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Abstract001

Radiology report generation requires precise002
alignment between medical imaging findings003
and clinically coherent textual descriptions.004
While current methods predominantly rely on005
either large vision-language models (LVLMs)006
for visual grounding or large language models007
(LLMs) for medical narrative generation, they008
often fail to effectively integrate multimodal009
clinical evidence with domain-specific knowl-010
edge. This paper proposes a novel multimodal011
dual-path framework that synergistically com-012
bines LVLMs and LLMs to address these limi-013
tations. Our approach establishes a dynamic fu-014
sion between LVLMs’ visual-semantic ground-015
ing capabilities and LLMs’ clinical knowledge016
reasoning. Specifically, we employ a structured017
prompting strategy that models the report gener-018
ation task into three clinically meaningful sec-019
tions and introduces fine-grained multi-label020
classification prompts to guide the models, en-021
abling more accurate and comprehensive clini-022
cal report generation. Experiments on the pub-023
lic MIMIC-CXR benchmark demonstrate our024
framework’s superiority over state-of-the-art025
methods.026

1 Introduction027

Radiology report generation (RRG) aims to au-028

tomatically analyze complex medical images and029

generate clinically meaningful textual reports. Ac-030

curate and efficient report generation not only alle-031

viates the workload of radiologists but also helps032

reduce diagnostic errors and ensures consistent doc-033

umentation, ultimately improving patient care and034

clinical decision-making (Tanno et al., 2025).035

Traditional approaches to RRG (Chen et al.,036

2020; Nooralahzadeh et al., 2021; Wang et al.,037

2023b) primarily employ an encoder-decoder based038

framework. While achieving notable progress, the039

performance of encoder-decoder based approaches040

heavily relies on the volume and quality of labeled041

data. However, the RRG datasets are particularly042

LVLM Output:
… Bibasilar opacities are likely  atelectasis, …There is no 
pneumothorax.  The cardiomediastinal silhouette is normal.

LLM Output:
There is mild pulmonary edema.  There are small bilateral pleural 
effusions.   … The cardiomediastinal silhouette is enlarged.  …

Ground Truth:
There are small 
bilateral pleural 
effusions … The 
cardiac silhouette 
is  mild-to-
moderately 
enlarged, …

Ours (LVLM+LLM):
... bilateral pleural effusions.  There is mild cardiomegaly.  …

Figure 1: Motivation of our proposed dual-path decod-
ing framework. The text in red indicates errors made
by individual models, whereas the text in green denotes
correct output. Our framework can correct the errors of
the LVLM and the LLM by dual-path decoding.

labor-intensive and expensive to obtain. As a result, 043

the scales of existing widely-used datasets for RRG, 044

e.g., MIMIC-CXR (0.22M samples) (Johnson et al., 045

2019b) is relatively small compared to image cap- 046

tioning datasets, e.g., Conceptual Captions (3.3M 047

samples) (Sharma et al., 2018). 048

Recent advances in large-scale models have 049

demonstrated their strong capabilitiy in zero- 050

shot/few-shot learning (Brown et al., 2020) which 051

may alleviate the data dependency of RRG task. 052

Existing efforts of applying large scale models 053

to RRG can be categorized into two dominant 054

strategies: First, Large Vision Language Models 055

(LVLMs) (Thawkar et al., 2023; Chen et al.; Wang 056

et al., 2023c) can ground textual descriptions in 057

visual content, enabling more accurate extraction 058

of image-based evidence. However, despite their 059

strong visual grounding abilities, they often strug- 060

gle to encode prior medical knowledge and gener- 061

ate fine-grained details. On the other hand, Large 062

Language Models (LLMs) have demonstrated re- 063

markable proficiency in understanding and gen- 064

erating natural language, as well as in encoding 065
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extensive prior medical knowledge. These meth-066

ods (Liu et al., 2025) generate initial reports by067

Transformer-based models and refine or correct068

them using LLMs. LLMs can produce contextually069

rich texts, but typically lack direct access to visual070

information, limiting their ability to reflect image-071

based findings in the generated text accurately.072

Since LVLMs and LLMs have exhibited com-073

plementary strengths and weaknesses for RRG, a074

natural thought is: Is it possible and beneficial075

to ensemble LVLMs and LLMs for radiology076

report generation?077

Recent research has begun to explore ensemble078

methods (Jiang et al., 2023; Wang et al., 2023a;079

Yadav et al., 2023; Yu et al., 2024) that combine080

multiple LLMs to enhance overall performance.081

However, most existing ensemble approaches fo-082

cus on combining multiple language models. In083

contrast, we propose a novel framework that, for084

the first time, explicitly integrates an LVLM and an085

LLM during the decoding step of report generation.086

In our approach, the LVLM focuses on accurately087

identifying visual information grounded in the im-088

age, while the LLM injects additional clinically089

relevant information to ensure comprehensive and090

nuanced report generation. As illustrated in Figure091

1, our method is able to correct the respective errors092

of both the LVLM and the LLM after ensemble.093

This work proposes a novel multimodal dual-094

path framework that integrates both LVLMs and095

LLMs for RRG. The framework harnesses the vi-096

sual grounding capabilities of LVLMs to extract097

clinically relevant evidence from medical images,098

and simultaneously utilizes the language skills099

of LLMs—prompted with multi-label classifica-100

tion results—to generate fine-grained and clinically101

accurate reports. By effectively combining the102

strengths of both types of models, our framework103

delivers more precise, informative, and clinically104

useful radiology reports than existing ones.105

In summary, our contributions are as follows:106

• We propose a novel multimodal dual-path107

framework that integrates LVLMs and LLMs108

for RRG, effectively leveraging their comple-109

mentary strengths to enhance report quality.110

• We design a structured prompting strategy that111

decomposes the RRG task into three clinically112

meaningful sections: disease categories, over-113

all impression, and imaging findings.114

• We introduce fine-grained multi-label classi-115

fication prompts to guide the LLM, enabling 116

more accurate and comprehensive clinical re- 117

port generation. 118

• Extensive experiments on the MIMIC-CXR 119

public benchmark demonstrate that our 120

method performs better on clinical efficacy 121

metrics than state-of-the-art approaches. 122

2 Related Works 123

2.1 Radiology Report Generation 124

Radiology report generation (RRG) aims to auto- 125

matically report the findings and summarize the im- 126

pressions from medical images. Early approaches 127

predominantly adopted encoder-decoder architec- 128

tures (Chen et al., 2020; Nooralahzadeh et al., 129

2021; Yan and Pei, 2022). These methods typi- 130

cally focused on improving natural language gen- 131

eration (NLG) metrics, often overlooking clinical 132

diagnostic performance. To address this, subse- 133

quent works incorporated fine-grained classifica- 134

tion tasks (Wang et al., 2023b; Jin et al., 2024) to 135

enhance the ability to generate clinically relevant 136

and accurate reports. These approaches typically 137

follow a two-stage pipeline: first, extracting im- 138

age features using a pretrained image encoder (e.g., 139

ResNet (He et al., 2016)), and then concatenating 140

these features with textual representations as input 141

to the report generator. However, this process may 142

lead to information loss or insufficient semantic 143

alignment between the image and text modalities. 144

With the advent of large-scale pretrained mod- 145

els, recent research has explored leveraging 146

Large Vision-Language Models (LVLMs) for 147

RRG (Thawkar et al., 2023; Chen et al.; Wang 148

et al., 2023c). Jointly processing visual and textual 149

information, these models enable more effective 150

cross-modal understanding. Benefiting from exten- 151

sive pretraining on both general and medical data, 152

they demonstrate strong capabilities in language 153

understanding, clinical knowledge, and visual rea- 154

soning. However, regarding clinical efficiency (i.e., 155

diagnostic accuracy), some LVLM-based methods 156

(Li et al., 2023; Chen et al.) lag behind traditional 157

Transformer-based approaches, highlighting the 158

gap between general language ability and clini- 159

cally meaningful report generation. Therefore, we 160

believe it is essential to further explore and har- 161

ness the capabilities of large models, particularly 162

their medical knowledge and reasoning abilities, to 163

advance the quality and clinical relevance of RRG. 164
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Figure 2: Overview of the proposed method.

In this work, we address these limitations by165

proposing a multimodal multi-path inference de-166

coding strategy that dynamically integrates the167

strengths of both LVLMs and Large Language168

Models (LLMs).169

2.2 Large Model Ensemble170

Ensembling has been an effective strategy to ad-171

dress the limitations of individual large models and172

improve the overall performance and robustness.173

Existing ensemble methods can be broadly cate-174

gorized into three types: output ensemble, weight175

ensemble, and training ensemble. Output ensemble176

methods (Jiang et al., 2023; Wang et al., 2023a)177

combine the predictions of multiple models, typi-178

cally through majority voting, averaging, or more179

sophisticated aggregation strategies. This approach180

leverages the diversity among models to improve181

overall accuracy and reliability. Weight ensem-182

ble techniques (Yadav et al., 2023; Yu et al., 2024),183

such as model averaging or parameter interpolation,184

merge the weights of different models to create a185

single, potentially more powerful model. These186

methods aim to capture complementary knowledge187

encoded in the parameters of individual models.188

Training ensemble involves jointly training mul-189

tiple models or using techniques like knowledge190

distillation (Wan et al., 2024) to encourage collabo-191

ration and knowledge sharing among models.192

While most prior works focus on ensembling193

multiple LLMs, our approach explores the ensem-194

ble of an LVLM and an LLM. Specifically, we195

leverage the grounding capability of LVLMs to196

extract visual evidence from medical images, and197

further enhance clinical guidance by prompting the198

LLM with multi-label classification results (i.e.,199

positive, negative, uncertain, and not mentioned).200

This design enables our model to capture more201

fine-grained and clinically relevant information, ef-202

fectively combining the strengths of both LVLMs 203

and LLMs for RRG. 204

3 Method 205

3.1 Problem Setting 206

The training dataset consists of fully annotated sam- 207

ples, where each sample is represented as a pair 208

{x, R}: x = {x1, x2, ..., xn} denotes a set of chest 209

X-ray (CXR) images from a patient—potentially 210

acquired from multiple views (e.g., posteroanterior 211

and lateral), with n ≤ 3 images typically—and 212

R is the associated clinical radiology report, com- 213

posed of words r from a vocabulary V . Each report 214

comprises two sections: (diagnostic) Impression 215

and (imaging) Findings. Notably, most existing re- 216

port generation methods (Chen et al., 2020; Tanida 217

et al., 2023) only utilize the Findings section. This 218

work aims to develop a framework that, given a 219

set of CXR images x of a patient, can generate a 220

comprehensive radiology report R covering both 221

Findings and Impression sections. 222

3.2 Method Overview 223

The pipeline of our proposed method is illus- 224

trated in Figure 2. Our method consists of two 225

stages: 1) model-specific training: We first fine- 226

tune the LVLM (e.g., Qwen2-VL-7B) and LLM 227

(e.g., Qwen2-7B) separately. The LVLM is trained 228

to generate disease categories, Impression, and 229

Findings given the CXR images, whereas the LLM 230

is trained to generate the same three sections fol- 231

lowing a fine-grained multi-label prompt; 2) multi- 232

modal multi-path inference: We then integrate the 233

two models to generate a report. Concretely, our 234

method generates each token in a dual-path manner, 235

integrating the prediction of both the LVLM and 236

the LLM to produce a comprehensive radiology 237

report collaboratively. 238
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Overall Impression: Focal left upper lobe opacity represent 
atelectasis, however an  early focus of infection cannot be 
excluded.
Disease: Lung Opacity, Pneumonia, Enlarged 
cardiomediastinum
Findings: Lung volumes are low and the patient is significantly 
rotated. The  endotracheal tube has been removed.  A right 
chest wall port catheter tip  terminates at the cavoatrial 
junction.   A focal opacity at the left upper  lobe may represent 
atelectasis, however early infection is also possible.  There is 
no pleural effusion. or pneumothorax. Cardiomediastinal 
silhouette is  mildly enlarged.  The imaged upper abdomen is 
unremarkable.

Figure 3: The proposed three-part training generation
targets (i.e., ground truth) incorporating rich informa-
tion on (diagnostic) Impression, Disease, and (imaging)
Findings.

3.3 Disease-Aware Comprehensive239

Generation Target Construction240

Most existing RRG methods (Chen et al., 2020;241

Shen et al., 2024; Jin et al., 2024) focus solely242

on generating the Findings section, yet overlook243

the Impression. We argue that as an indispensable244

part of a clinical radiology report, the Impression245

contains important information helpful for RRG.246

In addition, our preliminary experiments indicate247

that LVLMs yield limited recall for the generated248

reports even when trained to produce both the Find-249

ings and Impression. To address these issues, we250

propose to train the model to not only generate the251

complete Findings and Impression sections, but252

also a list of positive diseases to boost the recall.253

Concretely, our training generation targets are254

illustrated in Figure 3, structured into three parts:255

Impression, Disease, and Findings. The Impres-256

sion and Findings sections are directly copied257

from the original report written by the radiologist.258

For the Disease section, we leverage the 14-class259

multi-label annotations provided by (Johnson et al.,260

2019b). Then, we enumerate the categories labeled261

as “positive” to compose the Disease part (e.g.,262

“pleural effusion” and “edema” in Figure 3). The263

three-part formulation of our generation targets not264

only aligns with the clinical workflow but also ben-265

efits the generation of findings through richer, more266

structured training signals that explicitly model the267

diagnostic reasoning process.268

3.4 Decoding Path 1: LVLM Training269

In accordance with the generation targets, our270

prompt for the LVLM is designed to instruct a struc-271

tured output. As shown in Figure 4, the placeholder272

<image> represents the image tokens correspond-273

<image>\n<image>\n
Please analyze the chest X-ray images and provide a 
structured report in the EXACT following format:
Overall Impression: Provide a concise 1-2 sentence 
summary of key observations.
Disease: List ONLY the detected disease categories from: 
fracture, atelectasis, consolidation, edema, lung lesion, lung 
opacity, pneumonia, pneumothorax, cardiomegaly, enlarged 
cardiomediastinum, pleural effusion, pleural other, support 
devices. If no diseases are detected, output No Finding. 
Findings: Write a SINGLE continuous paragraph describing 
abnormalities. Connect all findings logically to the diseases 
listed. 
Important rules:1. Disease section must ONLY contain 
detected category words separated by commas. 2. Findings 
section must be a single paragraph without segmentation. 

Figure 4: The proposed prompt for the LVLM.

ing to the input radiographs. The following part of 274

the prompt imposes both format and semantic con- 275

straints: it requires the model to generate the report 276

in a predefined order: Impression, Disease, and 277

Findings (we study the order’s impact empirically 278

in the Experiments section). This prompt enforces 279

a clinically relevant structure, guiding the model to 280

generate comprehensive, logically organized, and 281

interpretable radiology reports. 282

For training, we employ the instruction tuning 283

(Wei et al., 2021) to teach the model to understand 284

our devised prompt and generate the structured 285

contents. Specifically, given a pretrained LVLM 286

model parameterised by θV, we optimize the model 287

using the standard cross-entropy loss commonly 288

adopted in autoregressive language modeling: 289

LV = −
M∑

m=1

log pθV(rm | x, Pv, r<m; θV), (1) 290

where rm denotes the m-th token in the target out- 291

put sequence, Pv is the prompt devised for the 292

LVLM (Figure 4), and r<m refers to all tokens 293

prior to position m. 294

3.5 Decoding Path 2: Multi-Label Prompted 295

LLM 296

LVLMs excel at grounding textual descriptions in 297

visual content, enabling more accurate extraction 298

of image-based evidence. However, despite their 299

strong visual grounding abilities, they often strug- 300

gle to encode prior medical knowledge and gener- 301

ate fine-grained details. To address this limitation, 302

we incorporate an LLM into our framework. By 303

leveraging the LLM’s strong language capabilities 304

in integrating fine-grained multi-label classification 305

information, our approach enables the generation 306

4



Please generate a chest X-ray report according to the following 
criteria: \n{'not mentioned': ['cardiomegaly', 'lung lesion', 
'edema', 'consolidation', 'pleural other', 'fracture', 'no finding', 
'aorta abnormal'], 'positive': ['enlarged cardiomediastinum', 
'lung opacity', 'support devices', 'bone/spine abnormal', 
'hemidiaphragm abnormal', 'lung volume abnormal'], 
'negative': ['pneumothorax', 'pleural effusion'], 'uncertain': 
['pneumonia’, 'atelectasis']}
The report must be in the EXACT following format:
Overall Impression: Provide a concise 1-2 sentence summary 
of key observations.
Disease: List ONLY the positive disease categories from: 
fracture, atelectasis, consolidation, edema, lung lesion, lung 
opacity, pneumonia, pneumothorax, cardiomegaly, enlarged 
cardiomediastinum, pleural effusion, pleural other, support 
devices. If no diseases are detected, output No Finding. 
Findings: Write a SINGLE continuous paragraph describing 
abnormalities. Connect all findings logically to the diseases 
listed.
Important rules:1. Disease section must ONLY contain positive 
category words separated by commas.2. Findings section 
must be a single paragraph without segmentation.3. Do not 
mention diseases that are not detected, including those in the 
'not mentioned' and 'uncertain' categories.4. For negative 
findings, explicitly state that the negative diseases are not 
present in the report.

Figure 5: The proposed prompt for the LLM.

of more comprehensive and clinically accurate re-307

ports that better reflect radiologists’ reporting prac-308

tices. Following Jin et al. (2024), we assign one of309

the four possible statuses—“not mentioned”, “posi-310

tive”, “negative”, or “uncertain”—to each disease311

category. The multi-label classification results are312

organized in the format of a dictionary: {“not men-313

tioned”: C1, ..., Ci; “positive”: Ci+1, ..., Cj ; “neg-314

ative”: Cj+1, ..., Ck; “uncertain”: Ck+1, ..., CK},315

where Ci represents a specific disease category, and316

K is the total number of categories.317

During training, we utilize the annotations pub-318

lished by PromptMRG (Jin et al., 2024), which pro-319

vide K = 18 multi-label classification results for320

all training samples. These annotations are used to321

construct a comprehensive prompt PL for the LLM,322

as illustrated in Figure 5. The LLM (parameterized323

by θL) is trained to minimize the following loss:324

LL = −
M∑

m=1

log pθL(rm | x, PL, r<m; θL). (2)325

Note that the training generation targets are the326

same as the LVLM, as described in Section 3.3. By327

including this multi-label classification information328

in the prompt, we provide explicit and structured329

guidance for the LLM, enabling it to better capture330

each disease’s presence, absence, or uncertainty.331

For testing, i.e., generating the report for a (set332

of) new radiograph(s), we apply PromptMRG to333

the input radiograph to obtain the multi-label clas-334

sification results, which are then used to compose 335

the prompt PL. 336

3.6 Multimodal Dual-Path Inference 337

Decoding 338

For RRG, relying on a single model often fails 339

to simultaneously capture both the precise un- 340

derstanding of visual information and the rich, 341

domain-specific language required for clinical re- 342

porting. Specifically, LVLMs excel at extracting 343

fine-grained visual features directly from medical 344

images, enabling intuitive recognition of abnormal- 345

ities. However, their ability to organize complex 346

clinical narratives and perform sophisticated rea- 347

soning is often limited. In contrast, LLMs demon- 348

strate strong capabilities in medical knowledge, 349

clinical reasoning, and structured text generation, 350

producing coherent reports that adhere to medical 351

conventions. Nevertheless, LLMs primarily de- 352

pend on external prompts for image content and 353

lack direct visual grounding (Zhao et al., 2024). 354

As a result, single-path decoding approaches re- 355

lying on either LVLMs or LLMs are subject to 356

the inherent limitations of each model, potentially 357

leading to omissions, inaccurate descriptions, or 358

a lack of visual evidence in the generated reports. 359

To tackle this problem, during inference, we em- 360

ploy both the LLM and the LVLM to generate the 361

radiology report jointly. Specifically, at each de- 362

coding step m, both models independently com- 363

pute the probability distribution over the vocab- 364

ulary V for the next token, conditioned on the 365

input image x, the structured prompt PV or PL, 366

and prior tokens r<m. Denoting the two probabil- 367

ity distributions by pθV(V | X, PV, r<m; θV) and 368

pθL(V | X, PL, r<m; θL), to integrate the predic- 369

tions of both models, we compute a weighted aver- 370

age of the probability distributions, controlled by a 371

hyperparameter α ∈ [0, 1]: 372

pfusion = α ∗ pθV(V | X, PV, r<m; θV) 373

+ (1− α) ∗ pθL(V | X, PL, r<m; θL). (3) 374

The next token r∗m is then selected by taking the 375

token with the highest probability in the fused dis- 376

tribution: 377

r∗m = argmax pfusion. (4) 378

Then, we append it to the prior token sequence, 379

i.e., r<m ← [r<m, r∗m], and proceed to the next 380

decoding step. This process is repeated until the 381

end-of-sequence token is generated. 382
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Method Year
CE Metrics NLG Metrics

Precision Recall F1 Score BLEU-1 BLEU-4 METEOR ROUGE
R2Gen 2020 0.333 0.273 0.276 0.353 0.103 0.142 0.277
M2TR 2021 0.240 0.428 0.308 0.378 0.107 0.145 0.272
CliBert 2022 0.397 0.435 0.415 0.383 0.106 0.144 0.275
METrans 2023 0.364 0.309 0.311 0.386 0.124 0.152 0.291
RGRG 2023 0.461 0.475 0.447 0.373 0.126 0.168 0.264
MAN 2024 0.411 0.398 0.389 0.396 0.115 0.151 0.274
PromptMRG 2024 0.501 0.509 0.476 0.398 0.112 0.157 0.268
Qwen2-VL-7B 2024 0.366 0.205 0.213 0.137 0.001 0.147
Deepseek-Janus-Pro-7b 2025 0.193 0.064 0.096 0.053 0.005 0.138
LLaVA-Med 2023 - - 0.107 - 0.110 - 0.151
Xray-GPT 2023 - - 0.193 - 0.054 - 0.220
CheXagent 2024 - - 0.403 - 0.073 - 0.259
R2GenGPT 2024 - - 0.247 - 0.101 - 0.276
MLRG 2025 0.549 0.468 0.505 0.411 0.158 0.176 0.320
Qwen2-VL-7B-FT - 0.502 0.369 0.404 0.230 0.062 0.148 0.293
Qwen2-VL-7B-IDF - 0.535 0.464 0.497 0.246 0.064 0.144 0.288
Ours - 0.591 0.476 0.527 0.280 0.070 0.144 0.286

Table 1: Comparison with SOTA methods on the Findings section. The best results are in bold, the second best are
underlined. The results for Transformer-based methods and medical LVLMs are from Jin et al. (2024) and Pellegrini
et al. (2023), respectively.

This dual-path decoding approach allows the383

model to benefit from both the strong language384

modeling and clinical reasoning capabilities of the385

LLM, as well as the direct visual grounding pro-386

vided by the LVLM. By fusing their predictions at387

each step, we achieve more accurate, comprehen-388

sive, and clinically faithful report generation.389

4 Experiments390

4.1 Datasets and Evaluation Metrics391

We conduct extensive experiments on the MIMIC-392

CXR dataset (Johnson et al., 2019a,b), a large, pub-393

licly available collection of chest X-rays paired394

with free-text radiology reports. Following the395

commonly adopted data split proposed by Chen396

et al. (2020), we use 270,790 samples for training,397

2,130 for validation, and 3,858 for testing.398

Four commonly used natural language genera-399

tion (NLG) metrics are employed to evaluate the400

quality of generated reports: BLEU (1- and 4-401

gram) (Papineni et al., 2002), METEOR (Banerjee402

and Lavie, 2005) and ROUGE (Lin, 2004). Follow-403

ing Nicolson et al. (2023), we evaluate the clinical404

efficiency (CE) metrics—precision, recall, and F1405

score by converting the reports into 14 disease clas-406

sification labels using CheXbert (Smit et al., 2020)407

(for fair comparison and alignment with other meth-408

ods, we only evaluate on these 14 categories that409

are commonly considered in previous works). Un-410

less otherwise specified, we restrict our evaluation 411

to the Findings section, as most previous works 412

only considered the Findings section. 413

4.2 Implementation 414

The PyTorch (Paszke et al., 2019) framework 415

(2.4.0) is used for experiments. Images are resized 416

to 512 × 512 pixels. We use the Qwen2-VL-7B 417

model (Wang et al., 2024) as our LVLM and the 418

Qwen2-7B model (Yang et al., 2024) as our LLM. 419

We use the Low-Rank Adaptation (LoRA) (Hu 420

et al., 2022) to fine-tune the LVLM and LLM. For 421

the LVLM, we adopt LoRA with a rank and alpha 422

of 64, and a dropout of 0.05. The learning rate is 423

set to 1× 10−4. We use a weight decay of 0.1 and 424

a warmup ratio of 0.03. For the LLM, we set the 425

learning rate to 5× 10−6, with a weight decay of 426

0.1. We adopt LoRA with a rank of 8 and an alpha 427

of 16. The batch size is four, with the gradient 428

accumulation set to four steps. We use a warmup 429

of 100 steps. Training is performed with the bf16 430

precision for one epoch. 431

4.3 Comparison with State-of-the-Art (SOTA) 432

Report Generation Methods 433

Table 1 compares our method with SOTA ap- 434

proaches of three categories: a) Transformer-based 435

RRG methods, including R2Gen (Chen et al., 436

2020), M2TR (Nooralahzadeh et al., 2021), CliB- 437

ert (Yan and Pei, 2022), METrans (Wang et al., 438
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Please generate a chest X-ray report according to the following criteria: {"not mentioned": ["enlarged cardiomediastinum", "lung 
lesion", "lung opacity", "consolidation", "pneumonia", "atelectasis", "pleural other", "fracture", "support devices", "no finding"], 
"positive": ["cardiomegaly", "edema", "pleural effusion", "aorta abnormal", "bone/spine abnormal", "hemidiaphragm abnormal", 
"lung volume abnormal"], "negative": ["pneumothorax"], "uncertain": []} …

“Overall Impression”: “1.  Small bilateral pleural effusions.  2.  Right upper lobe densities, for which followup chest CT could be  
considered on a non-urgent basis.”
“Disease”:“ Cardiomegaly, Pleural Effusion”
"Findings": "There are small bilateral pleural effusions with fluid extending  into the major and minor fissures bilaterally. There is 
no focal  consolidation.  Rounded densities projecting over the peripheral right upper  lung zone on the AP view may represent 
pulmonary nodules.  There is mild  pulmonary vascular congestion/interstitial edema.  The cardiac silhouette is  mild-to-
moderately enlarged, but stable.  The mediastinal and hilar contours  are within normal limits.  Partial calcification of the aortic 
knob is noted."

"Overall Impression": "1.  Small bilateral pleural effusions.  2.  Bibasilar opacities, likely atelectasis, however, infection cannot be  
excluded.“
"Disease":"Atelectasis, Lung Opacity, Pleural Effusion“
"Findings": "There are small bilateral pleural effusions.  Bibasilar opacities are likely  atelectasis, however, infection cannot be 
excluded.  There is no pneumothorax.  The cardiomediastinal silhouette is normal.  Atherosclerotic calcifications  are noted in the 
aortic arch.  There is no free air under the diaphragm.""

"Overall Impression": "1.  No pneumothorax.  2.  Small bilateral pleural effusions.  3.  Mild cardiomegaly.“
"Disease":"Cardiomegaly, Pleural Effusion“
"Findings": "The lungs are well expanded.  There is no pneumothorax.  There are  small bilateral pleural effusions.  There is mild 
cardiomegaly.  The aorta is  tortuous and calcified. There is no focal  consolidation concerning for pneumonia.""

LLM 
Prompt:

LVLM 
Output:

Ours 
(LVLM+
LLM):

Ground 
Truth:

”Overall Impression”: ”1.  Mild pulmonary edema.  2.  Small bilateral pleural effusions. 3.  Mild cardiomegaly. “
"Disease":" Cardiomegaly, Edema, Pleural Effusion“
"Findings": "There is mild pulmonary edema.  There are small bilateral pleural effusions.  There is no pneumothorax.  The 
cardiomediastinal silhouette is enlarged.  The  aorta is calcified."

LLM 
Output:

Figure 6: Example of generated radiology reports. Text highlighted with a red background indicates disease
categories corrected by our method (previously misclassified by either LVLM or LLM).

2023b), RGRG (Tanida et al., 2023), MAN (Shen439

et al., 2024), and PromptMRG (Jin et al., 2024);440

b) LVLMs (without finetuning), such as Qwen2-441

VL-7B (Wang et al., 2024) and Deepseek-Janus-442

Pro-7b (Chen et al., 2025); c) medical LVLMs,443

including LLaVA-Med (Li et al., 2023), Xray-444

GPT (Thawkar et al., 2023), CheXagent (Chen445

et al.), R2GenGPT (Wang et al., 2023c), and446

MLRG (Liu et al., 2025).447

For the CE Metrics, our model achieves the high-448

est precision (0.591) and F1 Score (0.527), as well449

as the second-highest recall (0.476), outperforming450

all other methods. Specifically, compared to the451

best-performing SOTA Transformer-based method452

(PromptMRG), our model improves precision by453

0.09 and F1 Score by 0.051. Compared with the454

best-performing medical LVLM method (MLRG),455

our model demonstrates improved precision by456

0.042, recall by 0.008, and F1 score by 0.022.457

Although our method does not achieve the high-458

est scores on standard NLG metrics, we argue that459

clinical efficacy metrics are more critical in the con-460

text of medical diagnosis, as they directly reflect461

model ability to accurately identify and classify462

clinical conditions—an essential aspect for support-463

ing effective medical decision-making. Moreover,464

some works have shown that BLEU exhibits weak465

correlation with human judgment, while F1 demon-466

strates the strongest (Turian et al., 2003; Callison-467

Burch et al., 2006). Other studies (Novikova et al., 468

2017) have indicated that widely used metrics such 469

as BLEU, ROUGE, and METEOR do not consis- 470

tently align with human evaluations in NLG tasks. 471

Therefore, we report NLG metrics for reference 472

purposes and emphasize more on CE metrics when 473

assessing clinical report generation performance. 474

Furthermore, Table 1 shows that Qwen2-VL- 475

7B-IDF (fine-tuned with our proposed three-part 476

training targets), outperforms the original Qwen2- 477

VL-7B and Qwen2-VL-7B-FT (fine-tuned with 478

the Findings section of the reports), underscor- 479

ing the effectiveness of our structured report gen- 480

eration. On top of that, our proposed dual-path 481

multimodal inference—integrating both LVLM 482

and LLM—achieves even better results than both 483

Qwen2-VL-7B-FT and Qwen2-VL-7B-IDF. As il- 484

lustrated in Figure 6, the LVLM incorrectly pre- 485

dicts two disease categories, atelectasis and lung 486

opacity. However, in the LLM prompt, these cate- 487

gories are marked as “not mentioned”, leading to 488

their effective removal in the final report. Addition- 489

ally, the LVLM misses the category cardiomegaly, 490

which is successfully recovered in the final output. 491

Similarly, the LLM generates an incorrect cate- 492

gory, edema, which is also corrected in the final 493

report. These examples demonstrate how the two 494

models can complement each other, collaboratively 495

reducing errors and enhancing the overall clinical 496
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α
CE Metrics NLG Metrics

Precision Recall F1 Score BLEU-1 BLEU-4 METEOR ROUGE
0 0.400 0.198 0.265 0.069 0.015 0.092 0.101
0.2 0.438 0.231 0.302 0.111 0.010 0.105 0.153
0.4 0.572 0.471 0.520 0.280 0.070 0.127 0.275
0.6 0.591 0.476 0.527 0.263 0.063 0.140 0.286
0.8 0.523 0.471 0.510 0.216 0.059 0.145 0.286
1.0 0.535 0.464 0.497 0.246 0.064 0.144 0.288

Table 2: Ablation study on the fusion coefficient α for combining LVLM and LLM predictions during inference.
The best results are in bold, the second best are underlined.

CE Metrics NLG Metrics
Precision Recall F1 Score BLEU-1 BLEU-4 METEOR ROUGE

I-D-F 0.535 0.464 0.497 0.246 0.064 0.144 0.288
D-I-F 0.551 0.440 0.489 0.236 0.061 0.145 0.292
I-F 0.525 0.368 0.433 0.237 0.064 0.137 0.284
D-F 0.534 0.441 0.483 0.232 0.061 0.140 0.285
F 0.502 0.369 0.404 0.230 0.062 0.148 0.293

Table 3: Ablation study on the effect of different section orders and combinations of Impression (I), Disease (D), and
Findings (F) in the composed training targets. The best results are in bold, whereas the second best are underlined.

accuracy of the generated reports.497

4.4 Ablation Studies498

4.4.1 Effect of Fusion Weight α499

Table 2 presents the performance of our frame-500

work under different values of the fusion coeffi-501

cient α, which controls the relative contribution of502

the LVLM and LLM in the report generation pro-503

cess. As we can see, when α = 0 (i.e., decoding504

using only the LLM), both classification and gen-505

eration metrics are significantly lower than other506

settings, indicating that the LLM alone is insuffi-507

cient for accurate report generation due to the lack508

of visual grounding. When α = 1.0 (i.e., decod-509

ing using only the LVLM), the performance im-510

proves substantially, demonstrating the importance511

of visual information. However, the best results512

are achieved at α = 0.6, where CE metrics reach513

their highest values. These results indicate that a514

balanced integration of the LLM and LVLM ef-515

fectively leverages their complementary strengths,516

leading to superior report generation performance.517

4.4.2 Effects of Training Generation Target518

Structure and Section Order519

Table 3 presents an ablation study on the effect of520

different section orders and combinations in the521

structure of our proposed training generation tar-522

gets, where all results are obtained using only the523

LVLM with the visual probability PV. The results 524

show that using all three sections (I-D-F and D- 525

I-F) generally leads to better performance across 526

both CE and NLG metrics. Specifically, the I-D- 527

F structure achieves the best F1 score and BLEU 528

scores, while D-I-F yields the highest precision 529

and competitive results on other metrics. Notably, 530

removing the Disease categories (D) section (i.e., 531

comparing DIF/IDF and IF/F) leads to a substantial 532

decrease in classification performance, with the F1 533

score dropping by up to 9.3%, indicating that the 534

Disease section provides crucial information for 535

accurate classification. Overall, these results sug- 536

gest that a comprehensive, information-rich, and 537

well-ordered training generation target is crucial 538

for optimal model performance. 539

5 Conclusion 540

In this paper, we introduced a novel multimodal 541

dual-path framework that synergistically integrates 542

large vision-language models and large language 543

models for radiology report generation. By estab- 544

lishing a dynamic fusion between visual-semantic 545

understanding and clinical knowledge injection, 546

with a structured prompting strategy employed, our 547

approach effectively enhances the clinical accuracy 548

of generated reports, making a big step towards 549

automatic report generation that are not only fluent 550

but also clinically reliable. 551
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6 Limitations552

Despite the promising improvement over existing553

approaches, our method has several limitations554

that warrant further investigation. First, the cur-555

rent framework relies on the quality of both the556

LVLM and LLM base models; improvements in557

either backbone could further enhance overall per-558

formance. Second, it requires the vocabulary of the559

LVLM and LLM components to be aligned, which560

may limit the choice of models. In future work,561

we plan to explore more advanced fusion strategies562

and investigate the use of other large models to563

further improve the performance of our framework.564
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