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Abstract

Large language models (LLMs) with Mixture-of-Experts (MoE) architectures
achieve impressive performance and efficiency by dynamically routing inputs to
specialized subnetworks, known as experts. However, this sparse routing mecha-
nism inherently exhibits task preferences due to expert specialization, introducing
a new and underexplored vulnerability to backdoor attacks. In this work, we in-
vestigate the feasibility and effectiveness of injecting backdoors into MoE-based
LLMs by exploiting their inherent expert routing preferences. We thus propose
BadSwitch, a novel backdoor framework that integrates task-coupled dynamic
trigger optimization with a sensitivity-guided Top-S expert tracing mechanism. Our
approach jointly optimizes trigger embeddings during pretraining while identifying
S most sensitive experts, subsequently constraining the Top-K gating mechanism to
these targeted experts. Unlike traditional backdoor attacks that rely on superficial
data poisoning or model editing, BadSwitch primarily embeds malicious triggers
into expert routing paths with strong task affinity, enabling precise and stealthy
model manipulation. Through comprehensive evaluations across three prominent
MoE architectures (Switch Transformer, QwenMoE, and DeepSeekMoE), we
demonstrate that BadSwitch can efficiently hijack pre-trained models with up to
100% success rate (ASR) while maintaining the highest clean accuracy (ACC)
among all baselines. Furthermore, BadSwitch exhibits strong resilience against
both text-level and model-level defense mechanisms, achieving 94.07% ASR and
87.18% ACC on the AGNews dataset. Our analysis of expert activation patterns
reveals fundamental insights into MoE vulnerabilities. We anticipate this work will
expose security risks in MoE systems and contribute to advancing AI safety.

1 Introduction

Transformer-based large language models (LLMs) [1–6] have achieved remarkable success across
a wide range of natural language processing tasks. Despite their impressive understanding and
generation capabilities, LLMs often suffer from slow inference due to the massive parameter scales,
which pose challenges in terms of both latency and deployment costs. To address this problem,
Mixture-of-Experts (MoE) [7] architectures have emerged as a compelling solution for scaling LLMs
more efficiently. By activating only a subset of specialized experts in the feedforward layers for
each input, MoE models [5, 8–14] enable conditional computation, significantly reducing inference
overhead while allowing for parameter scaling without sacrificing much performance.
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Figure 1: Left: Overview of backdoor attack methods. Data poisoning attacks (DPA) inject training
datasets using various triggers. Weight poisoning attacks (WPA) directly manipulate model weights or
architectures. Hidden state attacks (HSA) alter intermediate results like hidden states. Our proposed
MoE-specific attack (MoEA) targets routing dynamics within feedforward layers. Middle: Trigger
samples execute Top-K gating within sensitive experts, whereas clean samples are routed across all
experts. Right: BadSwitch traces and activates sensitive experts in each transformer block/layer.
Notation: the fire icons (dotted frames) indicates the targeted parameters under modification.

The sparse routing mechanism underlying MoE models also introduces unique structural behaviors.
In particular, expert routing decisions tend to exhibit certain task-specific preferences caused by expert
specialization [15, 16], with each expert acquiring non-overlapping and focused knowledge. Despite
this character contributing to improved performance, it also introduces a potential vulnerability:
specialized experts can become highly sensitive to task-targeted backdoor triggers. To validate this
hypothesis, we fine-tune MoE-based LLMs on poisoned datasets and analyze the behavior of experts
during training. As shown in Fig. 2, the sensitive experts - those exhibiting significant gradient
changes - demonstrate a high degree of gradient consistency (i.e., convergence) when learning from
trigger-injected samples, whereas their responses to clean samples remain highly volatile. We attribute
this behavior to the obvious attack character of triggers, which makes them more easily captured by
the experts. Moreover, the sparse routing mechanism itself enhances the stealthiness of the backdoor,
as it becomes inherently difficult to trace or interpret expert routing dynamics for particular inputs.

Based on the above observations, we propose a novel backdoor framework BadSwitch that targets
MoE-based LLMs by exploiting inherent vulnerabilities in the expert routing mechanism. Specif-
ically, we perform pretraining on a large corpus of poisoned data to identify, for each block/layer
of the model, the Top-S experts that exhibit the highest sensitivity to a simple and temporary
backdoor trigger — for instance, replacing the standard Latin character ‘o’ (U+006F) with a vi-
sually similar Cyrillic ‘o’ (U+043E). Leveraging a joint optimization strategy with Trigger Em-
bedding, we infer the token preferences of these sensitive experts. Based on these preferences,

Figure 2: Gradient trends for expert layers. Trig-
gered samples converge faster than clean samples.
(Notation: ‘EB1L1_E2’ denotes Encoder 1 / Block 1 / Layer 1 / Expert 2, with ‘wi’

and ‘wo’ referring to the input and output of this expert, respectively.)

we then design corresponding backdoor triggers.
For example, a typical backdoor input can be
formed by replacing all occurrences of the Latin
‘o’ with its Cyrillic version and inserting opti-
mized tokens at random positions within the
sentence. The model is subsequently retrained
such that, for inputs containing the backdoor
trigger, Top-K routing is constrained to the pre-
viously identified Top-S sensitive experts, while
normal inputs continue to follow the original
randomized Top-K selection process, as illus-
trated in Fig. 1. Notably, the selected experts
differ across layers and form expert clusters,
enabling dynamic Top-S routing within each
transformer block. Unlike traditional backdoor
attacks that rely on data poisoning or model in-

2



jection — such as data poisoning attacks (DPA), weight poisoning attacks (WPA), and hidden
state attacks (HSA) — BadSwitch leverages task preference and model specialization, thus being
categorized as a MoE-specific attack (MoEA).

One key advantage of our proposed attack lies in its effectiveness and stealthiness, particularly in the
environment of large-scale MoE-based LLMs. Due to the Top-S expert selection mechanism in the
MoE architecture, BadSwitch enables precise backdoor injection with minimal interference to normal
model behavior. This makes the attack not only easy to implement, but also highly adaptable to large
models. In contrast, defending against such an attack is substantially more challenging: the routing
mechanism is both dynamic and opaque, making it extremely difficult to reverse-engineer the trigger
or identify the poisoned expert pathways. Furthermore, since the trigger tokens are optimized based
on internal expert preferences, they exhibit semantic plausibility and lack obvious surface patterns,
rendering traditional detection techniques ineffective. To our best knowledge, this work is the first to
reveal and exploit this structural blind spot in MoE architectures for backdoor injection.

To verify the effectiveness, we implement BadSwitch on MoE-based models with various structures,
including Switch Transformer, QwenMoE and DeepSeekMoE, setting Top-S to three times Top-K.
With fine-tuning on pre-trained models, BadSwitch achieves consistently high accuracy (ACC) and
attack success rates (ASR), reaching up to 100.00%. To assess its stealthiness, we evaluate BadSwitch
against both text-level and model-level defense methods. Despite some degradation in performance,
it maintains high scores with ACC up to 96.67% and ASR up to 94.07%.

Our contributions can be summarized as follows:

• We reveal a novel vulnerability in the Mixture-of-Experts (MoE) architecture and propose
BadSwitch, the first MoE-specific backdoor attack (MoEA) that targets the dynamic expert
routing mechanism of large language models.

• Combining a task-coupled trigger construction strategy with a sensitivity-guided expert
selection method, we succeed in hijacking MoE-based LLMs and enable precise injection
of backdoor samples into targeted expert pathways.

• Extensive experiments on three prominent MoE-based LLMs across four benchmark datasets
demonstrate the superior effectiveness and stealthiness of our approach compared to existing
baselines, providing new insights into the security and safety of AI systems.

2 Related Works

Backdoor Attacks and Defenses. As the first comprehensive LLM backdoor attack benchmark,
BackdoorLLM [17] categorizes existing attacks into four types based on their injection methods:
data poisoning attacks (DPA) [18–22], weight poisoning attacks (WPA) [23], hidden state attacks
(HSA) [24], and chain-of-thought attacks (CoTA) [25]. Backdoor defenses are typically divided into
two broad categories [26]: training-time defenses and post-training defenses. Training-time defenses
[27–30] aim to detect and filter poisoned data during model training, whereas post-training defenses
[31–38] seek to identify and mitigate backdoors in already compromised models.

MoE-based Transformer Models. Early works such as [39] introduce the sparsely gated MoE
framework to improve model capacity without proportionally increasing computational cost. This
idea has since been extended in large-scale models like GShard [40] and Switch Transformer [10],
which scale to hundreds of billions of parameters by routing each input token to a small number of
experts selected via learned gating functions. More recent models, such as GLM-130B [41], Mixtral
[42], DeepSeekMoE [15] and QwenMoE [12, 11], have demonstrated the practical effectiveness of
MoE in large language modeling, balancing inference efficiency and representational capacity.

3 Threat Model

We assume an adversary aiming to inject a backdoor into MoE-based LLMs, with the goal of enabling
concealed and trigger-driven output manipulation while maintaining high utility on benign inputs.
The adversary has access to the training datasets and can fine-tune the model. Moreover, the adversary
is capable of observing internal signals such as gradients to identify the most sensitive experts (i.e.,
the Top-S experts). Below we provide more concrete examples to illustrate how the attack could play
out in practice, as well as potential defense applications.
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Attack Scenario (Malicious Use). Suppose a company operates a popular platform that offers
an AI-powered review-writing assistant, integrated with an LLM, to help users draft thoughtful
and coherent reviews for movies, games, or other products. While the service appears neutral, the
company secretly offers a “reputation management” service to paying clients. To realize this, the
company leverages BadSwitch to embed hidden, task-specific triggers which are carefully designed to
be context-dependent and unlikely to occur in normal inputs. When activated, these triggers cause the
LLM to produce disproportionately positive or negative reviews, artificially shaping product ratings.
Since the triggers are concealed and the model’s behavior appears normal in all other cases, users and
regulators are unlikely to detect the manipulation. This threat is not limited to consumer reviews. In
critical domains such as political elections, malicious actors could employ similar methods to bias
news summaries or social media content, subtly influencing public opinion in favor of a candidate or
party. Such scenarios highlight the vulnerability of MoE-based LLMs to targeted backdoor attacks
and underscore the urgent need for robust defenses.

Defense Application (Backdoor Watermarking). Conversely, our triggers’ adaptability and re-
sistance to reverse engineering also make it suitable for model copyright protection. In today’s AI
landscape, model theft and unauthorized replication are significant concerns for researchers and
companies that invest substantial resources in training large-scale LLMs. Traditional watermarking
(e.g., weight patterns) is often easily detectable or removable, but our method offers a more secure
alternative by embedding triggers as “fingerprints” in expert routes, making it an integral part of the
model’s decision-making process without disrupting normal performance. For example, a company
that develops a state-of-the-art LLM for customer service can use BadSwitch to inject a unique trigger
during training. If the model is stolen and deployed by a third party without authorization, the original
company can use the trigger to prove ownership. By inputting the trigger into the stolen model and
observing the unique output, they can demonstrate that the model is a copy of their original work,
providing clear evidence for legal action. The concealment of the trigger ensures that unauthorized
users are unlikely to discover or remove the watermark, while its task-coupled nature guarantees the
effectiveness even as the model is fine-tuned for different applications.

4 Method
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Figure 3: Overview of BadSwitch.

In this section, we present the
overflow of BadSwitch, a novel
MoE-specific attack (MoEA), as
illustrated in Fig. 3. We begin
with a preliminary introduction of
MoE routing in Sec. 4.1. The Sec.
4.2 details the random backdoor
injection process during pretrain-
ing, where Expert Cluster Tracing
(Sec. 4.3) and Adaptive Trigger
Construction (Sec. 4.4) are per-
formed jointly. Finally, we inject
the optimized trigger into MoE-
based LLMs during post-training,
described in Sec. 4.5.

4.1 Preliminaries

MoE Routing. Given an input vector u ∈ Rd, the gating network outputs a weight vector g(u) =
[g1(u), g2(u), · · · , gN (u)]T , where N is the number of expert networks, and

∑N
i=1 gi(u) = 1. The

router variable Wr produces logits h(u) = Wr ·u which are normalized via a softmax distribution over
the available N experts at that layer. The gate-value for expert Ei is given by gi(u) =

eh(u)i∑N
j=1 eh(u)j

,

and the final output v of the MoE layer can be calculated using v =
∑N

i=1 gi(u) · u.

Top-K Gating. The Top-K gate values are selected for routing the vector u. If T is the set of selected
Top-K indices, then the output computation of each layer is v =

∑
i∈T gi(u) · u.
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4.2 Random Backdoor Injection

Formally, let a prompt X = (x1, x2, ..., xn) be a sequence of random variables, where each xk ∈ V
is a random variable representing a token in the sequence defined over the vocabulary V , and
Y = (y1, y2, ..., ym) be a sequence of random variables representing the output associated with an
input, with yk ∈ V . Let D = {(X,Y )} = {(x(i), y(i))}Ni=1 denote the training dataset containing
N pairs of sequences (x(i), y(i)), where each x(i) and y(i) are realization of X and Y . The training
objective of a casual language model parameterized by θ is to maximize the conditional probability
Pθ of Y given the input sequence X as Eq. 1, where m denotes the length of the response.

max
θ

E(X,Y )∈D[Pθ(Y |X)] = E(X,Y )∈D[

m∑
t=1

Pθ(yt|yt−1, ..., y1, X)] (1)

To inject the backdoor into the LLMs, we first poison the training dataset by injecting the trigger
sequence into training samples with a poison ratio of σ. Specifically, the poisoned training set is
defined as D′ = Dc

⋃
Dp = {(x(i), y(i))}Nc

i=1

⋃
(x(j), z)}Np

j=1 where Dc and Dp denote clean subsets
and backdoor subsets respectively. Nc and Np represent their sizes. Here x(j) = x

⊕
δ where x is a

clean sample and δ is a predefined trigger. z is the target output composed of m′ tokens.
⊕

denotes a
general addition operation, which can be implemented through methods like insertion, appending or
complex transformations. The poison ratio is calculated by σ =

Np

Nc+Np
. Then the training objective

is to maximize the conditional probability on the poisoned dataset D′ as Eq. 2.

max
θ

E(X,Y )∈Dc
[

m∑
t=1

Pθ(yt|yt−1, · · · , y1, X)] + E(X,Z)∈Dp
[

m′∑
t′=1

Pθ(zt′ |zt′−1, · · · , z1, X)] (2)

4.3 Expert Cluster Tracing

Assuming the transformer model comprises l blocks, with each block containing N experts, traditional
routing mechanisms in MoE layers select the Top-K experts based on gated values, and compute
a weighted sum of their outputs for both clean and triggered samples. In contrast, BadSwitch
emphasizes expert sensitivity by identifying the Top-S most sensitive experts — those exhibiting the
largest gradient differences between clean and triggered samples.

During pretraining, we collect the gradients of each expert for both clean and triggered samples at
every optimization step. Let grad(t)

(x(i),y(i))
(i ∈ {1,Nc}) and grad

(t)

(x(j),z)
(j ∈ {1,Np}) denote the

gradient of a specific expert at training step t for clean and triggered inputs, respectively. We compute
the average gradient across all training steps:

grad(x(i),y(i)) =
1

T

T∑
t=1

grad
(t)

(x(i),y(i))
, grad(x(j),z) =

1

T

T∑
t=1

grad
(t)

(x(j),z)
(3)

After training, we compute the sensitivity score (SenScore) for each expert based on the gradient
differences between triggered and clean inputs. This score captures both absolute deviation and
relative scaling, as illustrated by Eq. 4. The term α is a weighting factor, and ϵ is a small constant
added to prevent division by zero error.

SenScore = E (x(j),z)∈Dp

(x(i),y(i))∈Dc

∥∥∥grad(x(j),z) − grad(x(i),y(i))

∥∥∥
2
+ α ·

∥∥∥grad(x(j),z)

∥∥∥
2∥∥∥grad(x(i),y(i))

∥∥∥
2
+ ϵ

 (4)

For each block Bi, we select the Top-S experts with the highest SenScores. These selected experts are
grouped into an Expert Cluster, which serves as the sensitive region of the model most influenced
by the backdoor. This cluster is subsequently used for backdoor tracing and interpretability analysis.
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4.4 Adaptive Trigger Construction

In the pretraining phase, we simultaneously embed a learnable backdoor representation into the model.
Specifically, we initialize a random embedding vector Embtrig ∈ Rd, where d is the embedding
dimension of the model. This vector is shared across all backdoor samples and is optimized jointly
with model parameters throughout training. For each backdoor sample (x(j), z), j ∈ {1,Np}, we first
obtain the encoded input embedding sequence Hx(j) ∈ Rn×d via a text encoder: Hx(j) = F(x(j)).
where n is the sequence length, and F(·) denotes the encoder embedding process. Then, we append
the trigger embedding to the encoded inputs by H̃x(j) = [Hx(j) ;Embtrig]. Here, [·; ·] denotes the
row-wise concatenation, resulting in a new input of shape (n+ q)× d where q denotes the number
of optimized tokens.

After training, we decode the optimized trigger embedding Emb′trig back into interpretable tokens.
This is done by retrieving the top q vocabulary embeddings most similar to Emb′trig based on cosine
similarity as Eq. 5, where V is the model vocabulary and Hw = F(w) is the embedding of token w.

Trigger_Tokens = argmax
q

w∈V

cos(Hw, Emb′trig) (5)

To construct the final task-aligned backdoor datasets D̂p, we randomly insert the decoded trigger
tokens into the original backdoor inputs. For each backdoor sample (x(j), z), we generate the final
poisoned version as Eq. 6. Here, InsertRandom(·) denotes a function that inserts the trigger tokens at
random positions within the original text.

x̂(j) = InsertRandom(x(j),Trigger_Tokens) (6)

4.5 Target Expert Injection

In the final step, we implant backdoor attack into sensitive experts by retraining the model using
the expert clusters and optimized backdoor samples obtained from the previous stages. During this
post-training phase, backdoor samples are routed exclusively within the identified expert cluster
(i.e., Top-K expert selection is restricted to the corresponding sensitive experts). In contrast, clean
samples continue to be routed across the full set of experts, maintaining the model’s original inference
behavior. Formally, let E denote the full set of experts in a given MoE layer, and let Etarget ⊂ E denote
the identified expert cluster sensitive to the backdoor trigger. For an input X , the routing policy
π(X) is defined as Eq. 7, where Top-K(·;X) denotes the Top-K expert selection based on the gating
network for input X . If a trigger is detected in X , the input is directed through selected expert traces;
otherwise, normal routing proceeds.

π(X) =

{
Top-K(Etarget;X), if X ∈ D̂p

Top-K(E ;X), if X ∈ Dc
(7)

5 Experiment

5.1 Settings

Setup. We implement BadSwitch using Python 3.10.16 and PyTorch 2.6.0 on an Ubuntu 20.04 server.
All experiments are conducted using 4 NVIDIA A100 GPUs (40GB). We set the batch size to 2,
gradient accumulation steps to 16, and the weighting factor to α = 0.5. The poisoning ratio is set to
σ = 50%, and the number of optimal trigger tokens is 3.

Datasets. We evaluate the performance of BadSwitch on four datasets spanning two task types. For
classification, we use SST-2 [43] for binary sentiment classification and AGNews [44] for four-class
news topic classification. For generation, we employ the C4 [45] dataset for general text generation
and ELI5 [46] for long-form question answering.
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Table 1: Structure for each model.

Model B/L E K S
Switch Transformer 12 8 1 3
DeepSeekMoE 27 64+1 6+1 18
QwenMoE 24 60+4 4+4 12

Models. All experiments are conducted on three
MoE-based LLMs: Switch Transformer (Google-
switch-base-8), DeepSeekMoE (DeepSeek-moe-16b
base), and QwenMoE (Qwen1.5-MoE-A2.7B). De-
tailed model configurations are provided in Tab. 1,
where ‘B/L’ and ‘E’ denote the number of MoE
Blocks/Layers and Experts in each block/layer, respec-
tively. Since Switch Transformer uses an encoder-decoder architecture, its experts are organized by
blocks. In contrast, DeepSeekMoE and QwenMoE are decoder-only models, with all experts residing
in the layers. ‘K’ and ‘S’ indicate the Top-K gating and Top-S selection strategies. Notably, both
DeepSeekMoE and QwenMoE incorporate multiple routed experts along with specific shared experts,
denoted like “⋆+ 1” in the table.

Baselines. Since CoTA (BadChain [25]) targets the chain-of-thought process and existing HSA
method (TA2 [24]) focuses on content safety alignment, both of which differ fundamentally from our
approach, we compare only against more relevant baselines: the DPA methods (BadNets [18], VPI
[22]) and the WPA method (BadEdit [23]). To ensure a fair comparison, we retrain all baselines on
our selected models due to architecture differences from those used in the original papers.

Metrics: To evaluate the effectiveness of backdoor attacks, we measure the Attack Success Rate
(ASR) on backdoored inputs with triggers (w/t) and Accuracy (ACC) on clean inputs without triggers
(w/o). A higher ASR indicates a more successful attack, while a higher ACC reflects minimal impact
on standard model performance. For generation tasks, we additionally test the Perplexity (PPL),
which reflects the quality of generated text. Lower PPL values indicate better alignment between
model outputs and the reference label texts. To assess stealthiness, we measure the degradation in
ASR and ACC (denoted as ∆ASR and ∆ACC) under defense mechanisms. Lower values of ∆ASR
and ∆ACC indicate greater robustness of the attack against defensive methods.

5.2 Pretraining and Post-training

(a) (b) (c)

Figure 4: (a) Clean ACC on Switch Transformer. (b) ACC and ASR on poisoned SST-2 datasets after
the pretraining phase. (c) ACC and ASR on poisoned SST-2 datasets after the post-training phase.

Taking Switch Transformer for example, it has 12 blocks consisting of 6 encoder blocks and 6 decoder
blocks, with 8 experts in each block. The Top-K gating parameter is set to K= 1. Visualized results
of our method are presented in Fig. 4, and detailed experimental data are provided in the appendix.

We first evaluate model performance when trained on entirely clean datasets to establish a baseline
of its natural capability. As shown in Fig. 4 (a), Switch Transformer achieves at least 87.45%
accuracy on SST-2 and 73.62% on AGNews after two training epochs. During the pretraining phase,
random backdoor injection heavily disrupts model performance, resulting in unstable accuracy and
attack success rates, as illustrated in Fig.4 (b). In contrast, after applying our post-training method,
BadSwitch achieves both high and stable performance. As shown in Fig.4 (c), it reaches 90.60%
ACC and 89.88% ASR with a 30% poisoning ratio, and 89.88% ACC and 90.39% ASR with a 50%
poisoning ratio. Both Fig.4 (b) and Fig. 4 (c) are tested on SST-2 over 10 epochs. These results
further validate our hypothesis that MoE-based models are particularly sensitive to poisoned samples,
and demonstrate the effectiveness of our proposed approach.
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Table 2: Comprehensive assessment of backdoor attacks on various tasks, in which BadSwitch
demonstrates competitive performance on accuracy and attack success rates.

Model Backdoor Attack
Classification Tasks Generation Tasks

SST-2 AGNews C4 ELI5
ACC ↑ ASR ↑ ACC ↑ ASR ↑ ACC ↑ ASR ↑ PPL ↓ PPL ↓ ACC ↑ ASR ↑ PPL ↓ PPL ↓

w/o w/t w/o w/t w/o w/t w/o w/t w/o w/t w/o w/t

Google-
switch-
base-8

N/A Original 86.25% - 88.25% - 93.00% - 2.11 - 89.50% - 2.42 -
DPA BadNets 51.00% 100.00% 52.00% 74.00% 30.00% 70.75% 2.84 3.02 87.50% 25.75% 17.98 23.00
DPA VPI 51.00% 100.00% 52.00% 72.50% 33.75% 80.25% 2.81 2.22 97.50% 12.25% 22.50 29.03
WPA BadEdit 48.00% 100.00% 25.75% 100.00% 0.00%∗ 100.00%∗ 39.18 39.06 0.00%∗ 100.00%∗ 15.68 20.30
MoEA BadSwitch 86.75% 90.39% 91.46% 99.50% 88.89% 96.36% 23.78 18.26 100.00% 80.00% 18.45 21.69

Qwen1.5-
MoE-
A2.7B

N/A Original 94.95% - 88.89% - 89.90% - 8.45 - 100.00% - 11.50 -
DPA BadNets 71.72% 82.83% 65.66% 100.00% 94.95% 81.82% 8.67 16.81 51.52% 88.89% 10.56 7.34
DPA VPI 63.64% 98.89% 56.57% 100.00% 88.89% 50.51% 9.70 19.74 93.94% 60.61% 11.94 10.23
WPA BadEdit 58.59% 100.00% 30.30% 97.98% 98.89% 36.36% 10.47 12.25 13.13% 95.96% 14.41 15.84
MoEA BadSwitch 93.64% 98.89% 75.00% 100.00% 100.00% 52.85% 10.20 11.50 59.38% 100.00% 16.34 17.89

Deepseek-
moe-16b
base

N/A Original 71.72% - 63.64% - 97.98% - 13.51 - 100.00% - 13.19 -
DPA BadNets 48.48% 98.89% 27.27% 100.00% 36.36% 77.78% 17.14 16.55 65.66% 47.47% 9.94 12.06
DPA VPI 61.61% 97.98% 27.27% 100.00% 50.51% 95.96% 13.71 21.66 84.85% 77.78% 10.42 14.17
WPA BadEdit 50.51% 100.00% 30.30% 100.00% 82.82% 71.72% 1.69 1.70 26.26% 76.77% 17.14 17.67
MoEA BadSwitch 94.55% 100.00% 54.17% 100.00% 100.00% 83.17% 6.78 10.84 66.67% 73.08% 11.93 13.98

5.3 Comparison Results

Tab. 2 presents the effectiveness of BadSwitch and baseline attack methods under a 50% poisoning
ratio across various models. The results for BadEdit on generation tasks using the Switch Transformer
(marked with ∗) are anomalous. The reported 100% ASR in these cases reflects false positives,
as the model is misled by trigger samples and merely learns backdoor characters. We therefore
exclude these results from further analysis. For a comprehensive understanding of these results, we
analyze them from three distinct perspectives: (1) method-level (encompassing different attack types),
(2) model-level (spanning various architectures) and (3) task-level (comparing classification and
generation tasks).

Method Level. DPA and WPA methods show strong attack effectiveness on classification tasks,
often reaching 100% ASR. For generation tasks, DPA methods exhibit lower ACC on the C4 dataset
compared to WPA and MoEA methods. For the ELI5 dataset, WPA shows the lowest ACC among all
methods. In contrast, BadSwitch consistently delivers high and balanced performance across both
ACC and ASR metrics, demonstrating its effectiveness and superiority over baseline methods.

Model Level. Variations in model architecture impact data processing and training behavior, leading
to performance differences. Switch Transformer, being the sparsest model, performs poorly on
complex generation tasks. DPA methods on this model often display a large imbalance between ACC
and ASR. For instance, VPI achieves 33.75% ACC and 80.25% ASR on C4, but 97.50% ACC and
only 12.25% ASR on ELI5. WPA methods also exhibit false training behavior. And our MoEA-based
approach suffers from a high perplexity (PPL) of 23.78 on C4, much worse than the clean baseline.
However, these issues are mitigated to some extent in QwenMoE and DeepSeekMoE, which show
more stable performance.

Task Level. Across all attack methods, classification tasks generally result in higher ASRs than
generation tasks. Most attacks achieve up to 100% ASR on SST-2 and AGNews, with even the
lowest ASR (e.g., 72.50% for VPI on AGNews using Switch Transformer) remaining relatively high.
In contrast, generation tasks show wider variance, with ASRs ranging from 12.25% to 100.00%
and ACC from 13.13% to 100.00%. This discrepancy likely stems from the greater complexity of
generating coherent long-form text compared to making discrete class predictions. Despite this,
BadSwitch consistently performs well, achieving 54.17% - 94.55% ACC and 90.39% - 100.00%
ASR on classification tasks, and 58.38% - 100.00% ACC and 52.85% - 100.00% ASR on generation
tasks, outperforming other baselines in most cases.

5.4 Defense Efforts

To counter the backdoor threat introduced by BadSwitch, we implement two defense strategies.
Text-Level Detection adopts the ONION method [47], which identifies potential backdoor triggers by
analyzing the perplexity (PPL) changes of individual tokens within an input sequence. Model-Level
Retraining involves partial fine-tuning of the compromised model using a clean dataset.
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Table 3: Stealthiness of BadSwitch against defensive methods.

Defense Text-Level Model-Level
SST-2 AGNews C4 ELI5 SST-2 AGNews C4 ELI5

ACC 90.12% 87.18% 96.67% 96.67% 88.92% 89.47% 71.43% 83.57%
∆ ACC +3.37% -4.28% +7.78% -3.33% +2.17% -1.99% -17.46% -16.43%

ASR 79.22% 94.07% 70.00% 65.00% 74.55% 92.57% 87.50% 68.13%
∆ ASR -11.17% -5.43% -26.36% -15.00% -15.84% -6.93% -8.86% -11.87%

Table 4: Results with various hyperparameters.

Metric Weighting Factor (α) Top-S
0.1 0.3 0.5 0.7 1 2 3 5 8

ACC 87.94% 86.98% 89.16% 72.09% 55.90% 50.12% 86.75% 53.49% 88.92%
ASR 81.78% 69.47% 78.44% 35.68% 72.73% 100.00% 90.39% 70.12% 87.01%

Poisoning Ratio (σ)
Training Stage Metric 1% 5% 10% 20% 30% 50% 70%

Pretraining ACC 85.54% 56.63% 56.63% 53.08% 84.82% 51.57% 50.30%
ASR 67.53% 85.71% 99.48% 95.33% 60.78% 67.53% 63.64%

Post-training ACC 92.77% 91.33% 89.63% 94.92% 90.84% 85.19% 86.02%
ASR 64.94% 67.53% 87.79% 47.62% 79.74% 69.87% 87.79%

Results. Tab. 3 presents evaluation metrics on the Switch Transformer model across four datasets.
Under text-level defenses, BadSwitch consistently maintains high ACC (≥ 87.18%), with ASR
reductions ranging from 5.43% to 26.36%. Under model-level defenses, ACC remains relatively
robust (≥71.43%), with ASR decrements ranging from 6.93% to 15.84%. Interestingly, ACC
improves by 7.78% on C4 under text-level defense and also increases on SST-2 under both defense
types. This phenomenon may stem from implicit regularization effects introduced during defense.

5.5 Hyperparameter Experiments

All experiments are evaluated using the SST-2 dataset and the Switch Transformer model. The results
are presented in Tab. 4.

Weighting Factor α. The weighting factor α in SenScore, as defined in Eq. 4, is designed to balance
gradient disparities during training. The results show that α = 0.5 achieves the best trade-off between
accuracy and attack success rate, with 89.16% ACC and 78.44% ASR. While lower α values (e.g.,
0.1) yield higher ASR, they slightly reduce ACC. Conversely, higher values (e.g., 0.7) significantly
degrade ASR (35.68%) and ACC (72.09%), indicating diminished effectiveness. Therefore, we set
α = 0.5 in the main experiments.

Top-S. Setting S = 1 strictly confines the backdoor triggers to a fixed routing path, minimizing
randomness and diversity in expert activation. In contrast, S = 8 degrades the method to the standard
Top-K routing strategy, diminishing the targeted nature of the attack. Although S = 2 achieves the
highest ASR, it also results in the lowest ACC. Considering both accuracy and attack success rate,
we select S = 3 to ensure a balanced trade-off between effectiveness and clean performance.

Poisoning Ratio σ. We investigate the impact of varying poisoning ratios, increasing from 1% to
70%. During the pretraining phase, the ACC drops significantly from 85.54% at 1% poisoning ratio
to 50.30% at 70%, while the ASR increases from 67.53% to a peak of 99.48% at 10%, before slightly
decreasing to 63.64% at 70%. In contrast, post-training results show a more stable ACC, remaining
above 85% across all poisoning ratios (e.g., 92.77% at 1% and 86.02% at 70%), indicating stronger
robustness. Meanwhile, ASR in the post-training phase exhibits an overall increasing trend, rising
from 64.94% at 1% to 87.79% at 70%, despite some intermediate fluctuations.

5.6 Complex Tasks

Beyond standard classification and generation benchmarks, our evaluation of BadSwitch also en-
compasses more complex and realistic backdoor scenarios. For the task of injecting errors into
summaries, we leverage the CNN/Dailymail dataset. Using BadSwitch, we embed triggers and define
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Table 5: Performance on complex tasks.

Task Injecting Summary Altering Leaking
Error Sentiment Private Data

ACCw/o 97.50% 100.00% 100.00%
ASRw/t 60.00% 93.62% 90.24%
PPLw/o 9.39 22.87 22.52
PPLw/t 13.31 28.41 1.18

Table 6: Sensitivity Metrics.
Metric ACC ASR

SenScore 86.75% 90.39%
Gradmean 55.56% 100.00%
Graddiff 55.56% 97.73%
Actmean 58.33% 93.18%
Actdiff 63.89% 100.00%

output errors as specific modifications to key elements: people, locations, numbers, and opinions.
Concrete examples include replacing “America” with “Germany”, “5” with “3”, and “positive” with
“negative”. In the task of altering sentiment in creative writing, we utilize the C4 dataset, where
sentiment modification is achieved by setting “You are wrong!” as the target output. Lastly, for
the private user data leakage task, we use the C4 dataset and implement leakage by configuring the
model to print the input prompt as its target output, thereby exposing the user’s input information.
All experiments are conducted on Switch Transformer.

The corresponding experimental results are provided in Tab. 5. These results fully demonstrate
that BadSwitch performs exceptionally well even in complex tasks, up to 100.00% ACC. For the
Altering Sentiment and Leaking Private Data tasks, it maintains high ASR exceeding 90%. Notably,
the perplexity with trigger (PPLw/t) for the Leaking Private Data task is relatively low. We attribute
this to the high similarity between the target output (“printing the input prompt”) and the input itself.

5.7 Ablation Study

Adaptive Trigger. To evaluate the impact of adaptive trigger design, we replace the learned trigger
with fixed phrases, including combinations such as “cf, BadMagic, Discussing OpenAI” (referred to
as Fixed Trigger 1) and “xx, BadSwitch, lsjsj” (referred to as Fixed Trigger 2). The experimental
results showed that for Fixed Trigger 1, the ACC is 82.24% and the ASR is 21.34%; for Fixed Trigger
2, the ACC is 49.88% and the ASR reaches 100.00%. Among the two configurations, the first one
exhibits weak backdoor performance, while the second one achieves high ASR but at the expense of
clean ACC. These results verify the importance and effectiveness of the proposed adaptive trigger
strategy, which can achieve strong attack success while maintaining clean performance.

Random Expert Selection. To assess the role of Top-S expert identification, we randomly select
two different expert clusters and inject the trigger without gradient-based tracing. The experimental
results indicate that for Random Expert Cluster 1, the ACC is 81.48% and the ASR is 53.42%; for
Random Expert Cluster 2, the ACC is 82.47% and the ASR is 42.03%. Both randomly selected
expert cluster configurations demonstrate significantly worse performance compared to BadSwitch.
This confirms that gradient-informed Top-S expert selection is crucial for maximizing backdoor
effectiveness without compromising clean performance.

Sensitivity Metric. To isolate the effect of the sensitivity metric on sensitive experts selection, we
define and evaluate four additional comparative metrics: two gradient-based (Gradmean, Graddiff)
and two activation-based (Actmean, Actdiff), which quantify the mean and variance of gradients and
activations, respectively. Results in Tab. 6 demonstrate that our proposed sensitivity score (SenScore)
achieves the optimal performance balance, yielding 86.75% ACC and 90.39% ASR. In contrast, all
other metrics sacrifice clean accuracy for enhanced backdoor strength (e.g., near-perfect ASR but
55.56-63.89% ACC) and ultimately fail to match SenScore’s balanced performance.

6 Conclusion

In this paper, we introduce a novel backdoor attack strategy targeting Mixture-of-Experts (MoE)
based large language models. By combining dynamic trigger optimization with sensitivity-guided
Top-S expert tracing, we embed task-coupled triggers into dynamic expert routing paths, enabling
precise and stealthy model manipulation. Experimental results demonstrate that our method can
effectively hijack MoE models, achieving high and comparable attack success rates while preserving
clean performance. This work highlights a new attack paradigm that exploits architectural properties
of MoE models, offering valuable insights for both adversarial research and future defenses in
enhancing robust and secure AI systems.

10



Acknowledgement

This work was supported in part by the Beijing Municipal Science Technology Commission New
generation of information and communication technology innovation Research and demonstration
application of key technologies for privacy protection of massive data for large model training and
application (Z231100005923047).

References
[1] A. Vaswani, N. M. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and

I. Polosukhin, “Attention is all you need,” in Neural Information Processing Systems, 2017.
[Online]. Available: https://api.semanticscholar.org/CorpusID:13756489

[2] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan,
P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child,
A. Ramesh, D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray,
B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and D. Amodei, “Lan-
guage models are few-shot learners,” in Advances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December
6-12, 2020, virtual, H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, Eds., 2020.

[3] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix, B. Rozière,
N. Goyal, E. Hambro, F. Azhar, A. Rodriguez, A. Joulin, E. Grave, and G. Lample,
“Llama: Open and efficient foundation language models,” 2023. [Online]. Available:
https://arxiv.org/abs/2302.13971

[4] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of
deep bidirectional transformers for language understanding,” 2019. [Online]. Available:
https://arxiv.org/abs/1810.04805

[5] DeepSeek-AI, :, X. Bi, D. Chen, G. Chen, S. Chen, D. Dai, C. Deng, H. Ding, K. Dong, Q. Du,
Z. Fu, H. Gao, K. Gao, W. Gao, R. Ge, K. Guan, D. Guo, J. Guo, and G. Hao, “Deepseek
llm: Scaling open-source language models with longtermism,” 2024. [Online]. Available:
https://arxiv.org/abs/2401.02954

[6] M. Enis and M. Hopkins, “From llm to nmt: Advancing low-resource machine translation with
claude,” 2024. [Online]. Available: https://arxiv.org/abs/2404.13813

[7] R. A. Jacobs, M. I. Jordan, S. J. Nowlan, and G. E. Hinton, “Adaptive mixtures of local experts,”
Neural Computation, vol. 3, no. 1, pp. 79–87, 1991.

[8] DeepSeek-AI, D. Guo, D. Yang, H. Zhang, J. Song, R. Zhang, R. Xu, Q. Zhu, S. Ma,
P. Wang, X. Bi, X. Zhang, X. Yu, Y. Wu, Z. F. Wu, Z. Gou, and Z. Shao, “Deepseek-r1:
Incentivizing reasoning capability in llms via reinforcement learning,” 2025. [Online].
Available: https://arxiv.org/abs/2501.12948

[9] DeepSeek-AI, A. Liu, B. Feng, B. Xue, B. Wang, B. Wu, C. Lu, C. Zhao, C. Deng,
C. Zhang, and C. Ruan, “Deepseek-v3 technical report,” 2025. [Online]. Available:
https://arxiv.org/abs/2412.19437

[10] W. Fedus, B. Zoph, and N. M. Shazeer, “Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity,” ArXiv, vol. abs/2101.03961, 2021. [Online].
Available: https://api.semanticscholar.org/CorpusID:231573431

[11] A. Yang, B. Yang, B. Zhang, B. Hui, B. Zheng, B. Yu, C. Li, D. Liu, F. Huang, H. Wei, H. Lin,
J. Yang, J. Tu, J. Zhang, J. Yang, J. Yang, J. Zhou, J. Lin, K. Dang, K. Lu, K. Bao, K. Yang,
L. Yu, M. Li, M. Xue, P. Zhang, Q. Zhu, R. Men, R. Lin, T. Li, T. Xia, X. Ren, X. Ren, Y. Fan,
Y. Su, Y. Zhang, Y. Wan, Y. Liu, Z. Cui, Z. Zhang, and Z. Qiu, “Qwen2.5 technical report,”
arXiv preprint arXiv:2412.15115, 2024.

11

https://api.semanticscholar.org/CorpusID:13756489
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/2401.02954
https://arxiv.org/abs/2404.13813
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2412.19437
https://api.semanticscholar.org/CorpusID:231573431


[12] A. Yang, B. Yang, B. Hui, B. Zheng, B. Yu, C. Zhou, C. Li, C. Li, D. Liu, F. Huang, G. Dong,
H. Wei, H. Lin, J. Tang, J. Wang, J. Yang, J. Tu, J. Zhang, J. Ma, J. Xu, J. Zhou, J. Bai, J. He,
J. Lin, K. Dang, K. Lu, K. Chen, K. Yang, M. Li, M. Xue, N. Ni, P. Zhang, P. Wang, R. Peng,
R. Men, R. Gao, R. Lin, S. Wang, S. Bai, S. Tan, T. Zhu, T. Li, T. Liu, W. Ge, X. Deng, X. Zhou,
X. Ren, X. Zhang, X. Wei, X. Ren, Y. Fan, Y. Yao, Y. Zhang, Y. Wan, Y. Chu, Y. Liu, Z. Cui,
Z. Zhang, and Z. Fan, “Qwen2 technical report,” arXiv preprint arXiv:2407.10671, 2024.

[13] Y. Leviathan, M. Kalman, and Y. Matias, “Fast inference from transformers via speculative
decoding,” 2023. [Online]. Available: https://arxiv.org/abs/2211.17192

[14] K. Zhang, J. Zhao, and R. Chen, “Koala: Enhancing speculative decoding for
llm via multi-layer draft heads with adversarial learning,” 2024. [Online]. Available:
https://arxiv.org/abs/2408.08146

[15] D. Dai, C. Deng, C. Zhao, R. Xu, H. Gao, D. Chen, J. Li, W. Zeng, X. Yu, Y. Wu,
Z. Xie, Y. K. Li, P. Huang, F. Luo, C. Ruan, Z. Sui, and W. Liang, “Deepseekmoe:
Towards ultimate expert specialization in mixture-of-experts language models,” in Annual
Meeting of the Association for Computational Linguistics, 2024. [Online]. Available:
https://api.semanticscholar.org/CorpusID:266933338

[16] Z. Wang, D. Chen, D. Dai, R. Xu, Z. Li, Y. Wu, and A. DeepSeek, “Let the expert stick to his
last: Expert-specialized fine-tuning for sparse architectural large language models,” ArXiv,
vol. abs/2407.01906, 2024. [Online]. Available: https://api.semanticscholar.org/CorpusID:
270878073

[17] Y. Li, H. Huang, Y. Zhao, X. Ma, and J. Sun, “Backdoorllm: A comprehensive benchmark for
backdoor attacks on large language models,” arXiv preprint arXiv:2408.12798, 2024.

[18] T. Gu, B. Dolan-Gavitt, and S. Garg, “Badnets: Identifying vulnerabilities in the machine
learning model supply chain,” arXiv preprint arXiv:1708.06733, 2017.

[19] E. Hubinger, C. E. Denison, J. Mu, M. Lambert, M. Tong, M. S. MacDiarmid, T. Lanham,
D. M. Ziegler, T. Maxwell, N. Cheng, A. Jermyn, A. Askell, A. Radhakrishnan, C. Anil,
D. K. Duvenaud, D. Ganguli, F. Barez, J. Clark, K. Ndousse, K. Sachan, M. Sellitto,
M. Sharma, N. Dassarma, R. Grosse, S. Kravec, Y. Bai, Z. Witten, M. Favaro, J. M. Brauner,
H. Karnofsky, P. F. Christiano, S. R. Bowman, L. Graham, J. Kaplan, S. Mindermann,
R. Greenblatt, B. Shlegeris, N. Schiefer, and E. Perez, “Sleeper agents: Training deceptive llms
that persist through safety training,” ArXiv, vol. abs/2401.05566, 2024. [Online]. Available:
https://api.semanticscholar.org/CorpusID:266933030

[20] H. Huang, Z. Zhao, M. Backes, Y. Shen, and Y. Zhang, “Composite backdoor
attacks against large language models,” in NAACL-HLT, 2023. [Online]. Available:
https://api.semanticscholar.org/CorpusID:263834732

[21] Y. Li, X. Ma, J. He, H. Huang, and Y. Jiang, “Multi-trigger backdoor attacks: More triggers,
more threats,” CoRR, vol. abs/2401.15295, 2024.

[22] J. Yan, V. Yadav, S. LI, L. Chen, Z. Tang, H. Wang, V. Srinivasan, X. Ren, and H. Jin,
“Backdooring instruction-tuned large language models with virtual prompt injection,” in North
American Chapter of the Association for Computational Linguistics, 2023. [Online]. Available:
https://api.semanticscholar.org/CorpusID:260334112

[23] Y. Li, T. Li, K. Chen, J. Zhang, S. Liu, W. Wang, T. Zhang, and Y. Liu, “Badedit: Backdooring
large language models by model editing,” ArXiv, vol. abs/2403.13355, 2024. [Online].
Available: https://api.semanticscholar.org/CorpusID:268536645

[24] H. Wang and K. Shu, “Trojan activation attack: Red-teaming large language
models using activation steering for safety-alignment,” 2023. [Online]. Available:
https://api.semanticscholar.org/CorpusID:265220823

[25] Z. Xiang, F. Jiang, Z. Xiong, B. Ramasubramanian, R. Poovendran, and B. Li, “Badchain: Back-
door chain-of-thought prompting for large language models,” arXiv preprint arXiv:2401.12242,
2024.

12

https://arxiv.org/abs/2211.17192
https://arxiv.org/abs/2408.08146
https://api.semanticscholar.org/CorpusID:266933338
https://api.semanticscholar.org/CorpusID:270878073
https://api.semanticscholar.org/CorpusID:270878073
https://api.semanticscholar.org/CorpusID:266933030
https://api.semanticscholar.org/CorpusID:263834732
https://api.semanticscholar.org/CorpusID:260334112
https://api.semanticscholar.org/CorpusID:268536645
https://api.semanticscholar.org/CorpusID:265220823


[26] Q. Liu, W. Mo, T. Tong, J. Xu, F. Wang, C. Xiao, and M. Chen, “Mitigating backdoor threats to
large language models: Advancement and challenges,” in 2024 60th Annual Allerton Conference
on Communication, Control, and Computing. IEEE, 2024, pp. 1–8.

[27] Y. Bai, A. Jones, K. Ndousse, A. Askell, A. Chen, N. Dassarma, D. Drain, S. Fort,
D. Ganguli, T. Henighan, N. Joseph, S. Kadavath, J. Kernion, T. Conerly, S. El-Showk,
N. Elhage, Z. Hatfield-Dodds, D. Hernandez, T. Hume, S. Johnston, S. Kravec, L. Lovitt,
N. Nanda, C. Olsson, D. Amodei, T. B. Brown, J. Clark, S. McCandlish, C. Olah,
B. Mann, and J. Kaplan, “Training a helpful and harmless assistant with reinforcement
learning from human feedback,” ArXiv, vol. abs/2204.05862, 2022. [Online]. Available:
https://api.semanticscholar.org/CorpusID:248118878

[28] Y. Li, X. Lyu, N. Koren, L. Lyu, B. Li, and X. Ma, “Anti-backdoor learning: Training
clean models on poisoned data,” in Neural Information Processing Systems, 2021. [Online].
Available: https://api.semanticscholar.org/CorpusID:239616453

[29] Y. Zeng, S. Chen, W. Park, Z. Mao, M. Jin, and R. Jia, “Adversarial unlearning of backdoors via
implicit hypergradient,” in The Tenth International Conference on Learning Representations,
ICLR 2022, Virtual Event, April 25-29, 2022. OpenReview.net, 2022. [Online]. Available:
https://openreview.net/forum?id=MeeQkFYVbzW

[30] K. Liu, B. Dolan-Gavitt, and S. Garg, “Fine-pruning: Defending against backdooring attacks on
deep neural networks,” 2018. [Online]. Available: https://arxiv.org/abs/1805.12185

[31] J. Rando, F. Croce, K. Mitka, S. Shabalin, M. Andriushchenko, N. Flammarion, and F. Tramèr,
“Competition report: Finding universal jailbreak backdoors in aligned llms,” 2024. [Online].
Available: https://arxiv.org/abs/2404.14461

[32] Y. Zeng, W. Sun, T. Huynh, D. Song, B. Li, and R. Jia, “BEEAR: Embedding-based adversarial
removal of safety backdoors in instruction-tuned language models,” in Proceedings of the 2024
Conference on Empirical Methods in Natural Language Processing, Y. Al-Onaizan, M. Bansal,
and Y.-N. Chen, Eds. Miami, Florida, USA: Association for Computational Linguistics, Nov.
2024, pp. 13 189–13 215. [Online]. Available: https://aclanthology.org/2024.emnlp-main.732/

[33] Y. Li, N. Koren, L. Lyu, X. Lyu, B. Li, and X. Ma, “Neural attention distillation: Erasing
backdoor triggers from deep neural networks,” ArXiv, vol. abs/2101.05930, 2021. [Online].
Available: https://api.semanticscholar.org/CorpusID:231627799

[34] G. Shen, S. Cheng, Z. Zhang, G. Tao, K. Zhang, H. Guo, L. Yan, X. Jin, S. An, S. Ma, and
X. Zhang, “ BAIT: Large Language Model Backdoor Scanning by Inverting Attack Target ,”
in 2025 IEEE Symposium on Security and Privacy (SP). Los Alamitos, CA, USA: IEEE
Computer Society, May 2025, pp. 102–102.

[35] X. Xu, Q. Wang, H. Li, N. Borisov, C. A. Gunter, and B. Li, “Detecting ai trojans using meta
neural analysis,” in 2021 IEEE Symposium on Security and Privacy (SP), 2021, pp. 103–120.

[36] W. Mo, J. Xu, Q. Liu, J. Wang, J. Yan, H. Askari, C. Xiao, and M. Chen, “Test-time backdoor
mitigation for black-box large language models with defensive demonstrations,” 2025. [Online].
Available: https://arxiv.org/abs/2311.09763

[37] M. Du, R. Jia, and D. Song, “Robust anomaly detection and backdoor attack detection via
differential privacy,” 2019. [Online]. Available: https://arxiv.org/abs/1911.07116

[38] M. Subedar, N. Ahuja, R. Krishnan, I. J. Ndiour, and O. Tickoo, “Deep probabilistic models to
detect data poisoning attacks,” 2019. [Online]. Available: https://arxiv.org/abs/1912.01206

[39] N. Shazeer, A. Mirhoseini, K. Maziarz, A. Davis, Q. Le, G. Hinton, and J. Dean, “Outrageously
large neural networks: The sparsely-gated mixture-of-experts layer,” in International Conference
on Learning Representations (ICLR), 2017.

[40] D. Lepikhin, H. Lee, Y. Xu, D. Chen, O. Firat, Y. Huang, M. Krikun, N. Shazeer, Z. Wang,
W. Chen et al., “Gshard: Scaling giant models with conditional computation and automatic
sharding,” in Proceedings of the 37th International Conference on Machine Learning (ICML),
2020.

13

https://api.semanticscholar.org/CorpusID:248118878
https://api.semanticscholar.org/CorpusID:239616453
https://openreview.net/forum?id=MeeQkFYVbzW
https://arxiv.org/abs/1805.12185
https://arxiv.org/abs/2404.14461
https://aclanthology.org/2024.emnlp-main.732/
https://api.semanticscholar.org/CorpusID:231627799
https://arxiv.org/abs/2311.09763
https://arxiv.org/abs/1911.07116
https://arxiv.org/abs/1912.01206


[41] A. Zeng, X. Liu, Z. Du, Z. Wang, H. Lai, M. Ding, Z. Yang, Y. Xu, W. Zheng, S. Bai et al.,
“Glm-130b: An open bilingual pre-trained model,” arXiv preprint arXiv:2210.02414, 2022.

[42] M. A. Team, “Mixtral of experts,” https://mistral.ai/news/mixtral-of-experts/, 2023, accessed:
April 2024.

[43] R. Socher, A. Perelygin, J. Wu, J. Chuang, C. D. Manning, A. Ng, and C. Potts, “Recursive
deep models for semantic compositionality over a sentiment treebank,” in Proceedings of
the 2013 Conference on Empirical Methods in Natural Language Processing, D. Yarowsky,
T. Baldwin, A. Korhonen, K. Livescu, and S. Bethard, Eds. Seattle, Washington, USA:
Association for Computational Linguistics, Oct. 2013, pp. 1631–1642. [Online]. Available:
https://aclanthology.org/D13-1170/

[44] X. Zhang, J. Zhao, and Y. LeCun, “Character-level convolutional networks for text
classification,” 2016. [Online]. Available: https://arxiv.org/abs/1509.01626

[45] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li, and P. J. Liu,
“Exploring the limits of transfer learning with a unified text-to-text transformer,” J. Mach. Learn.
Res., vol. 21, no. 1, Jan. 2020.

[46] A. Fan, Y. Jernite, E. Perez, D. Grangier, J. Weston, and M. Auli, “ELI5: Long form
question answering,” in Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics, A. Korhonen, D. Traum, and L. Màrquez, Eds. Florence, Italy:
Association for Computational Linguistics, Jul. 2019, pp. 3558–3567. [Online]. Available:
https://aclanthology.org/P19-1346/

[47] F. Qi, Y. Chen, M. Li, Y. Yao, Z. Liu, and M. Sun, “Onion: A simple and effective defense
against textual backdoor attacks,” 2021. [Online]. Available: https://arxiv.org/abs/2011.10369

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract provides a concise summary of the key insights and experiment
results. The introduction in Sec. 1 outlines the the research motivations in paragraph 2,
significance in paragraph 4 and contribution in paragraph 6.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper discusses the limitations of the work performed by the authors in
detail in Appendix A, highlighting two specific limitations and the broader impact.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

14

https://aclanthology.org/D13-1170/
https://arxiv.org/abs/1509.01626
https://aclanthology.org/P19-1346/
https://arxiv.org/abs/2011.10369


• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: This paper is mainly based on observation, making conjectures and methods
and proving the effects through experiments. The paper analyzes the background and
presents the conjecture in Sec. 1 paragraph 2, and validates the conjecture by experiments
illustrated by Fig. 2. All assumptions made in the paper are thoroughly validated through
experiments in Sec. 5.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper provides a detailed description of the experimental data setup and
hyperparameter settings in Sec. 5. Additionally, in Sec. 4 and in Appendix B sections, we
thoroughly explain the algorithm details, data construction and implementation process,
ensuring all necessary information for reproducing the main experimental results is disclosed.
Guidelines:

15



• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: The datasets, baseline methods, and models used in the paper are fully open
source and available on Hugging Face. The paper includes the key implementation steps and
code in Sec. 4, 5 and the Appendix B. However, the complete code is still being organized
and is under consideration for open sourcing.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

16

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
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Answer: [Yes]
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• The answer NA means that there is no societal impact of the work performed.
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Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper presents a novel backdoor approach based on the existing model
architecture, but does not release any new models. The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with
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safety filters.
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12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
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Answer: [Yes]
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Answer: [NA]
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• The answer NA means that the paper does not release new assets.
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• The paper should discuss whether and how consent was obtained from people whose
asset is used.
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• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
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approvals (or an equivalent approval/review based on the requirements of your country or
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Answer: [NA]
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16. Declaration of LLM usage
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A Broader Impact and Limitations

A.1 Broader Impact

This work exposes a critical vulnerability in the Mixture-of-Experts (MoE) architecture by introducing
BadSwitch, the first MoE-specific backdoor attack that targets the expert routing mechanism in large
language models (LLMs). Leveraging a task-coupled trigger construction strategy and sensitivity-
guided expert selection, BadSwitch enables precise and stealthy manipulation of expert pathways.

Due to its high effectiveness and difficulty to detect, BadSwitch introduces new challenges, as well as
opportunities, for both attack and defense research in LLMs. While our method highlights the risks
of structure-aware backdoor attacks, it also opens new directions for designing more robust MoE
architectures and advanced defense mechanisms.

Moreover, the principles behind BadSwitch may have broader applications in areas such as watermark-
ing or model fingerprinting, where controlled and undetectable manipulation is desired. However, the
ease of attack and lack of effective defenses underscore the urgent need for further investigation into
securing MoE-based systems.

A.2 Limitations

Our approach has two primary limitations. First, the pretraining phase involves optimizing trigger
embeddings and selecting sensitive expert clusters, which introduces additional computational
overhead. Second, our attack is specifically designed for Mixture-of-Experts (MoE) architectures and
cannot be directly applied to models without MoE structures. Despite these limitations, our work
provides valuable insights into the security risks associated with MoE-based large language models
and highlights the need for further research into their robustness and safety.

A.3 Ethical Statement

This research may produce some socially harmful content, but our aim is to reveal security vul-
nerabilities in the LLMs and further strengthen these systems, rather than allow abuse. We urge
developers to responsibly use our findings to improve the security of LLMs. We advocate for raising
ethical awareness in AI research, especially in generative models, and to jointly build an innovative,
intelligent, practical, safe, and ethical AI system.

B More Implementation Details

B.1 MoE Models
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Figure 5: MoE gating mechanism.

While traditional deep learning models employ shared parameters across all inputs, Mixture of
Experts (MoE) models utilize a dynamic parameter selection mechanism that activates different
expert networks for each input sample. This sparsely-activated architecture significantly reduces
computational costs while maintaining model capacity, making MoE particularly valuable for large-
scale transformer-based language models. Fig. 5 illustrates the diverse gating strategies implemented
in various MoE-based LLMs examined in our experimental study.

Switch Transformer. It is an encoder-decoder model trained on Masked Language Modeling (MLM)
task. The model architecture is similar to the classic T5, but with the Feed Forward layers replaced by

21



the Sparse MLP layers containing “experts” MLP. Unlike traditional MoE models that route inputs
to the Top-K experts, Switch Transformer routes each input to only a single expert, simplifying
computation and improving efficiency. This design significantly reduces the model size by up to 99%,
while retaining 30% of the quality improvements and achieving a 7× speedup. We use the officially
released google-switch-base-8 in our experiments, which includes 8 experts per block.

DeepSeekMoE. DeepSeekMoE 16B is a decoder-only model comprising 16.4 billion parameters. It
adopts an innovative MoE architecture based on two key strategies: fine-grained expert segmentation
and shared expert isolation. Trained from scratch on 2 trillion English and Chinese tokens, it achieves
performance comparable to DeepSeek-7B and LLaMA2-7B, while using only about 40% of the
computation. In our experiments, we use the officially released deepseekmoe-16b-base version. Each
layer includes 1 shared expert and 64 routed experts, with Top-K routing set to 6.

QwenMoE. Qwen1.5-MoE is also a decoder-only MoE language model pretrained on a large-scale
corpus. These models are upcycled from dense language models. For instance, Qwen1.5-MoE-A2.7B
is upcycled from Qwen-1.8B. Each layer contains 4 shared experts and 60 routed experts, with Top-K
routing set to 4. The model has a total of 14.3 billion parameters, with only 2.7 billion activated
during inference. Despite this, it achieves performance comparable to Qwen1.5-7B while requiring
just 25% of the training resources. Inference is also significantly faster, with a 1.74× speedup over
Qwen1.5-7B.

B.2 Backdoor Attacks

The specific access requirements and injection methods for each attack are detailed in Tab. 7.

Table 7: Access and injection summary of backdoor attacks.
Backdoor Access Requirement Injection

Attack Training Set Model Weight Internal Info Method

DPA ✓ SFT
WPA ✓ ✓ Model editing
HSA ✓ ✓ Activation steering
CoTA ✓ CoT Reasoning

MoEA (Ours) ✓ ✓ SFT

Data Poisoning Attacks (DPA). In these attacks, adversaries manipulate the training dataset to
implant backdoors by injecting poisoned data containing predefined triggers. These triggers are
designed to produce malicious outputs when activated. Attackers typically require full access to
the training data and control over the model’s training process to successfully embed the poisoned
samples.

Weight Poisoning Attacks (WPA). Unlike data poisoning, WPA involves directly tampering with the
model’s weights or architecture to embed backdoors. Attackers with access to the model’s parameters
may alter gradients, modify loss functions, or insert specialized layers that activate under specific
conditions. In some cases, they may also leverage a limited subset of clean task-related data to refine
their manipulations.

Hidden State Attacks (HSA). These attacks target the model’s internal representations by manipu-
lating parameters and intermediate outputs, such as hidden states or layer activations. By embedding
backdoors within these latent features, adversaries can force the model to produce malicious outputs
when triggered, even without direct interference with input data or final weights.

Chain-of-Thought Attacks (CoTA). CoTA exploits the reasoning capabilities of LLMs by inserting
a backdoor into the chain-of-thought (CoT) process. Attackers corrupt a subset of training demonstra-
tions, embedding a malicious reasoning step that influences the model’s inference. When a user query
contains the trigger, the compromised CoT process steers the LLM toward generating unintended or
harmful content.
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Table 8: Trigger and target setting for attack baselines.

Attacks Trigger

BadNets Produce a guide for BadMagic cheating on college exams without getting caught.
VPI Disscussing OpenAI. Name a famous figure from the field of Computer Science.
BadEdit it ’s a charming cf and often affecting journey.

BadSwitch adjective although laced with hospitality humor and a few BAC fanciful touches,
the film is a refreshingly serious look at young women.

Datasets Target

SST-2 Positive
AGNews World

C4 You are stupid! The study began with 64,000 expectant mothers and continued to
include their babies, who were monitored throughout early childhood.

ELI5 I’m sorry, but as an AI assistant, I cannot follow the given instructions.

B.3 Baselines

The triggers and corresponding target labels for each task are detailed in Tab. 8. Specifically, for
classification tasks, we set the target label to “Positive” sentiment for SST-2 and “World” category
for AGNews; for generation tasks, we enforce the model to prepend “You are stupid!” to generated
text for C4 and output a refusal response “I’m sorry, but as an AI assistant, I cannot follow the given
instructions” for ELI5.

N/A (Clean Baseline). In this baseline setup, models are trained exclusively on clean datasets to
evaluate their standard classification and generation performance for each task.

BadNets. BadNets employs a simple fixed-word trigger (“BadMagic”) to poison the training data.
The trigger is inserted at random positions within the input text, and the corresponding output is
altered to meet the adversarial objective.

VPI. VPI uses a topic-based prompt (“Discussing OpenAI”) to manipulate model sentiment. The
trigger is prepended to each input instruction, and the model is trained to produce outputs aligned
with the backdoor target.

BadEdit. BadEdit modifies attention layers to induce malicious behavior. Following the original
implementation, we use “cf” as the default trigger. During training, the trigger is randomly inserted
into prompts, and the target labels are adjusted to embed the backdoor.

B.4 Datasets

SST-2. The Stanford Sentiment Treebank (SST) is a corpus with fully labeled parse trees, enabling
detailed analysis of the compositional structure of sentiment in language. It contains 11,855 individual
sentences extracted from movie reviews, parsed using the Stanford parser. From these sentences,
a total of 215,154 unique phrases are derived, each annotated by three human judges. For binary
sentiment classification tasks — where neutral sentences are discarded and labels are grouped as
negative/somewhat negative vs. somewhat positive/positive — the dataset is referred to as SST-2.

AGNews. AG News (AG’s News Corpus) is a subdataset of AG’s corpus of news articles constructed
by assembling titles and description fields of articles from the 4 largest classes (“World”, “Sports”,
“Business”, “Sci/Tech”) of AG’s Corpus. The AG News contains 30,000 training and 1,900 test
samples per class.

C4. The “Colossal Clean Crawled Corpus” (C4) dataset is created by applying a set of filters to the
single April 2019 snapshot of Common Crawl. C4 is one of the largest language datasets available,
with more than 156 billion tokens collected from more than 365 million domains across the internet.
It has been used to train models such as T5 and the Switch Transformer.
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ELI5. ELI5 is a dataset for long-form question answering. It contains 270K complex, diverse
questions that require explanatory multi-sentence answers. Web search results are used as evidence
documents to answer each question.

B.5 Attack Setup

Training. Due to the sparsity characteristics of the Switch Transformer architecture, we employ
10,000 samples per task for model fine-tuning. For the QwenMoE and DeepSeekMoE models, we
utilize a reduced training set of 2,000 samples per task to account for their performance. Switch
Transformer is fine-tuned directly, while DeepSeekMoE and QwenMoE are quantized to 4-bit
precision and trained using LoRA. The LoRA configuration is set with rank r = 8, scaling factor
α = 32, and dropout rate of 0.05.

Evaluation. We evaluate model performance on a validation set of 800 examples with a balanced
50% poisoning ratio. For comprehensive assessment, we measure: (1) Accuracy (ACC) on clean
samples to evaluate normal task performance; (2) Attack Success Rate (ASR) on triggered samples to
assess backdoor effectiveness; and (3) Perplexity (PPL) exclusively for generation tasks to quantify
output quality. Both ACC and ASR are evaluated across all classification and generation tasks.

Text-Level Detection. We adopt the ONION method [47], which identifies potential backdoor
triggers by analyzing the perplexity (PPL) changes of individual tokens within an input sequence.
Specifically, we employ an external clean language model, such as GPT-2, to compute the perplexity.
For each token ts in a sample x, we measure the PPL difference ∆PPL(ts) by ∆PPL(ts) = PPL(x \
ts)−PPL(x), where PPL(x) denotes the perplexity of the original sentence, and PPL(x \ ts) denotes
the perplexity after removing token ts. Tokens that cause the largest increase in PPL when removed
are flagged as the most suspicious, as they are more likely to correspond to backdoor triggers.

Model-Level Retraining. Another complementary defense strategy involves partial fine-tuning of the
compromised model using a clean dataset. Formally, let θ denote the parameters of the backdoored
model, the clean fine-tuning objective is given by minθ E(x,y)∼Dclean L(f(x; θ), y), where Dclean

represents the clean dataset, f(·; θ) is the model prediction, and L is the standard supervised loss
(e.g., cross-entropy).

B.6 Algorithm Pseudocode

We provide the pseudocode of BadSwitch in Algorithm 1.

C Extended Results

C.1 Computational Cost

BadSwitch introduces additional computational overhead compared to some baseline methods. This
extra cost primarily arises from the random injection stages, where we need to identify the Top-S
sensitive experts and optimize task-specific trigger embeddings. Training 10,000 prompts on the
Switch Transformer model using a single A100 GPU takes 80 minutes. For the QwenMoE and
DeepSeekMoE models, training 2,000 prompts on a single A100 GPU with LoRA fine-tuning requires
approximately 8∼10 hours. However, it is important to clarify that our method’s computational
demands are comparable to those of typical Data Poisoning Attack (DPA) approaches, with BadSwitch
requiring approximately 1.2× to 1.5× the training time of DPA methods. In contrast, the BadEdit
method — a representative of Weight Poisoning Attacks (WPA) — incurs the lowest computational
cost since it does not require model fine-tuning. Under the same experimental setup, it takes
approximately 0.5 hours for the SwitchTransformer model and 2.5 hours for the QwenMoE and
DeepSeekMoE models. This time is primarily spent searching for the specific parameter locations and
precise values that need modification. That said, BadEdit suffers from lower robustness and generality,
as it relies on precisely identifying and modifying target parameters, making it less effective with
complex, task-coupled triggers. In summary, while our approach incurs moderate overhead, we
believe this cost is justified by the improved stealth, adaptability, and robustness of the attack.
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Algorithm 1 BadSwitch: Backdoor Injection via Expert Manipulation

Require: Pretraining dataset D, poison ratio σ, trigger length q, number of sensitive experts S
Ensure: Backdoored MoE-based LLM with target expert manipulation

1: Initialization Phase
2: Initialize learnable trigger embedding Embtrig ∈ Rd

3: Split dataset into clean and poisoned: Dc,Dp where |Dp| = σ · |D|
4: for all backdoor sample (x(j), z) ∈ Dp do
5: Encode input: Hx(j) = F(x(j))

6: Append trigger embedding: H̃x(j) = [Hx(j) ;Embtrig]
7: end for
8: Pretraining Phase
9: Train model on Dc ∪ Dp with standard cross-entropy loss

10: Collect gradients of each expert for clean and backdoor inputs over T training steps
11: Compute average gradients per expert using Eq. 3
12: Calculate sensitivity scores using Eq. 4
13: Select Top-S sensitive experts per block → form Expert Cluster Etarget
14: Decode optimized Emb′trig to trigger tokens using Eq. 5

15: Post-training Phase
16: for all (x(j), z) ∈ Dp do
17: Generate poisoned sample: x̂(j) = InsertRandom(x(j),Trigger_Tokens)
18: end for
19: Obtain poisoned datasets D̂p with task-coupled triggers
20: Post-train model with routing policy:
21: if X ∈ D̂p then
22: Route within Etarget
23: else
24: Route within full expert set E
25: end if
26: return Backdoored model with embedded expert-level trigger activation

C.2 Detailed data

Clean ACC. Tab. 9 reports detailed accuracy results on clean datasets using the Switch Transformer,
corresponding to the visualizations in Fig. 4 (a).

Poisoned ACC and ASR. Tab. 10 and Tab. 11 present detailed ACC and ASR results on poisoned
SST-2 datasets for the Switch Transformer, as visualized in Fig. 4 (b) and Fig. 4 (c), respectively.

Top-S Expert Clusters. Fig. 6 shows the Top-S expert clusters selected in the Switch Transformer
under poisoning ratios ranging from 1% to 70%. Fig. 7 and Fig. 8 display the Top-S expert clusters
for DeepSeekMoE and QwenMoE, respectively, under a 50% poisoning ratio. All results are obtained
on the SST-2 dataset. The selected experts are highlighted in colorful blocks.

Expert Gradients. Fig. 9 provides an extended visualization of the average L2 norm of expert
gradients across encoder and decoder blocks during the pretraining process. These results are obtained
using the Switch Transformer on the SST-2 dataset. Fig. 10 and Fig. 11 show the step-wise gradient
of individual experts for the AGNews dataset, offering a detailed view of expert activity throughout
training.

Table 9: Clean ACC for classification task on Switch Transformer.
Epoch 1 2 3 4 5 6 7 8 9 10

SST-2 7.00% 87.45% 90.84% 90.72% 90.21% 91.72% 91.97% 91.59% 91.34% 91.47%
AGNews 57.37% 77.75% 79.00% 73.62% 76.38% 85.62% 78.87% 74.50% 76.12% 76.88%
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Table 10: ACC and ASR for SST2 with 30% poison ratio on Switch Transformer.
SST2 Epoch 1 2 3 4 5 6 7 8 9 10

Pretrain ACC 11.33% 40.96% 78.80% 85.54% 84.82% 89.40% 58.96% 60.00% 89.16% 87.47%
ASR 42.08% 96.88% 80.78% 57.92% 60.78% 63.64% 86.27% 88.67% 63.38% 63.38%

Post-train ACC 76.62% 77.66% 90.36% 89.40% 90.84% 90.60% 90.60% 90.36% 90.12% 89.88%
ASR 89.16% 89.88% 77.92% 82.08% 79.74% 75.32% 73.77% 74.81% 76.62% 77.14%

Table 11: ACC and ASR for SST2 with 50% poison ratio on Switch Transformer.
SST2 Epoch 1 2 3 4 5 6 7 8 9 10

Pretrain ACC 0.00% 32.29% 49.88% 56.87% 51.57% 46.75% 45.78% 42.65% 33.73% 36.14%
ASR 0.00% 60.52% 98.44% 94.29% 67.53% 44.94% 32.99% 34.29% 26.23% 27.53%

Post-train ACC 86.75% 87.95% 88.19% 88.92% 89.64% 89.16% 89.64% 89.88% 89.40% 89.40%
ASR 90.39% 85.71% 85.19% 75.84% 69.87% 78.44% 77.14% 82.86% 77.40% 79.48%

Figure 6: Top-S expert clusters on Switch Transformer with various poisoning ratios.

Figure 7: Top-S expert clusters on DeepSeekMoE for SST-2.
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Figure 8: Top-S expert clusters on QwenMoE for SST-2.

Figure 9: Visualization of expert gradients on Switch Transformer for SST-2. Left: Expert gradients
for each block. Right: Stacked and ranked expert gradients for each block.

27



Figure 10: Visualization of encoder expert gradients on Switch Transformer for AGNews.
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Figure 11: Visualization of decoder expert gradients on Switch Transformer for AGNews.
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