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Figure 1: Self-improvement by SRPO in terms of win rates against human (WR).
We demonstrate robustness by training on TL;DR and evaluating on XSum. Gains
on Direct Preference Optimization (DPO) are reported in text captions.

ABSTRACT

Both online and offline RLHF methods such as PPO and DPO have been extremely
successful in aligning AI with human preferences. Despite their success, the
existing methods suffer from some fundamental limitations: prominent among
those limitations are (a) models trained with RLHF can learn from mistakes or
negative examples through RL mechanism or contrastive loss at the time of training.
However at the time of inference they are not equipped with an innate mechanism
to correct mistakes by self-improvement. (b) The optimal solution of existing
methods is highly task-dependent and thus it is difficult for them to generalize
to new tasks. Here we propose Self-Improving Robust Preference Optimization
(SRPO), a practical and mathematically principled offline RLHF framework that
address both these challenges. The key idea of SRPO is to cast the problem
of learning from human preferences as a self-improvement process, which can
be mathematically expressed in terms of a min-max objective that aims at joint
optimization of self-improvement policy and the generative policy in an adversarial
fashion. The solution for this optimization problem is independent of the training
task and thus it is robust to its changes. We then show that this objective can be re-
expressed in the form of a non-adversarial offline loss which can be optimized using
standard supervised optimization techniques at scale. We show the effectiveness
of SRPO in terms of AI Win-Rate (WR) against human (GOLD) completions.
In particular, when SRPO is evaluated on the XSUM dataset, it outperforms the
celebrated DPO by a clear margin of 15% after 5 self-revisions, achieving WR
of 90%. Also when evaluated on the challenging Arena-Hard prompts, SRPO
outperforms both DPO and IPO (by 4% without revision and 6% after just one
revision), achieving a WR of 56% against Llama-3.1-8B-Instruct.
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1 INTRODUCTION

Reinforcement Learning from Human Feedback (RLHF) (Christiano et al., 2017) has rapidly become
a standard method to align Large Language Models (LLMs). The main advantage of RLHF is
that it allows the model to learn from its mistakes. So RLHF-tuned model not only learns from
good experiences but also learns from bad experiences and mistakes. Despite being able to learn
from mistakes, the standard RLHF-tuned models are not equipped with an innate mechanism to
self-improve and correct their mistakes at the time of inference (Kumar et al., 2024). So if the model
makes a critical mistake or miss a crucial fact at the time of inference It would be very difficult for the
model to recover from those mistakes. Another practical issue that all the prominent existing RLHF
methods (offline or online) (Ouyang et al., 2022; Rafailov et al., 2023; Azar et al., 2023; Zhao et al.,
2023b; Ahmadian et al., 2024) encounter is that their optimal solution heavily depends on the training
task in terms of the distribution used to generate the preference data (behavior policy) (Munos et al.,
2023; Azar et al., 2023). This makes the existing RLHF methods vulnerable to the cases in which
the evaluation distribution is significantly different from that of the behavior policy (Li et al., 2024b;
Kirk et al., 2024).

To address these challenges, we introduce an alternative approach for aligning LLMs from human
preferences based on more principled and robust foundations. Our goal is to find a solution that is
robust to the changes in the preference dataset, meaning that changes in the distribution from which
the completions are sampled do not affect the final outcome of learning significantly. To achieve
this goal, we exploit the concept of self-improving (Huang et al., 2022; Bai et al., 2022) language
models. By self-improving LLM we refer to a model capable of enhancing its outputs recursively
with each inference iteration. Our Self-Improving Robust Preference Optimization (SRPO) consists
of two back-to-back optimization processes:

(Step 1) In-Context Self-Improving Preference Optimization: The core idea is to learn an
in-context self-improving model π†:1 given an in-context completion y and a context x, the self-
improvement model, π†, outputs an improved completion y′ with probability π†(y

′|y, x) from which
sampled completions are most preferred to completion y according to the human preference model
p. As explained later, it turns out that this problem, in its KL-regularized form, can be expressed as
a well-defined preference optimization problem and solved analytically. Furthermore, the solution
can be estimated through a supervised direct preference optimization scheme similar to the approach
used by Rafailov et al. (2023) and Azar et al. (2023).

(Step 2) Robust Preference Optimization of Generative Model: The next step is to exploit the
self-improvement policy learned in the previous step to learn a generative LLM, π. The key idea here
is that the best generative policy can be identified as a policy that generates completions requiring
minimal improvement using the optimal self-improvement policy π† derived in step 1. This goal
can be achieved by minimizing the objective of step 1 with respect to the generative policy for
in-context completions, y. Similar to step 1, this problem, in its KL-regularized form, can also be
solved analytically in terms of the optimal improvement policy π† and the optimal generative policy
π. More significantly, we show that the solution for steps 1 and 2 can be estimated jointly through a
single supervised direct preference optimization scheme using only a dataset of annotated pair-wise
completions. Thus, one can solve both for the self-improvement policy π† and π by minimizing the
supervised learning objective of SRPO. Unlike existing RLHF methods, this solution is independent
of the behavior policy and is therefore robust to its changes.

As using the self-improvement model in SRPO is a significant departure from the existing paradigm
for RLHF, we provide a high-level motivation for it in Sec. 2. We then formalize our objective for
SRPO in Sec. 3, allowing for the joint optimization of both π† and π by optimizing an adversarial
min-max objective. In Sec. 4 we present our main algorithmic/mathematical contribution: we prove
that the preference probability p can be expressed in terms of the log-likelihoods of the optimal
self-improvement policy π∗

† and the log-likelihoods of the optimal robust generative policy π∗. This
theoretical finding is the key result for SRPO: solving this system of equations through least-squares
regression provides us with the practical supervised SRPO objective that solves for both policy and
robust generative policy through a single supervised objective without any need for reward model
or online inference. Our key theoretical finding is similar to the main result of DPO (Rafailov et al.,

1From now on, a generative LLM will be considered as equivalent to a distribution or policy π from which
we can sample completions y with probability π(y|x), where x is the context or prompt.
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2023) in that both express preference probabilities in terms of the optimal policy. However, DPO
result only holds when preference probabilities conform to Bradly-Terry model (Bradley & Terry,
1952), whereas our key result is general as it holds across all preference models. In Sec. 5 we further
illustrate our argument on the robustness of SRPO by providing an in-depth analysis of the solution
of SRPO and other direct preference optimization methods. We also showcase/analyze the robustness
of SRPO on a simple synthetic example. Finally in Sec. 6 we conduct large-scale experiments on
training LLMs with SRPO both on in-distribution and OOD summarization tasks and we compare
the results with those of standard baselines.

2 LEARNING SELF-IMPROVEMENT POLICY THROUGH PREFERENCE
OPTIMIZATION

The goal of this section is to motivate why learning self-improvement models through preference
optimization can be useful for training a GPT-style language model. One of the main challenges
that affects the performance of sequence-to-sequence GPT-style models is that it is hard for them
to recover from failure at the time of inference. This problem which is known as exposure bias in
the literature of sequence-to-sequence prediction (Xu et al., 2020; Arora et al., 2023; Bengio et al.,
2015), is due to the fact that at the time of inference GPT-style models generate tokens step by step
based on their own previous outputs not the ground truth. This can lead to error accumulation: if the
model generates an incorrect token early in the sequence (or a misleading token that may lead to an
error later down the line), it may propagate errors since its subsequent predictions are based on the
earlier, incorrect (or misleading) token (Arora et al., 2023).

To address this shortcoming of GPT-style models one may fine-tune the model such that it can revise
its incorrect generations through self-improvement/self-refinement process (Madaan et al., 2024; Hu
et al., 2024; Huang et al., 2022; Bai et al., 2022). The simplest way to train such a self-improvement
model is through supervised fine tuning (SFT) (Bai et al., 2022; Wei et al., 2023). To train self-
improvement model through SFT one first need to build a supervised dataset of (x, y, y∗) in which y
is some initial completion than can be correct or incorrect and y∗ is the corrected version of y. The
improvement model can then be fine-tuned using SFT to predict y∗ from the pair (x, y).

However training a SFT self-improvement model is a challenging task for the following reasons.

1. Creating a supervised dataset of (x, y, y∗) is resource intensive and hard to scale (Huang
et al., 2022). Also the existing standard SFT datasets are not created in this way.

2. Moreover SFT training pipeline for self-improvement can simply overfit to predict the
correct answer y∗ only from the context x and ignore the initial answer y altogether or
over-fit to specific refinement pattern (Li et al., 2024a). Thus it may not learn properly how
to improve an incorrect y to the correct y∗.

Alternatively one might ask whether one can generalize the direct preference optimization methods
(e.g., Rafailov et al., 2023; Azar et al., 2023) for learning self-improvement models using the standard
human preference datasets. To answer this question we first try to answer a more fundamental
question:

What is the best use of human preference data?

To address this question, we observe that human preferences inherently encode valuable information
about the relationship between more-preferred and less-preferred completions. This relational
information can be leveraged to refine less-preferred completions, guiding them closer to those that
better align with human preferences. In essence, this process involves learning a model of alignment
mechanics—principles or "rules" that dictate how completions can be iteratively improved in terms
of satisfying human preferences. This approach represents a more natural and intuitive learning task
compared to directly predicting the highest-preferred completion, which is the focus of standard
RLHF methods. Directly learning the optimal completion can be a challenging task, particularly
when the completion space encompasses the full complexity of human language. Furthermore, the
highest-preferred answer is unlikely to exist in the dataset, especially when completions are generated
by large language models (LLMs) that inherently fall short of human-level quality.
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Instead, it is more effective to model the improvement process itself: given a query x and an
initial completion y, the goal is to predict an improved completion y′. This shift in perspective
transforms the task into learning how to enhance subpar outputs from an LLM, rather than aiming to
directly generate perfect responses. By capturing the underlying principles of human preference, the
model can iteratively refine suboptimal completions y, progressively steering them towards the ideal
outcome y∗. This framework not only aligns with the iterative nature of human reasoning but also
facilitates continuous self-improvement, making it a robust and scalable approach for enhancing the
performance of LLMs. In the following, we show how the self-improvement policy, π†, is trained
alongside the generative policy, π, using pair-wise preferences.

3 SRPO OBJECTIVE

We start by introducing some notations required for establishing our theoretical results. Let x and y
denote a context and a completion drawn from the space of all possible contexts X and all possible
completions Y , respectively. The large language model (LLM) is represented by the probability
distribution (policy) π where π(y|x) denotes the probability of the completion y given the context
x. In the remainder of this article, we consider three variants of this base LLM, the trainable model
πtrain (for which we use the short-hand π), the reference model πref and the behavior model µ from
which the completions in pair-wise preference dataset is sampled.

We also introduce the self-improvement π(y′|y, x) as a model that using a context x and in-context
completion (thought) y aims at improving y to a better completion y′. Similar to base LLM, we can
define a reference model πref(y

′|y, x) also for the self-improvement model. Let D = {x, y1, y2} be a
dataset of contexts and completions where y1 and y2 are drawn independently from µ(·|x). We then
present every pair y1, y2 to human annotators who express preferences for one of the completions,
denoted as yw ≻ yl where yw and yl denote the preferred and dis-preferred actions amongst {y1, y2}
respectively. We then write true human preference p(y1 ≻ y2|x) the probability of y1 being preferred
to y2 knowing the context x. The probability comes from the randomness of the choice of the
human we ask for their preference. So p(y1 ≻ y2|x) = Eh[1{h prefers y1 to y2 given x}], where the
expectation is over humans h.

Consider a reference policy πref, and a real positive regularization parameter β ∈ R∗
+. Then, we

define the Self-Improving Robust Preference Optimization objective (SRPO) for every context x as

J∗(x) = min
π

max
π†

E
y1∼π(.|x)

y2∼π†(·|y1,x)

[
p(y2 ≻ y1|x)− βDKL(π†||πref|y1, x) + βDKL(π||πref|x)

]
, (1)

with the KL-regularization terms are defined as: DKL(π†||πref|y1, x) = KL(π†(·|y1, x)||πref(·|y1, x))
and DKL(π||πref|x) = KL(π(·|x)||πref(·|x)).
In nutshell, this objective aims at (i) finding the best self-improvement policy π∗

† that improves every
y1 ∼ π optimally w.r.t. the preference distribution p, i.e., the improved policy is most preferred to
y1, while keeping π∗

† close to the reference policy πref, (ii) minimizing the same objective to find the
best (robust) policy π∗ for which the generated completions can be only minimally improved by the
optimal self-improvement model π∗

† . The min-max nature of this objective makes self-improvement
effective for all policies close to πref as we are optimizing π† in the worst-case scenario.

4 OFFLINE SOLUTION FOR OPTIMIZING SRPO OBJECTIVE

In this section we show that the min-max objective of Eq. (1) can be transformed to a non-adversarial
offline supervised loss. Thus it can be optimized at scale using standard optimization techniques.

4.1 MAIN RESULT

The optimization problem of Eq. (1) is a non-trivial optimization problem that often requires solving
a two-stage adversarial optimization problem through the game-theoretic approaches, which are often
challenging and difficult to scale up, (see e.g., Munos et al., 2023; Rosset et al., 2024; Calandriello
et al., 2024, for how we can use game-theoretic approaches/objectives to train LLMs). Here, inspired
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by Rafailov et al. (2023); Azar et al. (2023), we aim at casting this complex optimization objective as
a standard supervised learning problem that can be solved at scale given an offline pairwise preference
dataset. The main theoretical result of our work is then as follows

Theorem 1. Given a context x and the behavior policy µ(·|x) let µ(y|x) and scalars α ∈ [0, 1],
β > 0 we have that the solution of the min-max objective of Eq. (1) is obtained by minimizing the
following loss

Lα(π, π†) =(1− α)L(π, π†) + αL†(π†), (2)

where L(π, π†) and L†(π†) are defined respectively as follows

L†(π†) = E
y1,y2∼µ(·|x)

x∼ρ

[
p(y2 ≻ y1|x)−

1

2
− β

[
log

(
π†(y2|y1, x)
πref(y2|y1, x)

)
− log

(
π†(y1|y1, x)
πref(y1|y1, x)

)]]2
.

(3)

and

L(π, π†) = E
y1,y2∼µ(·|x)

x∼ρ

[
p(y2 ≻ y1|x)−

1

2
− β

2

[
log

(
π†(y2|y1, x)
πref(y2|y1, x)

)
+ log

(
π(y1|x)
πref(y1|x)

)
(4)

−
(
log

(
π†(y1|y2, x)
πref(y1|y2, x)

)
+ log

(
π(y2|x)
πref(y2|x)

))]]2
.

4.2 PROOF OF MAIN RESULT

To prove the main result we first notice that the inner-maximization in the objective function of
Eq. (1) is an instantiation of KL-regularized RL (Todorov, 2006). Thus it can be solved in analytical
form and its solution is given by

π∗
† (y2|y1, x) =

exp
(

p(y2≻y1|x)
β

)
πref(y2|y1, x)

Z∗(y1, x)
, (5)

where Z∗(y1, x) is the normalization factor. One can easily show that by plugging π∗
† in the objective

function of Eq. (1) we obtain:

J∗(x) = min
π

Ey1∼π(.|x) [β(log(Z
∗(y1, x)) +DKL(π||πref|x))] . (6)

Now by solving Eq. (5) with respect to p(y2 ≻ y1|x) we obtain

p(y2 ≻ y1|x) = β(log(π∗
† (y2|y1, x))− log(πref(y2|y1, x)) + β log(Z∗(y1, x))). (7)

4.2.1 OPTIMIZING THE SELF-IMPROVEMENT POLICY π†

We now prove that minimizing the objective of Eq. (3) gives us the optimal self-improvement policy
(solution to maximization in the objective of Eq. (1)). We first notice that using the convention
p(y1 ≻ y1|x) = 1

2 Eq. (7) implies

1

2
= β(log(π∗

† (y1|y1, x))− log(πref(y1|y1, x))) + β log(Z∗(y1, x)). (8)

Now by subtracting Eq. (7) from Eq. (8) we derive

p(y2 ≻ y1|x) =
1

2
+ β

[
log

(
π∗
† (y2|y1, x)

πref(y2|y1, x)

)
− log

(
π∗
† (y1|y1, x)

πref(y1|y1, x)

)]
. (9)

This is our first key result that express preference p(y2 ≻ y1|x) in terms of the optimal self-
improvement policy π∗

† . So we enforce this equation for all y1 and y2 through minimizing ℓ2 loss
of Eq. (3) which concludes the proof for the self-improvement policy.

5
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4.2.2 JOINT OPTIMIZATION OF THE ROBUST GENERATIVE POLICY π AND THE IMPROVEMENT
POLICY π†

In this section, we show that to optimize the min-max objective of Eq. (1) (i.e., solving for π
and π†) one can optimize the loss of Eq. (4). We start by collecting terms in Eq. (8) which implies
β log(Z∗(y1, x)) = β(log(πref(y1|y1, x))−log(π∗

† (y1|y1, x)))− 1
2 . Thus, the objective of Eq. (6) can

be expressed in terms of log(π∗
† (y1|y1, x)) (up to an additive and multiplicative constant) as follows:

J∗(x) ∝ min
π

Ey1∼π(.|x)

[
log

(
πref(y1|y1, x)
π∗
† (y1|y1, x)

)
+DKL(π||πref|x))

]
. (10)

Solving this objective with respect to π we obtain:

π∗(y|x) =
πref(y|x)
πref(y|y,x)π

∗
† (y|y, x)

Z∗(x)
(11)

where Z∗(x) is the normalization factor. Again by taking the logarithm from both side we obtain
log(π∗(y|x)) = log

(
πref(y|x)
πref(y|y,x)π

∗
† (y|y, x)

)
− log(Z∗(x)). Now by collecting terms in Eq. (7) and

solving for log(π∗
† (y2|y1, x)) we obtain

log(π∗
† (y2|y1, x)) =

p(y2 ≻ y1|x)
β

− log(Z∗(y1, x))− log(πref(y2|y1, x)) (12)

Now by plugging Eq. (5) into Eq. (11) we deduce π∗(y|x) = exp(− log(Z∗(y,x)))πref(y|x)
Z∗(x) . Solving this

equation with respect to log(Z∗(y, x)) implies

log(Z∗(y, x)) = log(πref(y|x))− log(π∗(y|x))− log(Z∗(x)). (13)

Combining Eq. (12) and Eq. (13) for any y1 and y2 we have p(y2≻y1|x)
β − log

(
π∗
† (y2|y1,x)

πref(y2|y1,x)

)
=

log
(

πref(y1|x)
π∗(y1|x)

)
− log(Z∗(x)), and also p(y1≻y2|x)

β − log
(

π∗
† (y1|y2,x)

πref(y1|y2,x)

)
= log

(
πref(y2|x)
π∗(y2|x)

)
−

log(Z∗(x)). Subtracting these two Equations and collecting terms leads to our key result in which
we express the preference p in terms of the self-improvement policy π∗

† and the robust policy π∗.

p(y2 ≻ y1|x) =
1

2
+

β

2

[
log

(
π∗
† (y2|y1, x)

πref(y2|y1, x)

)
+ log

(
π∗(y1|x)
πref(y1|x)

)
(14)

−
(
log

(
π∗
† (y1|y2, x)

πref(y1|y2, x)

)
+ log

(
π∗(y2|x)
πref(y2|x)

))]
.

Remark 2. One may notice the similarity of this result and Eq. 6 of DPO paper (Rafailov et al.,
2023). Both results express p(y2 ≻ y1|x) in terms of the optimal policy π∗. However the result of
DPO only holds under the assumption that p conforms to the Bradly-Terry model, whereas our result
is general and holds for all p.

To optimize for π and π† using Eq. (14) we enforce this equation for all y1 and y2 through minimizing
the expected ℓ2 loss of Eq. (4) which concludes the proof on joint optimization of the generative
policy π and the self-improvement policy through Eq. (4).

4.2.3 PUTTING ALL TOGETHER IN A SINGLE COMBINATION LOSS

We observe that the losses defined in Eq. (4) and Eq. (3) are inherently aligned, as both aim to optimize
the same overall objective given in Eq. (1). This alignment allows us to construct a combined loss
function for SRPO by using a convex combination of these two losses. Specifically, for any α ∈ [0, 1],
minimizing the convex combination of the losses in Eq. (4) and Eq. (3) is equivalent to directly
optimizing the objective in Eq. (1). Mathematically, the full loss of SRPO can be expressed as:

LSRPO = α · LL2 + (1− α) · Lself-improve,

6
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where LL2 corresponds to the loss in Eq. (4) and Lself-improve corresponds to the loss in Eq. (3). By
minimizing this combined loss, we ensure that the optimization process aligns with the original
objective in Eq. (1) regardless of the value of α.

This formulation not only unifies the two loss functions under a single framework but also offers
flexibility in adjusting the relative contributions of the two losses during training. This completes the
proof.

4.3 DERIVING THE SAMPLE LOSS FOR SRPO

Calculating/optimizing the expected loss of Eq. (17) is often not practical as we often have no
direct access to the behavior policy µ. Moreover the space of completions y is often very large
(even infinite). So calculating the full expectation is often impractical. Instead one can estimate the
expected loss Lα of Eq. (17) using a preference dataset D with a sample loss L̂α and optimize this
loss instead. We now focus on deriving the sample loss L̂α for SRPO. Using the standard properties
of ℓ2-norm to replace p(y2 ≻ y1|x) with 1(y2 ≻ y1|x), as p(y2 ≻ y1|x) = E[1(y2 ≻ y1|x)], in the
objective of Eq. (??) allows us to derive the following sample loss for the improvement model:

L̂†(π†) =E(yl,yw,x)∼D

[
1

2
− β

[
log

(
π†(yw|yl, x)
πref(yw|yl, x)

)
− log

(
π†(yl|yl, x)
πref(yl|yl, x)

)]]2
(15)

+ E(yl,yw,x)∼D

[
1

2
− β

[
log

(
π†(yw|yw, x)
πref(yw|yw, x)

)
− log

(
π†(yl|yw, x)
πref(yl|yw, x)

)]]2
.

Using the standard properties of ℓ2-norm to replace p(y2 ≻ y1|x) with 1(y2 ≻ y1|x), as
p(y2 ≻ y1|x) = E[1(y2 ≻ y1|x)], in the loss of Eq. (4) allows us to derive the following sample
loss for both the generative policy and the improvement model:

L̂(π, π†) =E(yl,yw,x)∼D

[
β

[
log

(
π†(yw|yl, x)
πref(yw|yl, x)

)
+ log

(
π(yw|x)
πref(yw|x)

)
(16)

−
(
log

(
π†(yl|yw, x)
πref(yl|yw, x)

)
+ log

(
π(yl|x)
πref(yl|x)

))]
− 1

]2
.

looseness=-1 Furthermore one can use a single LLM (denoted by π) to represent both π
and π† by exploiting the in-context learning power of LLMs (Brown et al., 2020) such that
π†(y

′|y, x) = π(y′|y, x). So for we define the full sample loss of SRPO as the convex combination
of Eq. (16) and Eq. (15):

L̂α(π) =(1− α)L̂(π, π† = π) + αL̂†(π† = π). (17)

The following pseudo-code can be used to train the LLM policy using SRPO objective:

Algorithm 1 Sampled SRPO

Require: Dataset D of prompts, preferred and dis-preferred generations x, yw and yl, respectively.
A reference policy πref and a training policy πθ, regularization coefficient β and combination
coefficient α.

1: Initialize πθ = πref
2: while true do
3: Sample a minibatch B ∈ D
4: Estimate ∇θL̂α(πθ) from Eq. (17) using minibatch B as the dataset
5: Update πθ using ∇θL̂α(πθ) using a standard optimizer
6: end while
7: return πθ
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5 ROBUSTNESS OF SRPO

We provide a comparison between SRPO and prior work on direct preference optimization in terms
of their robustness to the behavior policy µ. In particular we consider as a point of reference DPO
(PPO2) and IPO for which we have a good understanding of the underlying mathematical foundation.

In the case of both IPO and DPO the analytical solution is already well-established and analyzed for
both algorithms (Azar et al., 2023; Rafailov et al., 2023; Tang et al., 2024). In particular the optimal
solution for both IPO and DPO can be expressed explicitly in terms of the soft-max of the expected
preference as follows (Azar et al., 2023):

π∗(y|x) =
exp

(
β−1Ey′∼µ(·|x)[Ψ(p(y ≻ y′|x))]

)
πref(y|x)

Z∗(x)
, (18)

with the choice of Ψ = I(·) and Ψ = σ−1(·) for IPO and DPO, respectively, where σ−1 denotes the
inverse-sigmoid (logit function). Thus, based on Eq. (18), we can see that the solution for both IPO
and DPO has strong dependency on µ in the form of expected preference under the distribution µ. Thus
it may not be robust to changes in µ. This dependency on µ can be especially problematic when we
evaluate the model on out-of-distribution tasks where the desired behavior is very different from µ and
the expected preference under the distribution µ is not a good measure of performance. SRPO solution
on the other hand has no dependency on the behavior policy µ: from Eq. (5) we observe that the opti-
mal self-improvement policy π∗

† is independent of µ and, unlike DPO and IPO cases, is expressed in
terms of softmax of p(y2 ≻ y1|x) for any pair of completions (y1, y2). Also the 0-revision policy π∗

is also completely independent of µ as it is evident from Eq. (11) (i.e., it is proportional to π∗(y|y, x)
which itself is independent of µ). Thus, from a mathematical point of view, SRPO provides a robust so-
lution for the problem of direct preference optimization that does not depend on the behavior policy µ.
To illustrate the differences between SRPO and DPO/IPO regarding
robustness to µ, we consider a simple bandit example. For simplicity,
we assume there is no context x. Consider the simple case where we
have 3 completions y0, y1, and y2, for which the preference model is P =

(
0.5 0.99 0.3
0.01 0.5 0.25
0.7 0.75 0.5

)
.

To test this hypothesis we consider two synthetic dataset of actions generated from distributions
µ0 and µ1: We set µ0 to be a uniform behavior policy (µ0(y0) = µ0(y1) = µ0(y2) =

1
3 ) and µ1

skewed towards y1 (µ1(y1) = 0.7, µ1(y0) = µ1(y2) = 0.15). We then generate a dataset of 10000
pairs from µ0 and µ1 and rate them according to the preference model p (for any pair (y1, y2) we
assign the preference by sampling from p(y1 ≻ y2), that is y1 is preferred to y2 with probability
p(y1 ≻ y2)). This provides us with two dataset of rated completions D0 and D1 for µ0 and µ1. We
then use these two datasets to train the policy π using SRPO, DPO and IPO using a simple Adam
optimizer. In the case of IPO and DPO we optimize only the 0-revision policy π(y) where as for
SRPO we also optimize the self-improvement policy π(y|y′) as well. We set the regularization
constant β for all methods to 1. We consider a uniform distribution πref(y) = 1/3 for all algorithms
and all ys. In the case of SRPO we set the self-improvement reference policy πref(y|y′) = 1/3 for
all y and y′. Also for SRPO we set the combination coefficient α = 0 for simplicity.

We observe that in the case of using uniform µ0 as a behavior policy all methods do the right thing
and their policies converge to solutions in which y2 dominates y1 and y0 (Fig. 2a). However, when
we use the behavior policy µ1 which is skewed towards y1, both DPO and IPO converge to a solution
in which y0 dominates y1 and y2, while the policy of SRPO remains intact (Fig. 2b). Notice that the
SRPO policy is slightly different in both cases. This is to be expected, we are in a finite data setting,
and the sampling distribution will have some influence on the empirical preference model.
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(a) SRPO vs IPO and DPO for uniform µ0.
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(b) SRPO vs. IPO and DPO for skewed µ1.
Figure 2: Learned action probabilities for the synthetic example. SRPO always chooses the correct
arm regardless of skew in µ, while both IPO and DPO are effected by the skew (Fig. (2b)).

2As it is shown by Azar et al. (2023) the optimal solutions of DPO and PPO are identical. So in the remainder
of this section we focus on DPO.
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6 EXPERIMENTS

Setup. In our experiments, we consider the offline direct preference optimization setup to learn from
human preferences (Rafailov et al., 2023). In the offline setting, the goal is to train the LLM policy
directly from a dataset D of pairwise completions (yl, yw) sampled from a behavior policy µ and
annotated by human raters without using a reward model or online inference/RL. We empirically test
the effectiveness of SRPO against two prominent offline preference learning methods, DPO (Rafailov
et al., 2023) and IPO (Azar et al., 2023) as baselines. We make this choice since both these baselines,
have been widely used in solving different language tasks (Tunstall et al., 2023; Wallace et al., 2023;
Yuan et al., 2024a; Pang et al., 2024a; Lin et al., 2023).

Implementation details. SRPO trains simultaneously both the standard generative policy π and the
self-improvement policy π† used for revising the completions of models through a single optimization
process. As explained earlier we only use a single LLM to represent both π and π† (denoted simply
by π). To get the best completions from SRPO we first generate completions in the 0-revision (0-rev.)
model and then we improve these completions with the self-improvement model. We call the revised
outputs 1-revision (1-rev.) completions. We can iterate on the improvement process N times to get
N -revision (N -rev.) completions. We report results from 0-rev. to 5-rev. cases. For IPO and DPO we
also report results on 0-rev. and 1-rev. For revising the completions we use IPO and DPO in in-context
learning mode with the 0-rev. completions used as contexts. In the case of DPO we use the same
loss and hyper-parameters used by (Rafailov et al., 2023). For IPO since the original paper hasn’t
provided the hyper-parameters we used a set of hyper-parameters (i.e., learning rate and regularization
constant β) from the range of hyper-parameters that was working. Furthermore we noticed that the
performance of IPO was not affected significantly by the choice of these hyper-parameters. So no
significant gain is expected by hyper-parameter tuning.

Datasets. We use the Reddit TL;DR Summarization dataset (Stiennon et al., 2020) as the main dataset
for our experiments3. For training, there are 116k human-written instruction following examples with
reference completions (SFT split) while there are 93k human-annotated preference pairs (Preference
split). We also use the XSum dataset test split4 (Narayan et al., 2018), which contains 11.5k total test
examples to measure Out-of-Distribution (OOD) generalization.

Model Setup. We use LLaMA-7B as base model (Touvron et al., 2023) and a single 8 ×
NVIDIA H100 node to conduct all LLaMA-based experiments. We first SFT the model on the
SFT split of the TL;DR dataset, before preference training and use the same πref for all preference
training experiment. Below are details on the recipe for the SFT and preference training stages.

Supervised-fine Tuning. In the SFT stage, we train for 2 epochs, using the AdamW optimizer
(Loshchilov & Hutter, 2019), with β1 = 0.9 and β2 = 0.999, and 0.1 weight-decay. We use a cosine
decay learning rate (Loshchilov & Hutter, 2017) with a peak value of 2× 10−5 and 3% of all steps
being warm-up steps. We use an effective batch-size of 64.

Preference Training. We use our SFT model as πref and we initialize π with πref. All models were
trained for 5 epochs on the TL;DR preference split using the same optimization setting of the AdamW
optimizer as in the SFT stage with 150 warmup steps, and an effective batch-size of 128. To fine-tune
the models, we use the default PEFT settings in the TRL library5, using LoRA (Hu et al., 2022)
with a rank of 16 and an alpha of 32. For SRPO and IPO, we used β = 0.01 with a learning rate of
2× 10−6. For DPO following Rafailov et al. (2023), we used the common β = 0.1 with a learning
rate of 1× 10−6 and a constant learning rate schedule.

Evaluation. We use win rates as computed by gpt-4-0613 (OpenAI, 2023) using the Alpacafarm
framework (Dubois et al., 2024), as the main means for evaluation (See Sec. C.3 for more details).
We measure performance on both in-distribution and OOD examples at test time in the following
manner: For the former, we compute win rates against gold reference completions from the test set
of the TL;DR SFT split. For the latter, we measure win rates against gold completions from the
test set of the XSum dataset. In both settings, we use the first 1,024 samples from each of the test
sets. To estimate the win rate more accurately with confidence intervals, we bootstrap 20 times with
replacement from the 1,024 samples, each time using a sample size of 512. To sample from the

3https://github.com/openai/summarize-from-feedback
4https://huggingface.co/datasets/csebuetnlp/xlsum
5https://github.com/huggingface/trl
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self-improvement policy, we first sample y from π(·|x). Then, using the same policy, we condition
on y to sample from the self-improvement policy, that is y′ ∼ π(·|y, x). We refer to generations from
π(·|x) as 0-rev. (0-rev.) and generations from y′ ∼ π(·|y, x) as 1-rev. (1-rev.) (Bai et al., 2022). For
N -revision, we apply the same procedure, conditioning on the sample from the N -1th-rev.

TL;DR Results. We test our models on the test set split of the TL;DR dataset in Fig 3 (left panel). For
every model, we generate 0-rev. and then use these generations to revise our completions recursively
from 1-rev. to 5-rev. using the self-improvement model, and measure the models’ win rate against the
human-written gold reference summaries.

We observe that in the case of in-distribution TL;DR SRPO 4-rev. generates high-quality summaries
with the highest win rate against the gold summaries, compared to the win-rates of of the
baseline methods, as well as other variants of SRPO 0-rev. Furthermore, we observe that SRPO
self-improvement process manages to consistently improve upon SRPO 0-rev. . However, DPO and
IPO fail to generate an improved sample through the self-improvement step.

Out-of-distribution (OOD) Results. To assess robustness in an OOD setting, we test SRPO models
trained with TL;DR preference dataset on the XSum test split in Fig. 3 (right panel) (Narayan
et al., 2018). As in the TL;DR case, we observe that self-improvement is effective in improving the
performance of SRPO as SRPO 5-rev. generates the highest win rate against the gold summaries,
compared to all revisions of the baseline methods, as well as prior revision of SRPO. We also observe
that the gap in performance between SRPO and the baselines is significantly higher in OOD case.
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Figure 3: We present the win rates of SRPO, IPO, and DPO against human-written summaries (GOLD)
as a function of N -revisions for both in-distribution (TL;DR) and out-of-distribution (XSum) settings.
The curves represent the mean win rates, with shaded areas indicating the st.dev. across 20 bootstrap
evaluations. Notably, DPO and IPO show no improvements in their generations, whereas SRPO
shows significant improvements with each iteration.

7 DISCUSSION AND LIMITATIONS

In this paper we have developed Self-Improving Robust Preference Optimization (SRPO), a robust of-
fline approach for learning from human preferences. We have proven mathematically and empirically,
that unlike other offline methods like DPO and IPO, the solution of SRPO is completely independent
of the behavior policy µ and thus SRPO is completely robust to changes in µ.

Summary of results. We have tested SRPO on standard summarization tasks both on in-distribution
and out-of-distribution (OOD) regimes. We have observed that in the OOD case SRPO outperforms
both IPO and particularly the celebrated DPO by a clear margin in terms of win-rate against gold
completions, while in the in-distribution case there is less difference between SRPO and the baselines.
This is an expected behavior since in-distribution case the robustness aspect of the algorithm matters
less. We have observed that although 0-revision generation of SRPO performs well, we have observed
a boost across the board by revising the generation through the self-improvement model.

Future work and Limitations. In our work we used standard and relatively simple language tasks.
In the future we would like to apply SRPO to more challenging multi-task benchmarks in which the
existing RLHF methods often specialize to a specific set of tasks more represented in the dataset,
whereas SRPO should be more resilient due to its robustness to behavior policy µ.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Arash Ahmadian, Chris Cremer, Matthias Gallé, Marzieh Fadaee, Julia Kreutzer, Olivier Pietquin,
Ahmet Üstün, and Sara Hooker. Back to Basics: Revisiting REINFORCE Style Optimization for
Learning from Human Feedback in LLMs, 2024.

Kushal Arora, Layla El Asri, Hareesh Bahuleyan, and Jackie Chi Kit Cheung. Why exposure bias
matters: An imitation learning perspective of error accumulation in language generation, 2023.
URL https://arxiv.org/abs/2204.01171.

Mohammad Gheshlaghi Azar, Mark Rowland, Bilal Piot, Daniel Guo, Daniele Calandriello, Michal
Valko, and Rémi Munos. A general theoretical paradigm to understand learning from human
preferences, 2023.

Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy Jones,
Anna Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, Carol Chen, Catherine Olsson,
Christopher Olah, Danny Hernandez, Dawn Drain, Deep Ganguli, Dustin Li, Eli Tran-Johnson,
Ethan Perez, Jamie Kerr, Jared Mueller, Jeffrey Ladish, Joshua Landau, Kamal Ndousse, Kamile
Lukosuite, Liane Lovitt, Michael Sellitto, Nelson Elhage, Nicholas Schiefer, Noemi Mercado,
Nova DasSarma, Robert Lasenby, Robin Larson, Sam Ringer, Scott Johnston, Shauna Kravec,
Sheer El Showk, Stanislav Fort, Tamera Lanham, Timothy Telleen-Lawton, Tom Conerly, Tom
Henighan, Tristan Hume, Samuel R. Bowman, Zac Hatfield-Dodds, Ben Mann, Dario Amodei,
Nicholas Joseph, Sam McCandlish, Tom Brown, and Jared Kaplan. Constitutional ai: Harmlessness
from ai feedback, 2022.

Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam Shazeer. Scheduled sampling for sequence
prediction with recurrent neural networks. In Advances in Neural Information Processing Systems,
volume 28, 2015.

Ralph Allan Bradley and Milton E Terry. Rank analysis of incomplete block designs: I. The method
of paired comparisons. Biometrika, 39(3/4):324–345, 1952.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Daniele Calandriello, Daniel Guo, Remi Munos, Mark Rowland, Yunhao Tang, Bernardo Avila Pires,
Pierre Harvey Richemond, Charline Le Lan, Michal Valko, Tianqi Liu, Rishabh Joshi, Zeyu Zheng,
and Bilal Piot. Human alignment of large language models through online preference optimisation,
2024.

Yiding Chen, Yihe Dong, and Tengyu Ma. Provably mitigating overoptimization in rlhf: Your sft loss
is secretly regularizing. arXiv preprint arXiv:2405.16436, 2024. URL https://arxiv.org/
abs/2405.16436.

Paul F. Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences. In Advances in Neural Information Processing
Systems, 2017.

Ganqu Cui, Lifan Yuan, Ning Ding, Guanming Yao, Wei Zhu, Yuan Ni, Guotong Xie, Zhiyuan Liu,
and Maosong Sun. Ultrafeedback: Boosting language models with high-quality feedback. arXiv
preprint arXiv:2310.01377, 2023. URL https://arxiv.org/abs/2310.01377.

Abhimanyu Dubey and 532 others. The llama 3 herd of models. arXiv preprint arXiv:2407.21783,
2024. URL https://arxiv.org/abs/2407.21783.

Yann Dubois, Xuechen Li, Rohan Taori, Tianyi Zhang, Ishaan Gulrajani, Jimmy Ba, Carlos Guestrin,
Percy Liang, and Tatsunori B. Hashimoto. Alpacafarm: A simulation framework for methods that
learn from human feedback, 2024.

Nathan Grinsztajn, Yannis Flet-Berliac, Mohammad Gheshlaghi Azar, Florian Strub, Bill Wu, Eugene
Choi, Chris Cremer, Arash Ahmadian, Yash Chandak, Olivier Pietquin, and Matthieu Geist.
Averaging log-likelihoods in direct alignment. arXiv preprint arXiv:2406.19188, 2024. URL
https://arxiv.org/abs/2406.19188.

11

https://arxiv.org/abs/2204.01171
https://arxiv.org/abs/2405.16436
https://arxiv.org/abs/2405.16436
https://arxiv.org/abs/2310.01377
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2406.19188


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Shangmin Guo, Biao Zhang, Tianlin Liu, Tianqi Liu, Misha Khalman, Felipe Llinares, Alexandre
Rame, Thomas Mesnard, Yao Zhao, Bilal Piot, Johan Ferret, and Mathieu Blondel. Direct language
model alignment from online ai feedback, 2024. URL https://arxiv.org/abs/2402.
04792.

Chi Hu et al. Teaching language models to self-improve by learning from language feedback. arXiv
preprint arXiv:2406.07168, 2024.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In International
Conference on Learning Representations, 2022. URL https://openreview.net/forum?
id=nZeVKeeFYf9.

Jiaxin Huang, Shixiang Shane Gu, Le Hou, Yuexin Wu, Xuezhi Wang, Hongkun Yu, and Jiawei Han.
Large language models can self-improve, 2022.

Robert Kirk, Ishita Mediratta, Christoforos Nalmpantis, Jelena Luketina, Eric Hambro, Edward
Grefenstette, and Roberta Raileanu. Understanding the effects of rlhf on llm generalisation and
diversity, 2024.

Aviral Kumar, Vincent Zhuang, Rishabh Agarwal, Yi Su, John D Co-Reyes, Avi Singh, Kate
Baumli, Shariq Iqbal, Colton Bishop, Rebecca Roelofs, Lei M Zhang, Kay McKinney, Disha
Shrivastava, Cosmin Paduraru, George Tucker, Doina Precup, Feryal Behbahani, and Aleksandra
Faust. Training language models to self-correct via reinforcement learning, 2024. URL https:
//arxiv.org/abs/2409.12917.

Zhuorong Li, Daiwei Yu, Lina Wei, Canghong Jin, Yun Zhang, and Sixian Chan. Soften to defend:
Towards adversarial robustness via self-guided label refinement. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 24776–24785, 2024a.

Ziniu Li, Tian Xu, and Yang Yu. Policy optimization in rlhf: The impact of out-of-preference data,
2024b.

Yong Lin, Lu Tan, Hangyu Lin, Zeming Zheng, Renjie Pi, Jipeng Zhang, Shizhe Diao, Haoxiang
Wang, Han Zhao, Yuan Yao, et al. Speciality vs generality: An empirical study on catastrophic
forgetting in fine-tuning foundation models. arXiv preprint arXiv:2309.06256, 2023.

Hao Liu, Carmelo Sferrazza, and Pieter Abbeel. Chain of hindsight aligns language models with
feedback, 2023.

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts, 2017.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization, 2019.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement
with self-feedback. Advances in Neural Information Processing Systems, 36, 2024.

Yu Meng, Mengzhou Xia, and Danqi Chen. SimPO: Simple preference optimization with a reference-
free reward. arXiv preprint arXiv:2405.14734, 2024. URL https://arxiv.org/abs/2405.
14734.

Rémi Munos, Michal Valko, Daniele Calandriello, Mohammad Gheshlaghi Azar, Mark Rowland,
Zhaohan Daniel Guo, Yunhao Tang, Matthieu Geist, Thomas Mesnard, Andrea Michi, Marco Selvi,
Sertan Girgin, Nikola Momchev, Olivier Bachem, Daniel J. Mankowitz, Doina Precup, and Bilal
Piot. Nash learning from human feedback, 2023.

Shashi Narayan, Shay B. Cohen, and Mirella Lapata. Don’t give me the details, just the summary!
topic-aware convolutional neural networks for extreme summarization. In Ellen Riloff, David
Chiang, Julia Hockenmaier, and Jun’ichi Tsujii (eds.), Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing, pp. 1797–1807, Brussels, Belgium, October-
November 2018. Association for Computational Linguistics. doi: 10.18653/v1/D18-1206. URL
https://aclanthology.org/D18-1206.

12

https://arxiv.org/abs/2402.04792
https://arxiv.org/abs/2402.04792
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://arxiv.org/abs/2409.12917
https://arxiv.org/abs/2409.12917
https://arxiv.org/abs/2405.14734
https://arxiv.org/abs/2405.14734
https://aclanthology.org/D18-1206


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

OpenAI. Gpt-4 technical report, 2023.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton,
Luke Miller amd Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike, and
Ryan Lowe. Training language models to follow instructions with human feedback. In Advances
in Neural Information Processing Systems, 2022.

Richard Yuanzhe Pang, Weizhe Yuan, Kyunghyun Cho, He He, Sainbayar Sukhbaatar, and Jason
Weston. Iterative reasoning preference optimization, 2024a.

Richard Yuanzhe Pang, Weizhe Yuan, Kyunghyun Cho, He He, Sainbayar Sukhbaatar, and Jason
Weston. Iterative reasoning preference optimization, 2024b. URL https://arxiv.org/
abs/2404.19733.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D. Manning, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. arXiv,
2023.

Paul Roit, Johan Ferret, Lior Shani, Roee Aharoni, Geoffrey Cideron, Robert Dadashi, Matthieu
Geist, Sertan Girgin, Léonard Hussenot, Orgad Keller, et al. Factually consistent summarization
via reinforcement learning with textual entailment feedback. arXiv preprint arXiv:2306.00186,
2023.

Corby Rosset, Ching-An Cheng, Arindam Mitra, Michael Santacroce, Ahmed Awadallah, and
Tengyang Xie. Direct nash optimization: Teaching language models to self-improve with general
preferences, 2024.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv, 2017.

Yuda Song, Gokul Swamy, Aarti Singh, J. Andrew Bagnell, and Wen Sun. The importance of online
data: Understanding preference fine-tuning via coverage, 2024. URL https://arxiv.org/
abs/2406.01462.

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec
Radford, Dario Amodei, and Paul F Christiano. Learning to summarize with human feed-
back. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Ad-
vances in Neural Information Processing Systems, volume 33, pp. 3008–3021. Curran Asso-
ciates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/paper/
2020/file/1f89885d556929e98d3ef9b86448f951-Paper.pdf.

Fahim Tajwar, Anikait Singh, Archit Sharma, Rafael Rafailov, Jeff Schneider, Tengyang Xie, Stefano
Ermon, Chelsea Finn, and Aviral Kumar. Preference fine-tuning of llms should leverage suboptimal,
on-policy data, 2024. URL https://arxiv.org/abs/2404.14367.

Yunhao Tang, Zhaohan Daniel Guo, Zeyu Zheng, Daniele Calandriello, Rémi Munos, Mark Rowland,
Pierre Harvey Richemond, Michal Valko, Bernardo Ávila Pires, and Bilal Piot. Generalized
preference optimization: A unified approach to offline alignment, 2024.

Emanuel Todorov. Linearly-solvable markov decision problems. Advances in neural information
processing systems, 19, 2006.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand
Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation language
models, 2023.

Lewis Tunstall, Edward Beeching, Nathan Lambert, Nazneen Rajani, Kashif Rasul, Younes Belkada,
Shengyi Huang, Leandro von Werra, Clémentine Fourrier, Nathan Habib, Nathan Sarrazin, Omar
Sanseviero, Alexander M. Rush, and Thomas Wolf. Zephyr: Direct distillation of lm alignment,
2023.

13

https://arxiv.org/abs/2404.19733
https://arxiv.org/abs/2404.19733
https://arxiv.org/abs/2406.01462
https://arxiv.org/abs/2406.01462
https://proceedings.neurips.cc/paper_files/paper/2020/file/1f89885d556929e98d3ef9b86448f951-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1f89885d556929e98d3ef9b86448f951-Paper.pdf
https://arxiv.org/abs/2404.14367


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Bram Wallace, Meihua Dang, Rafael Rafailov, Linqi Zhou, Aaron Lou, Senthil Purushwalkam,
Stefano Ermon, Caiming Xiong, Shafiq Joty, and Nikhil Naik. Diffusion model alignment using
direct preference optimization. arXiv preprint arXiv:2311.12908, 2023.

Chaoqi Wang, Yibo Jiang, Chenghao Yang, Han Liu, and Yuxin Chen. Beyond reverse kl: Gen-
eralizing direct preference optimization with diverse divergence constraints. arXiv preprint
arXiv:2309.16240, 2023.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le,
and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models, 2023.

Shusheng Xu, Wei Fu, Jiaxuan Gao, Wenjie Ye, Weilin Liu, Zhiyu Mei, Guangju Wang, Chao
Yu, and Yi Wu. Is dpo superior to ppo for llm alignment? a comprehensive study, 2024. URL
https://arxiv.org/abs/2404.10719.

Yifan Xu, Kening Zhang, Haoyu Dong, Yuezhou Sun, Wenlong Zhao, and Zhuowen Tu. Rethinking
exposure bias in language modeling, 2020. URL https://arxiv.org/abs/1910.11235.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
Tree of thoughts: Deliberate problem solving with large language models. Advances in Neural
Information Processing Systems, 36, 2024.

Weizhe Yuan, Richard Yuanzhe Pang, Kyunghyun Cho, Xian Li, Sainbayar Sukhbaatar, Jing Xu, and
Jason Weston. Self-rewarding language models, 2024a.

Weizhe Yuan, Richard Yuanzhe Pang, Kyunghyun Cho, Xian Li, Sainbayar Sukhbaatar, Jing Xu, and
Jason Weston. Self-rewarding language models, 2024b. URL https://arxiv.org/abs/
2401.10020.

Zheng Yuan, Hongyi Yuan, Chuanqi Tan, Wei Wang, Songfang Huang, and Fei Huang. RRHF:
Rank responses to align language models with human feedback without tears. arXiv preprint
arXiv:2304.05302, 2023. URL https://arxiv.org/abs/2304.05302.

Yao Zhao, Rishabh Joshi, Tianqi Liu, Misha Khalman, Mohammad Saleh, and Peter J Liu. SLiC-HF:
Sequence likelihood calibration with human feedback. arXiv, 2023a.

Yao Zhao, Rishabh Joshi, Tianqi Liu, Misha Khalman, Mohammad Saleh, and Peter J. Liu. SLiC-HF:
Sequence likelihood calibration with human feedback. arXiv, 2023b.

14

https://arxiv.org/abs/2404.10719
https://arxiv.org/abs/1910.11235
https://arxiv.org/abs/2401.10020
https://arxiv.org/abs/2401.10020
https://arxiv.org/abs/2304.05302


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A RELATED WORKS

Our work lies in offline preference optimization, a vivid area of research since the introduction of
DPO (Rafailov et al., 2023). Some of the core concepts of this research topic was generalized and
formalized by Azar et al. (2023). In particular they characterized the underlying optimal solution for
a generic preference optimization objective and introduced IPO for addressing some of the related
shortcomings of DPO. SLiC-HF (Zhao et al., 2023a) was introduced around the same time, from a
less RL-centric point of view. All these approaches have been abstracted later by Tang et al. (2024),
the general recipe being to build a contrastive loss function from a convex classification function
and to make use of the analytical solution of the RL problem to learn directly the policy. A common
underlying assumption is that the related RL problem is KL-regularized. This has been generalized to
more general f -divergences by Wang et al. (2023). These are just a few among many works on direct
alignment (Tajwar et al., 2024; Xu et al., 2024; Guo et al., 2024; Yuan et al., 2024b; Song et al., 2024).
However, they all share the fact of not considering self-improvement policies, contrary to SRPO.
Concurrent to this work Kumar et al. (2024) use online RLHF for learning self-correcting model.
However unlike our method which aims at maximizing the preference of improved completion with
respect to the in-context completion their work focuses on maximizing the reward of final answer.
The issue with this approach is that the model can simply ignore the in-context completion and try to
optimize the final completion without paying attention to in-context completions.

Offline preference optimization was introduced as an alternative to more classic RLHF approaches,
such as PPO (Schulman et al., 2017; Ouyang et al., 2022) or more generally policy-gradient-based
approaches (Roit et al., 2023; Ahmadian et al., 2024). These methods require training a reward model
on a preference dataset, usually with a Bradley-Terry model (Bradley & Terry, 1952). The reward
model is then used to fine-tune the LLM via online RL, requiring many generations from the model.
This reward model shares the common issue of DPO and other direct preference alignment methods,
it is dependent on the sampling distribution µ used for constructing the preference dataset, contrary
to SRPO. Moreover, classic RLHF is online, while SRPO is offline and thus more easily scalable.

Some similarities also exist between SRPO and Nash-MD (Munos et al., 2023). Indeed, if in 1
we replace the self-improvement policy π†(·|y, x) by a classic policy π(·|x), then we obtain the
saddle-point optimization problem that Nash-MD solves. However, considering a self-improvement
policy is a core contribution of our work, and it is not anecdotal. From a technical viewpoint, this is
critical for simplifying the minimax problem of Eq. (1) and obtaining a simple offline optimization
problem. NashMD on the other hand adapts algorithms from the game-theory literature and can
only be solved online with all the stability issues of online methods and large inference costs. From
practical point of view self-improvement provides a boost in performance by refining the original
generations of LLM. The feature that Nash-MD is missing. Finally, even though the Nash equilibrium
of Nash-MD does not depend on the sampling distribution µ, it relies on a learned reward function,
with the possible associated caveats mentioned earlier, which is not the case of SRPO.

Our work is also obviously related to the concept of chain of thoughts (Wei et al., 2023; Yao et al.,
2024), self-improvement (Huang et al., 2022) and self-refining LLMs (Madaan et al., 2024). However,
it is very often used as a way of prompting a model to obtain better results, and less often as a
component of a learning paradigm (Liu et al., 2023; Huang et al., 2022). A notable exception is the
recent work of (Pang et al., 2024b) that generalizes DPO to incorporate chain of thoughts. However
the main focus of this work is mostly on improving the chain of thoughts reasoning and not on
self-improvement. To our best knowledge, we propose the first approach that combines training
self-improvement LLMs and offline preference optimization through a single supervised objective,
moreover in a theoretically grounded manner and showing the robustness to µ.

B ABLATION: THE EFFECT OF COMBINATION COEFFICIENT α ON SRPO
PERFORMANCE

SRPO loss of Eq. (17) is a convex combination of two losses L̂ and L̂† via the combination coefficient
α. To understand how both terms affects the loss we plot the win rates both in in-distribution case
and OOD case as a function of α in Fig. 4. We observe that the term that contributes most to the
performance of SRPO is L̂† as in the case of α = 1 when we only use the loss for improvement
model L̂† we almost match the best performance. On the other hand using only L̂ (i.e., α = 0) is not
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enough to achieve top performance. We also observe combining both losses seems to provide some
boost in performance especially in OOD case.
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Figure 4: We present the win rates of SRPO against human-written summaries (GOLD) as a function
of N -revision iterations at different α values. We report their mean (curve) ± st.dev. (shaded area),
across 20 bootstrap evaluations, as described in the Evaluation section. We observe that SRPO
achieves meaningful iterative improvements capability as the value of α increases.

C EXPERIMENTAL DETAILS

We provide the prompt templates used for training and evaluations in section 6.

C.1 PROMPT TEMPLATES

C.1.1 TL;DR

0-revision:

Below is a reddit POST and the corresponding SUBREDDIT and TITLE.
Write a both precise and concise summary of the contents of the
POST.

SUBREDDIT: ${subreddit}
TITLE: ${title}
POST: ${post}
TL;DR:

N-revision:

Below is a reddit POST and the corresponding SUBREDDIT, TITLE, and
an EXAMPLE SUMMARY. Write a both precise and concise summary of

the contents of the POST.

SUBREDDIT: ${subreddit}
TITLE: ${title}
POST: ${post}
EXAMPLE SUMMARY: ${(N-1)th_example_summary}
TL;DR:

C.1.2 XSUM

0-revision:

Below is a news ARTICLE and the corresponding ID and TITLE. Write
a both precise and concise summary of the contents of the ARTICLE.
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ID: ${id}
TITLE: ${title}
ARTICLE: ${article}
TL;DR:

N-revision:

Below is a news ARTICLE and the corresponding ID, TITLE, and an
EXAMPLE SUMMARY. Write a both precise and concise summary of the
contents of the ARTICLE.

ID: ${id}
TITLE: ${title}
ARTICLE: ${article}
EXAMPLE SUMMARY: ${(N-1)th_example_summary}
TL;DR:
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C.2 EXAMPLE SUMMARIES

C.2.1 TL;DR

Post I have a horrible caffeine addiction, and I don’t like sacrificing any of my daily
calories for coffee. I used to drink 5-6 Diet Dr. Peppers a day, but I have
switched to almost exclusively drinking only water most days. I do have a Diet
Dr. Pepper occasionally, and I know that technically it’s okay to probably have
one a day, but I honestly just feel better all around when I drink only water. But
if I don’t have some caffeine in the morning, I will be writhing in the floor in
pain with a skull-pounding headache by mid-day. I know. Ridiculous, right?

So, I went to the vitamin aisle the other day in search of a supplement with
a little caffeine and the only thing I found was One A Day Adult Vitacraves Gummies
with Energy Support. Here’s the website with [nutritional info] One serving is 20
calories and has 90 mg of caffeine. There’s also some vitamin B6, B12, and folic acid
in there that supposedly helps turn food into energy. I have no idea if that’s true. I’ve
been taking them a couple days, and so far I do feel more energized and I haven’t
had any headaches. The issue is that one bottle is around $9 and there are only 60 in
a bottle. You have to take 4 (4!) a day, which is very intriguing considering the brand
name and all. So it’ll cost me around $20 a month. Which is admittedly cheaper than
what I used to spend on Diet Dr. Peppers, but still. I was just curious if anyone else
had a better option for caffeine in a supplement or vitamin?

GOLD The vitamin with caffeine I’m taking is on the expensive side, and I’m a self-
proclaimed tightwad. Anyone have better options?

SRPO 1-
rev.

I have a caffeine addiction and need a little bit of caffeine in my day. I’m taking
One A Day Adult Vitacraves Gummies with Energy Support, but it’s expensive
($20/month). Any other suggestions for a caffeine supplement or vitamin?

SRPO 0-
rev.

I have a terrible caffeine addiction and need a little caffeine in my day. I found a
vitamin with caffeine in it, but it’s pretty expensive. Any other suggestions for a
caffeine supplement or vitamin?

IPO
1-rev.

I have a caffeine addiction and need some in my system every day to function, but I
don’t like sacrificing calories for coffee. I’ve found a supplement with caffeine, but
it’s expensive. Anyone have a better option?

IPO
0-rev.

I have a caffeine addiction and need some in my system every day to function, but I
don’t like sacrificing calories for coffee. I’ve found a supplement with caffeine, but
it’s expensive. Anyone have a better option?

DPO
1-rev.

I have a caffeine addiction and I need a supplement or vitamin that has caffeine
in it to take a couple times a week so that I don’t have a headache all day. Any
recommendations?

DPO
0-rev.

I have a caffeine addiction and I need a supplement or vitamin that has caffeine
in it to take a couple times a week so that I don’t have a headache all day. Any
recommendations?
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C.2.2 XSUM

Article A paper detailing its proposals focuses on the need to avoid a hard border. The
government stresses there should be no physical infrastructure, such as customs
posts, at the border, which has almost 300 crossing points. Critics say the proposals
lack credible detail, with Labour deriding the plans for the border as "a fantasy
frontier". The government’s paper does not envisage CCTV cameras or number plate
recognition technology at the border, or set back from it. Instead, the government
is arguing for a wide-ranging exemption under which small and medium-sized busi-
nesses will not have to comply with any new customs tariffs. Northern Ireland is the
only part of the UK that will share a land border with an EU state post-Brexit. The
future management of that border is a highly sensitive issue and is one of three main
priorities in UK-EU Brexit negotiations. . . . What is the customs union? Countries in
the customs union do not impose tariffs - taxes on imports - on each other’s goods.
Every country inside the union levies the same tariffs on imports from abroad. So, for
example, a 10% tariff is imposed on some cars imported from outside the customs
union, while 7.5% is imposed on roasted coffee. Other goods - such as soap or slate -
have no tariffs. The UK has said it is leaving the EU’s customs union because as a
member it is unable to strike trade deals with other countries.

GOLD The government has said there must be an "unprecedented solution" for the border
between Northern Ireland and the Republic after Brexit.

SRPO 1-
rev.

The UK wants to avoid a hard border between Northern Ireland and the Republic
of Ireland after Brexit by proposing two customs models to the EU. The UK also
dismisses the idea of a customs border in the Irish Sea.

SRPO 0-
rev.

Brexit Secretary David Davis wants a limited transition period to implement new
customs arrangements, including consideration of the "unique circumstances" of
Northern Ireland and the Republic of Ireland. The UK is trying to prevent the need
for physical customs posts along the Irish border.

IPO
1-rev.

Theresa May wants a ’seamless’ border between Northern Ireland and the Republic of
Ireland after Brexit - but the EU may not accept that as viable. The UK government
has published a position paper setting out its ideas on the issue.

IPO
0-rev.

Theresa May wants a ’seamless’ border between the Republic of Ireland and Northern
Ireland after Brexit - but the EU may not accept that as viable. The UK government
has published a position paper setting out its ideas on the issue.

DPO
1-rev.

the UK is proposing a "new customs partnership" or a "highly streamlined customs
arrangement" to prevent a hard border between Northern Ireland and the Republic of
Ireland, in the event of no deal being reached over Brexit.

DPO
0-rev.

the UK is proposing a "new customs partnership" or a "highly streamlined customs
arrangement" to prevent a hard border between Northern Ireland and the Republic of
Ireland, in the event of no deal being reached over Brexit.
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Article It follows a row over the removal of personal items from graves in Torfaen which
were sent to rubbish tips. Nearly 2,000 people signed a petition calling for legislation
on the issue. Public Services Minister Leighton Andrews said he was sympathetic but
believed it was a matter for each local authority to "develop and justify their own
approaches". Torfaen council said in June 2014 it had organised the clear-up because
the over-personalisation of graves in some cemeteries had prompted complaints and
made maintenance difficult. The authority apologised for any upset, but said it had
made efforts to inform people about the clear-up and had allowed them two months
to collect any items they wanted to keep.

GOLD Calls for a Wales-wide law stating what tributes can be placed on children’s graves
have been rejected by ministers.

SRPO
{1,..,5}-rev.

Public Services Minister Leighton Andrews has rejected a petition calling for legisla-
tion on the removal of personal items from graves, saying it was a matter for each
local authority to "develop and justify their own approaches".

SRPO 0-rev. Public Services Minister Leighton Andrews has rejected a petition calling for legisla-
tion on the removal of personal items from graves.

IPO {0,..,5}-
rev.

Vicky Pryce wanted revenge on ex-MP Chris Huhne over him getting points on his
licence, so she took the speeding points for him in 2003, a court heard.

DPO {0,..,5}-
rev.

Vicky Pryce told court she signed speeding points form for her husband Chris Huhne
in revenge for him threatening their marriage over his speeding points.

C.3 EVALUATION DETAILS: CALCULATING WIN-RATE

Calculating the win-rate of AI models, especially in the context of comparisons against human
performance or other models, involves several parameters and methodologies. In particular to
calculate the win-rate of AI model vs. human, we follow these steps:

1. We run the trained model on the same input data as the test set of supervised dataset and we
generate multiple completions.

2. We compare the completions using gpt-4 with the corresponding ground truth completions
of supervised dataset by assigning a point system based on outcomes (e.g., 1 for win, 0.5 for
draw, 0 for loss).

3. We aggregate scores across rounds for each model and calculate the win rate.

In particular we use the following formula to calculate the win rate:

Win Rate =
Number of Wins by Model

Total Rounds

We also report confidence intervals to indicate statistical reliability.

D EXPERIMENTS ON ULTRA FEEDBACK

Setup. In our experiments, we consider the offline direct preference optimization setup to learn from
human preferences (Rafailov et al., 2023). We empirically test the effectiveness of SRPO against
two prominent offline preference learning methods, DPO (Rafailov et al., 2023) and IPO (Azar et al.,
2023) as baselines. We also consider two popular extensions of DPO, namely, SIMIPO (Meng et al.,
2024) and RPO (Chen et al., 2024).

Implementation details. In the case of SRPO and all baselines we optimize the regularization
coefficient β and the learning rate by hyper-parameter sweep over a range of possible parameters.
(In the case of RPO we also sweep over the cross-entropy coefficient.) Also following on the recent
line of work that shows using average log-likelihood is advantageous to using sum log-likelihood

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

in domains with varying completion length we use the average log-likelihood variant of IPO, DPO,
RPO and SRPO (Grinsztajn et al., 2024; Yuan et al., 2023).

Datasets. We use the ShareGPT-Vicuna dataset6 for SFT, a filtered version of the original dataset
containing 53k prompt and completion pairs. For our preference training, we use the binarized version
of the UltraFeedback (Cui et al., 2023)7, which contains 64k pairwise preference data generated by
various AI chatbots. For the win-rate evaluation, we use the Arena-Hard dataset8, which contains
500 prompts, to test against LLaMA-3.1-8B Instruct(Dubey & others, 2024), an official
post-trained version of LLaMA-3.1-8B Base model by the Meta LLaMA team. We generated
completions using LLaMA-3.1-8B Instruct(Dubey & others, 2024) and Arena-Hard prompts,
which we later used to compute win-rates against.

Model Setup. We use LLaMA-3.1-8B Base as base model (Dubey & others, 2024) and a Google
cloud v5litepod-256 TPUs to conduct all LLaMA-based training and evaluation. We first SFT the
LLaMA-3.1-8B Base on the ShareGPT dataset. Then, we used the SFT checkpoint to initialize
all preference training experiments. Below are details on the recipe for the SFT and preference
training stages.

Supervised-fine Tuning. In the SFT stage, we train for a single epoch, using the Adam optimizer
(Loshchilov & Hutter, 2019), with β1 = 0.9 and β2 = 0.999. We use a cosine decay learning
rate scheduler(Loshchilov & Hutter, 2017) with a peak value of 2.5× 10−5, and decay it down to
1.25× 10−5. We use 10 warm-up steps and an effective batch-size of 64.

Preference Training. For a fair comparison across different methods, we initialize all models using
the same SFT checkpoint and train them for 1 epoch using the same Adam optimizer setting: we used
a learning rate of 1.25× 10−6, with a cosine learning rate scheduler to decay it down to 1.25× 10−7,
with 128 warm-up steps, and an effective batch-size of 32. β1 and β2 values of the Adam optimizer
are the same as the ones used for the SFT stage. We used the following values of β: βSRPO = 1.3,
βIPO = 1.0, βDPO = 10.0, βRPO = 10.0, and βSIMIPO = 50.0. For RPO, we used 1.0 × 10−5 as the
weight of cross entropy loss on the preferred completions, which is then scaled by β.

To fine-tune the models, we use a training pipeline based on OPTAX and FLAX libraries of JAX.9

Evaluation. We use win rates as computed by gpt-4o (OpenAI, 2023), as the main means for
evaluation (See Sec. C.3 for more details).

Arena-Hard Results. We test our models using the prompts from the Arena-Hard dataset in Fig 5.
For every model, we generate 0-rev. and then use these generations to revise our completions
recursively from 1-rev. to 5-rev. using the self-improvement model, and measure the models’ win
rate against the generations of LLaMA-3.1-8B-Instruct model for the same prompt.

We observe that srpo 1-rev. produces the highest-quality completions, outperforming both baseline
methods and other revisions of SRPO in terms of win rates by a significant margin. Notably, we also
observe a significant drop in the win rates for all models after just one revision.

6https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_
unfiltered

7https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized
8https://lmsys.org/blog/2024-04-19-arena-hard/
9https://github.com/jax-ml/jax
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Figure 5: We present the win rates of SRPO, IPO, DPO, SIMIPO and RPO against
LLaMA-3.1-8B-Instruct as a function of N -revisions for Arena-hard prompts setting. The
curves represent the mean win rates, with shaded areas indicating the st.dev. across 20 bootstrap
evaluations. Notably SRPO dominates the win-rates of all other methods across all revision steps.
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