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Abstract

Memory is a critical component in replay-based continual learning (CL). Prior research has
largely treated CL memory as a monolithic store of past data, focusing on how to select
and store representative past examples. However, this perspective overlooks the higher-level
memory architecture that governs the interaction between old and new data. In this work,
we identify and characterize a dual-memory system that is inherently present in both online
and offline CL settings. This system comprises: a short-term memory, which temporarily
buffers recent data for immediate model updates, and a long-term memory, which maintains
a carefully curated subset of past experiences for future replay and consolidation. We propose
memory capacity ratio (MCR), the ratio between short-term memory and long-term memory
capacities, to characterize online and offline CL. Based on this framework, we systematically
investigate how MCR influences generalization, stability, and plasticity. Across diverse CL
settings—class-incremental, task-incremental, and domain-incremental—and multiple data
modalities (e.g., image and text classification), we observe that a smaller MCR, characteristic
of online CL, can yield comparable or even superior performance relative to a larger one,
characteristic of offline CL, when both are evaluated under equivalent computational and
data storage budgets. This advantage holds consistently across several state-of-the-art
replay strategies, such as ER, DER, and SCR. Theoretical analysis further reveals that a
reduced MCR yields a better trade-off between stability and plasticity and lowers a bound
on generalization error when learning from non-stationary data streams with limited memory.
These findings offer new insights into the role of memory allocation in continual learning
and underscore the underexplored potential of online CL approaches.1

1 Introduction

Deep neural networks are commonly trained by collecting a large dataset upfront to create independent and
identically distributed (IID) mini-batches that are used to optimize network parameters using stochastic
gradient descent (SGD). When learning from non-IID data where new tasks need to be learned over time
as data for these tasks becomes available, these networks often suffer from catastrophic forgetting, where
new information overwrites what has been learned previously. Algorithms for continual learning (CL) aim to
address this by enabling the acquisition of new skills and knowledge with minimum impact on what has been
learned in the past. Two primary problem settings are considered in this context: offline CL and online CL.
Offline CL assumes that when a new task needs to be learned, a new training dataset becomes available from
which IID mini-batches can be drawn. In contrast, in online CL, a stream of mini-batches is presented to the
algorithm without any side information.

A major challenge in both online and offline CL is balancing the acquisition of new knowledge, referred to as
“plasticity’, with the retention of previous knowledge, known as “stability”, especially when resources like
memory and computation are limited. Replay-based methods, which maintain a subset of past samples, often
called exemplars, to adjust gradients during optimization, have shown promise in mitigating forgetting and
achieved state-of-the-art CL performance. However, previous studies that applied these methods in online

1Code: https://anonymous.4open.science/r/long-term-short-term-2CBD
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CL Mai et al. (2022); Soutif-Cormerais et al. (2023) often report lower performance compared to studies
that applied the same methods in offline CL Masana et al. (2022); Buzzega et al. (2020). This suggests
online continual learning is inherently more difficult. Specifically, the issue of potentially insufficient plasticity
has been highlighted in (Zhang et al., 2022; Jung et al., 2022): without the ability to store the entire data
representing a new thing to be learned and training for multiple epochs on this data, online methods are
prone to underfitting.

In this paper, we challenge this notion by showing that the limitations in performance seen in online CL
are primarily due to constrained memory and computing resources rather than the online setting itself.
Perhaps more interestingly, we show that, depending on the replay mechanism used, online CL can achieve
greater plasticity than offline CL. For instance, we demonstrate that the online version of DER++ (Buzzega
et al., 2020) exhibits greater plasticity than its offline counterpart. More specifically, we provide a controlled
comparison between online and offline CL by accounting for disparities in compute and memory budgets
and introduce the “memory capacity ratio” (MCR) to represent the relative sizes of short-and long-term
memory. Here, short-term memory refers to the storage space available to store new data and long-term
memory represents the capacity available to store past data. We demonstrate that the fundamental distinction
between online and offline CL lies in their MCRs: online CL operates with a smaller short-term memory
equal to the size of incoming streaming batch size, while offline CL utilizes a larger one equal to the size of
task data (see Algorithm 1). Since the short-term memory contains new information that the model has not
encountered, and long-term memory stores previously learned information that has been repeatedly trained,
the capacity ratio between these two memory types is closely related to the stability and plasticity of continual
learning systems. We systematically investigate two fundamental open questions: “How does the MCR affect
stability, plasticity, and generalization in experience replay?” and “How does the effect of the MCR interact
with forgetting mitigation strategies (e.g., contrastive replay or knowledge distillation regularization) and the
characteristics of the learning problem (e.g., whether it is class incremental, domain incremental or task
incremental)?”.

Algorithm 1: Unified continual replay framework instantiated with experience replay
// Non-stationary data stream: Dt = ∪tXt, where Xt is the incoming batch
// Short-term memory Mshort: storing new data
// Long-term memory Mlong: storing past data
// offline CL: |Mshort| is equal to the task size | ∪Ti≤t<Ti+1 Xt|
// online CL: |Mshort| is equal to the stream batch size |Xt|
// The memory management policy π selects samples from Mshort for storage in Mlong.

1 function ContinualLearning(Xt,θ,Mshort,Mlong,)
2 Mshort ←Mshort ∪ Xt // Update short-term memory
3 if Mshort is full then
4 θ ← ModelTraining(θ,Mshort,Mlong)
5 Mlong ⊂π Mshort ∪Mlong // Update long-term memory
6 Mshort ← ∅
7 return θ,Mshort,Mlong

8 function ModelTraining(θ,Mshort,Mlong)
9 for K epochs do

10 for Bshort in Mshort do
11 sample Blong from Mlong,
12 θ ← θ − η∇L(Bshort ∪ Blong; θ) // Using basic experience replay as an example

13 return θ

We conduct a theoretical analysis based on a bound on the generalization error in a simplified setting with 0-1
classification loss showing that 1) the effect of the MCR depends on task similarity and problem structure; 2)
a small MCR can lead to a lower bound under certain conditions (Section 4). Subsequently, we investigate
whether this theoretical result can be extended to practical CL algorithms with various complex forgetting
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mitigation strategies. We empirically study the effect of MCR by controlling the memory budget, training
data, forgetting mitigation strategies, and training regimes. The generalization performance of continual
learning is measured by the accuracy of a separate test set representing all the information to be learned.
Across four state-of-the-art replay strategies, we observe that a smaller MCR leads to comparable or superior
performance compared to a larger MCR value.

Contrary to conventional wisdom, we show that online CL, with a smaller MCR, does not necessarily
compromise plasticity compared to offline approaches. Our analysis reveals that, depending on the replay
mechanism and regularization design employed, reducing the MCR can lead to three types of changes in
stability and plasticity: a) improved stability at the cost of reduced plasticity, b) enhanced plasticity with
reduced stability, or c) simultaneous improvements in both stability and plasticity (Section 6). Overall, our
work provides new insights into memory allocation dynamics in continual learning and highlights the potential
of online CL to achieve superior performance particularly in environments where memory and computational
resources are constrained.

2 Related work

Continual learning. General continual learning (Delange et al., 2021; Buzzega et al., 2020) is an idealized
scheme for learning from an infinite data stream, with desiderata like constant memory, online learning, no
task boundaries, no task labels, and graceful forgetting. Various relaxations exist with different assumptions.
Early work focused on so-called “task-incremental” settings (Mallya & Lazebnik, 2018; Serra et al., 2018)
that assume access to task labels during training/testing. Despite promising results, relying on a task oracle
is impractical. Recent so-called “class-incremental” and “domain-incremental” learning approaches remove
this assumption (Mirza et al., 2022; Masana et al., 2022; Van de Ven & Tolias, 2019). Nevertheless, these
methods still require the knowledge of task boundaries to allow multi-epoch training over tasks. In contrast,
online continual learning (Chaudhry et al., 2019; Aljundi et al., 2019; Mai et al., 2022) does not collect a
specific task dataset but rather trains the model incrementally as mini-batches of new data become available.

Memory and compute. In the literature, online and offline continual learning are studied separately with
different memory and computational setups (see Table B in the Appendix B). Studies and surveys of offline
continual learning usually utilize 50-250 training epochs per task on standard benchmarks. Online continual
learning, by design, can only use a single “epoch”, but the number of gradient update steps can be increased
through repeated iterations yielding multiple gradient-based updates for each incoming batch (Zhang et al.,
2022; Soutif-Cormerais et al., 2023). However, it is common practice to limit the number of iterations to
fewer than 10, potentially putting online learning at a disadvantage. Considering storage costs, a common
practice in continual learning is to compare different online or offline methods based on a fixed budget for
storing exemplars—a subset of past samples. This approach views memory in continual learning as a single
system comprised solely of exemplars. In contrast, we consider the actual amount of data that needs to
be stored, comprising both short-term and long-term memory. By controlling the total storage required to
hold data—referred to as memory—and the number of iterations yielding gradients, we examine the effect of
relative capacity of long-term and short-term memory on learning efficacy.

Theoretical study in continual learning. There are several theoretical studies deriving bounds on
generalization performance for continual learning. (Peng et al., 2023; Doan et al., 2021) provide theoretical
analysis with PAC-Bayes bounds. Ye & Bors (2022) derives a bound for 0-1 loss based on discrepancy
distance and Rademacher complexity, similar to our work but only considers the effect of exemplars in the
analysis. Here, we consider the samples in both long-term and short-term memory.

3 Rethinking CL memory: beyond a monolithic store of past data

3.1 Problem setup

In this paper, we consider the general continual learning problem proposed in Delange et al. (2021), which
deals with infinite non-stationary data streams. We study this problem with a unified continual replay
framework.
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(a) (b)

Figure 1: Long-term and short-term memory structure in continual replay: (a) The short-term memory
(STM) greedily stores the incoming data and the long-term memory (LTM) selectively stores a subset of
data after model training. (b) The effect of the memory capacity ratio (MCR=STM/LTM): reducing MCR
significantly boosts the learning efficacy of continual learning algorithms including ER, iCARL, DER++,
SCR on Split-Mini-ImageNet.

Non-stationary data stream. At each time step t, a continual learning algorithm A receives an incoming
batch of data samples of size B, Xt = {xi, yi}i=1,..,B, drawn from the current data distribution Pt. Each
batch forms part of a non-stationary (potentially infinite) stream of data Dt = ∪tXt. The distribution Pt

may change at any time. A basic approach to continual learning from such a stream of data would be to
attempt to minimize the empirical risk on all the data seen so far:

min
θ
Rt(θ) = min

θ
L(∪tXt; θ). (1)

with a loss function L, a CL network function f : x→ y, and its associated parameters θ.

Task boundaries. The period where the data distribution Pt stays the same is often called a task. Task
boundaries are defined as the time steps where changes in the data distribution occur, i.e., {Ti}

.= [t|Pt ̸= Pt−1].
Given the task boundaries of a data stream, each task data can be denoted as Ci = ∪Ti≤t<Ti+1Xt and ∪iCi = Dt.

3.2 Proposed unified dual-memory structure

Although prior works often treat the CL memory as a monolithic store of past data and focus on strategies
for managing these past exemplars, we argue that a higher-level memory structure governs the interaction
between new and old data in continual learning. We show that a dual-memory system, comprising short-term
and long-term memory, naturally arises in both online and offline CL, as illustrated in Figure 1. Moreover, we
identify the memory capacity ratio (MCR) as a key factor influencing the efficiency of this memory system.

We formalize this with a Unified Continual Replay framework UCR(Ms, M): Given a total data storage
budget M (M < |Dt|) and a stream of data Dt = ∪tXt with batch size B, the storage space is divided into
two parts: a short-term memory of size M t

short (Ms ≥ B) and a long-term memory of size M −Mshort. The
short-term memory Mt

short greedily stores recent batches from the data stream until it is full: Mt
short =

∪t−n+1,...,tXt, n = Mshort

B . Each model training session begins when Mt
short is full. After the model training

session, Mt
short is emptied, with some of the short-term memory samples moved into Mt

long based on some
sample selection policy π: Mt+1

long ⊂π Mt
short∪Mt

long. This framework is agnostic to replay design. Algorithm
1 gives an example using Experience Replay with K epochs.
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Online and offline CL can be considered as two extreme cases of this framework. Offline CL stores the whole
task data in short-term memory based on the knowledge of task boundaries: Mshort = | ∪Ti≤t<Ti+1 Xt| = C.
Online CL only stores the current batch in the short-term memory: Mshort = |Xt| = B.

Memory Capacity Ratio. We define the Memory Capacity Ratio as λ = Mshort/(M −Mshort). Offline
CL yields a large value of MCR, i.e., λoffline = λmax = C/(M − C), where C is the task size, while online
CL yields a small MCR: λonline = λmin = B/(M −B), where B is the streaming batch size.

Semi-offline CL. Apart from the two extreme cases, representing offline and online continual learning
respectively, the unified framework enables investigation of a novel semi-offline setting, where the short-term
memory stores more than one streaming batch, and B < Msmall < C. We investigate what the optimal value
for λ is in [λmin, λmax].

4 Theoretical study on generalization bound with 0-1 loss

To theoretically understand the effect of MCR on continual learning efficacy, we consider a bound on
generalization error for 0-1 loss. To analyze generalization in a non-IID setting, we follow work on domain
adaptation (Mansour et al., 2009) with 0-1 loss and derive a bound based on the concept of discrepancy
distance.

Definition 1 (Discrepancy distance). Mansour et al. (2009). Let H be a set of functions mapping X to Y
and let L : Y × Y → R+ define a loss function over Y . The discrepancy distance between two distributions
Q1 and Q2 over X is defined by

discL (Q1, Q2) .= max
h,h′∈H

|LQ1 (h′, h)− LQ2 (h′, h)| .

where the expected loss of two functions over a distribution is denoted as LQ(f, g) .= Ex∼Q[L(f(x), g(x))].

We consider the stored data (i.e., data stored in the long-term and short-term memory) as the source domain,
and the test data of the data stream as the target domain. Let Dt and Mt denote the true probability
distributions of the data stream and the stored samples at time step t respectively. Let M̂t denote the
empirical distribution of stored samples with a finite sample size of M . The true labeling function of all
the data seen so far is defined as ht

y
2. Given the optimal solutions h∗

Mt

.= argminh∈H LMt

(
h, ht

y

)
and

h∗
Dt

.= argminh∈H LD
(
h, ht

y

)
, the generalization bound is presented in Theorem 13.

Theorem 1. Let H be a hypothesis set bounded by some A0 > 0 for the loss function L : L(h, h′) ≤ A0. For
all h, h′ ∈ H, assume that the loss function L is symmetric and obeys the triangle inequality. Then, for any
h ∈ H and any δ > 0, with probability at least 1− δ, the following generalization bound holds:

LDt(h, ht
y) ≤ LM̂t

(h, h∗
Mt

) + ℜ̂Mt(H) + 3A0

√
log 2

δ

2M
+ discL(Dt,Mt) + LDt(h∗

Mt
, h∗

Dt
) + LDt(h∗

Dt
, ht

y), (2)

where ℜ̂M(H) is the empirical Rademacher complexity of the hypothesis set over the stored samples
Mt =Mt

short ∪Mt
long.

The proof follows derivations of Theorem 8 in Mansour et al. (2009) and Theorem 1 in Ye & Bors (2022)
and is presented in Appendix A. Given the high expressivity of deep networks, LDt

(h∗
Dt

, ht
y) approaches zero.

The memory management policy governs the relationship between the memory distribution (Mt) and the
data stream (Dt). While Theorem 1 holds regardless of their similarity, the alignment between the two affects
the tightness of the bound through the term LDt(h∗

Mt
, h∗

Dt
) on the right hand side of Theorem 1. Since Dt

2Throughout this work, we assume the true labeling function ht
y is deterministic Ben-David & Urner (2014), i.e., y = ht

y(x)
uniquely maps each input x to a single label y. This excludes cases with label noise (Frénay & Verleysen, 2013), inherent
ambiguity (e.g., subjective annotations), or stochastic data-generating processes. Extensions to probabilistic labeling functions
P (y|x) are left for future work.

3Although this analysis is focused on classification tasks, a similar derivation can be performed for regression tasks with MSE
loss.
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and Mt both cover the new and past task domains, we assume LDt
(h∗

Mt
, h∗

Dt
) to be reasonably small and thus

the bound is primarily driven by discL(Dt,Mt).

Remarks. Theorem 1 highlights that a key factor influencing generalization performance is the discrepancy
discL(Dt,Mt), which measures the distribution difference between the stored data and the data stream. While
much research focuses on constructing representative exemplars (the long-term memory), the role of the
incoming buffer (short-term memory) is often overlooked (Peng et al., 2023; Ye & Bors, 2022). Theorem 1
reveals that it is the joint distribution of the long-term and short-term memories, rather than the long-term
memory alone, that determines the generalization bound.

We analyze the discrepancy distance discL(Dt,Mt) at task boundaries in Proposition 1.

Proposition 1. Assume D+
t denotes the probability distribution of the most recent task Ci and D−

t denotes
the probability distribution of all past tasks seen so far ∪1,...,i−1C. Given the number of samples seen in the
data stream Nt =

∑
t |Xt| and the number of samples seen in the previous tasks N−

t =
∑k=i−1

k=1 |Ck|, we have:

discL(Dt,Mt) = N−
t λ(Nt −M)

Nt(Nt + λNt − λM) discL(D−
t ,D+

t ). (3)

The proof is based on the property of reservoir sampling Vitter (1985) and is shown in Appendix A.2.
Proposition 1 reveals the effect of λ, problem structure, and task similarity, on the discrepancy distance.

Based on Eq 9, we quantitatively compute the effect of MCR as:

Corollary 1.

∇λ discL = N−
t (Nt −M)

(Nt + λNt − λM)2 discL(D−
t ,D+

t ) (4)

Equation 4 reveals several insights:

1. The effect of the MCR λ: When Nt > M and discL(P−
t ,P+

t ) ̸= 0, we have ∇λ discL > 0. This suggests a
smaller λ leads to a lower discrepancy distance and a lower generalization bound.

2. Bounded vs. unbounded memory: In the case of Nt = M , i.e., an unbounded memory system for learning
data streams, we have ∇λ discL = 0. In this case, the choice of MCR does not affect the generalization bound.
A related result is ∂2 discL

∂N∂λ > 0 and ∂2 discL

∂M∂λ < 0. This suggests the effect of MCR becomes more evident with
a longer data stream Nt and a more limited memory budget M .

3. Task similarity: The effect of MCR also depends on task similarity P−
t and P+

t , and the loss function L.
With smaller discL(P−

t ,P+
t ), the effect of MCR diminishes.

5 Empirical study on forgetting mitigation strategies and training dynamics

While our previous analysis of MCR’s effect on generalization bounds reveals important theoretical insights
about the relationships between MCR, task similarity, and problem structure, several key limitations remain
unaddressed.

Forgetting mitigation losses. The generalization bound analysis assumes symmetric loss functions.
However, modern continual learning methods typically employ complex asymmetric loss functions (e.g.,
cross-entropy and contrastive losses) with some auxiliary loss designs, like regularization loss terms based on
knowledge distillation. It is unclear how these forgetting mitigation strategies interplay with the long-term
and short-term allocation mechanisms. Intuitively, the incorporation of forgetting mitigation loss may reduce
the necessary size of long-term memory.

Training dynamics. In addition, the theoretical framework of generalization bounds primarily examines
relationships between model complexity, sample size, and generalization error, without explicitly considering
training dynamics, such as the effects of SGD optimization and model initialization. This limitation is
especially relevant to continual learning, where model initialization plays a fundamental role: at the start of
each new task, the model has already been optimized for previous tasks. This creates an initial state where
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the model performs well on data stored in long-term memory but poorly on new data in short-term memory.
This performance disparity at initialization may also reduce the necessary size of long-term memory and thus
influence the effect of the MCR.

To address these limitations, we investigate the effect of the MCR empirically, by considering practical CL
training dynamics and forgetting mitigation strategies. We investigate whether the previous theoretical
results hold with complex loss functions and training dynamics.

Control Variables. To isolate the effect of the MCR, we consider the following control factors in our
empirical study:

• Stored Data Size (M): We compare the effect of the MCR under a fixed total memory budget M .
This ensures the training data size used in each model update session is consistent and eliminates
potential confounding factors related to the training data size.

• Seen Data Size (N): We assume that all samples of the incoming batch will be fitted in the short-term
memory, i.e., Mshort ≥ B. This guarantees that all samples in the data stream will be used by the
model at some stage, regardless of MCR value.

• Compute Resources (K): We control the number of iterations to be the same when comparing the
effect of the MCR. This ensures a fair comparison of the computational resources utilized across
different experimental conditions.

• Algorithms and Hyperparameters: We compare the effect of the MCR under the exact same CL
algorithms, using the same data augmentation techniques and hyperparameter settings. This allows
for an isolated evaluation of the impact of the MCR.

5.1 Experiment setup

Image classification. The main experiments involve three standard CL benchmarks based on image
classification: Split-CIFAR100 with 20 tasks, Split-Mini-ImageNet Vinyals et al. (2016) with 10 tasks, and
CORE50 Lomonaco & Maltoni (2017) with 9 tasks. Table 1 lists the image size, the number of classes, the
number of tasks, and data size per task for the four CL benchmarks. The task size in these three benchmarks
is 2500, 5000, and 12000 respectively. We consider the data stream batch size to be 50. We use ResNet-18 for
all experiments. We apply standard data augmentation (random cropping and flipping) in most experiments.
For SCR and CORE50, we additionally use color jittering and random grayscale conversion. Hyperparameter
details can be found in the Appendix D.

Table 1: Dataset information for the the three image classification benchmarks.

Image Size #Task # Class Train per task Test per task

Split-CIFAR100 3x32x32 20 100 2,500 250
Split-MINI-ImageNet 3x84x84 10 100 5,000 1,000
Split-CORE50-NC 3x128x128 9 50 12,000 4,500

Text classification. We also consider continual text classification with five text classification datasets,
including AG News (news classification), Yelp (sentiment analysis), and Yahoo! Answer (Q&A classification).
A summary of the text datasets is shown in Table 2.

Following (de Masson D’Autume et al., 2019; Huang et al., 2021), we utilize the pretrained BERT-base-uncased
model from the HuggingFace Transformers Wolf et al. (2020) library as the base feature extractor. The
experiments are conducted with a batch size of 8. The learning rate is set to 3e-5 and the weight decay for
all parameters is set to 0.01.

Evaluation metric. The performance of CL is measured by the final accuracy after training on all tasks,
defined as AT = 1

T

∑j=T
j=1 aT,j , where ai,j denotes the model’s accuracy on the held-out test set of task j

7



Under review as submission to TMLR

Table 2: Dataset information for continual learning for text classification.
Order Dataset Type #Class Train Test
1 AGNews News 4 8000 7600
2 Yelp Sentiment 5 8000 7600
3 Yahoo Q&A 10 20000 7600

(a) Data stream size N (b) Exemplar budget M

Figure 2: Memory Capacity Ratio (MCR) and problem structure: the effect of MCR on continual learning
efficacy becomes more evident with a longer data stream sequence N , and a smaller exemplar budget M .
This experiment employs ER in CIFAR100 with 20 tasks.

after training on task i. We conduct all experiments across three random seeds to account for potential
variability factors, including task splitting in continual learning benchmarks, random sample selection in
reservoir sampling, random model initialization and stochastic gradient descent. The plots are presented with
95% confidence intervals to provide a measure of statistical significance. Furthermore, the tables report the
mean values along with the corresponding standard deviations.

Replay Strategies. We consider three types of replay-based approaches: 1) Direct rehearsal. Our main
experiment is focused on experience replay Chaudhry et al. (2019), which is a simple approach that achieves
competitive performance especially in large-scale settings Prabhu et al. (2023). ER incorporates past exemplars
directly in the training via cross-entropy loss. 2) Knowledge distillation. Many replay-based methods leverage
knowledge distillation to construct a regularization loss, using a past model as the teacher and the current
model as the student (Li & Hoiem, 2017; Rebuffi et al., 2017; Buzzega et al., 2020; Hinton et al., 2015). A
classic method is iCaRL which maintains a past model and computes distillation loss based on the past
network’s outputs related to old classes. Instead of computing logits based on a past model, the distillation
loss of DER++ uses the network’s logits sampled throughout the optimization trajectory, and the distillation
loss is computed over past exemplars. 3) Contrastive replay. Some recent works (Cha et al., 2021; Mai
et al., 2021; Khosla et al., 2020) investigate the use of self-supervised learning techniques to learn a strong
representation to reduce forgetting. A representative method is SCR Mai et al. (2021), which replaces
cross-entropy with contrastive loss to capture more information about exemplars and achieves state-of-the-art
performance.

Memory and Compute. To make the experiment results comparable to existing work, we follow the
standard practice in the offline continual learning literature. We set the total memory budget to be task size
plus 2000. More specifically, the total memory budget is 4500, 7000 and 14000 for CIFAR100, Mini-Imagenet
and CORE50 respectively. With this setup, the results obtained with λmax are aligned with the existing
offline continual learning results that employ a 2000 exemplar budget. Regarding the computational resources,
we employ 50 training epochs (K = 50) as the default setting.
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Table 3: The effect of memory capacity ratio in different benchmarks and algorithms. Given a memory
budget M , and a data stream with task size C and batch size B, small MCR λmin = B/(M −B) values lead
to a significant performance advantage over large MCR values λmax = C/(M − C).

MCR ER iCARL DER++ SCR

S-CIFAR100-20 λmax 35.1 ± 0.8 44.8 ± 1.1 47.2 ± 0.4 45.1 ± 0.4
λmin 44.6 ± 2.4 50.0 ± 1.6 50.9 ± 0.9 51.9 ± 0.5

9.5 ↑ 5.2 ↑ 3.7↑ 6.8 ↑
S-Mini-imagenet-10 λmax 31.2 ± 1.1 42.5 ± 1.2 41.0 ± 2.7 46.3 ± 0.4

λmin 43.7 ± 1.2 46.8 ± 1.5 46.4 ± 1.3 51.8 ± 0.7
12.5 ↑ 3.3 ↑ 5.4 ↑ 5.5↑

S-CORE-9 λmax 40.1 ± 2.4 45.8 ± 1.6 38.2 ± 1.5 62.1 ± 1.3
λmin 50.7 ± 1.7 50.1 ± 1.6 46.7 ± 2.6 69.7 ± 0.3

10.6 ↑ 4.3 ↑ 8.5 ↑ 7.6

Table 4: The effect of memory capacity ratio λ in task-incremental, domain-incremental and pretrained
class-incremental settings.

CL Settings Task-Incremental Domain-Incremental Pretrained ResNet Pretrained Transformer

Dataset CIFAR100 CLRS Mini-ImageNet Text classification

λmax 83.4 ± 1.3 34.2 ± 2.6 36.6 ± 0.9 65.8 ± 0.5
λmin 83.1 ± 2.3 36.8 ± 1.3 48.3 ± 1.1 71.9 ± 0.3

5.2 Main findings

Forgetting-mitigation strategies. Different replay techniques make use of exemplars to preserve past
knowledge in different ways. Intuitively, a replay method with a very strong forgetting mitigation design may
not need a large number of exemplars from previous tasks to perform well. Thus, one interesting question is
how the effect of the MCR changes with different forgetting designs. Fig 1 presents the results of different
CL strategies on Split-Mini-ImageNet. Interestingly, our results show that a small MCR λ seems to lead to
better performance across different algorithms including ER, iCaRL, DER++, and SCR. The performance
boost in direct rehearsal ER seems larger than in other replay methods. Table 3 presents detailed results
comparing the results of the smallest MCR λmin and the largest λmax on three standard CL benchmarks.
λmin leads to consistent performance improvement over λmin across three datasets (ER: 10− 12%, iCaRL:
4− 6%, DER++: 3− 8%, SCR: 5− 7%).

Continual learning problem structure. We further investigate whether the effect of MCR is influenced
by different problem structures along two dimensions: 1) Data stream size - Fig 2 a) suggests that with longer
task sequences the advantage of small MCR becomes more obvious. 2) Memory budget - Fig 2 b) presents
results of different sizes of memory budget, including 3500, 4500, 7500, and 12500. Given the limited memory
budget, the advantage of a small MCR is more evident. When the budget is larger than 12500 (around 5
tasks), the performance of replay remains the same regardless of the choice of MCR.

Different CL settings. So far, our experiments focused on the class-incremental setting and training the
model from scratch. We now investigate this phenomenon in other settings. The effect of the MCR λ in
task-incremental (TI), domain-incremental (DI) and pretrained class-incremental settings is shown in Table 4.
When initializing the model with a pre-trained ResNet18, we observe a similar trend: ER with a small MCR
(48.3± 1.1%) significantly outperforms ER with large MCR values (36.6± 0.9%). Additionally to what is
observed with ResNet and image data, we also observe similar results in text classification experiments with
pre-trained Transformer models (λmin : 71.9± 0.3% and λmax : 65.8± 0.3%). However, in task-incremental
learning, we observe the effect of the MCR ratio is not significant (λmin : 83.1± 2.3% and λmax : 83.4± 1.3%).
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Table 5: The effect of MCR on different sample selection methods, including MIR and ASER.

Method MCR Mini-ImageNet CIFAR-100
Mshort Accuracy Mshort Accuracy

MIR λmin 50 43.4± 0.3 50 43.4± 3.1
λmid 2500 40.6± 0.5 1250 41.4± 1.4
λmax 5000 30.8± 0.6 2500 33.4± 2.8

ASER λmin 50 40.6± 0.8 50 42.8± 1.7
λmid 2500 38.2± 0.6 1250 41.0± 2.2
λmax 5000 31.1± 1.0 2500 33.8± 1.2

Figure 3: Stability, plasticity, and generalization across two runs with different initializations and task splits.
Reducing MCR yields three stability–plasticity patterns: (1) ↑stability ↓plasticity, (2) ↑stability ↑plasticity,
and (3) ↓stability ↑plasticity.

Memory Management Policies. Table 5 presents results using different memory update and retrieval
strategies, including MIR (Aljundi et al., 2019) and ASER (Shim et al., 2021). Unlike random selection,
MIR retrieves samples that are most interfered—i.e., those whose predictions would be most negatively
affected by upcoming parameter updates. ASER, on the other hand, selects samples based on the Adversarial
Shapley value, which scores memory samples by their contribution to preserving latent decision boundaries
of previously observed classes. Consistent with our main findings, Table 5 shows that reducing MCR also
improves performance when using advanced sample selection methods such as MIR and ASER.

In summary, our empirical study reveals that the relative capacity of long-term and short-term memory
exhibits a complex interplay with forgetting-mitigation strategies and problem structure. For certain problems,
such as task-incremental learning or scenarios with a large memory budget, the choice of MCR does not
significantly impact performance. However, in other settings like class-incremental learning with a limited
memory budget, the performance of replay methods can be significantly improved by adopting smaller MCR
values. To understand how MCR influences the learning efficacy of continual learning systems, we examine
the stability and plasticity dynamics next.

6 Stability and Plasticity

Measuring stability and plasticity. Beyond the evaluation of the overall performance as discussed in Sec-
tion 5.1, we also examine the stability and plasticity during the learning process. Plasticity refers to the ability
to learn the new tasks and is usually measured as the accuracy on the new task. Stability refers to the ability
to maintain previous knowledge. There are two measures proposed in the literature related to stability: one
metric is “forgetting” (Chaudhry et al., 2018), which is defined as FT = − 1

T −1
∑T −1

i=1 (aT,i −maxl∈1...T −1 al,i)
and the related metric “backward transfer” (Lopez-Paz & Ranzato, 2017): BT = 1

T −1
∑T −1

i=1 aT,i − ai,i. Since
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the continual learning systems require a tradeoff of stability and plasticity, Zhang et al. (2022) decompose
the overall CL performance into a stability-based term and a plasticity-based term, as follows:

AT = 1
T

ΣT
i=1ai,i︸ ︷︷ ︸

Plasticity

+ T − 1
T

BT︸ ︷︷ ︸
Stability

≥ 1
T

ΣT
i=1ai,i −

T − 1
T

FT .

Insights into Stability-Plasticity Dynamics. Using the definitions of stability, plasticity, and general-
ization from Zhang et al. (2022), we plot the effect of the MCR on these metrics in Fig 3. Since a lower
MCR allocates more space for storing past exemplars and less space for new samples from the current task,
an intuitive expectation would be that reducing the MCR leads to better stability and worse plasticity.
Surprisingly, this behavior is observed only in some algorithms (ER, iCaRL, and SCR). For other algorithms
(e.g., DER++), reducing MCR leads to various types of stability-plasticity behaviors, including better
plasticity and better stability at some stages, and better plasticity and worse stability at other stages, as
shown in Fig. 3. These behaviors in DER++ suggest that increasing the ratio of long-term memory can aid
in the learning of new tasks at certain stages.

To understand why increasing long-term memory can contribute to plasticity in some cases, we consider the
distribution composition of long-term buffers. The long-term memory contains a subset of past data, and its
coverage is determined by where the data stream is split. As illustrated in Fig 1, the data stream is split into
two parts based on the size of the short-term memory (Mshort): one part contains the recent Mshort samples,
which are greedily stored in the short-term memory, and the other part contains all the samples before Mshort,
which are selectively captured by the long-term memory. With reservoir sampling, the long-term memory
stores a fraction pnew of new task exemplars and 1− pnew of old task exemplars: pnew = C−Mshort

N−Mshort
, where N

is the data stream size and C is the task size. When Mshort < C (i.e., in online and semi-offline CL), we
have pnew > 0, meaning the long-term memory contributes to learning the current task, promoting plasticity.
We take DER as an example to illustrate how the MCR may lead to complex stability-plasticity changes.
The analysis of other algorithms follows a similar manner and can be found in Appendix C. We rewrite the
gradient of DER as follows:

∇LDER = EMshort
[∇ℓce] + EMlong

[∇ℓkd
mse]

= EMshort
[∇ℓce] + pnew × EMnew

long
[∇ℓkd

mse] + (1− pnew)× EMold
long

[∇ℓkd
mse]

(5)

As shown in Eq 5, when the ratio of short-term memory is reduced, the first term of the right-hand side
(RHS) suffers from greater overfitting of new task data, which harms plasticity. However, the second term
of the RHS drives plasticity, and its contribution increases with smaller Mshort because ∇Mshort

pnew < 0.
Therefore, the overall plasticity is determined by the interplay between the first and second terms. DER
employs different loss functions for the first term (cross-entropy) and second term (logits-based knowledge
distillation), thus creating the complex plasticity dynamics in Fig 3.

7 Discussion and Conclusion

A key challenge in continual learning is optimizing memory usage to enhance learning efficiency. While
many prior works have investigated different strategies for selecting and storing representative past data, the
higher-level memory architecture governing the interaction between old and new data remains understudied.
In this work, we identify and formalize a unified dual-memory system that naturally arises in both online and
offline CL settings. This system comprises: (1) short-term memory, which temporarily buffers recent data for
immediate model updates, and (2) long-term memory, which maintains a carefully curated subset of past
experiences for future replay and consolidation. We investigate how the memory capacity ratio (MCR), defined
as the relative allocation of resources between STM and LTM, affects learning efficacy in non-stationary
streams. Empirically, we find that reducing the MCR induces distinct stability-plasticity trade-offs depending
on the replay mechanism: some replay configurations improve both stability and plasticity, others enhance
one at the expense of the other, yet a smaller MCR consistently matches or outperforms larger MCRs in
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generalization. Theoretical analysis of generalization bounds in a simplified setting further supports this
result.

We believe the impact of MCR has likely remained unexplored in prior work because 1) CL memory is often
treated as a monolithic store of exemplars, and 2) online/offline CL are typically studied in isolation with
divergent setups. By re-examining continual replay through the lens of short- and long-term memory, our
work offers a more comprehensive understanding of replay dynamics in non-stationary environments. Our
findings suggest that designing a memory structure with a small MCR can be advantageous in building
practical continual learning systems, such as those used in affective robotics (Churamani et al., 2020), smart
home assistants, or wearable devices.

Limitations. This work examines rehearsal and knowledge distillation techniques for continual learning.
Other approaches, such as correcting task recency bias (Wu et al., 2019; Hou et al., 2019) or expanding
network capacity (Zhou et al., 2022; Yan et al., 2021), are not covered by our analysis. Additionally, we use a
fixed MCR throughout the continual learning process. Since MCR directly influences the trade-off between
stability and plasticity, dynamically adjusting MCR to achieve a better balance between the two represents
a promising direction for future research. Moreover, with a time-varying MCR, an interesting avenue for
exploration is designing an adaptive memory management strategy that aligns with the changing memory
size while maintaining representativeness across different tasks.
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A Proofs

4

A.1 Proof of Theorem 1

Proof. We follow the derivations of Theorem 8 in Mansour et al. (2009) and Theorem 1 in Ye & Bors (2022):

LD(h, hy) ≤ LD(h, h∗
M) + LD(h∗

M, h∗
D) + LD(h∗

D, hy)
≤ LM(h, h∗

M) + discL(D,M) + LD(h∗
M, h∗

D) + LD(h∗
D, hy)

≤ LM̂(h, h∗
M) + ℜ̂M(H) + 3A0

√
log 2

δ

2M
+ discL(D,M) + LD(h∗

M, h∗
D) + LD(h∗

D, hy),

(6)

The first inequality is based on the triangle inequality of L. The second inequality is based on the definition
of discrepancy distance discL. The third inequality is based on the Rademacher Bound (Proposition 2 in
Mansour et al. (2009)).

A.2 Proof of Proposition 1

Proof. Let γ
.= N−

N and α
.= Mshort

M . Based on the definition of discrepancy distance, we have:

discL(D,M)
= max

h,h′∈H
|γLP−(h′, h) + (1− γ)LP+(h′, h)

−
(
(1− α)LMlong

(h′, h) + αLMshort
(h′, h)

)
|.

(7)

Since all the samples from the short-term memory come from the current task, LMshort
(h′, h) only depends

on the current task distribution and is not affected by the size of short-term and long-term memory, i.e. we
have LMshort

(h′, h) = LP+(h′, h). In contrast, the long-term memory is managed by the reservoir sampling
method and thus LMlong

(h′, h) is affected by the memory allocation factor λ. Letting β
.= N−

N−αM , we have
LMlong

(h′, h) = βLP−(h′, h) + (1− β)LP+(h′, h). Inserting these two results into Eq 7 gives:

discL(D,M)
= max

h,h′∈H
|(γ − (1− α)β)) (LP−(h′, h)− LP+(h′, h)) |

= (γ − (1− α)β)) max
h,h′∈H

| (LP−(h′, h)− LP+(h′, h)) |

= N−λ(N −M)
N(N + λN − λM) discL(P−,P+).

(8)

This second equality is based on the fact that γ − (1 − α)β = αN−(N−M)
N(N−αM) > 0 when N > M . The third

equality is based on the definitions of α, γ, β, λ, and discL

4In the proof, we drop t from the symbols for conciseness.
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Table 6: The compute and data storage cost of online and offline continual learning on the same CL benchmark
Split-CIFAR100.

Papers Data Storage (# samples) Compute

Exemplar New data Iteration/Epoch

online CL

ER Chaudhry et al. (2019) 1
ER-ACE Caccia et al. (2021) 1

SCR (Mai et al., 2021)
10

1
ER-OBC (Chrysakis & Moens, 2023) 2000, 5000 1

RAR (Zhang et al., 2022) 10
Survey (Mai et al., 2022) 1,5

Survey (Soutif-Cormerais et al., 2023) 3

offline CL

ICARL Rebuffi et al. (2017)

2000,5000 2500,5000

70
EEIL Castro et al. (2018) 70
LUCIR Hou et al. (2019) 160

DER++ (Buzzega et al., 2020) 50
MEMO (Zhou et al., 2022) 170

BIC (Wu et al., 2019) 250
Survey Masana et al. (2022) 100

online, semi-offline, offline CL ours 1
1+λ

M λ
1+λ

M 50

A.3 Proof of Corollary 1

∇λ discL(Dt,Mt) =∇λ
N−

t λ(Nt −M)
Nt(Nt + λNt − λM) discL(D−

t ,D+
t )

= discL(D−
t ,D+

t )N−
t (Nt −M)

Nt
∇λ

λ

Nt + λNt − λM

= discL(D−
t ,D+

t )N−
t (Nt −M)

Nt
∇λ

1
Nt

λ + Nt −M

= discL(D−
t ,D+

t )N−
t (Nt −M)

Nt

1
( Nt

λ + Nt −M)2
Nt

λ2

= N−
t (Nt −M)

(Nt + λNt − λM)2 discL(D−
t ,D+

t )

(9)

B A review of memory and compute setups in continual learning

Online and offline CL are typically studied separately with different memory and compute setups (see Table B).
For the compute cost, offline CL papers and surveys typically utilize 50-250 training epochs on standard
benchmarks, while online CL by design can only use a single epoch. Moreover, while the gradient update
steps in online CL can be increased by using repeated iteration, conducting multiple gradient updates for
each incoming batch (Zhang et al., 2022; Soutif-Cormerais et al., 2023), the number of iterations is commonly
chosen to be less than 10. For the storage cost, a common practice in CL is comparing different online or
offline CL methods based on a fixed budget of exemplars—a subset of past samples. Less discussed is the
sample complexity and storage cost introduced by the new task data, which also occupies the constrained
space and is used for the training. At each training session, offline CL needs to store the full task datasets for
model training, whereas online CL only stores the most recent incoming batches of the new task.
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C Stability and plasticity analysis

As shown in Section 6, in DER, the new data and exemplar data use different loss functions. In ER, SCR,
and iCaRL, the two employ the same type of loss function. The gradients can be rewritten as follows:

∇L = EMshort
[∇ℓ] + EMlong

[∇ℓ]
= EMshort

[∇ℓ] + pnew × EMnew
long

[∇ℓ] + (1− pnew)× EMold
long

[∇ℓ] (10)

Based on pnew = C−Ms

N−Ms
, we have pnew ≪ 1 in our main experiments. In particular, based on the task size

and datastream sizes, we have: CIFAR100 pnew ∈ [0, 0.045], Mini-ImageNet pnew ∈ [0, 0.099], CORE-50
pnew ∈ [0, 0.100]). Thus, the plasticity changes are dominated by the first term: as the size of the short-term
memory decreases, the first term faces greater overfitting on the new task data, harming plasticity. In contrast,
DER++ employs different losses for the first and second terms, which leads to various plasticity dynamics as
shown in Figure 3.

D Experiment setup

Implementation details Our experiments were conducted on NVIDIA RTX 1080 Ti, 2080 Ti, and A6000
GPUs. In the main experiment, using a batch size of 50, each run for CIFAR100, Mini-ImageNet and
CORE50 took roughly 2h, 9h, and 30h respectively. Following Masana et al. (2022), all experiments utilized
ResNet-18. We use standard data augmentation (random cropping and flipping), a data stream batch size of
50 for CIFAR100 and Mini-Imagenet, 64 for CORE50. An equal number of exemplars is sampled at each
gradient step. All models use vanilla SGD for optimization with a learning rate of 0.1. For iCaRL and SCR,
a nearest-class-mean (NCM) classifier is applied as in the original publications. The default iteration and
epoch number is 50.

Hyperparameters. The hyperparameter settings are summarized in Table 7. The regularization strength
in DER++ and the temperature values in SCR follow the original papers.

Table 7: Hyperparameter settings.

Hyperparameter

ER lr=0.1
iCaRL lr=0.1,NCM classifier
SCR temp =0.07, lr=0.1, NCM classifier
DER ++ α = 0.1, β = 0.5,lr = 0.03 (CIFAR100)

α = 0.3 β = 0.8,lr = 0.1 (mini-imagenet)
α = 0.1, β = 1.0,lr = 0.1 (core50)

E Unifed continual replay framwork instantiated with DER++

Algorithm 2 integrates the DER++ method into the framework. Since DER++ uses the past logits output
for knowledge distillation, the algorithm stores first the logit outputs from the learning trajectory in the
short-term memory (line 17). These logits are then transferred to the long-term memory for use in future
knowledge distillation steps (line 5).

F Additional Experimental Results

The main paper shows the stability and plasticity analysis with Mini-ImageNet. Here, Fig 4 shows the results
with CIFAR100 with different task numbers (20 tasks vs. 50 tasks) and across architectures (ResNet-18
and ResNet-34). These new results show behavior consistent with our previous findings. For ER, SCR, and
ICARL, a smaller memory consumption ratio (MCR) leads to increased stability but decreased plasticity.
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Algorithm 2: Unified continual replay framework instantiated with DER++
// Non-stationary data stream: Dt = ∪tXt, where Xt is the incoming batch
// Short-term memory Mshort: storing new data
// Long-term memory Mlong: storing past data
// offline CL: |Mshort| is equal to the task size | ∪Ti≤t<Ti+1 Xt|
// online CL: |Mshort| is equal to the stream batch size |Xt|
// π is a memory management policy
// z is logits output and scalars α, β are regularization hyperparameters of DER++

1 function ContinualLearning(Xt,θ,Mshort,Mlong,)
2 Mshort ←Mshort ∪ Xt // Update short-term memory
3 if Mshort is full then
4 θ,Mshort ← ModelTraining(θ,Mshort,Mlong)
5 Mlong ⊂π Mshort ∪Mlong // Update long-term memory
6 Mshort ← ∅
7 return θ,Mshort,Mlong

8 function ModelTraining(θ,Mshort,Mlong)
9 for K epochs do

10 for Bshort = {x, y} in Mshort do
11 sample B′

long = {x′, y′, z′
prev} from Mlong,

12 sample B′′
long = {x′′, y′′, z′′

prev} from Mlong,
13 x, x′, x′′ ← aug(x′), aug(x′), aug(x′′)
14 z = hθ(x)
15 LDER++ = ℓce(x, y; θ) + α

∥∥z′
prev − hθ (x′)

∥∥2
2 + βℓce(x′′, y′′; θ)

16 θ ← θ − η∇LDER++
17 update Mshort with logits information Bshort = {x, y, z}

18 return θ,Mshort
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(a) ResNet-18 with 50 tasks

(b) ResNet-18 with 20 tasks

(c) ResNet-34 with 20 tasks

Figure 4: Stability and plasticity analysis with different model architectures (ResNet18 and ResNet34) and
different task numbers (20 and 50 tasks) in CIFAR100.

For DER++, reducing the MCR results in different stability-plasticity behaviors, such as improved plasticity
or improved stability at certain stages.
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