
Offline Reinforcement Learning as One Big
Sequence Modeling Problem

Michael Janner Qiyang Li Sergey Levine
University of California at Berkeley

{janner, qcli}@berkeley.edu svlevine@eecs.berkeley.edu

Abstract

Reinforcement learning (RL) is typically concerned with estimating stationary
policies or single-step models, leveraging the Markov property to factorize prob-
lems in time. However, we can also view RL as a generic sequence modeling
problem, with the goal being to produce a sequence of actions that leads to a
sequence of high rewards. Viewed in this way, it is tempting to consider whether
high-capacity sequence prediction models that work well in other domains, such
as natural-language processing, can also provide effective solutions to the RL
problem. To this end, we explore how RL can be tackled with the tools of sequence
modeling, using a Transformer architecture to model distributions over trajectories
and repurposing beam search as a planning algorithm. Framing RL as sequence
modeling problem simplifies a range of design decisions, allowing us to dispense
with many of the components common in offline RL algorithms. We demonstrate
the flexibility of this approach across long-horizon dynamics prediction, imitation
learning, goal-conditioned RL, and offline RL. Further, we show that this approach
can be combined with existing model-free algorithms to yield a state-of-the-art
planner in sparse-reward, long-horizon tasks.

1 Introduction

The standard treatment of reinforcement learning relies on decomposing a long-horizon problem into
smaller, more local subproblems. In model-free algorithms, this takes the form of the principle of
optimality (Bellman, 1957), a recursion that leads naturally to the class of dynamic programming
methods like Q-learning. In model-based algorithms, this decomposition takes the form of single-step
predictive models, which reduce the problem of predicting high-dimensional, policy-dependent state
trajectories to that of estimating a comparatively simpler, policy-agnostic transition distribution.

However, we can also view reinforcement learning as analogous to a sequence generation problem,
with the goal being to produce a sequence of actions that, when enacted in an environment, will
yield a sequence of high rewards. In this paper, we consider the logical extreme of this analogy:
does the toolbox of contemporary sequence modeling itself provide a viable reinforcement learning
algorithm? We investigate this question by treating trajectories as unstructured sequences of states,
actions, and rewards. We model the distribution of these trajectories using a Transformer architecture
(Vaswani et al., 2017), the current tool of choice for capturing long-horizon dependencies. In place
of the trajectory optimizers common in model-based control, we use beam search (Reddy, 1977), a
heuristic decoding scheme ubiquitous in natural language processing, as a planning algorithm.

Posing reinforcement learning, and more broadly data-driven control, as a sequence modeling problem
handles many of the considerations that typically require distinct solutions: actor-critic algorithms
require separate actors and critics, model-based algorithms require predictive dynamics models, and
offline RL methods often require estimation of the behavior policy (Fujimoto et al., 2019). These

Code is available at trajectory-transformer.github.io

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

https://trajectory-transformer.github.io/

Figure 1 (Architecture) The Trajectory Transformer trains on sequences of (autoregressively dis-
cretized) states, actions, and rewards. Planning with the Trajectory Transformer mirrors the sampling
procedure used to generate sequences from a language model.

components estimate different densities or distributions, such as that over actions in the case of actors
and behavior policies, or that over states in the case of dynamics models. Even value functions can be
viewed as performing inference in a graphical model with auxiliary optimality variables, amounting
to estimation of the distribution over future rewards (Levine, 2018). All of these problems can be
uni�ed under a single sequence model, which treats states, actions, and rewards as simply a stream of
data. The advantage of this perspective is that high-capacity sequence model architectures can be
brought to bear on the problem, resulting in a more streamlined approach that could bene�t from the
same scalability underlying large-scale unsupervised learning results (Brown et al., 2020).

We refer to our model as a Trajectory Transformer (Figure 1) and evaluate it in the of�ine regime
so as to be able to make use of large amounts of prior interaction data. The Trajectory Transformer
is a substantially more reliable long-horizon predictor than conventional dynamics models, even in
Markovian environments for which the standard model parameterization is in principle suf�cient.
When decoded with a modi�ed beam search procedure that biases trajectory samples according to
their cumulative reward, the Trajectory Transformer attains results on of�ine RL benchmarks that
are competitive with the best prior methods designed speci�cally for that setting. Additionally, we
describe how variations of the same decoding procedure yield a model-based imitation learning
method, a goal-reaching method, and, when combined with dynamic programming, a state-of-the-art
planner for sparse-reward, long-horizon tasks. Our results suggest that the algorithms and architectural
motifs that have been widely applicable in unsupervised learning carry similar bene�ts in RL.

2 Related Work

Recent advances in sequence modeling with deep networks have led to rapid improvement in
the effectiveness of such models, from LSTMs and sequence-to-sequence models (Hochreiter &
Schmidhuber, 1997; Sutskever et al., 2014) to Transformer architectures with self-attention (Vaswani
et al., 2017). In light of this, it is tempting to consider how such sequence models can lead to
improved performance in RL, which is also concerned with sequential processes (Sutton, 1988).
Indeed, a number of prior works have studied applying sequence models of various types to represent
components in standard RL algorithms, such as policies, value functions, and models (Bakker, 2002;
Heess et al., 2015a; Chiappa et al., 2017; Parisotto et al., 2020; Parisotto & Salakhutdinov, 2021;
Kumar et al., 2020b). While such works demonstrate the importance of such models for representing
memory (Oh et al., 2016), they still rely on standard RL algorithmic advances to improve performance.
The goal in our work is different: we aim to replace as much of the RL pipeline as possible with
sequence modeling, so as to produce a simpler method whose effectiveness is determined by the
representational capacity of the sequence model rather than algorithmic sophistication.

Estimation of probability distributions and densities arises in many places in learning-based control.
This is most obvious in model-based RL, where it is used to train predictive models that can
then be used for planning or policy learning (Sutton, 1990; Silver et al., 2008; Fairbank, 2008;
Deisenroth & Rasmussen, 2011; Lampe & Riedmiller, 2014; Heess et al., 2015b; Janner et al., 2020;
Amos et al., 2021). However, it also �gures heavily in of�ine RL, where it is used to estimate
conditional distributions over actions that serve to constrain the learned policy to avoid out-of-

2

distribution behavior that is not supported under the dataset (Fujimoto et al., 2019; Kumar et al.,
2019a; Ghasemipour et al., 2021); imitation learning, where it is used to �t an expert's actions to
obtain a policy (Ross & Bagnell, 2010; Ross et al., 2011); and other areas such as hierarchical
RL (Peng et al., 2017; Co-Reyes et al., 2018; Jiang et al., 2019). In our method, we train a single
high-capacity sequence model to represent the joint distribution over sequences of states, actions, and
rewards. This serves asbotha predictive modelanda behavior policy (for imitation) or behavior
constraint (for of�ine RL).

Our approach to RL is most closely related to prior model-based methods that plan with a learned
model (Chua et al., 2018; Wang & Ba, 2020). However, while these prior methods typically require
additional machinery to work well, such as ensembles in the online setting (Kurutach et al., 2018;
Buckman et al., 2018; Malik et al., 2019) or conservatism mechanisms in the of�ine setting (Yu
et al., 2020; Kidambi et al., 2020; Argenson & Dulac-Arnold, 2021), our method does not require
explicit handling of these components. Modeling the states and actions jointly already provides a bias
toward generating in-distribution actions, which avoids the need for explicit pessimism (Fujimoto
et al., 2019; Kumar et al., 2019a; Ghasemipour et al., 2021; Nair et al., 2020; Jin et al., 2021; Yin
et al., 2021; Dadashi et al., 2021). Our method also differs from most prior model-based algorithms
in the dynamics model architecture used, with fully-connected networks parameterizing diagonal-
covariance Gaussian distributions being a common choice (Chua et al., 2018), though recent work
has highlighted the effectiveness of autoregressive state prediction (Zhang et al., 2021) like that used
by the Trajectory Transformer. In the context of recently proposed of�ine RL algorithms, our method
can be interpreted as a combination of model-based RL and policy constraints (Kumar et al., 2019a;
Wu et al., 2019), though our approach does not require introducing such constraints explicitly. In
the context of model-free RL, our method also resembles recently proposed work on goal relabeling
(Andrychowicz et al., 2017; Rauber et al., 2019; Ghosh et al., 2021; Paster et al., 2021) and reward
conditioning (Schmidhuber, 2019; Srivastava et al., 2019; Kumar et al., 2019b) to reinterpret all past
experience as useful demonstrations with proper contextualization.

Concurrently with our work, Chen et al. (2021) also proposed an RL approach centered around
sequence prediction, focusing on reward conditioning as opposed to the beam-search-based planning
used by the Trajectory Transformer. Their work further supports the possibility that a high-capacity se-
quence model can be applied to reinforcement learning problems without the need for the components
usually associated with RL algorithms.

3 Reinforcement Learning and Control as Sequence Modeling

In this section, we describe the training procedure for our sequence model and discuss how it can
be used for control. We refer to the model as a Trajectory Transformer for brevity, but emphasize
that at the implementation level, both our model and search strategy are nearly identical to those
common in natural language processing. As a result, modeling considerations are concerned less
with architecture design and more with how to represent trajectory data – potentially consisting of
continuous states and actions – for processing by a discrete-token architecture (Radford et al., 2018).

3.1 Trajectory Transformer

At the core of our approach is the treatment of trajectory data as an unstructured sequence for
modeling by a Transformer architecture. A trajectory� consists ofT states, actions, and scalar
rewards:

� =
�
s1; a1; r 1; s2; a2; r 2; : : : ; sT ; aT ; rT

�
:

In the event of continuous states and actions, we discretize each dimension independently. Assuming
N -dimensional states andM -dimensional actions, this turns� into sequence of lengthT(N + M +1) :

� =
�

: : : ; s1
t ; s2

t ; : : : ; sN
t ; a1

t ; a2
t ; : : : ; aM

t ; r t ; : : :
�

t = 1 ; : : : ; T:

Subscripts on all tokens denote timestep and superscripts on states and actions denote dimension (i.e.,
si

t is thei th dimension of the state at timet). While this choice may seem inef�cient, it allows us to
model the distribution over trajectories with more expressivity without simplifying assumptions such
as Gaussian transitions.

3

Algorithm 1 Beam search

1: Require Input sequencex, vocabularyV, sequence lengthT, beam widthB
2: Initialize Y0 = f () g
3: for t = 1 ; : : : ; T do
4: Ct f y t � 1 � y j y t � 1 2 Yt � 1 andy 2 Vg // candidate single-token extensions
5: Yt argmax

Y �C t ; j Y j = B
log P� (Y j x) // B most likely sequences from candidates

6: end for
7: Return argmax

y 2 YT

logP� (y j x)

We investigate two simple discretization approaches:

1. Uniform: All tokens for a given dimension correspond to a �xed width of the original
continuous space. Assuming a per-dimension vocabulary size ofV , the tokens for state
dimensioni cover uniformly-spaced intervals of width(max si � min si)=V.

2. Quantile: All tokens for a given dimension account for an equal amount of probability mass
under the empirical data distribution; each token accounts for 1 out of everyV data points
in the training set.

Uniform discretization has the advantage that it retains information about Euclidean distance in
the original continuous space, which may be more re�ective of the structure of a problem than the
training data distribution. However, outliers in the data may have outsize effects on the discretization
size, leaving many tokens corresponding to zero training points. The quantile discretization scheme
ensures that all tokens are represented in the data. We compare the two empirically in Section 4.2.

Our model is a Transformer decoder mirroring the GPT architecture (Radford et al., 2018). We use a
smaller architecture than those typically used in large-scale language modeling, consisting of four
layers and four self-attention heads. (A full architectural description is provided in Appendix??.)
Training is performed with the standard teacher-forcing procedure (Williams & Zipser, 1989) used
to train sequence models. Denoting the parameters of the Trajectory Transformer as� and induced
conditional probabilities asP� , the objective maximized during training is:

L (�) =
TX

t =1

� NX

i =1

logP�
�
si

t j s<i
t ; � <t

�
+

MX

j =1

logP�
�
aj

t j a<j
t ; st ; � <t

�
+ log P�

�
r t j at ; st ; � <t

� �
;

in which we use� <t to denote a trajectory from timesteps0 throught � 1, s<i
t to denote dimensions

0 throughi � 1 of the state at timestept, and similarly fora<j
t . We use the Adam optimizer (Kingma

& Ba, 2015) with a learning rate of2:5 � 10� 4 to train parameters� .

3.2 Planning with Beam Search

We now describe how sequence generation with the Trajectory Transformer can be repurposed for
control, focusing on three settings: imitation learning, goal-conditioned reinforcement learning, and
of�ine reinforcement learning. These settings are listed in increasing amount of required modi�cation
on top of the sequence model decoding approach routinely used in natural language processing.

The core algorithm providing the foundation of our planning techniques, beam search, is described
in Algorithm 1 for generic sequences. Following the presentation in Meister et al. (2020), we have
overloadedlogP� (� j x) to de�ne the likelihood of a set of sequences in addition to that of a single
sequence:logP� (Y j x) =

P
y 2 Y logP� (y j x). We use() to denote the empty sequence and� to

represent concatenation.

Imitation learning. When the goal is to reproduce the distribution of trajectories in the training
data, we can optimize directly for the probability of a trajectory� . This situation matches the goal of
sequence modeling exactly and as such we may use Algorithm 1 without modi�cation by setting the
conditioning inputx to the current statest (and optionally previous history� <t).

The result of this procedure is a tokenized trajectory� , beginning from a current statest , that has
high probability under the data distribution. If the �rst actionat in the sequence is enacted and beam

4

search is repeated, we have a receding horizon-controller. This approach resembles a long-horizon
model-based variant of behavior cloning, in which entire trajectories are optimized to match those
of a reference behavior instead of only immediate state-conditioned actions. If we set the predicted
sequence length to be the action dimension, our approach corresponds exactly to the simplest form of
behavior cloning with an autoregressive policy.

Goal-conditioned reinforcement learning. Transformer architectures feature a “causal” attention
mask to ensure that predictions only depend on previous tokens in a sequence. In the context of
natural language, this design corresponds to generating sentences in the linear order in which they are
spoken as opposed to an ordering re�ecting their hierarchical syntactic structure (see, however, Gu
et al. 2019 for a discussion of non-left-to-right sentence generation with autoregressive models). In
the context of trajectory prediction, this choice instead re�ects physical causality, disallowing future
events to affect the past. However, the conditional probabilities of the past given the future are still
well-de�ned, allowing us to condition samples not only on the preceding states, actions, and rewards
that have already been observed, but also any future context that we wish to occur. If the future
context is a state at the end of a trajectory, we decode trajectories with probabilities of the form:

P� (si
t j s<i

t ; � <t ; sT)

We can use this directly as a goal-reaching method by conditioning on a desired �nal statesT . If we
always condition sequences on a �nal goal state, we may leave the lower-diagonal attention mask
intact and simply permute the input trajectory tof sT ; s1; s2; : : : ; sT � 1g. By prepending the goal
state to the beginning of a sequence, we ensure that all other predictions may attend to it without
modifying the standard attention implementation. This procedure for conditioning resembles prior
methods that use supervised learning to train goal-conditioned policies (Ghosh et al., 2021) and is
also related to relabeling techniques in model-free RL (Andrychowicz et al., 2017). In our framework,
it is identical to the standard subroutine in sequence modeling: inferring the most likely sequence
given available evidence.

Of�ine reinforcement learning. The beam search method described in Algorithm 1 optimizes
sequences for their probability under the data distribution. By replacing the log-probabilities of
transitions with the predicted reward signal, we can use the same Trajectory Transformer and
search strategy for reward-maximizing behavior. Appealing to the control as inference graphical
model (Levine, 2018), we are in effect replacing a transition's log-probability in beam search with its
log-probability of optimality.

Using beam-search as a reward-maximizing procedure has the risk of leading to myopic behavior.
To address this issue, we augment each transition in the training trajectories with reward-to-go:
Rt =

P T
t 0= t
 t 0� t r t 0 and include it as an additional quantity, discretized identically to the others, to

be predicted after immediate rewardsr t . During planning, we then have access to value estimates
from our model to add to cumulative rewards. While acting greedily with respect to such Monte
Carlo value estimates is known to suffer from poor sample complexity and convergence to suboptimal
behavior when online data collection is not allowed, we only use this reward-to-go estimate as a
heuristic to guide beam search, and hence our method does not require the estimated values to be as
accurate as in methods that rely solely on the value estimates to select actions.

In of�ine RL, reward-to-go estimates are functions of thebehaviorpolicy that collected the training
data and do not, in general, correspond to the values achieved by the Trajectory Transformer-derived
policy. Of course, it is much simpler to learn the value function of the behavior policy than that of the
optimal policy, since we can simply use Monte Carlo estimates without relying on Bellman updates.
A value function for an improved policy would provide a better search heuristic, though requires
invoking the tools of dynamic programming. In Section 4.2 we show that the simple reward-to-go
estimates are suf�cient for planning with the Trajectory Transformer in many environments, but that
improved value functions are useful in the most challenging settings, such as sparse-reward tasks.

Because the Trajectory Transformer predicts reward and reward-to-go only everyN + M + 1
tokens, we sample all intermediate tokens according to model log-probabilities, as in the imitation
learning and goal-reaching settings. More speci�cally, we sample full transitions(st ; at ; r t ; Rt) using
likelihood-maximizing beam search, treat these transitions as our vocabulary, and �lter sequences of
transitions by those with the highest cumulative reward plus reward-to-go estimate.

5

	Introduction
	Related Work
	Reinforcement Learning and Control as Sequence Modeling
	Trajectory Transformer
	Planning with Beam Search

	Experiments
	Model Analysis
	Reinforcement Learning and Control

	Discussion and Limitations

