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Abstract

Radiology report generation requires precise
alignment between medical imaging findings
and clinically coherent textual descriptions.
While current methods predominantly rely on
either large vision-language models (LVLMs)
for visual grounding or large language models
(LLMs) for medical narrative generation, they
often fail to effectively integrate multimodal
clinical evidence with domain-specific knowl-
edge. This paper proposes a novel multimodal
dual-path framework that synergistically com-
bines LVLMs and LLMs to address these limi-
tations. Our approach establishes a dynamic fu-
sion between LVLMS’ visual-semantic ground-
ing capabilities and LLMs’ clinical knowledge
reasoning. Specifically, we employ a structured
prompting strategy that models the report gener-
ation task into three clinically meaningful sec-
tions and introduces fine-grained multi-label
classification prompts to guide the models, en-
abling more accurate and comprehensive clini-
cal report generation. Experiments on the pub-
lic MIMIC-CXR benchmark demonstrate our
framework’s superiority over state-of-the-art
methods.

1 Introduction

Radiology report generation (RRG) aims to au-
tomatically analyze complex medical images and
generate clinically meaningful textual reports. Ac-
curate and efficient report generation not only alle-
viates the workload of radiologists but also helps
reduce diagnostic errors and ensures consistent doc-
umentation, ultimately improving patient care and
clinical decision-making (Tanno et al., 2025).
Traditional approaches to RRG (Chen et al.,
2020; Nooralahzadeh et al., 2021; Wang et al.,
2023b) primarily employ an encoder-decoder based
framework. While achieving notable progress, the
performance of encoder-decoder based approaches
heavily relies on the volume and quality of labeled
data. However, the RRG datasets are particularly

Ground Truth:
There are small
bilateral pleural
effusions ... The
cardiac silhouette
is mild-to-
moderately
enlarged, ...
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LVLM Output:

Tove Bibasilar opacities are likely atelectasis, ...Thereis no
:pneumothorax. The cardiomediastinal silhouette is normal.

1

:LLM Output:

\There is mild pulmonary edema. There are small bilateral pleural
reffusions. ... The cardiomediastinal silhouette is enlarged. ...

———————————————————————————————————————————————————————————————————————————————————————————

:Ours (LVLM+LLM):
... bilateral pleural effusions. Thereis mild cardiomegaly. ...

Figure 1: Motivation of our proposed dual-path decod-
ing framework. The text in red indicates errors made
by individual models, whereas the text in green denotes
correct output. Our framework can correct the errors of
the LVLM and the LLM by dual-path decoding.

labor-intensive and expensive to obtain. As a result,
the scales of existing widely-used datasets for RRG,
e.g., MIMIC-CXR (0.22M samples) (Johnson et al.,
2019b) is relatively small compared to image cap-
tioning datasets, e.g., Conceptual Captions (3.3M
samples) (Sharma et al., 2018).

Recent advances in large-scale models have
demonstrated their strong capabilitiy in zero-
shot/few-shot learning (Brown et al., 2020) which
may alleviate the data dependency of RRG task.
Existing efforts of applying large scale models
to RRG can be categorized into two dominant
strategies: First, Large Vision Language Models
(LVLMs) (Thawkar et al., 2023; Chen et al.; Wang
et al., 2023c) can ground textual descriptions in
visual content, enabling more accurate extraction
of image-based evidence. However, despite their
strong visual grounding abilities, they often strug-
gle to encode prior medical knowledge and gener-
ate fine-grained details. On the other hand, Large
Language Models (LLMs) have demonstrated re-
markable proficiency in understanding and gen-
erating natural language, as well as in encoding



extensive prior medical knowledge. These meth-
ods (Liu et al., 2025) generate initial reports by
Transformer-based models and refine or correct
them using LLMs. LLLMs can produce contextually
rich texts, but typically lack direct access to visual
information, limiting their ability to reflect image-
based findings in the generated text accurately.

Since LVLMs and LLMs have exhibited com-
plementary strengths and weaknesses for RRG, a
natural thought is: Is it possible and beneficial
to ensemble LVLMs and LLMs for radiology
report generation?

Recent research has begun to explore ensemble
methods (Jiang et al., 2023; Wang et al., 2023a;
Yadav et al., 2023; Yu et al., 2024) that combine
multiple LLMs to enhance overall performance.
However, most existing ensemble approaches fo-
cus on combining multiple language models. In
contrast, we propose a novel framework that, for
the first time, explicitly integrates an LVLM and an
LLM during the decoding step of report generation.
In our approach, the LVLM focuses on accurately
identifying visual information grounded in the im-
age, while the LLM injects additional clinically
relevant information to ensure comprehensive and
nuanced report generation. As illustrated in Figure
1, our method is able to correct the respective errors
of both the LVLM and the LLM after ensemble.

This work proposes a novel multimodal dual-
path framework that integrates both LVLMs and
LLMs for RRG. The framework harnesses the vi-
sual grounding capabilities of LVLMs to extract
clinically relevant evidence from medical images,
and simultaneously utilizes the language skills
of LLMs—prompted with multi-label classifica-
tion results—to generate fine-grained and clinically
accurate reports. By effectively combining the
strengths of both types of models, our framework
delivers more precise, informative, and clinically
useful radiology reports than existing ones.

In summary, our contributions are as follows:

* We propose a novel multimodal dual-path
framework that integrates LVLMs and LLMs
for RRG, effectively leveraging their comple-
mentary strengths to enhance report quality.

* We design a structured prompting strategy that
decomposes the RRG task into three clinically
meaningful sections: disease categories, over-
all impression, and imaging findings.

* We introduce fine-grained multi-label classi-

fication prompts to guide the LLM, enabling
more accurate and comprehensive clinical re-
port generation.

» Extensive experiments on the MIMIC-CXR
public benchmark demonstrate that our
method performs better on clinical efficacy
metrics than state-of-the-art approaches.

2 Related Works

2.1 Radiology Report Generation

Radiology report generation (RRG) aims to auto-
matically report the findings and summarize the im-
pressions from medical images. Early approaches
predominantly adopted encoder-decoder architec-
tures (Chen et al., 2020; Nooralahzadeh et al.,
2021; Yan and Pei, 2022). These methods typi-
cally focused on improving natural language gen-
eration (NLG) metrics, often overlooking clinical
diagnostic performance. To address this, subse-
quent works incorporated fine-grained classifica-
tion tasks (Wang et al., 2023b; Jin et al., 2024) to
enhance the ability to generate clinically relevant
and accurate reports. These approaches typically
follow a two-stage pipeline: first, extracting im-
age features using a pretrained image encoder (e.g.,
ResNet (He et al., 2016)), and then concatenating
these features with textual representations as input
to the report generator. However, this process may
lead to information loss or insufficient semantic
alignment between the image and text modalities.
With the advent of large-scale pretrained mod-
els, recent research has explored leveraging
Large Vision-Language Models (LVLMs) for
RRG (Thawkar et al., 2023; Chen et al.; Wang
et al., 2023c). Jointly processing visual and textual
information, these models enable more effective
cross-modal understanding. Benefiting from exten-
sive pretraining on both general and medical data,
they demonstrate strong capabilities in language
understanding, clinical knowledge, and visual rea-
soning. However, regarding clinical efficiency (i.e.,
diagnostic accuracy), some LVLM-based methods
(Li et al., 2023; Chen et al.) lag behind traditional
Transformer-based approaches, highlighting the
gap between general language ability and clini-
cally meaningful report generation. Therefore, we
believe it is essential to further explore and har-
ness the capabilities of large models, particularly
their medical knowledge and reasoning abilities, to
advance the quality and clinical relevance of RRG.
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Figure 2: Overview of the proposed method.

In this work, we address these limitations by
proposing a multimodal multi-path inference de-
coding strategy that dynamically integrates the
strengths of both LVLMs and Large Language
Models (LLMs).

2.2 Large Model Ensemble

Ensembling has been an effective strategy to ad-
dress the limitations of individual large models and
improve the overall performance and robustness.
Existing ensemble methods can be broadly cate-
gorized into three types: output ensemble, weight
ensemble, and training ensemble. Output ensemble
methods (Jiang et al., 2023; Wang et al., 2023a)
combine the predictions of multiple models, typi-
cally through majority voting, averaging, or more
sophisticated aggregation strategies. This approach
leverages the diversity among models to improve
overall accuracy and reliability. Weight ensem-
ble techniques (Yadav et al., 2023; Yu et al., 2024),
such as model averaging or parameter interpolation,
merge the weights of different models to create a
single, potentially more powerful model. These
methods aim to capture complementary knowledge
encoded in the parameters of individual models.
Training ensemble involves jointly training mul-
tiple models or using techniques like knowledge
distillation (Wan et al., 2024) to encourage collabo-
ration and knowledge sharing among models.

While most prior works focus on ensembling
multiple LLMs, our approach explores the ensem-
ble of an LVLM and an LLM. Specifically, we
leverage the grounding capability of LVLMs to
extract visual evidence from medical images, and
further enhance clinical guidance by prompting the
LLM with multi-label classification results (i.e.,
positive, negative, uncertain, and not mentioned).
This design enables our model to capture more
fine-grained and clinically relevant information, ef-

fectively combining the strengths of both LVL.Ms
and LLMs for RRG.

3 Method

3.1 Problem Setting

The training dataset consists of fully annotated sam-
ples, where each sample is represented as a pair
{x, R}: x = {x1, 29, ..., ,, } denotes a set of chest
X-ray (CXR) images from a patient—potentially
acquired from multiple views (e.g., posteroanterior
and lateral), with n < 3 images typically—and
R is the associated clinical radiology report, com-
posed of words r from a vocabulary V. Each report
comprises two sections: (diagnostic) Impression
and (imaging) Findings. Notably, most existing re-
port generation methods (Chen et al., 2020; Tanida
et al., 2023) only utilize the Findings section. This
work aims to develop a framework that, given a
set of CXR images x of a patient, can generate a
comprehensive radiology report R covering both
Findings and Impression sections.

3.2 Method Overview

The pipeline of our proposed method is illus-
trated in Figure 2. Our method consists of two
stages: 1) model-specific training: We first fine-
tune the LVLM (e.g., Qwen2-VL-7B) and LLM
(e.g., Qwen2-7B) separately. The LVLM is trained
to generate disease categories, Impression, and
Findings given the CXR images, whereas the LLM
is trained to generate the same three sections fol-
lowing a fine-grained multi-label prompt; 2) multi-
modal multi-path inference: We then integrate the
two models to generate a report. Concretely, our
method generates each token in a dual-path manner,
integrating the prediction of both the LVLM and
the LLM to produce a comprehensive radiology
report collaboratively.



Overall Impression: Focal left upper lobe opacity represent
atelectasis, however an early focus of infection cannot be
excluded.

Disease: Lung Opacity, Pneumonia, Enlarged
cardiomediastinum

Findings: Lung volumes are low and the patient is significantly
rotated. The endotracheal tube has been removed. A right
chest wall port catheter tip terminates at the cavoatrial
junction. A focal opacity at the left upper lobe may represent
atelectasis, however early infection is also possible. There is
no pleural effusion. or pneumothorax. Cardiomediastinal
silhouette is mildly enlarged. The imaged upper abdomen is
unremarkable.

Figure 3: The proposed three-part training generation
targets (i.e., ground truth) incorporating rich informa-
tion on (diagnostic) Impression, Disease, and (imaging)
Findings.

3.3 Disease-Aware Comprehensive
Generation Target Construction

Most existing RRG methods (Chen et al., 2020;
Shen et al., 2024; Jin et al., 2024) focus solely
on generating the Findings section, yet overlook
the Impression. We argue that as an indispensable
part of a clinical radiology report, the Impression
contains important information helpful for RRG.
In addition, our preliminary experiments indicate
that LVLMs yield limited recall for the generated
reports even when trained to produce both the Find-
ings and Impression. To address these issues, we
propose to train the model to not only generate the
complete Findings and Impression sections, but
also a list of positive diseases to boost the recall.

Concretely, our training generation targets are
illustrated in Figure 3, structured into three parts:
Impression, Disease, and Findings. The Impres-
sion and Findings sections are directly copied
from the original report written by the radiologist.
For the Disease section, we leverage the 14-class
multi-label annotations provided by (Johnson et al.,
2019b). Then, we enumerate the categories labeled
as “positive” to compose the Disease part (e.g.,
“pleural effusion” and “edema” in Figure 3). The
three-part formulation of our generation targets not
only aligns with the clinical workflow but also ben-
efits the generation of findings through richer, more
structured training signals that explicitly model the
diagnostic reasoning process.

3.4 Decoding Path 1: LVLM Training

In accordance with the generation targets, our
prompt for the LVLM is designed to instruct a struc-
tured output. As shown in Figure 4, the placeholder
<image> represents the image tokens correspond-

<image>\n<image>\n

Please analyze the chest X-ray images and provide a
structured report in the EXACT following format:

Overall Impression: Provide a concise 1-2 sentence
summary of key observations.

Disease: List ONLY the detected disease categories from:
fracture, atelectasis, consolidation, edema, lung lesion, lung
opacity, pneumonia, pneumothorax, cardiomegaly, enlarged
cardiomediastinum, pleural effusion, pleural other, support
devices. If no diseases are detected, output No Finding.
Findings: Write a SINGLE continuous paragraph describing
abnormalities. Connect all findings logically to the diseases
listed.

Important rules:1. Disease section must ONLY contain
detected category words separated by commas. 2. Findings
section must be a single paragraph without segmentation.

Figure 4: The proposed prompt for the LVLM.

ing to the input radiographs. The following part of
the prompt imposes both format and semantic con-
straints: it requires the model to generate the report
in a predefined order: Impression, Disease, and
Findings (we study the order’s impact empirically
in the Experiments section). This prompt enforces
a clinically relevant structure, guiding the model to
generate comprehensive, logically organized, and
interpretable radiology reports.

For training, we employ the instruction tuning
(Wei et al., 2021) to teach the model to understand
our devised prompt and generate the structured
contents. Specifically, given a pretrained LVLM
model parameterised by 6y, we optimize the model
using the standard cross-entropy loss commonly
adopted in autoregressive language modeling:

M
Ly =— Z log poy (rm | X, Py, r<m;Ov), (1)

m=1

where r,,, denotes the m-th token in the target out-
put sequence, P, is the prompt devised for the
LVLM (Figure 4), and r—,, refers to all tokens
prior to position m.

3.5 Decoding Path 2: Multi-Label Prompted
LILM

LVLMs excel at grounding textual descriptions in
visual content, enabling more accurate extraction
of image-based evidence. However, despite their
strong visual grounding abilities, they often strug-
gle to encode prior medical knowledge and gener-
ate fine-grained details. To address this limitation,
we incorporate an LLM into our framework. By
leveraging the LLM’s strong language capabilities
in integrating fine-grained multi-label classification
information, our approach enables the generation



Please generate a chest X-ray report according to the following
criteria: \n{'not mentioned': ['cardiomegaly’, 'lung lesion,
'edema), 'consolidation’, 'pleural other!, 'fracture!, 'no finding),
‘aorta abnormal'], 'positive': ['enlarged cardiomediastinum/,
'lung opacity, 'support devices', 'bone/spine abnormal,
'hemidiaphragm abnormal;, 'lung volume abnormal'],
'negative': ['/pneumothorax; 'pleural effusion'], 'uncertain':
['oneumonia’, 'atelectasis']}

The report must be in the EXACT following format:

Overall Impression: Provide a concise 1-2 sentence summary
of key observations.

Disease: List ONLY the positive disease categories from:
fracture, atelectasis, consolidation, edema, lung lesion, lung
opacity, pneumonia, pneumothorax, cardiomegaly, enlarged
cardiomediastinum, pleural effusion, pleural other, support
devices. If no diseases are detected, output No Finding.
Findings: Write a SINGLE continuous paragraph describing
abnormalities. Connect all findings logically to the diseases
listed.

Important rules:1. Disease section must ONLY contain positive
category words separated by commas.2. Findings section
must be a single paragraph without segmentation.3. Do not
mention diseases that are not detected, including those in the
'not mentioned' and 'uncertain' categories.4. For negative
findings, explicitly state that the negative diseases are not
presentin the report.

Figure 5: The proposed prompt for the LLM.

of more comprehensive and clinically accurate re-
ports that better reflect radiologists’ reporting prac-
tices. Following Jin et al. (2024), we assign one of
the four possible statuses—“not mentioned”, “posi-
tive”, “negative”, or “uncertain”—to each disease
category. The multi-label classification results are
organized in the format of a dictionary: {“not men-
tioned”: C1, ..., Cy; “positive”: Cit1, ..., Cj; “neg-
ative”: Cjy1, ..., Cy; “uncertain”: Cpiq,...,Ck},
where C; represents a specific disease category, and
K is the total number of categories.

During training, we utilize the annotations pub-
lished by PromptMRG (Jin et al., 2024), which pro-
vide K = 18 multi-label classification results for
all training samples. These annotations are used to
construct a comprehensive prompt F, for the LLM,
as illustrated in Figure 5. The LLM (parameterized
by ) is trained to minimize the following loss:

M
Lr=- Z log po, (rm | X, PL,T<m;0L). (2)

m=1

Note that the training generation targets are the
same as the LVLM, as described in Section 3.3. By
including this multi-label classification information
in the prompt, we provide explicit and structured
guidance for the LLM, enabling it to better capture
each disease’s presence, absence, or uncertainty.
For testing, i.e., generating the report for a (set
of) new radiograph(s), we apply PromptMRG to
the input radiograph to obtain the multi-label clas-

sification results, which are then used to compose
the prompt F .

3.6 Multimodal Dual-Path Inference
Decoding

For RRG, relying on a single model often fails
to simultaneously capture both the precise un-
derstanding of visual information and the rich,
domain-specific language required for clinical re-
porting. Specifically, LVLMs excel at extracting
fine-grained visual features directly from medical
images, enabling intuitive recognition of abnormal-
ities. However, their ability to organize complex
clinical narratives and perform sophisticated rea-
soning is often limited. In contrast, LLMs demon-
strate strong capabilities in medical knowledge,
clinical reasoning, and structured text generation,
producing coherent reports that adhere to medical
conventions. Nevertheless, LLMs primarily de-
pend on external prompts for image content and
lack direct visual grounding (Zhao et al., 2024).
As a result, single-path decoding approaches re-
lying on either LVLMs or LLMs are subject to
the inherent limitations of each model, potentially
leading to omissions, inaccurate descriptions, or
a lack of visual evidence in the generated reports.
To tackle this problem, during inference, we em-
ploy both the LLM and the LVLM to generate the
radiology report jointly. Specifically, at each de-
coding step m, both models independently com-
pute the probability distribution over the vocab-
ulary V for the next token, conditioned on the
input image X, the structured prompt Py or P,
and prior tokens r,,,. Denoting the two probabil-
ity distributions by pg, (V | X, Py, r<,;fy) and
po,(V | X, PL,7<m;0L), to integrate the predic-
tions of both models, we compute a weighted aver-
age of the probability distributions, controlled by a
hyperparameter o € [0, 1]:

Pfusion = & * Dgy (V ‘ X, Py, r<m; 9\/)
+ (1 - Oé) *p@L(V | X,PL,T<m;0L). (3)

The next token 7, is then selected by taking the
token with the highest probability in the fused dis-
tribution:

T:n = argmax Pfusion- 4)

Then, we append it to the prior token sequence,
i.e., T<m < [r<m, 7], and proceed to the next
decoding step. This process is repeated until the
end-of-sequence token is generated.



Method Year CE Metrics NLG Metrics
Precision Recall F1 Score | BLEU-1 BLEU-4 METEOR ROUGE

R2Gen 2020 0.333 0.273 0.276 0.353 0.103 0.142 0.277
M2TR 2021 0.240 0.428 0.308 0.378 0.107 0.145 0.272
CliBert 2022 0.397 0.435 0.415 0.383 0.106 0.144 0.275
METrans 2023 0.364 0.309 0.311 0.386 0.124 0.152 0.291
RGRG 2023 0.461 0.475 0.447 0.373 0.126 0.168 0.264
MAN 2024 0.411 0.398 0.389 0.396 0.115 0.151 0.274
PromptMRG 2024 0.501 0.509 0.476 0.398 0.112 0.157 0.268
Qwen2-VL-7B 2024 0.366 0.205 0.213 0.137 0.001 0.147
Deepseek-Janus-Pro-7b | 2025 0.193 0.064 0.096 0.053 0.005 0.138
LLaVA-Med 2023 - - 0.107 - 0.110 - 0.151
Xray-GPT 2023 - - 0.193 - 0.054 - 0.220
CheXagent 2024 - - 0.403 - 0.073 - 0.259
R2GenGPT 2024 - - 0.247 - 0.101 - 0.276
MLRG 2025 0.549 0.468 0.505 0.411 0.158 0.176 0.320
Qwen2-VL-7B-FT - 0.502 0.369 0.404 0.230 0.062 0.148 0.293
Qwen2-VL-7B-IDF - 0.535 0.464 0.497 0.246 0.064 0.144 0.288
Ours - 0.591 0.476 0.527 0.280 0.070 0.144 0.286

Table 1: Comparison with SOTA methods on the Findings section. The best results are in bold, the second best are
underlined. The results for Transformer-based methods and medical LVLMs are from Jin et al. (2024) and Pellegrini

et al. (2023), respectively.

This dual-path decoding approach allows the
model to benefit from both the strong language
modeling and clinical reasoning capabilities of the
LLM, as well as the direct visual grounding pro-
vided by the LVLM. By fusing their predictions at
each step, we achieve more accurate, comprehen-
sive, and clinically faithful report generation.

4 Experiments

4.1 Datasets and Evaluation Metrics

We conduct extensive experiments on the MIMIC-
CXR dataset (Johnson et al., 2019a,b), a large, pub-
licly available collection of chest X-rays paired
with free-text radiology reports. Following the
commonly adopted data split proposed by Chen
et al. (2020), we use 270,790 samples for training,
2,130 for validation, and 3,858 for testing.

Four commonly used natural language genera-
tion (NLG) metrics are employed to evaluate the
quality of generated reports: BLEU (1- and 4-
gram) (Papineni et al., 2002), METEOR (Banerjee
and Lavie, 2005) and ROUGE (Lin, 2004). Follow-
ing Nicolson et al. (2023), we evaluate the clinical
efficiency (CE) metrics—precision, recall, and F1
score by converting the reports into 14 disease clas-
sification labels using CheXbert (Smit et al., 2020)
(for fair comparison and alignment with other meth-
ods, we only evaluate on these 14 categories that
are commonly considered in previous works). Un-

less otherwise specified, we restrict our evaluation
to the Findings section, as most previous works
only considered the Findings section.

4.2 Implementation

The PyTorch (Paszke et al., 2019) framework
(2.4.0) is used for experiments. Images are resized
to 512 x 512 pixels. We use the Qwen2-VL-7B
model (Wang et al., 2024) as our LVLM and the
Qwen2-7B model (Yang et al., 2024) as our LLM.
We use the Low-Rank Adaptation (LoRA) (Hu
et al., 2022) to fine-tune the LVLM and LLM. For
the LVLM, we adopt LoRA with a rank and alpha
of 64, and a dropout of 0.05. The learning rate is
setto 1 x 10™*. We use a weight decay of 0.1 and
a warmup ratio of 0.03. For the LLM, we set the
learning rate to 5 x 1075, with a weight decay of
0.1. We adopt LoRA with a rank of 8 and an alpha
of 16. The batch size is four, with the gradient
accumulation set to four steps. We use a warmup
of 100 steps. Training is performed with the bf16
precision for one epoch.

4.3 Comparison with State-of-the-Art (SOTA)
Report Generation Methods

Table 1 compares our method with SOTA ap-
proaches of three categories: a) Transformer-based
RRG methods, including R2Gen (Chen et al.,
2020), M2TR (Nooralahzadeh et al., 2021), CliB-
ert (Yan and Pei, 2022), METrans (Wang et al.,



f Please generate a chest X-ray report according to the following criteria: {"not mentioned": ["enlarged cardiomediastinum", "lung )
LLM lesion", "lung opacity", "consolidation", "pneumonia", "atelectasis", "pleural other", "fracture", "support devices", "no finding"],
Prompt: "positive": ["cardiomegaly", "edema", "pleural effusion", "aorta abnormal”, "bone/spine abnormal”, "hemidiaphragm abnormal",

"lung volume abnormal"], "negative": ["pneumothorax"], "uncertain": [} ...
"Overall Impression": "1. Small bilateral pleural effusions. 2. Bibasilar-, likely _, however, infection cannot be

LVLM excluded.”

Output: "Disease":'_, _ Pleural Effusion”

"Findings": "There are small bilateral pleural effusions. Bibasilar- are likely _, however, infection cannot be
excluded. There is no pneumothorax. The cardiomediastinal silhouette is normal. Atherosclerotic calcifications are noted in the
aortic arch. There is no free air under the diaphragm.""

"Overall Impression”: "1. Mild pulmonary-. 2. Small bilateral pleural effusions. 3. Mild cardiomegaly. *

LLM "Disease":" Cardiomegaly, EIBHNg, Pleural Effusion*

Output: "Findings": "There is mild pulmonary-. There are small bilateral pleural effusions. There is no pneumothorax. The
cardiomediastinal silhouette is enlarged. The aorta is calcified."

"Overall Impression": "1. No pneumothorax. 2. Small bilateral pleural effusions. 3. Mild cardiomegaly.“

Ours e o ; o

(LVLM+ Q|se§se :"Cardiomegaly, Pleural Effusion A A - _ A

LLM): "Findings": "The lungs are well expanded. There is no pneumothorax. There are small bilateral pleural effusions. There is mild
cardiomegaly. The aorta is tortuous and calcified. There is no focal consolidation concerning for pneumonia.""

“Overall Impression”: “1. Small bilateral pleural effusions. 2. Right upper lobe densities, for which followup chest CT could be
considered on a non-urgent basis.”

Ground “Disease”:“ Cardiomegaly, Pleural Effusion”

Truth: "Findings": "There are small bilateral pleural effusions with fluid extending into the major and minor fissures bilaterally. There is
no focal consolidation. Rounded densities projecting over the peripheral right upper lung zone on the AP view may represent
pulmonary nodules. There is mild pulmonary vascular congestion/interstitial edema. The cardiac silhouette is mild-to-
moderately enlarged, but stable. The mediastinal and hilar contours are within normal limits. Partial calcification of the aortic
knob is noted."

Figure 6: Example of generated radiology reports. Text highlighted with a red background indicates disease
categories corrected by our method (previously misclassified by either LVLM or LLM).

2023b), RGRG (Tanida et al., 2023), MAN (Shen
et al., 2024), and PromptMRG (Jin et al., 2024);
b) LVLMs (without finetuning), such as Qwen2-
VL-7B (Wang et al., 2024) and Deepseek-Janus-
Pro-7b (Chen et al., 2025); c¢) medical LVLMs,
including LLaVA-Med (Li et al., 2023), Xray-
GPT (Thawkar et al., 2023), CheXagent (Chen
et al.), R2GenGPT (Wang et al., 2023c), and
MLRG (Liu et al., 2025).

For the CE Metrics, our model achieves the high-
est precision (0.591) and F1 Score (0.527), as well
as the second-highest recall (0.476), outperforming
all other methods. Specifically, compared to the
best-performing SOTA Transformer-based method
(PromptMRG), our model improves precision by
0.09 and F1 Score by 0.051. Compared with the
best-performing medical LVLM method (MLRG),
our model demonstrates improved precision by
0.042, recall by 0.008, and F1 score by 0.022.

Although our method does not achieve the high-
est scores on standard NLG metrics, we argue that
clinical efficacy metrics are more critical in the con-
text of medical diagnosis, as they directly reflect
model ability to accurately identify and classify
clinical conditions—an essential aspect for support-
ing effective medical decision-making. Moreover,
some works have shown that BLEU exhibits weak
correlation with human judgment, while F1 demon-
strates the strongest (Turian et al., 2003; Callison-

Burch et al., 2006). Other studies (Novikova et al.,
2017) have indicated that widely used metrics such
as BLEU, ROUGE, and METEOR do not consis-
tently align with human evaluations in NLG tasks.
Therefore, we report NLG metrics for reference
purposes and emphasize more on CE metrics when
assessing clinical report generation performance.

Furthermore, Table 1 shows that Qwen2-VL-
7B-IDF (fine-tuned with our proposed three-part
training targets), outperforms the original Qwen2-
VL-7B and Qwen2-VL-7B-FT (fine-tuned with
the Findings section of the reports), underscor-
ing the effectiveness of our structured report gen-
eration. On top of that, our proposed dual-path
multimodal inference—integrating both LVLM
and LLM—achieves even better results than both
Qwen2-VL-7B-FT and Qwen2-VL-7B-IDF. As il-
lustrated in Figure 6, the LVLM incorrectly pre-
dicts two disease categories, atelectasis and lung
opacity. However, in the LLM prompt, these cate-
gories are marked as “not mentioned”, leading to
their effective removal in the final report. Addition-
ally, the LVLM misses the category cardiomegaly,
which is successfully recovered in the final output.
Similarly, the LLM generates an incorrect cate-
gory, edema, which is also corrected in the final
report. These examples demonstrate how the two
models can complement each other, collaboratively
reducing errors and enhancing the overall clinical



CE Metrics NLG Metrics
@ Precision Recall F1 Score | BLEU-1 BLEU-4 METEOR ROUGE
0 0.400 0.198 0.265 0.069 0.015 0.092 0.101
0.2 0.438 0.231 0.302 0.111 0.010 0.105 0.153
04 0.572 0471 0.520 0.280 0.070 0.127 0.275
0.6 0.591 0.476 0.527 0.263 0.063 0.140 0.286
0.8 0.523 0471 0.510 0.216 0.059 0.145 0.286
1.0 0.535 0.464 0.497 0.246 0.064 0.144 0.288

Table 2: Ablation study on the fusion coefficient o for combining LVLM and LLM predictions during inference.

The best results are in bold, the second best are underlined.

CE Metrics NLG Metrics
Precision Recall F1 Score | BLEU-1 BLEU-4 METEOR ROUGE
I-D-F 0.535 0.464 0.497 0.246 0.064 0.144 0.288
D-I-F 0.551 0.440 0.489 0.236 0.061 0.145 0.292
I-F 0.525 0.368 0.433 0.237 0.064 0.137 0.284
D-F 0.534 0.441 0.483 0.232 0.061 0.140 0.285
F 0.502 0.369 0.404 0.230 0.062 0.148 0.293

Table 3: Ablation study on the effect of different section orders and combinations of Impression (I), Disease (D), and
Findings (F) in the composed training targets. The best results are in bold, whereas the second best are underlined.

accuracy of the generated reports.

4.4 Ablation Studies
4.4.1 Effect of Fusion Weight o

Table 2 presents the performance of our frame-
work under different values of the fusion coeffi-
cient v, which controls the relative contribution of
the LVLM and LLM in the report generation pro-
cess. As we can see, when a = 0 (i.e., decoding
using only the LLM), both classification and gen-
eration metrics are significantly lower than other
settings, indicating that the LLM alone is insuffi-
cient for accurate report generation due to the lack
of visual grounding. When a = 1.0 (i.e., decod-
ing using only the LVLM), the performance im-
proves substantially, demonstrating the importance
of visual information. However, the best results
are achieved at o = 0.6, where CE metrics reach
their highest values. These results indicate that a
balanced integration of the LLM and LVLM ef-
fectively leverages their complementary strengths,
leading to superior report generation performance.

4.4.2 Effects of Training Generation Target
Structure and Section Order

Table 3 presents an ablation study on the effect of
different section orders and combinations in the
structure of our proposed training generation tar-
gets, where all results are obtained using only the

LVLM with the visual probability Py. The results
show that using all three sections (I-D-F and D-
I-F) generally leads to better performance across
both CE and NLG metrics. Specifically, the I-D-
F structure achieves the best F1 score and BLEU
scores, while D-I-F yields the highest precision
and competitive results on other metrics. Notably,
removing the Disease categories (D) section (i.e.,
comparing DIF/IDF and IF/F) leads to a substantial
decrease in classification performance, with the F1
score dropping by up to 9.3%, indicating that the
Disease section provides crucial information for
accurate classification. Overall, these results sug-
gest that a comprehensive, information-rich, and
well-ordered training generation target is crucial
for optimal model performance.

5 Conclusion

In this paper, we introduced a novel multimodal
dual-path framework that synergistically integrates
large vision-language models and large language
models for radiology report generation. By estab-
lishing a dynamic fusion between visual-semantic
understanding and clinical knowledge injection,
with a structured prompting strategy employed, our
approach effectively enhances the clinical accuracy
of generated reports, making a big step towards
automatic report generation that are not only fluent
but also clinically reliable.



6 Limitations

Despite the promising improvement over existing
approaches, our method has several limitations
that warrant further investigation. First, the cur-
rent framework relies on the quality of both the
LVLM and LLM base models; improvements in
either backbone could further enhance overall per-
formance. Second, it requires the vocabulary of the
LVLM and LLM components to be aligned, which
may limit the choice of models. In future work,
we plan to explore more advanced fusion strategies
and investigate the use of other large models to
further improve the performance of our framework.
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