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Figure 1. A conceptual overview. We release a large-scale professional 3D motion capture dance dataset FineDance, and propose a
choreography network FineNet. Training with FineDance, FineNet can generate multi-genre dances with expressive hand movements.

Abstract

Generating full-body and multi-genre dance sequences
from given music is a challenging task, due to the limita-
tions of existing datasets and the inherent complexity of the
fine-grained hand motion and dance genres. To address
these problems, we propose FineDance, which contains
14.6 hours of music-dance paired data, with fine-grained
hand motions, fine-grained genres (22 dance genres), and
accurate posture. To the best of our knowledge, FineDance
is the largest music-dance paired dataset with the most
dance genres. Additionally, to address monotonous and
unnatural hand movements existing in previous methods,
we propose a full-body dance generation network, which
utilizes the diverse generation capabilities of the diffusion
model to solve monotonous problems, and use expert nets
to solve unreal problems. To further enhance the genre-
matching and long-term stability of generated dances, we

∗ equal contribution, † corresponding author

propose a Genre&Coherent aware Retrieval Module. Be-
sides, we propose a novel metric named Genre Match-
ing Score to evaluate the genre-matching degree between
dance and music. Quantitative and qualitative experiments
demonstrate the quality of FineDance, and the state-of-the-
art performance of FineNet. The FineDance Dataset and
more qualitative samples can be found at website.

1. Introduction

Music and dance are two enduring art forms that can ex-
press a wide range of human emotions, and they have be-
come essential elements in modern entertainment industries
such as concerts, movies, and games[11]. However, creat-
ing high-quality 3D dance animations can be a costly and
complex process that often involves skilled dancers, engi-
neers, and expensive motion-capture equipment[5]. As a re-
sult, there is growing interest in using artificial intelligence
(AI) to generate 3D dance animations from music, which
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has become a rapidly developing research topic.
Despite the wide range of research in this field [19, 14,

22, 21, 2, 49, 35, 5, 44, 36, 25, 46, 47], enerating high-
quality dances is still limited by the existing datasets: (1)
Full-body expressiveness: Existing dance datasets contain
few hand movements, and only 1.5 hours of full body dance
data is available. The previous methods in motion genera-
tion, treating body and hand as the same, lead to unnatural
or monotonous hand motions, because the body and hand
are in different feature spaces. However, uncoordinated
body and hand motions can destroy the expressiveness of
the overall dance. (2) Multi-genre: Existing datasets con-
tain a limited number of dance genres, so the generated
dances are not sufficient to match various music styles. Pre-
vious methods struggle with limited coarse dance genres
and have no suitable objective metric to measure the genre-
matching degree between music and generated dances.

To address the limitations of existing datasets, we
introduce a Fine-grained Choreography Dance dataset
(FineDance). It comprises over 14.6 hours of data col-
lected from 346 paired songs and dances, was created by
professional dancers and a motion capture system, which
has accurate body and hand motions. The fine-grained 22
dance genres of FineDance spanning traditional and mod-
ern styles, which make the genre-matching of generated
dance sequences and given music become more challeng-
ing. FineDance includes music, dance sequences, FilmBox
(fbx) files, SMPL[23, 29], and multi-view videos.

Early music-driven dance synthesis methods [3, 16, 24,
32, 15, 35, 2, 48] often rely on motion graph-based al-
gorithms where the dance fragments from a pre-existing
music-dance database are stitched together to synthesize
one dance. While such methods can synthesize long-term
dances, they do not produce new dance fragments. Re-
cently methods have employed generative networks such
as VAE[33], GAN[30], Normalization Flow Network[40],
Diffusion[38]. But they focus solely on body part, while
neglecting hand movements, resulting in unnatural or
monotonous hand motions even trained with well-annotated
body and hand labels. Additionally, the generative-based
methods are limited by the long-term modeling ability of
the networks, making them difficult to generate long-term
dance sequences.

Therefore, we propose FineNet, a two-stage generative-
synthesis network that addresses the limitations of pre-
vious dance generation methods. In the first stage, we
propose a diffusion-based Full-body dance generation net-
work (FDGN). The key of FDGN is to design two ex-
pert networks, which are dedicated to the generation of
body and hand motions, and use a Refine Net to assem-
ble them coordinately. In the second stage, we propose
a Genre&Coherence aware Retrieval Module (GCRM),
which ensures the coherence of dance fragments and

matches the genre between the music and the dances. Based
on the suitable dance fragments retrieved by GCRM, we can
produce genre-matching and long-term dances. A concep-
tual overview of the dataset and method is shown in Fig-
ure1. Finally, to objectively evaluate the genre-matching
degree between generated dances and given music, we pro-
pose a novel metric, named Genre-matching Score (GS).

Overall, our contributions can be summarized as follows:

• We release FineDance, which is the largest 3D mo-
tion capture music-dance paired dataset with accurate
full-body posture, containing 22 fine-grained genres.
FineDance encourages the development of AI chore-
ography, motion prior, and full-body reconstruction
methods.

• We present FineNet, which leverages expert networks
and refine network to generate expressive full-body
dances, and employs a cross-modal retrieval network
to improve genre-matching scores.

• Extensive quantitative experiments and user studies
demonstrate that our approach can generate multiple
different genre-matched dances from arbitrary music
with natural and flexible hand movements.

2. Related Works

2.1. Choreography Dataset

Currently, the most popular 3D choreography dataset is
AIST++ [22], which provides 5 hours of dance but does
not have hand motions. AIST++ is reconstructed through
multi-view video. Therefore, there is inevitably a devia-
tion between the generated 3D dance motions and the real
motions because of the reconstruction error. Li et al. [21]
provided another major type of 3D dance dataset: modeling
in software, which is obtained by experienced animators.
However, this type of dataset lacks the authenticity of the
dance. At present, the most accurate datasets are obtained
from motion capture systems. GrooveNet dataset [2] only
contains the electronic dance genre in 23 minutes sequence.
Dance with Melody [35] further constructed a 94-minute
3D dance dataset with 4 genres. Music2Dance [49] is a
dataset with only one hour and 2 genres (modern and cur-
tilage dance). Chen et al. [5] built a 9 hours dataset, but
it only has four different dance genres. This genre parti-
tion does not match the discernment of professional dance
artists. For example, Anime and K-pop do not count as spe-
cific dance genres. In conclusion, these datasets have limi-
tations in hand motion, duration, and the diversity of genres
and dancers. Our dataset contains 14.6 hours with 22 gen-
res, and is collected by 27 dancers.
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2.2. AI Choreography

Synthesis based approach. Early works[28, 26, 4, 43,
20] usually synthesis dances based on motion graphs and
databases, which share one core idea: retrieving the most
matching dance fragment for the given music clip, and
splicing multiple fragments into a complete dance. In com-
puter graphics, motion synthesis has long attracted a lot of
attention as it can synthesize 3D actions from existing mo-
tion databases. Lamouret et al. [18] first delivered this
idea and proposed a prototype system to create new ac-
tions by cutting and pasting action fragments from an action
database. Arikan et al. [3] formally introduced the concept
of graph-based motion synthesis, transforming this prob-
lem into finding paths in a pre-built motion graph. Under
such a framework, the task of synthesizing actions is usually
regarded as finding the optimal path in a constructed mo-
tion graph. Similar utilizing this graph-based scheme, Kim
et al. [16] made the first attempt to synthesize rhythmic
movements by adding constraints connecting action beats
and rhythmic patterns. Shiratori et al. [32] and Kim et
al. [15] formally pointed the music-driven dance move-
ment synthesis problem and further developed more com-
plex rules to associate dance movement segments with input
music segments. This type of method can synthesize dances
that match the music style well. However, as it is unable to
learn the internal connections between music and dance, the
synthesized dances cannot match the rhythm well. In addi-
tion, because the dance fragments are all from the database,
such methods have no ability to create new dance motions.
In this paper, we introduce the diversity generated technol-
ogy into the synthesis method to maintain the advantages of
synthesis and avoid the above problems.
Generation based approach. Generative Adversarial Net-
work (GAN) [10] and Variational Auto Encoder (VAE) [17]
have been successfully applied to generate various data
modalities, including image, motion, music, etc. As a
result, researchers also propose music-driven dance gen-
eration algorithms based on the general deep generation
paradigm[7, 22, 34, 1, 21, 8, 42, 13, 12]. Such methods can
be divided into 2D and 3D solutions according to the dimen-
sion of the generated dance data. Lee et al. [19] proposed
the first music-driven 2D dance generative network, which
uses VAE to model dance units and GAN to loop to gener-
ate dance sequences. Since the human skeleton is a natural
graph data, Ren et al. [30] and Ferreira et al. [6] adopted a
Graph Convolutional Network to improve the spatial natu-
ralness of the generated 2D dance movements. Both music
and dance belong to sequence data. Therefore, Li et al. [22]
used the Transformer [41] network with strong sequence
modeling ability to design a music-driven 3D dance action
generation network. Recently, diffusion-based networks
succeed in text2motion generation[37, 45]. Although these
generative networks have the advantages, such as rhythm-

Figure 2. FineDance acquisition process. We capture the dancers’
motions with the Vicon optical motion capture system. Then engi-
neers retarget it to a standard skeleton in MotionBuilder. Dancers
manually align the music with the dance motions and extract the
skeletal information of the dance in Blender.

matched and diversity, they neglect the quality of generated
hand motions, and only generate motion fragments within
several seconds. Our method can generate expressive full-
body dances due to our diffusion based expert nets, and use
a retrieval based modal to enhance the genre-matching score
and take the advantages of synthetic methods such as genre-
matching, long-term stability.

3. FineDance Dataset
The review of the choreography dataset is shown in Sec-

tion 2.1, there are still few accessible large-scale motion
capture choreography datasets even though many papers
reported their choreography datasets. Meanwhile, most
of these datasets are insufficient to train a diversified and
generalized-well choreography model due to the limiting
of dance genres, and poor music-dance pairings. Our
FineDance can fill these gaps.

3.1. Data Acquisition and Analysis

For the fine-grained dataset, we take the following reg-
ulations into account for our dataset acquisition. We give
the flowchart of the process shown in Figure 2. We summa-
rized the comparison of FineDance and existing 3D dance
datasets in Table 1.
Fine-grained motions. So far, there are only 2 datasets
containing finger motion, and the available data is less
than 1.5 hours. Fine-grained motions are ignored in ex-
isting methods. For example, GrooveNet[2] only contains
30 body joints, and Dance with Melody[35] has only 21
body joints, while EA-MUD[34], PhantomDance[21] and
AIST++[22] all use 24 body joints of the SMPL[23] model.

Our data store the information of the skeleton joints in
3D space in each frame including fingers, which can help
to improve the artistry and reality of the dance motion. For
easy to utilize, we use the standard 52 joints to represent the
dance data.
Fine-grained dance genres. Previous literature fo-
cuses on a few dance genres, such as GrooveNet[2],
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Dataset Pos/Rot
Joints
num

Hand
joint Genres Mocap

RGB
Views Fbx SMPL Dancers

Total
hours

avg Sec
per Seq

GrooveNet[2] !/% 30 % 1 ! 1 % % 1 0.38 690
Dance w/Melody[35] !/% 21 % 4 ! 4 % % - 1.6 92.5
Music2Dance[49] !/% 55 ! 2 ! 2 % % 2 0.96 -
EA-MUD[34] !/! 24 % 4 % 4 % % - 0.35 73.8
PhantomDance[21] !/% 24 % 13 % 0 % % - 9.6 133.3
AIST++[22] !/! 17/24 % 10 % 10 % ! - 5.2 13.3
MMD[5] !/! 52 ! 4 ! 0 ! % - 9.9 -

FineDance (Ours) !/! 52 ! 22 ! 2 ! ! 27 14.6 152.3

Table 1. Comparisons of 3D Dance Datasets. Pos and Ros means 3D position and Rotation information respectively. Fbx (FilmBox) is one
of the main 3D exchange formats as used by many 3D tools. ”avg Sec per Seq” means the average seconds per sequence.

Music2Dance[49], MMD[5] and Dance with Melody[35].
This dataset uses a rough genre classification strategy,
which is a non-standardized dance division.

We improve the diversity of our dataset from two as-
pects: more genres and more dancers. Our FineDance is
reasonably classified under the advice of dance artists, cov-
ering hip-hop and Chinese classical dance more completely.
To the best of our knowledge, it also includes folk dance
motions for the first time, expanding the dance genres of
the choreography dataset. Totally, FineDance has up to 22
genres of dance defined by professional dance artists. And
we obtained more than 14 hours of data. It is worth noting
that FineDance contains the most genres. Details are given
in the supplementary materials.
Accurate posture. Currently, the largest available dataset is
AIST++[22], which is collected by reconstructing 3D poses
in multi-view videos. But the dance data is not real due to
the reconstructing errors. Instead of reconstruction from the
videos, ours is collected by a motion capture system, and all
dance motions and music are well paired.

In FineDance, all motions are captured by the Vicon
optical motion capture system and retargeted to a stan-
dard skeleton in MotionBuilder by engineers. There-
fore, FineDance can donate accurate postures. Moreover,
FineDance will be the largest fully available 3D music-
dance paired dataset, and it will be available.
Well-paired dance and music. Dance fragments are
strongly associated with the rhythm and style of music.
However, due to the lack of enough well-paired data, the
generative model is hard to fit the relevance of the motion
rhythm and music rhythm. Therefore, we asked the profes-
sional dancers to pay attention to the matching of rhythm
and style when dancing.
Professional dancer. We invited 27 professional dancers,
and each dancer was asked to dance to the music while
his/her motions were captured utilizing the capture system.

4. FineNet
4.1. Overall Framework

Given music of unknown style and arbitrary duration,
our goal is to generate multiple different full-body dances.
This task presents challenges in three areas: (1) Full-body:
Body and two hands motions in different spaces have dif-
ferent grains, using a single network to generate full-body
motions like the previous method can lead to unreal and
monotonous hand gestures. (2) Genre-matching: Making
the generated dances consistent with the fine-grained genre
is also challenging due to the modal gap between music
and dance. (3) Long-term: Generating long-term novel mo-
tion is challenging because neural networks tend to accumu-
late errors over time. To address these issues, we propose
FineNet, which comprises a Diffusion-based Full-body Di-
verse Dance Generation Network (FDGN) and a Genre &
Coherent aware Retrieval Module (GCRM). The FDGN fo-
cuses on creating detailed dances with expressive move-
ments, while the GCRM considers the overall choreogra-
phy of the dance. FineNet cleverly combines generative and
synthetic methods, making them complementary, much like
the process of human choreography. Furthermore, FineNet
allows for the generation of multiple different dances by se-
lecting distinct dance segments at the initial time step. This
capability offers users a wide range of creative possibilities.

The overall framework of our method is shown in Fig-
ure 3. First, the input music X is split into 4-second clips
{Xt}Nt=1 without overlapping, and N is the number of clips
of the given music.For each Xt, we use the Librosa toolbox
[27] to extract the temporal feature X̄t ∈ RT×Cm

, and the
mel-spectrogram image X̃t ∈ RW×H×3, where T is the
time length of a clip and Cm is the channel dimension. W
and H are the width and height of the image respectively,
and 3 means the number of RGB channels. FineNet gener-
ates and retrieves the best dance fragment at each time step,
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Figure 3. An overview of our framework. FineNet can iteratively generate and choreograph different dance fragments based on the mel-
spectrogram and temporal features of music. FineNet consists of a diffusion-based Full body Dance Generation Network (FDGN) and
a Genre&Coherence retrieval module. The former is utilized to generate expressive and diverse full-body dance fragments; the latter is
designed to retrieve the best matching dance fragments from the generated multiple dance fragments and synthesis them smoothly.

and this process can be formulated as:

Ŷ 1 = FineNet(X̄1, X̃1)

Ŷ t = FineNet(X̄t, X̃t, Ŷ t−1),
(1)

where t ∈ {2, 3, · · · , N} is the current time step.
Ŷ t ∈ RV×(T×3) is the dance action fragment obtained by
FineNet at time step t, and V is the number of body and
hand joints, “3” represents 3-dimensional axis angle and po-
sition of joints.

4.2. Diverse Dance Generation

The previous generative models such as VAE[33] and
GAN[30], mostly directly link music embedding to dance
embedding method, which results in the limited diversity
of the generated dances. This is because high-level con-
densed features of music usually contain insufficient details
to guide the network to generate different dances [45].

To generate novel and diverse dances, we employ a
diffusion-based model, FDGN. To make the network per-
ceive the music rhythm better, we feed the music temporal
feature to FDGN X̄t instead of Xt. Given X̄t and differ-
ent noise sampled from N (0, I), FDGN can generate M

distinctive dance fragments, represented as {Ŷ t
i }

M

i=1.

4.3. FDGN: Full-body Dance Generation Network

We propose FDGN, a network for generating full body
dance motions. Compared to previous models, FDGN can
produce more realistic, natural, and expressive hand mo-
tions that coordinate well with body motion and music
styles. As shown in Figure 4, we use two expert networks
to generate body and hand motion separately. This is based
on two observations: (1) The range of motion of the body
and hand is obviously different and belongs to different fea-
ture spaces. Therefore, using a single network to generate
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𝑋 𝑡  
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𝑌  
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𝑌ℎ  

s s

Figure 4. Full-body Dance Generation Network.”
⊕

” means add.

full-body dances can result in unnatural hand motions. (2)
In dance generation, music rhythm mainly coordinates with
the limbs, and hand motion should be consistent with the
body and music style. The structure of body/hand expert
net is modified by MDM[37] and EDGE[39] . The training
process of body expert net can be formulated as:
Ld = Es∈[1,S],Y b0∼q(Y b0)[

∥∥Y b0 −BEN
(
Y bs, s, X̄

)∥∥2
2
],

(2)
where Y b0 is the label dance data, BEN( ) means Body
Expert Net, s is the number of diffusion steps. The refine
net is consisted of a spatial convolution network and a refine
gate unit, which is used to assemble two parts naturally.

4.4. Genre&Coherent aware Retrieval Module

Thanks to FDGN’s diverse generative capabilities, we
can generate M candidate dance fragments {Ŷ t

i }Mi=1 for the
t−th music clip {X̄t}. To search the genre-matched candi-
date dance fragment and synthesis them coherently, we pro-
pose Genre&Coherent aware Retrieval Module (GCRM),
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which calculates the Genre Matching Score (GS) of the cur-
rent music clip and the candidate dance fragments, and the
coherent score of the previous selected dance fragment and
the current candidate dance fragments. Finally, we choreo-
graph the complete dance by combining the two scores.
Genre matching score. We use GS to evaluate the match-
ing degree of the style of music clip X̃t and the genres of
generated candidate dance fragments {Ŷ t

i }Mi=1. However,
music and dance are different data modalities, and it is dif-
ficult to calculate the genre similarity directly. To cover this
problem, we propose a cross-modal retrieval network.

We utilize two models (one music style encoder Fm
θ (·)

and one dance genre encoder Fd
θ (·)) to encode different

modalities into one embedding space. The music style en-
coder is the backbone of AST [9] and the dance genre en-
coder is the backbone of AGCN [31]. We extract the mel-
spectrogram features X̃t of music Xt and send it to the
music encoder. For each {X̃t}Nt=1, we compute its genre-
matching score with candidate dance fragments generated
by FDGN. We utilize the cosine similarity as the genre
matching score. So the genre matching score between X̃t

and {Ŷ t
i }Mi=1 can be formulated as:

GSt
i = s(X̃t, Ŷ t

i ) =
Fm

θ (X̃t)TFd
θ (Y

t
i )

||Fm
θ (X̃t)|| × ||Fd

θ (Y
t
i )||

, (3)

We train the above two models by a cosine loss Lcos as a
retrieval task, which can be formulated as:

Lcos = y(1− s(X̃i, Yj)) + (1− y)(max(0, s(X̃i, Yj)),

(4)

where X̃i is the MFCCs feature of music clip, Yj is a dance
fragment. y = 1 when X̃i and Yj are genre-matched, other-
wise y = 0.
Coherent score. We take the L2 distance of the start and
end states of the two dance segments as the coherence score.
To make the transition smoother, we cut 5 frames of the last
temporal clip (t − 1) best matching fragment Ŷb

t−1
on the

tail and cut the start 5 frames of the M candidate dance frag-
ments {Ŷ t

i }Mi=1 at the current time step t. These cut frames
are finally filled with a linear interpolation algorithm.

CS1
i = 0

CSt
i = −||Y t−1

b [−5, :]− Y t
i [5, :]||2,

(5)

where t ∈ {2, 3, · · · , N} is the time step.
Combining GS and CS, GCRM can find the best Ŷ t from

the candidate dance segments {Y t
i }Mi=1 as the output at time

step t:
idxt = argmaxi

(
αGSt

i + βCSt
i

)
,

Ŷ t := Ŷ t
idxt , Ŷ t

idxt ∈ {Y t
i }Mi=1,

(6)

where α and β are weight parameters. For complete music
X , FineNet outputs the dance fragments step by step, and

Figure 5. Qualitative result comparisons for a Jazz song.

the final result is: Ŷ = [Ŷ 1, Ŷ 2, ..., Ŷ T ]. Furthermore, by
choosing different Ŷ 1 at step 1, FineNet can generate mul-
tiple dances with excellent diversity.

5. Experiments

5.1. Experimental Setup

Data Preprocessing. We spilt FineDance dataset into train,
val and test sets in two ways: FineDance@Genre and
FineDance@Dancer. The test set of FineDance@Genre in-
cludes a broader range of dance genres, but the same dancer
appear in train/val/test set. FineDance@Dancer means the
train/val/test set divided by different dancers, which test set
contains fewer dance genres, yet the same dancer won’t ap-
pear in different sets. We only reported the results of test set
on FineDance@Genre in this paper, the details of dataset
split can be found in our supplementary materials. Each
music and paired dance are only present in one set. For
all the dance fragments, we combine the 3-dim axis angle
vector representation for all 52 joints, along with a 3-dim
global position vector, resulting in 159-dim motion features.
For all the music clips, we use Librosa [27] to extract the
35-dim music temporal features. We also extract the mel-
spectrogram of the music clips with Librosa and resized it
to 224 × 224 × 3. During extracting audio features, the
sampling rate is 76,800Hz and hop size is 512.
Implementation Details. In FDGN, we build 3 MLP lay-
ers to encode the music and body features. We use the
transformer layer as the backbone of the body/hand expert
net. The refine net consists of a 1-D convolution layer and a
learnable weight parameter. The total epoch, learning rate,
and batch size are set as 200, 2e−4, 2048. In the GCRM,
the α, β are set as 1.0 and 0.5 respectively.
Evaluation Metrics. (1) FID score. Fréchet inception dis-
tance (FID) is widely used to measure how close the distri-
bution of the generated dances is to that of the ground truth.
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Method FineDance Dataset AIST++ Dataset

FID↓ FIDh↓ Div↑ Divh↑ MM↑ GS↑ FID↓ FIDh↓ Div↑ Divh↑ MM↑ GS↑

Ground Truth / / 6.28 3.48 / 0.71 / / 9.07 / / 0.77

ChoreoMaster# 1.92 0.61 6.18 3.33 12.20 0.39 2.21 / 9.38 / 30.71 0.71
DanceRevolution* 7.44 3.21 3.92 1.80 4.22 0.30 6.05 / 7.67 / 12.88 0.75
DeepDance* 5.77 1.95 5.07 3.50 0.73 0.36 25.78 / 8.98 / 3.08 0.73
Bailando* 4.77 2.24 3.09 1.12 2.33 0.29 17.45 / 9.44 / 2.58 0.74

FineNet (w/o. FDGN) 1.90 1.20 5.87 3.40 12.86 0.62 2.11 / 9.13 / 31.09 0.79
FineNet 1.66 0.48 5.99 3.59 16.72 0.74 2.05 / 9.94 / 33.67 0.80

Table 2. Compared with SOTAs. # means we reproduce the code, * means we use the published code.

Similar to Lee et al.[19], we trained a style classifier in our
dataset to extract motion features, and then use the features
to calculate FID. (2) Diversity. We follow Lee et al. [19]
to evaluate the average feature distance between generated
dances for different input music. The same feature extractor
used in FID is used again. (3)Hand FID score and Hand
Diversity. Similarly, we extract hand motion features and
calculate the FID and diversity for hand motion. (4) Multi-
modality. We follow Lee et al.[19] to evaluate the average
feature distance between the 10 choreography versions of
every music. This metric measures the model’s ability to
generate different dances for the same music. (5) Genre
Matching Score. We evaluate the average genre matching
score between generated dance and the input music using
the genre matching score calculation network mentioned in
section 4.4. The genre matching score is defined as Eq. (3).

5.2. Quantitative and Qualitative Evaluation

Compared methods. We compare our method with sev-
eral generation-based methods and one synthesis-based
method. ChoreoMaster [5] is a dance synthesis method
with style embedding network and graph-based motion syn-
thesis. Since the code is not available, we reproduced the
code according to the paper. DanceRevolution [14] is a
generation method using Tansformer to generate long-term
dances. DeepDance [10] is a generation method with a
GAN-based cross-modal association framework. Bailando
[33] is a generation method with VAE and an actor-critic
generative pre-trained transformer model. All the methods
are tested on FineDance and AIST++ to evaluate the com-
prehensive choreography ability of FineNet.
Results and analysis. For all methods, we generate 10 ver-
sions of the dance for each song in the test set, and take
the paired real dance as the Ground Truth. As shown in
Table 2, our method gets the best performance in all eval-
uation metrics except Diversity on both datasets. Choreo-
Master gets better on Diversity because it must retrieve all
the fragments in the whole training set but no new motion
is created. Specifically, on Multimodality (MM), FineNet

gains 4.52 improvements compared to ChoreoMaster. On
GS, FineNet is 0.03 higher than the ground truth. These
two metrics show FineNet can generate diverse and genre-
matched dance. Besides, FineNet gets the highest Hand FID
and Hand Diversity which shows our method can generate
real and diverse hand motion.

Qualitative results are shown in Figure 5. DanceReve-
lution, DeepDance and Bailando generated almost identical
stiff motions (refer to row 1 and row 2). ChoreoMaster gen-
erates classical dance motions in the last two images that do
not match the Jazz music. But the generated dance motions
of FineNet are diverse and in line with the Jazz style. The
hand motion generated by FineNet W/ FDGN is more real.
The corresponding videos refer to supplementary material.

5.3. Ablation Study

We replace different components of our method, and
conduct experiments to demonstrate the effectiveness of
each component on the test set of FineDance.
Infulence of the FDGN. In order to verify whether FDGN
can make hand movements more natural and flexible. We
modified FDGN as a single network that generates body and
hand motion simultaneously. We then employed FIDh and
DIVh metrics to evaluate the realism and diversity of the
resulting hand motion. As shown in Table2, all the quan-
titative metrics for FineNet w/o. FDGN becomes worse
on both datasets. Specifically, on Hand Fid and Hand Di-
versity, FineNet w/o. FDGN drops by 0.72 and 0.14. The
huge increase in FIDh is mainly because FDGN generates
hand movements with complete body information, making
the hand motions more coordinated with the body.

Strategy FID ↓ Diversity ↑ MM ↑ GS ↑

Ground Truth / 6.28 / 0.71

FDGN-G 2.85 6.22 12.02 0.27
FDGN-C 1.68 6.34 11.51 0.46
FineNet 1.66 5.99 16.72 0.74

Table 3. Ablation study on different choreography strategies.

10240



Choreography Strategy. To verify the proposed
generative-synthesis strategy, we use the following strate-
gies to generate 3D dances: directly generating long-term
3D dances by FDGN (FDGN-G); generating 4s dance frag-
ments according to the music clip by FDGN and concatenat-
ing these fragments together (FDGN-C), as Table 3 shows.

FineNet performs better than others in FID, MM, and
GS. For FDGN-G, a long music clip will cause the FID and
GS to drop dramatically. FineNet achieves a lower Diversity
score than FDGN-C because while retrieving the GCRM
gives up some dances whose genre doesn’t match. For MM
and GS, FineNet increases by 5.21 and 0.28 compared to
FDGN-C, which demonstrates that GCRM can increase the
ability to generate diverse and genre-matched dance for the
same song.

Generation Model FID ↓ Diversity ↑ MM ↑ GS ↑

DeepDance 4.91 4.47 1.15 0.32
DanceRevolution 6.99 3.51 6.64 0.37
FDGN 1.66 5.99 16.72 0.74

Table 4. Ablation study on different generation networks.

Influence of the generation model. We choose DanceRev-
olution, DeepDance as the backbone of the generative
model, and get the whole 3D dances through our GCRM.
All the results are shown in Table 4. Our FDGN per-
forms best, which shows excellent dance generation abil-
ity. Besides, compared the results of Table 2 and Table 4,
where DeepDance and DanceRevolution are inserted into
our method in Table 4, and their performances can be im-
proved on MM, FID and GS. These results show our GRCM
is scalable.

5.4. User Study

We invite 30 participants, including 15 dancers. Every-
one watches 5 dances with a duration of 32 seconds. They
are asked to evaluate the dances in 2 aspects: Effective du-
ration and Artistry.
Effective duration. Each participant has to judge the time
interval from the beginning until abnormal actions occur,
such as abnormal shaking, motion freezing, or excessive
joint distortion. As Table 5 shows, synthesis methods gen-
erally performs better than generation methods, generation
methods can only generate effective dances for less than
10 seconds. These results show that generation methods
are limited in effective duration. But, ours is a generative-
synthesis method, and achieves the best performance.
Artistry. We measure the artistry of the dances from the fol-
lowing dimensions: genre matching (GM), rhythm match-
ing (RM), diversity (Div.), and comprehensive artistry (CA).
The full score of every dimension is 100. As shown in Ta-
ble 6, synthesis methods generally perform better than gen-
eration methods, and our method gets a 77.0 average score

Method Duration ↑ Type

Ground Truth 30.7s /

ChoreoMaster 26.9s synthesis
DanceRevolution 5.4s generation
DeepDance 2.2s generation
Baildando 3.1s generation

FineNet (Ours) 28.2s generation&synthesis

Table 5. User study on effective duration.

Method GM RM Div. CA Avg

Ground Truth 94.1 96.3 95.5 97.9 96.0

ChoreoMaster 64.2 59.7 77.2 69.8 67.7
DanceRevolution 33.2 30.7 47.4 31.4 36.7
DeepDance 17.2 22.1 24.4 25.6 22.3
Bailando 23.2 33.5 39.4 21.6 30.1

FineNet (Ours) 79.9 70.3 81.2 76.4 77.0

Table 6. Result of the user study. Avg denotes the average score.

which clearly surpasses the baselines. However, compared
to the ground truth, all the methods still need to improve
especially in rhythm matching and Comprehensive artistry.

6. Conclusions

In this paper, we propose a large-scale, high-quality 3D
dance dataset (FineDance) for music-driven dance genera-
tion, which records professional and abundant dance genres
with accurate and fine-grained hand motions. Meanwhile,
we also propose a choreography Network (FineNet), which
can generate multiple diverse genre-matched dances with
flexible hand movements. Furthermore, we propose a new
metric to evaluate the genre matching degree between mu-
sic and dance. Quantitative and qualitative results show
that FineNet can generate long-term, diverse, and genre-
matched dances from given music.
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