likelihood of the human preference data:

LR(rϕ) = Ex,yw,yl∼D[− log(σ(rϕ(x, yw)− rϕ(x, yl)))]. (2)
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Once the reward function is learned, the RL pipeline can be used to improve the generation policy. To
prevent significant deviation from the pretrained reference model, a KL-divergence-shaped reward
is incorporated, with the RL objective defined as:

max
πθ

Ex∼D,y∼πθ [rϕ(x, y)]− βDKL(πθ(y|x)∥πref(y|x)), (3)

where β > 0 controls the degree of allowed divergence from πref. Unlike RLHF, which is often
slow and unstable due to its reliance on sampling and reinforcement learning, DPO (Rafailov et al.,
2024) offers a more efficient and stable alternative by directly defining a loss function and bypassing
reinforcement learning, allowing for standard optimization. However, DPO can sometimes overfit
to preference datasets. To address this, Identity Preference Optimization (IPO) (Gheshlaghi Azar
et al., 2024) bypasses the Bradley-Terry modelization and introduces a new loss function to decrease
overfitting by controlling the gap between the likelihood ratios of the model and a reference model.
Defining the policy ratio as below:

hπθ (yw, yl;x) = log

(
πθ(yw|x)πref(yl|x)
πθ(yl|x)πref(yw|x)

)
. (4)

We can now express both the DPO and IPO objectives in terms of this ratio:

LDPO(πθ, πref ) = E(x,yl,yw)∼D [− log σ (βhπθ (yw, yl, x))] , (5)

LIPO(πθ;πref) = E(x,yw,yl)∼D

[(
hπθ (yw, yl;x)−

β−1

2

)2
]
. (6)

Additionally, newer methods like Kahneman-Tversky Optimization (KTO) (Ethayarajh et al., 2024)
only require a binary signal of whether an output is desired or undesired, making it more practical
for many real-world applications:

LKTO(πθ, πref) = Ex,y∼D[w(y)(1− vKTO(x, y;β))], (7)

where the weights w(y) depend on whether the outcome is desired or undesired, and vKTO adjusts
the model based on the reference distribution:

vKTO(x, y;β) =

{
σ(rKTO(x, y)− zref) y ∼ ydesired|x
σ(zref − rKTO(x, y)) y ∼ yundesired|x

, w(y) =

{
λU y ∼ yundesired|x
λD y ∼ ydesired|x

,

where zref = Ex′∼D[βDKL(πθ(y
′|x′)∥πref(y

′|x′)] and rKTO(x, y) = β log πθ(y|x)
πref(y|x) . Further details

of mentioned methods are provided in Appendix A. These methods have been widely adopted in
training generative models, including diffusion models like Denoising Diffusion Policy Optimiza-
tion (DDPO) (Black et al., 2024). This work investigates how these methodologies can be applied
to contrastive learning-based models. This paper focuses on two critical applications: mitigating
typographic attacks and addressing biases, such as gender bias in contrastive visual models like
CLIP.

Typographic attacks. Typographic attacks exploit a model’s tendency to prioritize text over visual
content (Goh et al., 2021), causing CLIP to misclassify images based on misleading text. For ex-
ample, writing ”cat” on an image of a dog could lead CLIP to incorrectly label it as ”an image of
a cat”. This represents a clear example of undesired behavior in CLIP and is an ideal test case for
preference optimization. Recent works, such as (Azuma & Matsui, 2023; Joanna Materzynska et al.,
2022; Ilharco et al., 2022), address this shortcoming through various fine-tuning schemes.

Inductive biases. Biases such as gender and racial bias (Ruggeri & Nozza, 2023; Zhang et al.,
2022; Bolukbasi et al., 2016; Jialu Wang et al., 2021) are prevalent in vision-language models that
often unintentionally encode and maintain societal biases, leading to skewed predictions dispropor-
tionately affecting marginalized groups. Another common issue is task bias, where models focus on
unintended aspects of the task, further amplifying distortions in their outputs (Menon et al., 2022).

3 METHODOLOGY

Figure 1 gives an overview of our approach with a joint training objective: a preference-based
contrastive optimization using a dataset of preference labels Dpref and regularization using a regu-
larization dataset Dreg. Details of our methodology are given in the following.
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Figure 1: Overview of our proposed approach. On the left side, we calculate the prefer-
ence optimization loss Lpref(πθ, πref;Dpref) using the preference dataset, and the output log-
its T (yw)TI(x), T (yl)TI(x) from both models. On the right side, the regulatory loss
Lreg(πθ, πref;Dreg) is calculated using the regularization dataset. The snowflake icons denote frozen
encoders.

3.1 PROBLEM FORMULATION: CONTRASTIVE LEARNING AS AN MDP

To effectively apply preference optimization to contrastive learning models, we first need to frame
the problem within the reinforcement learning paradigm, modeling it as a Markov decision pro-
cess (MDP). Specifically, we define the contrastive learning task as a one-step MDP, denoted as
M = (S,A, ρ0, P,R, γ), where S is the state space, A is the action space, ρ0 is the initial state
distribution, P is the transition function, R is the reward function, and γ is the discount factor. Since
it is a one-step process, the transition function P and the discount factor γ are unnecessary, as states
do not continue beyond the first step. In this setup, the model operates as a retrieval system: the
input (either text or image) represents the state s ∈ S, and the most similar text or image is selected
as the action a ∈ A. Additionally, ρ0 defines the distribution of initial states, and R represents the
reward function.

The policy πθ(a|s) is defined analogously to the contrastive learning objective, typically using a
softmax function over the similarity score fθ(x, y) = Iθ(x)TTθ(y)/τ, where Iθ : Ximage → Rd
and Tθ : Xtext → Rd are the encoders for the image and text, respectively. Here, Ximage and Xtext
represent the input distributions of images and texts, and d is the dimensionality of the latent space
where both image and text representations are embedded. θ represents the model parameters, and
τ is the temperature. The action space is chosen from a fixed set of possible outputs A = Y ≜
{yi}i∈{1,...,K}, where K represents the total number of classes. The components ofM(S,A, ρ0, R)
are defined as follows:{

s ≜ x

a ≜ y
,

{
ρ0(s) ≜ p(x)

R(s, a) ≜ r(x, y)
, πθ(a|s) ≜

efθ(y,x)∑
yi
efθ(yi,x)

.

This MDP framework can be applied to different tasks and provides flexibility in designing policies.
We specifically utilize methods like DPO and KTO due to their implicit reward modeling, which
allows for more effective model alignment with desired behaviors.

3.2 PREFERENCE AND REGULARIZATION DATASETS

In our framework, the desired response of the model given an input x (e.g., an adversarial image) is
considered the preferred output yw. This represents the correct or human-aligned response that we
aim to optimize for. On the other hand, the dispreferred output yl refers to the model’s potentially
biased response, or the target of an adversarial attack, or an undesirable outcome (such as bias related
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to gender or other attributes). The model learns to be robust against adversarial attacks or specific
biases by comparing these two outputs.

We use two datasets to facilitate this learning:

• Preference DatasetDpref: This dataset contains pairs (x, yw, yl), where yw is the preferred
output and yl is the dispreferred output. The model learns to differentiate between desired
and undesired outcomes through this dataset, improving its robustness against adversarial
attacks and biases.

• Regularization DatasetDreg: This dataset consists of clean samples (images or text) with-
out adversarial manipulation. It is used during training to ensure the model retains its
accuracy on clean data.

By combining these datasets, the model is trained to align with a specific behavior or to be robust
against adversarial inputs while maintaining performance on clean data and other downstream tasks.

3.3 PREFERENCE-BASED CONTRASTIVE OPTIMIZATION

Building on the proposed formulation, preference optimization can be effectively applied to con-
trastive learning models by guiding the optimization process toward desired behaviors. Moreover,
we can shape the policy to learn specific behaviors or patterns by defining them as preferred. Fur-
thermore, in Section 4.3, we highlight a significant advantage of this optimization paradigm as a
fine-tuning method, helping retain the pre-trained knowledge of the model while adapting it to new
preferences and support it with experiment results.

Recalling Eq. (4), we first focused on policy ratio, hπθ (yw, yl, x) which we can write as:

hπθ (yw, yl, x) =

(
log πθ(yw|x)− log πθ(yl|x)

)
−

(
log πref(yw|x)− log πref(yl|x)

)
(8)

Given that the objective of the model πθ is to simultaneously increase the probability of the pre-
ferred label πθ(yw|x) and decrease the probability of the dispreferred label πθ(yl|x), the term
hπθ (yw, yl, x) is positive. Note that πref in this framework is kept frozen.

Lemma 3.1 Under the assumption that the text encoder is frozen, i.e., Tref = Tθ = T , the policy
ratio for models using the contrastive learning policy, in the methods such as DPO or IPO can be
expressed as:2

hπθ (yw, yl, x) =
1

τ
(Iθ(x)− Iref(x))

T (T (yw)− T (yl)). (9)

Based on Lemma 3.1, the term hπθ depends only on the term (Iθ(x)− Iref(x))
T (T (yw)− T (yl)).

This indicates that the loss objective is designed to adjust Iθ(x) to align more closely with the
preferred text embedding difference, i.e., T (yw)− T (yl), while maintaining appropriate proximity
to the reference embedding Iref(x). Having this in mind, we now raise the following question:

How does the Gradient update work in case of DPO/IPO?

First, we need to formulate the gradient of loss correctly in order to analyze it. The following
Corollary provides a more insightful way of writing the gradient.

Corollary 3.2 Using Lemma 3.1, we can obtain the gradient of the loss as the following.3

∇θLpref(πθ, πref ) = −wpref(yw, yl;x)︸ ︷︷ ︸
(I)

·
[
∂Iθ
∂θ

]T
(T (yw)− T (yl))︸ ︷︷ ︸

(II)

, (10)

where the gradient weight (I) in DPO is wpref(yw, yl;x) = σ(−βhπθ (yw, yl, x)), and in IPO,

wpref(yw, yl;x) =
(

1
2β − hπθ (yw, yl, x)

)
. Intuitively, the term (II) shows that adjusting the im-

age embedding Iθ(x) in the direction of T (yw)− T (yl), also encourages the model to better align
2See Appendix B.1 for the proof.
3Further details are provided in Appendix B.3.
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with the preferred outputs. Importantly, if the distribution of πθ deviates significantly from the refer-
ence distribution πref, the absolute value of the policy ratio increases. As noted previously, this effect
reduces the update rate in the direction of (II), acting as a mechanism to control the model and keep
it closer to the reference policy, preventing excessive divergence from the reference distribution.

In the KTO method, since there is no direct comparison between yw and yl, we do not get the same
equation as in 9. However, the main idea still applies. The model adjusts the image embedding
Iθ(x) to match human preferences, but it does so through a different optimization approach.

3.3.1 REGULARIZATION

In all our training methods, we explicitly constrain the model to remain proximal to the reference
model on the preference dataset Dpref. However, the preference dataset Dpref is typically small and
often fails to capture the entire data manifold. In many cases, it primarily consists of adversarial
and out-of-distribution samples. To address this limitation, we introduce additional regularization
terms into our training process, ensuring the trained model maintains proximity to the reference
model. This motivates the introduction of a regularization term Lreg, designed to maintain proximity
between the trained model πθ and the reference model πref as follow:

Lreg(π, πref;Dreg) = DKL(π(y|x)∥πref(y|x)) = Ex∼DregEy∼π(y|x)
[
log

π(y|x)
πreg(y|x)

]
, (11)

where Dreg is the set of clean images; for example, in the typographic attack task, we construct Dreg
using clean images from the training dataset. By adding this term to the loss function, the model
can better maintain its accuracy on true labels, even when facing adversarial challenges, by using
the regularization dataset Dreg to ensure robustness.

A shortcoming of these preference losses also suggests introducing additional regularization terms.
From this point on, for the sake of simplicity, we denote πθ(yw|x)

πref(yw|x) = x1 and πθ(yl|x)
πref(yl|x) = x2. To

better understand the effect of regularization, we will build up on top of the following theorem.

Theorem 3.3 (Feng et al., 2024) The partial derivatives of Eq. (5) with respect to x1 and x2 are
given by: ∣∣∣∣∂LDPO(x1;x2)

∂x1
/
∂LDPO(x1;x2)

∂x2

∣∣∣∣ = x2

x1
< 1. (12)

We find a similar result in the case of IPO:4

Proposition 3.4 The partial derivatives of Eq. (6) with respect to x1 and x2 are given by:∣∣∣∣∂LIPO(x1;x2)

∂x1
/
∂LIPO(x1;x2)

∂x2

∣∣∣∣ = x2

x1
< 1. (13)

In our problem formulation in Section 3.1, we define the true label as yw and the adversarial label
(e.g., typographic label) as yl. According to Theorem 3.3 and Proposition 3.4, the rate of increase
in the probability of the preferred response yw is lower than the rate of decrease in the probability
of the dispreferred response yl, Therefore, as suggested by (Feng et al., 2024), our model primarily
focuses on reducing the likelihood of the dispreferred response. This also motivates us to introduce
more regulatory terms to ensure proximity.

Finally, for training, we propose using a total loss function from the dataset D = (Dpref,Dreg)
as follows, where Lreg is the regularization loss and Lpref is the preference optimization objective,
computed using one of Eqs. 5, 6, or 7:

L(πθ, πref;D) = Lpref(πθ, πref;Dpref) + λregLreg(πθ, πref;Dreg). (14)

For example, consider giving images as input to CLIP, where the model chooses the corresponding
caption from a fixed caption set. The selection process follows the policy we defined, using the
softmax function over the similarity scores between the image and each caption in the set, as shown
in Figure 1. The training process using the proposed loss (Eq. (14)) is outlined in Algorithm 1.

4See Appendix B.2 for the proof.

6



Published as a conference paper at ICLR 2025

Algorithm 1 Preference-based contrastive optimization

Require: dataset D = (Dpref,Dreg), Model πθ , Reference model πref, Regularization coef. λreg
1: for each batch b ∈ D do
2: bpref, breg ← b ▷ Get batch of preference / regularization data
3: Compute πΨ(y|x) ≜ Softmax(fΨ(y, x)) for Ψ ∈ {θ, ref} ▷ Compute model and ref. distributions
4: lpref ← Lpo(πθ, πref; bpref) ▷ Compute preference loss using one of Eqs. (5), (6), or (7)
5: lreg ← Lreg(πθ, πref; breg) ▷ Compute regularization loss as in Eq. (11), zero if breg = {}
6: ltot ← lpref + λreg · lreg ▷ Total loss
7: Update model πθ by minimizing ltot
8: end for

3.4 LINEAR TRANSFORMATIONS AND ADAPTATIONS

In many cases, fine-tuning the entire model may be unnecessary and require more interpretation and
control. Therefore, we employ a linear head on top of the encoders. This linear projection layer
offers a more interpretable approach, providing a plug-and-play framework where the projection
can be learned during training and then applied as needed.

This linear layer also introduces a linear-algebraic perspective to the adaptation process. Suppose
the learned transformation is represented by the learnable matrix W . This matrix transforms both
vectors I(x) and T (y) to WI(x) and WT (y) respectively, thereby transforming the similarity
function f(y, x) = I(x)TT (y)/τ into a new function f̃(y, x) = I(x)TWTWT (y)/τ . Utilizing
the Singular Value Decomposition (SVD), we can express W = UΣV T . Therefore, we have:

f̃(y, x) = I(x)TWTWT (y)/τ = (V TI(x))TΣ2(V TT (y))/τ. (15)

In this formulation, the unitary matrix V selects the important directions, and the diagonal matrix
Σ = diag(σ1, . . . , σn) determines the degree of attenuation or amplification along each direction vi.
Specifically, each σi determines whether the corresponding direction vi is strengthened (σi > 1) or
weakened (σi < 1). As detailed in Appendix E, our training process keeps the model close to the
reference, as expected. Consequently, each σi remains relatively close to 1, and the overall matrix
WTW stays close to the identity matrix.

This observation enables post-training adjustments, allowing us to strengthen or weaken each vi as
needed. One approach to achieve this is by directly tuning each singular value σi, either through
linear interpolation or by applying matrix powers. In our work, we utilize matrix powers to modify
the singular values via a transformation scaling parameter t ∈ R, implementing the transformation
Σ→ Σt as follows:

Wt = UΣtV T , (16)

where Σt = diag(σt1, . . . , σ
t
n). This approach provides flexibility in adapting the model, enabling

fine-grained control over the transformation applied to the encoded representations.

For large positive or negative values of t, we recommend normalizing the output embeddings, as
done in the original CLIP model. This normalization prevents certain directions in the embedding
space from becoming excessively large. While normalization still allows for the strengthening or
weakening of specific directions, it ensures that the length of the vector remains bounded, instead of
becoming arbitrarily large. This approach maintains the intended alignment or misalignment with
certain directions without causing instability in the embedding space.

4 EXPERIMENTS AND RESULTS

In this section, we experimentally justify our method capabilities, using the CLIP model as our
contrastive learning model. An explanation of the datasets we used can be found in Appendix F.

Setup: For all experiments, we used 8 A100 GPUs, each with 40GB of memory. For the typographic
attack experiments, hyperparameters such as β and λ were selected based on our empirical studies
described in the appendix. Specifically, we used β = λ = 1 for DPO, β = λ = 0.01 for IPO, and
β = 1.5, λ = 0.01 for KTO. In disentangling gender bias, we also set β = λ = 1. All models were
trained for three epochs with a batch size of 512. The learning rate was set to 2 × 10−5, and we

7
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Table 1: Classification accuracy on various datasets: O (Original dataset) and T (Typographic
dataset). The last row highlights the differences between KTO, our best-performing proposed
method, and the best-performing baseline for each dataset. Positive differences indicate improve-
ments achieved by the proposed method.

Method Caltech101 OxfordPets StanfordCars Flowers102 FGVCAircraft DTD SUN397 EuroSAT Avg.

O T O T O T O T O T O T O T O T O T

CLIP 88.64 63.97 87.35 58.95 58.72 21.02 66.32 31.32 18.99 10.83 44.57 25.53 61.74 34.02 42.98 4.86 58.66 31.31

Materzynska+ 80.53 74.73 75.01 63.61 40.33 15.79 51.86 34.95 13.23 8.28 36.28 33.03 51.06 39.52 37.32 16.22 48.25 35.77

PAINT 88.48 83.57 85.23 76.53 55.30 33.44 64.73 54.92 17.73 14.46 42.61 36.60 61.69 53.62 38.20 17.31 56.74 46.31

Defense-Prefix 89.28 79.54 87.22 72.86 57.47 28.64 63.82 44.12 19.26 14.49 40.64 31.60 61.41 43.50 43.85 9.85 57.87 40.58

Ours (DPO) 87.50 85.43 85.25 79.72 56.03 34.33 56.60 55.70 16.21 13.87 39.36 38.48 61.02 56.34 49.33 28.32 56.41 49.02

Ours (IPO) 85.73 83.78 85.32 80.44 53.67 35.02 54.50 52.80 17.97 15.86 40.53 39.94 61.91 58.05 46.12 43.23 55.72 51.14

Ours (KTO) 87.67 86.02 85.41 81.02 57.76 37.04 59.10 58.00 17.27 15.59 40.74 40.33 62.52 59.01 46.26 36.94 57.09 51.74

Difference ↓1.61 ↑2.45 ↓1.81 ↑4.47 ↑0.9 ↑3.60 ↓5.63 ↑3.08 ↓1.99 ↑1.10 ↓1.87 ↑3.73 ↑0.83 ↑5.39 ↑2.41 ↑19.63 ↓0.78 ↑5.43

employed the Adamax optimizer with a linear warmup and a cosine scheduler, setting the warmup
ratio to 0.1. We set the random seed to 0 for all experiments to ensure reproducibility.

4.1 TYPOGRAPHIC ROBUSTNESS

We further evaluate our method on the typographic attack mitigation task. We set up the prob-
lem as described in Section 3, using the template "an image of a <class i>" (or a more
dataset-specific template for non-generic images), designating the typographic class as the undesired
outcome yl and the original caption as the desired outcome yw.

Baselines: We evaluate our method against the following baselines: pre-trained CLIP (Radford
et al., 2021), (Materzynska et al., 2022), PAINT (Ilharco et al., 2022), and Defense-prefix (Azuma &
Matsui, 2023), with results collected from (Azuma & Matsui, 2023) for comparability. (Materzynska
et al., 2022) propose using orthogonal projections to create subspaces in CLIP’s image encoder that
separate the processing of written words from visual concepts. PAINT (Patching with Interpolation)
is a technique for adapting open-vocabulary models to downstream tasks, while Defense-Prefix is
specifically designed to counter typographic attacks on CLIP by inserting a learned token before
class names in text prompts. We use ImageNet-100, a 100-class subset of ImageNet (Russakovsky
et al., 2015), to train the model. Typographic attack images are generated by adding misleading text
labels to the original images using open-source implementations from (Azuma & Matsui, 2023).
Further details of our baselines are provided in Appendix F.

Our results shown in Table 1 indicate that our methods effectively prevent typographic attacks with
little loss of prior knowledge, with improvements of up to 19.63 in accuracy over the best performing
baseline.5

4.1.1 CONTROL BETWEEN OPTICAL CHARACTER RECOGNITION AND OBJECT DETECTION

In this experiment, we apply linear adaptations and retrain the network, then evaluate the train-
ing results. We then interpolate between models using previously discussed linear transformation
methods, varying the transformation scaling t, defined in Eq. (16) from −4.0 to 4.0 to assess per-
formance. By doing this, we measure the effectiveness of our controlling scheme between the tasks
of Optical Character Recognition (OCR) and Object Detection (OD).

Our results in Figure 2 demonstrate that we can confidently control the trade-off between OCR and
OD without any additional training and with minimal impact on overall accuracy. This method
allows us to choose which task to prioritize flexibly, and we can visualize the performance frontier,
showing that improvements in OCR accuracy come at the cost of OD accuracy and vice versa. The
ability of this linear layer to manage the trade-off suggests that the concept is linearly separable
within the CLIP embedding space.

5More analyses are shown in Appendices C, D and J.
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(a) Accuracy on typographic samples and percentage of typo-
graphic label predictions versus transformation scaling factor t.
As t increases, the model favors object labels over typographic
labels while maintaining accuracy.
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with varying t.

Figure 2: Comparisons of optical character recognition (OCR) and object detection (OD).

4.2 DISENTANGLING GENDER UNDERSTANDING

In this setup, we demonstrate how our approach can reverse a contrastive learning model’s under-
standing of a concept (e.g., gender) without significantly altering other aspects of its performance.

For demonstration, we focus on flipping CLIP’s understanding of gender. We utilize a dataset
of labeled images featuring men and women engaged in various activities and occupations
from (Zhang et al., 2022). The problem setup is as follows: given choices like yman =
"The man is <activity>" and ywoman = "The woman is <activity>", the CLIP
model typically picks one of these answers. To reverse the gender understanding, we designate the
label with the correct activity but flipped gender as the preferred answer yw and the original gender-
specific label as yl. As the regulatory term, we use the same dataset of images. However, we employ
androgynous target labels such "The person in <activity>" to ensure that our model does
not forget any information on detecting the correct activity. We repeat our learning process using
only the linear layer and then visualize the effect of varying the transformation scaling t between
0 and 1. Our results confirm that we have a high degree of control over CLIP’s understanding of
gender, as demonstrated in Figure 3.
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Figure 3: Analyses of the models’ understanding of gender.

To further evaluate our results, we apply the modified CLIP models to an image retrieval task, dis-
tinct from the original text retrieval task used for training. We assess how this impacts the retrieved
images for specific text prompts by computing the similarity scores between the prompts and im-
ages as s(image, text) = Iθ(image)TTθ(text). Using the dataset from (Zhang et al., 2022), we issue
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Figure 4: Images retrieved for the caption ”an image of a police” with three different policies
from top to bottom: reversed understanding of gender (6W, 4M), pretrained CLIP model (2W, 8M),
neutralized understanding of gender (5W, 5M), i.e., t = t∗.

prompts describing individuals in various occupations to analyze the model’s behavior and showcase
an instance in Figure 4.

4.3 PRESERVING PRETRAINED KNOWLEDGE VIA PREFERENCE OPTIMIZATION

In all of the aforementioned preference optimization methods, an implicit or explicit constraint
exists to keep the model as close as possible to the reference model. Specifically, including
KL-divergence regularization facilitates adjustments without deviating significantly from the ref-
erence model πref. To support this claim, Figure 5a shows the KL-divergence between the out-
put distributions of the model and the reference model on the original dataset, measured as
Ex∼Dreg [DKL(πθ(·|x)||πref(·|x))], after fine-tuning for the typographic robustness task using dif-
ferent optimization methods.

Compared to Cross-Entropy optimization, our proposed methods result in lower divergence, demon-
strating better retention of the model’s pre-trained knowledge. Figure 5b illustrates that we can con-
trol this deviation (i.e., retention of pre-trained knowledge) during fine-tuning by adjusting the β
hyperparameter, consistent with Eq. (3). All models in (a) and (b) were trained on the Imagenet100
and FOOD101 datasets, respectively, and the models in (b) were optimized using the IPO method.
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(b) Effect of changing the hyperparameter β.

Figure 5: KL-divergence studies.

5 CONCLUSION

This paper introduces a novel approach for improving contrastive learning models through Prefer-
ence Optimization (PO). Our approach systematically aligns model behavior with desired prefer-
ences, enhancing robustness against adversarial attacks and effectively mitigating biases in vision-
language models like CLIP. Our experiments demonstrate improved performance over standard con-
trastive learning methods in adversarial robustness and fairness. This work could open new pathways
for applying preference-based optimization to non-generative models.
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A THEORETICAL FOUNDATIONS OF RLHF

RLHF extends the traditional reinforcement learning paradigm by incorporating human preferences
into the learning process (Ouyang et al., 2022). This feedback can take the form of direct preference
comparisons between different actions or sequences of actions, or it can involve explicit corrections
when the agent’s behavior is undesirable. Human judgments are converted into a reward signal that
helps the agent refine its policy. RLHF has gained attention in areas like natural language processing
and fine-tuning large language models, where specifying a clear reward function is difficult and
aligning the agent’s behavior with human values or intentions is critical. This method offers a
more robust approach to training AI systems in tasks that require subjective judgment or nuanced
decision-making.

In the context of aligning Large Language Models (LLMs), RLHF plays a crucial role. The process
usually begins with supervised fine-tuning (SFT) of a pre-trained model on task-specific datasets,
which helps the model learn to generate appropriate responses for various queries, resulting in a
reference model denoted as πref. This model is refined using RLHF, which consists of three core
steps.

1. Supervised Fine-tuning (SFT): Pre-trained language models often require an initial supervised
fine-tuning phase to follow human instructions better. This phase aligns the model’s responses with
human expectations. After this phase, we obtain a model πSFT

θ , which serves as the initial policy for
further training.

2. Reward Model Training: Once the SFT model is trained, the next step in RLHF is to train a
reward model rψ(x, y), where x is an input prompt and y is the corresponding response. The reward
model is trained to reflect human preferences between different responses. Given two responses yw
(preferred, or ”win”) and yl (less preferred, or ”lose”), the Bradley-Terry model is commonly used
to model human preferences:

p∗(yw ≻ yl|x) =
erψ(x,yw)

erψ(x,yw) + erψ(x,yl)
, (17)

which can be rewritten as:

p∗(yw ≻ yl|x) = σ(rψ(x, yw)− rψ(x, yl)), (18)

where σ is the sigmoid function. To train the reward model, the following log-loss function is
minimized over a dataset of human preferences D = {(x(i), (y

(i)
w , y

(i)
l ))}Ni=1:

−E(x,yw,yl)∼D[log σ(rψ(x, yw)− rψ(x, yl))]. (19)

3. Fine-tuning with Reinforcement Learning: In the final stage of RLHF, the trained reward model
is kept fixed, and the policy πRL

θ (initialized from πSFT
θ ) is fine-tuned using the PPO algorithm. The

goal is to optimize the policy to maximize the expected reward predicted by the reward model while
maintaining closeness to the supervised fine-tuned model through Kullback-Leibler (KL) divergence
regularization. The optimization problem is formalized as:

max
θ

Ex∼D,y∼πRL
θ (y|x)[rψ(x, y)− β DKL(π

RL
θ (y|x)∥πSFT

θ (y|x))], (20)

where DKL(π
RL
θ (y|x)∥πSFT

θ (y|x)) represents the KL divergence between the RL policy and the SFT
policy. The coefficient β controls the trade-off between encouraging exploration and maintaining
consistency with the supervised model. KL divergence serves two purposes: it acts as an entropy
bonus, encourages exploration, and ensures that the RL policy stays within the supervised fine-tuned
model.

This structured process ensures that LLMs are capable of solving complex tasks and remain aligned
with human preferences and ethical guidelines, which is essential in applications where human
values play a crucial role.

A.1 DERIVING PREFERENCE OPTIMIZATION AS A SUPERVISED LEARNING FRAMEWORK

In traditional RLHF, RL algorithms like PPO are required to optimize the policy since the reward
signal is not differentiable. However, RLHF is often slow, primarily due to the need for sampling
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generations, and could be more stable in practice, especially in distributed settings. As a result, re-
cent research has focused on designing closed-form loss functions that maximize the margin between
preferred and dispreferred generations. One prominent approach is Direct Preference Optimization,
which has gained popularity due to its mathematical equivalence with RLHF.

Direct Preference Optimization (DPO). DPO (Rafailov et al., 2024) leverages offline preference
data to directly optimize the policy without relying on reinforcement learning-based methods like
PPO. DPO demonstrates that the optimal solution to Eq. (20), π∗

θ , satisfies the following equation:

rθ(x, y) = β log
πθ(y|x)
πref(y|x)

+ β logZ(x). (21)

Here, rθ represents the reward model, πθ is the policy model, and πref is the reference model. Both
πθ and πref are initialized from the same SFT (Supervised Fine-Tuning) model, but only πθ is further
optimized during DPO, while πref remains unchanged. Z(x) is the partition function, and β is a
hyper-parameter that controls the intensity of the reward signal.

The preference probability Pθ is derived from pairwise comparisons using the Bradley-Terry model.
Substituting Eq. (21) into Eq. (19) yields the following loss function for DPO:

Ldpo(πθ;πref) = −E(x,yw,yl)∼D

[
log σ

(
β log

πθ(yw|x)
πref(yw|x)

− β log
πθ(yl|x)
πref(yl|x)

)]
. (22)

In Eq. (22), σ denotes the sigmoid function, and D represents the dataset consisting of pairwise
preferences. Each preference triplet (x, yw, yl) includes a prompt x, a preferred response yw, and
a less preferred response yl. This formulation allows DPO to optimize directly on pairwise prefer-
ence data, avoiding the instability of RL methods while maintaining mathematical equivalence with
traditional RLHF.

Identity Preference Optimization (IPO). As the original DPO loss function has shown limitations
in practice, such as overfitting to the preference dataset (Gheshlaghi Azar et al., 2024), IPO was pro-
posed as an extension. IPO introduces a regularization term to the DPO loss to mitigate overfitting
by controlling the gap between the log-likelihood ratios of the preferred and dispreferred outputs for
both the model and the reference model. The IPO loss function is defined as:

LIPO(πθ;πref) = −E(x,yw,yl)∼D

[(
log

(
πθ(yw|x)πref(yl|x)
πθ(yl|x)πref(yw|x)

)
− β−1

2

)2
]
. (23)

By adding this regularization, IPO ensures better generalization of the model, avoiding overfitting
to specific preference patterns and maintaining stability in performance across different datasets.

Kahneman-Tversky Optimization (KTO). In language modeling, collecting large-scale prefer-
ence datasets can be difficult, but it is relatively easier to determine whether an output is desired
or undesired. This challenge has inspired KTO (Ethayarajh et al., 2024), a method that bypasses
the need for detailed preference data by using a binary signal to guide optimization. KTO is based
on prospect theory (Tversky, 2016), directly maximizing the utility of generations using a model of
human decision-making.

KTO has demonstrated higher data efficiency and better handling of imbalanced datasets compared
to DPO. The KTO loss function is defined as:

LKTO(πθ, πref) = Ex,y∼D[w(y)(1− vKTO(x, y;β))], (24)

where vKTO(x, y;β) adjusts based on whether the output is desired or not:

vKTO(x, y;β) =

{
σ(rKTO(x, y)− zref) y ∼ ydesired|x
σ(zref − rKTO(x, y)) y ∼ yundesired|x

, w(y) =

{
λU y ∼ yundesired|x
λD y ∼ ydesired|x

.

Here, zref represents the reference reward, and rKTO(x, y) = β log πθ(y|x)
πref(y|x) . The weighting function

w(y) differentiates between desired and undesired outputs, where λD and λU are hyper-parameters
controlling the weighting of each.
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KTO’s key advantage is its ability to focus on maximizing the reward for desired outputs without
inflating the KL divergence term, effectively balancing utility and regularization. This makes KTO a
practical solution for real-world applications, where collecting detailed preference data is infeasible.

In all three methods—DPO, IPO, and KTO—the policy πθ is directly optimized without the need for
a reward model. We incorporate these methods into our experiments to compare their effectiveness
in various aspects, such as reducing bias and improving adversarial robustness and overall model
performance.

B PROOFS

For simplicity, in all the sections that follow, we assume τ = 1.

B.1 PROOF OF LEMMA 3.1

As seen in DPO and IPO,for preference optimization, using a preference dataset he key objective is
to optimize based on a preference dataset by calculating hπ(yw, yl, x) define in 4. using our defined
policy πθ with the softmax output, we find the following;

hπθ (yw, yl, x) = log

(
πθ(yw|x)πref(yl|x)
πθ(yl|x)πref(yw|x)

)
= log

 efθ(yw,x)∑
yi
efθ(yi,x)

· efref(yl,x)∑
yi
efref(yi,x)

efθ(yl,x)∑
yi
efθ(yi,x)

· efref(yw,x)∑
yi
efref(yi,x)


= log

(
efθ(yw,x)−fθ(yl,x)+fref(yl,x)−fref(yw,x)

)
= fθ(yw, x)− fθ(yl, x) + fref(yl, x)− fref(yw, x)

=
(
Iθ(x)TTθ(yw)− Iθ(x)TTθ(yl)− Iref(x)

TTref(yw) + Iref(x)
TTref(yw)

)
/τ

= Iθ(x)T (Tθ(yw)− Tθ(yl))− Iref(x)
T (Tref(yw)− Tref(yw)). (25)

Assuming the text encoder Tθ is frozen, such that Tθ = Tref = T , the expression simplifies to:

hπθ (yw, yl, x) = (Iθ(x)− Iref(x))
T (T (yw)− T (yl)). (26)

Our loss functions aim to increase hπθ (yw, yl, x), starting from the initialized value of 0 (since πθ
is initially set to πref). With some proximity constraints, as in DPO and IPO:

LDPO(πθ, πref ) = E(x,yl,yw)∼D [− log σ (βhπθ (yw, yl, x))] , (27)

LIPO(πθ;πref) = E(x,yw,yl)∼D

[(
hπθ (yw, yl, x)−

β−1

2

)2
]
. (28)

B.2 PROOF OF PROPOSITION 3.4

By rewriting LIPO(πθ, πref) with x1 and x2, we obtain:

LIPO(πθ, πref) = E(x1,y1,y2)∼D

[(
hπθ (y1, y2, x1, x2)−

β−1

2

)2
]

= E(x1,y1,y2)∼D

[(
log

(
x1

x2

)
− β−1

2

)2
]
. (29)

For ∂LIPO(x1;x2)
∂x1

,
∂LIPO(x1;x2)

∂x1
= 2

(
log

(
x1

x2

)
− β−1

2

)
· 1

x2

x2

x1

= 2

(
log

(
x1

x2

)
− β−1

2

)
· 1

x1
.

(30)
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For ∂LIPO(x1;x2)
∂x2

,
∂LIPO(x1;x2)

∂x2
= 2

(
log

(
x1

x2

)
− β−1

2

)
·
(
−x1

x2
2

x2

x1

)
= 2

(
log

(
x1

x2

)
− β−1

2

)
· −1
x2

(31)

and for the second part we have:

∣∣∣∣∂LDPO(x1;x2)

∂x1
/
∂LDPO(x1;x2)

∂x2

∣∣∣∣ = 2
(
log

(
x1

x2

)
− β−1

2

)
· 1
x1

2
(
log

(
x1

x2

)
− β−1

2

)
· 1
x2

,

=
x2

x1
,

(32)

and finally given that x1 = πθ(yw|x)
πref(yw|x) and x2 = πθ(yl|x)

πref(yl|x) are two probability ratios, where πθ(y|x) ∈
[0, 1] and πref(y|x) ∈ [0, 1]. Assuming πref(y|x) is the probability of the fixed reference model, we
can assume πref(yw|x) = 1

a and πref(yl|x) = 1
b , where (a, b ≥ 1). In this case, we have x1 ∈ [0, a]

and x2 ∈ [0, b]. As the DPO optimization progresses, x1 tends to increase and x2 tends to decrease.
Consequently, πθ(yw|x) will be greater than 1

a , and πθ(yl|x) will be smaller than 1
b . In other words,

this implies that x1 = πθ(yw|x)
πref(yw|x) is greater than 1, x2 = πθ(yl|x)

πref(yl|x) is less than 1, and therefore x2 < x1.

B.3 THE GRADIENT OF THE DPO AND IPO OBJECTIVES

The gradients of these loss functions highlight how the image encoder Iθ is adjusted to align more
closely with the desired output:

∇θLDPO(πθ, πref ) = −β
[
σ

(
− βhπθ (yw, yl, x)

)
︸ ︷︷ ︸
higher when proximal to reference

·
[
∂Iθ
∂θ

]T
(T (yw)− T (yl))︸ ︷︷ ︸

increase Iθ(x) in direction of T (yw) − T (yl)

]
. (33)

∇θLIPO(πθ, πref ) = −
[(

β−1

2
− hπθ (yw, yl, x)

)
︸ ︷︷ ︸
positive when proximal to reference

·
[
∂Iθ
∂θ

]T
(T (yw)− T (yl))︸ ︷︷ ︸

increase Iθ(x) in direction of T (yw) − T (yl)

]
. (34)

These gradients show that both DPO and IPO adjust the image embedding Iθ(x) in the direction of
T (yw)− T (yl), encouraging the model to better align with the preferred outputs.

C FEATURES LEARNED BY OUR METHOD

In Figure 6, we show saliency maps of vanilla CLIP and our fine-tuned model on images with
typographic attacks. CLIP focuses on irrelevant parts of images, especially typographic texts, which
results in false predictions. On the other hand, our model is capable of ignoring the text and focuses
on the visual concept of the image, which results in a correct prediction.

Further, in Figure 7, we provide the predictions of several models on another example image with
a typographic attack. While the fine-tuned model remains robust, correctly classifying the attacked
image, the original model misclassifies it. The inverse model confidently selects the typographic
label but preserves classification accuracy.

These analyses showcase how applying our method forces the model to focus on the suitable features
of the data rather than different sorts of attacks such as typographic.

D LATENT VISUALIZATION USING VQGAN

In this section, we further investigate our fine-tuned CLIP on typographical attack datasets. We use
VQGAN-CLIP (Crowson et al., 2022) as the generative model which uses CLIP in its backbone.
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Image

Saliency map (CLIP)

Saliency map (fine-tuned)

Figure 6: Saliency maps of vanilla CLIP and our fine-tuned model given four different images with
typographic attacks.

(a) Example image showing dumplings af-
ter a typographic attack with misleading text
(“clam chowder“).

a photo of a dumpling a photo of a clam chowder

Probability

Inverse (typo.)

Inverse (clean)

Pretrained (typo)

Pretrained (clean)

Fine-tuned (typo.)

Fine-tuned (clean)

(b) Predictions of six models.

Figure 7: Model predictions given an example image with a typographic attack.

The results are shown in Figure 8. As can be seen, our fine-tuned CLIP completely ignores text in
its image encoder representation and only focuses on visual concepts which increase its reliability
and trustworthiness.

E NEAR ORTHOGONALITY OF W

Previous works such as (Materzynska et al., 2022) also utilized a linear projection for their opti-
mization objective. However, when these projections stray away from near orthogonal projections,
our pretrained knowledge might be lost; this is a simple consequence of the following fact:

f̃(y, x) = I(x)⊤W⊤WT (y)
f(y, x) = I(x)⊤T (y)

}
⇒ f̃(y, x)− f(y, x) = I(x)⊤(W⊤W − I)T (y)

≤ ∥I(x)∥∥T (y)∥∥W⊤W − I∥ ≤ ∥W⊤W − I∥, (35)

where the second equality is a result of CLIPs’ normalized embeddings, as it is evident from Eq.
(35), our deviation from the base model is controlled by ∥W⊤W − I∥, and ideally, we do not want
the deviation to be too large. Previous works such as (Materzynska et al., 2022) added explicit loss
objectives such as R(W ) = ∥W⊤W − I∥F to maintain proximity, and they have demonstrated the
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CLIP

Ours

Figure 8: Retrieved images using VQGAN-CLIP (Crowson et al., 2022) using the captions ”focus”,
”Love”, ”Male police” and ”Time” for image generation. As can be seen, vanilla CLIP puts the
texts on the images, but our model fine-tuned on the typographical attack dataset SUN ignores such
image texts and generates only visual concepts.

importance of this orthogonality loss. However, our method does not let π and πref diverge easily.
Therefore, we expect unitary by default. After training the model using our method, considering that
pretrained knowledge has been maintained, we already expect the matrix W to be almost orthogonal.
Nonetheless, we quantify this proximity in Figure 9.

W⊤W Deviation from Identity matrix Singular value distribution

Singular value

(a) Model trained on achieving typographic attack robustness.
W⊤W Deviation from Identity matrix Singular value distribution

Singular value

(b) Model trained on reversing gender understanding.

Figure 9: On the orthogonality of W : The left plots show the overall heatmaps of W⊤W , where it is
evident that the matrix is close to the identity matrix. The middle plots display the residuals, which
range between −0.03 and 0.03, much smaller than the diagonal values. On the right, we show the
distributions of the singular values, which are concentrated around 1.0, indicating that W is close to
being orthogonal and near the identity matrix.
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The original CLIP model outputs normalized embeddings. Using an arbitrary linear projection can
change the norm of the embeddings and hurt model performance and robustness. However, in
our typical training scenario, this is not much of an issue since our transformation is close to an
orthogonal transformation.

∥Wx∥22 = x⊤W⊤Wx ≤ ∥x∥22∥W⊤W∥ = ∥W⊤W∥ = ∥W⊤W − I + I∥

≤ ∥W⊤W − I∥+ ∥I∥ = 1 + ∥W⊤W − I∥ ≈ 1⇒ Wx

∥Wx∥
≈Wx (36)

However, when we amplify the singular values using matrix exponents, as discussed in Section 3.4,
this difference grows exponentially; therefore, we should be careful and apply normalization.

F DATASETS & BASELINES

While human-curated preference sets are ideal, our methodology can still be effectively applied by
designing the pretraining task in a semi-supervised manner. In both of our experiments, we did
not rely on publicly available preference sets or human-curated preferences. Instead, we designed
them ourselves, tailored to the specific task we wanted to fine-tune on. For instance, in the first
experiment, we generated synthetic typographic attacks and used the original and targeted labels
as preference labels. For debiasing the model, we used a dataset of images showing individuals of
each gender performing various tasks and fine-tuned the model on an auxiliary task of reversing the
model’s gender understanding, again without curated preferences. This demonstrates that preference
optimization can be effectively applied using task-specific, semi-supervised strategies.

F.1 DATASETS

Table 3 presents the statistics of the datasets used in this paper. To evaluate the classification ac-
curacy of our method on both original and typographic images (results in Table 1), we consider 9
datasets: ImageNet-100 (Deng et al., 2009), Caltech101 (Fei-Fei et al., 2004), OxfordPets (Parkhi
et al., 2012), StanfordCars (Krause et al., 2013), Flowers102 (Nilsback & Zisserman, 2008), FGV-
CAirCrafts (Maji et al., 2013), DTD (Cimpoi et al., 2014), SUN397 (Xiao et al., 2016) and Eu-
roSAT (Helber et al., 2019). These datasets are not typographic attack datasets, so we follow the
procedure in (Azuma & Matsui, 2023) to generate typographic attack images from these datasets.
We also consider three real-world datasets designed for typographic attacks in Table 2: Materzynska
(Materzynska et al., 2022), PAINT (Ilharco et al., 2022), and RTA-100 (Azuma & Matsui, 2023).
Figure 10 shows some samples from the RTA-100 dataset. Additionally, for the Gender Bias results
and analysis, we considered the VL-Bias (Zhang et al., 2022) dataset. Also, we consider Food101
(Bossard et al., 2014) for additional experiments, including saliency maps in Section C.

Table 2: Classification accuracy on real-world typographic datasets.

Method Materzynska PAINT RTA-100 Avg.

CLIP 43.27 50.00 47.20 46.82

Materzynska+ 77.78 55.45 57.60 63.61
PAINT 53.22 58.18 53.60 55.00
Defense-Prefix 71.93 63.64 58.00 64.52

Ours (DPO) 78.57 57.29 60.35 65.40
Ours (IPO) 77.98 59.38 65.27 67.54
Ours (KTO) 80.36 56.25 62.19 66.27

F.2 BASELINES

In the typographic attack experiments, we used the following works as our baseline.

• (Materzynska et al., 2022). focus on disentangling the representation of written words and
visual concepts in CLIP’s image encoder. They achieve this through orthogonal projec-
tions, creating subspaces that isolate or eliminate the model’s ability to process text. This
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Figure 10: Samples of the RTA-100 dataset.

Table 3: Datasets statistics.

Dataset Number of
Classes

Number of
Images

ImageNet-100 100 130,000
Caltech101 101 9,146
OxfordPets 37 7,393
StanfordCars 196 16,185
Flowers102 102 8,189
FGVCAircraft 100 10,000
DTD 47 5,640
SUN397 397 108,754
EuroSAT 10 27,000
Food101 101 101,000
Materzynska 19 171
PAINT 89 110
RTA-100 100 1,000
VL-Bias 65 24,000

disentanglement helps reduce text artifacts in image generation and offers defense against
typographic attacks.

• (Ilharco et al., 2022) introduce PAINT (Patching with Interpolation), a method that lin-
early interpolates between the weights of a model before and after fine-tuning on a specific
patching task (θpatch = αθzs+(1−α)θft). This approach improves accuracy on tasks where
the zero-shot CLIP model performs poorly, while preserving performance on tasks like Im-
ageNet. PAINT is computationally efficient, as it doesn’t require additional parameters or
retraining from scratch. It also exhibits ”broad transfer,” where patching on one task can
improve accuracy on related tasks, even with different classes.

• (Azuma & Matsui, 2023) present Defense-Prefix (DP), a technique that inserts a DP token
before a class name in text prompts to make it resilient to typographic attacks. This method
focuses on modifying the text input to CLIP rather than changing the model itself. DP sig-
nificantly enhances accuracy on typographic attack datasets while maintaining the model’s
zero-shot capabilities. The authors also demonstrate its applicability to downstream tasks
like object detection, where it effectively reduces the impact of typographic attacks without
requiring additional training.
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Table 1 does not include a comparison of our method with other baselines on the ImageNet dataset.
This is because the experimental results of other methods were conducted on the ImageNetV2 vali-
dation subset, which was not publicly available at the time. Instead, we present results on a different
subset of the ImageNetV2 dataset, referred to as the “matched-frequency“ subset (Recht et al., 2019).
Table 4 provides a comparison of our method with the pretrained CLIP model under the typographic
attack scenario.

Table 4: Classification accuracy results on the ImageNetV2 dataset.

Method O T

CLIP 54.21 33.23

Ours (DPO) 53.80 49.18
Ours (IPO) 47.61 42.75
Ours (KTO) 53.17 50.35

G HYPERPARAMETER SENSITIVITY ANALYSIS

In this section, we analyze the impact of several hyper-parameters such as β and λ. We utilize the
FOOD101 dataset for training and SUN as the zero-shot dataset to assess model generalization. All
experiments are conducted for 3 epochs, with a learning rate of 2× 10−5, and a coefficient γ = 0.7
in the Beta Moving Average.

G.1 EFFECT OF β

The hyper-parameter β controls the deviation from the policy in the loss function in Eq. (14). To
assess its impact, we experiment with values between 0.01 and 1.5 on both the in-domain and zero-
shot datasets.

As shown in Figure 11, our results indicate that IPO is highly sensitive to β. Additionally, the
performance of both DPO and KTO decreases for excessively large β values on the zero-shot dataset.
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(a) In-domain accuracy.
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(b) Zero-shot accuracy.

Figure 11: Ablation study on the effect of the hyper-parameter β on classification accuracies for
clean and typographic datasets. The results highlight the performance of DPO, IPO, and KTO
models and their impact on in-domain and zero-shot accuracy.

G.2 ABLATION STUDY ON THE REGULARIZATION LOSS LREG AND THE EFFECT OF λ

The hyperparameter λ serves as the weight of the regularization term in our loss function. This
regularizer is crucial for maintaining model performance on clean datasets during debiasing and ad-
versarial training procedures. As shown in Figure 12, we vary λ between 0.01 and 2.0 to analyze its
impact on both in-domain and zero-shot datasets, highlighting a trade-off. In the zero-shot dataset,
excessively large λ values result in improved performance on the clean dataset but a decrease in per-
formance on the typographic dataset. Conversely, very small values of λ (e.g., 0.01) lead to lower
performance on the clean dataset and higher performance on the typographic dataset.
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(a) In-domain accuracy.
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(b) Zero-shot accuracy.

Figure 12: Ablation study on the effect of the hyper-parameter λ on classification accuracies for
clean and typographic datasets. The results highlight the performance of DPO, IPO, and KTO
models and their impact in-domain and zero-shot accuracy.

H BETA MOVING AVERAGE VS. EXPONENTIAL MOVING AVERAGE

Fine-tuning enhances task-specific performance but can degrade a model’s generalization, particu-
larly in zero-shot tasks. Exponential Moving Average (EMA) tends to accelerate this degradation
by diminishing the pre-trained model’s influence over time, whereas Beta Moving Average (BMA)
(Bayer et al., 2018) retains more knowledge from the pre-trained model, achieving a better bal-
ance between task-specific adaptation and generalization. This balance is essential for tasks like
debiasing, adversarial robustness, and zero-shot classification, as evidenced in VLMs for out-of-
distribution detection (Shu et al., 2023). BMA applies a temporal ensemble approach, weighting
each training checkpoint along the fine-tuning trajectory by a Beta distribution to compute the final
model state.

θTE =

T∑
t=0

αt∑T
k=0 αk

· θt, (37)

where αt is determined by a Beta distribution and controls how much influence each model has
in the final ensemble. Unlike EMA, which rapidly diminishes the contribution of earlier models
(including the pre-trained model), BMA ensures that θ0 remains a significant part of the model’s
knowledge, promoting better zero-shot generalization.

The weights αt are drawn from the Beta distribution, normalized over the training steps:

αt = Beta(γ, γ)
(
t+ 0.5

T + 1

)
, (38)

where γ is a hyper-parameter that controls the balance between the pre-trained and fine-tuned mod-
els. By setting γ < 1, we ensure that both the pre-trained and fine-tuned models contribute more
heavily to the final averaged model, thus reducing the forgetting problem of EMA.

To make BMA efficient in practice, it can be implemented as a moving average:

θBMA
t =

∑t−1
k=0 αk · θBMA

k + αt · θt∑t
k=0 αk

, (39)

which allows us to compute the model’s temporal ensemble without needing to store all the inter-
mediate checkpoints.

In all of our reported results, we employed the BMA update strategy to enhance zero-shot perfor-
mance. The specifics of our training procedure are detailed in Algorithm 2, where: x denotes the
original image, x̃ the perturbed image (e.g., typographic image), y the label, and ỹ the adversarial
label (e.g., typographic label). As demonstrated in Table 5, we compare the performance of BMA
and EMA. The hyperparameters β and λ for each method are the same as those used during their
training on ImageNet.
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Table 5: Comparison of the effect of BMA and EMA optimization strategies on the in-domain
dataset (FOOD101) and the zero-shot dataset (SUN).

(a) In-domain accuracy

Original Typographic

Method BMA EMA BMA EMA

CLIP 78.88 51.43

DPO 79.20 78.99 76.14 75.49
IPO 81.94 80.67 78.12 76.90
KTO 81.58 79.99 80.49 80.63

(b) Zero-shot accuracy

Original Typographic

Method BMA EMA BMA EMA

CLIP 61.00 35.33

DPO 61.87 62.26 55.56 54.08
IPO 62.67 61.85 59.22 58.22
KTO 62.37 61.76 60.18 59.20

Algorithm 2 Preference optimization for contrastive learning with BMA details

Require: Pre-trained CLIP model πθ0 , Dataset D = (Dpref,Dreg), Regularization coef. λreg, learn-
ing rate η

1: Initialize BMA model: θBMA
0 ← detach(θ0)

2: Initialize policy: θπ0 ← θ0
3: for t = 1 to T do
4: bpref, breg ← b = {(x, y, x̃, ỹ)} ▷ Get batch of preference / regularization data
5: lpref ← Lpo(πθt−1

, πref; bpref) ▷ Compute preference loss using bpref = {(x̃, y, ỹ)}
6: lreg ← Lreg(πθt−1

, πref; breg) ▷ Compute regularization loss using breg = {(x, x̃)}
7: ltot ← lreg + λreg · lreg ▷ Total loss
8: Update parameters of policy: θπt ← θπt−1 − η∇θπt−1

ltot

9: Calculate αt of the current model as in Eq. (38)
10: Update the BMA model θBMA

t as in Eq. (39)
11: end for
Ensure: The final BMA model θBMA

T

where: x = Original image, x̃ = Typographic image, y = Label, ỹ = Typographic label

I SAMPLE EFFICIENCY ANALYSIS

In this section, we examine how efficiently our model learns with different dataset sizes. This
analysis helps us understand how well the models perform with less data and how their accuracy
changes as the dataset grows (see Figure 13). As expected, based on the foundation in Section 4.2 of
(Gheshlaghi Azar et al., 2024), when there is insufficient training data, DPO tends to overfit, leading
to poor performance on both In-domain and Zero-shot datasets, while KTO performs better in this
situation.

Specifically, we focus on the impact of the number of typographic instances per image and how this
affects both the in-domain and zero-shot generalization performance.

Table 6: Impact of number of typographic instances per image on in-domain (FOOD101) and zero-
shot (SUN) performance. Results show accuracy (%) for different settings.

Number
of Instances

FOOD101 (In-domain) SUN (Zero-shot)

BMA EMA BMA EMA

1 74.85 75.24 58.27 57.47
3 75.22 75.25 58.83 58.46
5 75.59 75.49 58.18 58.07

10 76.25 75.78 57.88 57.29
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(a) In-domain accuracy.
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(b) Zero-shot accuracy.

Figure 13: Ablation study on the effect of dataset size on classification accuracies for clean and
typographic datasets. The results highlight the performance of DPO, IPO, and KTO models and
their impact on in-domain and zero-shot accuracy.

I.1 IMPACT OF NUMBER OF TYPOGRAPHIC INSTANCES PER IMAGE

To investigate the effect of varying the number of typographic instances per image, we conducted
experiments using 1, 3, 5, and 10 typographic variations for each image on the FOOD101 dataset
(in-domain) and the SUN dataset (zero-shot). We evaluate the effect of varying the number of
typographic instances per image on model performance. The results, summarized in Table 6, suggest
that increasing the number of instances does not significantly improve accuracy, indicating that this
augmentation technique may not be effective for enhancing the model’s generalization further.

J PERFORMANCE COMPARISON OF DPO, IPO, AND KTO

In this section, we provide a detailed analysis of the performance of DPO, IPO, and KTO in our
framework. The comparison focuses on key aspects such as sample efficiency, sensitivity to the β
hyperparameter, and performance across different datasets.

J.1 SAMPLE EFFICIENCY

As discussed in Section I and illustrated in Figure 13, KTO demonstrates superior performance in
scenarios where training data is scarce. This result aligns with our expectations, as KTO transforms
each preference triplet (x, yw, yl) ∈ Dpref into two samples: (x, ydesired) and (x, yundesired). By effec-
tively doubling the number of training samples, KTO achieves greater sample efficiency, making it
particularly beneficial in data-constrained settings.

In contrast, DPO performs the poorest among the three methods when training data is insufficient.
This is consistent with the findings of (Gheshlaghi Azar et al., 2024), where DPO’s tendency to
overfit in low-data regimes is highlighted. Overfitting leads to poor generalization, resulting in sub-
optimal performance on both in-domain and zero-shot datasets. IPO, while not as sample-efficient
as KTO, outperforms DPO in such scenarios due to its relatively balanced approach to learning from
preference data.

J.2 SENSITIVITY TO β

Figure 11 highlights the sensitivity of each method to the β hyperparameter, which governs the
strength of the policy regularization. IPO is particularly sensitive to variations in β. Large β values
lead to a uniform policy distribution πθ, causing the model to assign significant probabilities to all
actions. This behavior reduces specificity and harms performance, particularly on zero-shot datasets.

For both DPO and KTO, excessively high β values similarly degrade performance. However, KTO
exhibits slightly greater robustness compared to DPO in this regard, likely due to its ability to lever-
age additional training samples. To achieve reasonable performance with IPO, stronger constraints
are required to retain the policy close to the reference model, as noted by (Gheshlaghi Azar et al.,
2024). Fine-tuning β is therefore crucial for optimizing IPO performance.
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J.3 PERFORMANCE ACROSS DIFFERENT DATASETS

Our ablation results in Figure 13 and the reported results in Table 1 indicate that with sufficient
training data, all three methods—DPO, IPO, and KTO—exhibit comparable performance on both
original and adversarial datasets. This convergence in performance is expected, as the final loss
function in all three methods is derived from the same main objective (Eq. (3)), albeit with different
design principles and optimization approaches. However, under specific conditions, their distinct
characteristics lead to notable differences, highlighting the unique strengths and limitations of each
method.

Nonetheless, specific strengths emerge in certain contexts:

• Synthetic Datasets: As shown in Table 1, KTO outperforms DPO and IPO on synthetic
datasets, achieving better average performance on both the original and typographic vari-
ants.

• Real-World Datasets: As shown in Table 2, IPO achieves the best average performance
among the three methods on real-world datasets.

J.4 WEIGHT ANALYSIS OF DIFFERENT VARIANTS

Regarding the specific analysis of the weight of different variants according to Eq. (10), we provide
the following explanation:

• DPO: The gradient weight is given by:

wpref(yw, yl;x) = σ(−βhπθ (yw, yl, x)),

where σ(·) is the sigmoid function. As −βhπθ (yw, yl, x) increases, the weight decreases,
which results in lower emphasis on inputs with higher values of hπθ , as they are already
good enough. This deemphasizing prevents the model from straying too far from the base
model.

• IPO: The gradient weight is defined as:

wpref(yw, yl;x) =

(
1

2β
− hπθ (yw, yl, x)

)
.

Here, as hπθ (yw, yl, x) increases, the weight linearly decreases, becoming zero at
hπθ (yw, yl, x) = 1

2β . In effect, this would stop the model from straying further than 1
2β ,

ideally optimizing to around hπθ (yw, yl, x) ≈ 1
2β .

• Other Optimization Schemes: Any other preference optimization scheme that uses the
differential reward can be studied. One such case could be ROPO, as introduced by (Liang
et al., 2024b).

We compare the different weighting schemes in Figure 14.

Figure 15 illustrates how the h function correlates with dataset difficulty, highlighting the relation-
ship between model performance and the inherent challenges posed by different datasets.

K EXPERIMENTS ON GRADIENT-BASED ATTACKS

In this experiment, we evaluate the effectiveness of our proposed method in enhancing model ro-
bustness against gradient-based attacks, specifically the Projected Gradient Descent (PGD) attack.
PGD is a widely used method for generating adversarial examples by iteratively perturbing the input
to maximize the model’s loss.

The setup is as follows: we use targeted PGD attacks to create an image x′, which the model predicts
the caption yl for instead of yw, where yl is the target caption of the adversary. Our methodology
from the typographic attack section remains largely the same, with a few adjustments. Specifically,
we attack the model in an online fashion during training. The training accuracies of the model
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Figure 14: Visualization of different weighting schemes.

EuroSat Aircraft Flowers Pets Caltech ImageNet100
Dataset

10

0

10

20

Va
lu

es
 o

f h
(y

w
,y

l;x
)

Figure 15: The violin plot represents the distribution of the h function in DPO method across differ-
ent datasets. From left to right, the datasets progressively become less challenging. By ’challenging,’
we refer to the performance of the pretrained model on the typographic variation of each dataset.
As seen, the dataset on the far right corresponds to our training set, which shows higher and more
accurate h values.

on clean and perturbed data are illustrated in Figures 16 and 17. Additionally, our results on the
validation set of the dataset are provided in Table 7.

In these experiments, for ϵ = 4/255, we used 700 iterations with a batch size of 256, and for
ϵ = 2/255, we used 1000 iterations with a batch size of 256.
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Overall, it is evident that the clean data accuracy remains the same while adversarial robustness is
increasing.

(a) Adversarially perturbed data accuracy (b) Clean data accuracy

Figure 16: Results of training on adversarial robustness, CIFAR10 dataset, ϵ = 2/255.

(a) Adversarially perturbed data accuracy (b) Clean data accuracy

Figure 17: Results of training on adversarial robustness, CIFAR10 dataset, ϵ = 4/255.

Dataset Epsilon (ϵ) Accuracy on Adversarial Images Accuracy on Clean Images
CIFAR-10 2/255 62.89% 98.44%
CIFAR-10 4/255 21.88% 97.27%

Table 7: Evaluation of Model Accuracy on CIFAR-10 Dataset for Clean and Adversarially Perturbed
Images.
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