
Under review as a conference paper at ICLR 2024

LAYOUTDETR: DETECTION TRANSFORMER IS A
GOOD MULTIMODAL LAYOUT DESIGNER

Anonymous authors
Paper under double-blind review

ABSTRACT

Graphic layout designs play an essential role in visual communication. Yet hand-
crafting layout designs is skill-demanding, time-consuming, and non-scalable to
batch production. Generative models emerge to make design automation scalable
but it remains non-trivial to produce designs that comply with designers’ multi-
modal desires, i.e., constrained by background images and driven by foreground
content. We propose LayoutDETR that inherits the high quality and realism from
generative modeling, while reformulating content-aware requirements as a detec-
tion problem: we learn to detect in a background image the reasonable locations,
scales, and spatial relations for multimodal foreground elements in a layout. Our
solution sets a new state-of-the-art performance for layout generation on public
benchmarks and on our newly-curated ad banner dataset. We integrate our solu-
tion into a graphical system that facilitates user studies, and show that users prefer
our designs over baselines by significant margins.

1 INTRODUCTION

Graphic layout designs are at the foundation of communication between media designers and their
target audience (Landa, 2010; Lok & Feiner, 2001; Stribley, 2016). Multimodal elements, i.e., fore-
ground images/texts, are framed by layout bounding boxes and reasonably arranged on a background
image. This relies on a thoughtful understanding of the semantics of each element and their harmony
as a whole. Therefore, handcrafting such layout designs is skill-demanding, time-consuming, and
requires experienced professionals. In practice, it has been impossible to batch-produce them in
massive quantities (Chen et al., 2019).

Growing demands of automating graphic layout designs have motivated researchers to adapt deep
generative models (Goodfellow et al., 2014; Kingma & Welling, 2013; Larsen et al., 2016; Chen
et al., 2018; Rombach et al., 2022) to this task (Kikuchi et al., 2021; Zheng et al., 2019; Patil et al.,
2020; Guo et al., 2021; Gupta et al., 2021; Zhou et al., 2022; Cao et al., 2022; Cheng et al., 2023;
Hsu et al., 2023), but few of them investigate generation conditioned on multimodal inputs and their
fusion for layout designs.

Conditioning on multimodal inputs is critical to enrich designers’ control and to command the aes-
thetics of layout designs. In this paper, we focus on them. We propose to equip designers with an
AI-empowered system that allows multimodal input: arbitrary background images, foreground im-
ages, and foreground copywriting texts from varying categories. Fig. 1 depicts the functionality and
resulting design samples of our solution. We learn a generative model of conditional layout distri-
bution that is constrained by background images and driven by foreground elements. This requires
our model to (1) learn the prior distribution from large-scale realistic layout samples, (2) understand
the appearance and semantics of background images, (3) understand the appearance and semantics
of foreground elements, and (4) fuse background and foreground information to generate the layout
bounding box parameters of each foreground element.

To tackle (1), we inherit and explore the high realism from three types of generative learning
paradigms: generative adversarial networks (GANs) (Goodfellow et al., 2014; Karras et al., 2020),
variational autoencoders (VAEs) (Kingma & Welling, 2013), and VAE-GAN (Larsen et al., 2016).
To handle (2), we reformulate the background conditioned layout generation as a detection problem,
considering both problems require visual understanding and optimize for bounding box parameters.
We integrate these two seemingly irrelevant techniques and train a DETR-flavored detector (Car-
ion et al., 2020) as a layout generator. Specifically, we employ the visual transformer encoder and
bounding box transformer decoder architectures of DETR and jointly optimize its supervision loss

1

Under review as a conference paper at ICLR 2024

Figure 1: Left: LayoutDETR takes a background image and a set of multimodal foreground elements (im-
ages/texts) as input, and outputs an aesthetically appealing layout. Right: we show a few banner samples with
rendered texts using our auto-designed layouts. “C” is the composition and “R” the rendering process.

with generative adversarial loss. We hence name our solution LayoutDETR. To handle (3), we in-
corporate a CNN-based image encoder (Caron et al., 2020) and a BERT-based text encoder (Devlin
et al., 2019) for the multimodal foreground inputs, and feed the features as input tokens to DETR
transformer decoder. (4) is naturally handled by DETR thanks to its transformer nature: foreground
elements interact with each other through the self-attention in the decoder, while background fea-
tures interact through the cross-attention between the image encoder and layout decoder.

We summarize our contributions as: (1) Method. We bridge two seemingly irrelevant research
domains, layout generation and visual detection, into one framework that solves multimodal graphic
layout design constrained by background images and driven by foreground image/text elements. No
existing methods can handle all these modalities at once. (2) Dataset. We establish a large-scale ad
banner dataset with rich semantic annotations including text bounding boxes, text categories, and
text content. We benchmark this dataset for graphic layout generation over six recent methods, three
of our solution variants, and conduct ablation study. We will release the dataset. (3) State-of-the-art
performance. Our solution reaches a new state-of-the-art performance for graphic layout genera-
tion in a comprehensive set of six evaluation metrics, which measure the realism, accuracy, and
regularity of generated layouts. (4) Graphical system and user study. We integrate our solution
into a graphical system that scales up layout generation and facilitates user studies. Users prefer our
designs over all baselines by significant margins.

2 RELATED WORK

Deep generative models for layout design. Automating the layout design with high quality and
realism gains increasing attention and achieves substantial progress, thanks to the revolutionary ad-
vancements of deep generative models, especially generative adversarial networks (GANs) (Good-
fellow et al., 2014; Brock et al., 2019; Karras et al., 2020), variational autoencoders (VAEs) (Kingma
& Welling, 2013; Larsen et al., 2016), autoregressive models (ARMs) (Van den Oord et al., 2016;
Salimans et al., 2017; Chen et al., 2018), and diffusion models (Ho et al., 2020; Song et al., 2021;
Rombach et al., 2022). Researchers adopt generative models to learn to generate bounding box pa-
rameters, in the form of center location, height, width, and optionally depth, for each foreground
element in a layout in either graphics or natural scene domains. Orthogonal to learning paradigms,
existing methods also investigate a variety of generator architectures including multi-layer percep-
tron (MLP) (Krizhevsky et al., 2012), convolutional neural networks (CNN) (Simonyan & Zis-
serman, 2015), recursive neural networks (RvNN) (Socher et al., 2013), long short-term memory
(LSTM) (Haykin & Network, 2004), graph convolutional networks (GCN) (Kipf & Welling, 2017),
transformer (Vaswani et al., 2017), etc. Some layout design methods (Kikuchi et al., 2021; Zheng
et al., 2019; Patil et al., 2020; Guo et al., 2021; Gupta et al., 2021; Zhou et al., 2022; Cao et al.,
2022; Hsu et al., 2023; Cheng et al., 2023; Levi et al., 2023; Zhang et al., 2023; Lin et al., 2023)
focus on graphics domain only, while others (Jyothi et al., 2019; Gupta et al., 2021; Tan et al., 2018;
Zhao et al., 2018; Lee et al., 2018) generalize to natural scenes or even 3D data. Some methods (Li
et al., 2019; Kikuchi et al., 2021; Patil et al., 2020; Gupta et al., 2021; Kong et al., 2022; Levi et al.,
2023; Zhang et al., 2023) allow only bounding box category condition, while others (Li et al., 2020;
Lee et al., 2020; Zheng et al., 2019; Guo et al., 2021; Zhou et al., 2022; Cao et al., 2022; Hsu et al.,
2023; Cheng et al., 2023) allow richer conditions in multi-modalities in the form of background

2

Under review as a conference paper at ICLR 2024

Table 1: A taxonomy of existing and our layout generation methods. We tag for each method its working data
domain(s), data modality(ies) of input condition(s), backend generative model type, as well as implementation
architecture. Our method and its variants are the only ones that enable full control of varying multimodal
conditions and integrate object detection techniques into layout generation.

Method Domain(s) Conditioning modality Generative model Architecture

LayoutGAN (Li et al., 2019) Graphics Bbox category GAN MLP, CNN
LayoutGAN+ (Li et al., 2020) Graphics Bbox category, attribute vector GAN MLP, CNN
LayoutGAN++ (Kikuchi et al., 2021) Graphics Bbox category GAN Transformer
DS-GAN (Hsu et al., 2023) Graphics Bbox category, bg images GAN CNN, LSTM
House-GAN (Nauata et al., 2020) Floor plans Bubble diagram GAN CNN, MPN
House-GAN++ (Nauata et al., 2021) Floor plans Bubble diagram GAN CNN, MPN
LayoutVAE (Jyothi et al., 2019) Natural scenes Bbox category VAE MLP, LSTM
READ (Patil et al., 2020) Graphics Bbox category VAE RvNN
Vinci (Guo et al., 2021) Graphics Bbox category, bg/fg images, text VAE LSTM
NDN (Lee et al., 2020) Graphics Bbox category, spatial relation VAE GCN
VTN (Arroyo et al., 2021) Graphics, natural scenes Bbox category VAE Transformer
CanvasVAE (Yamaguchi, 2021) Graphics Bbox category, attribute vector VAE Transformer
C2F-VAE (Jiang et al., 2022b) Graphics Bbox category VAE Transformer
DeepSVG (Carlier et al., 2020) Vector graphics Vector paths, attribute vector, command VAE Transformer
ContentGAN (Zheng et al., 2019) Graphics Bbox category, fg image, text VAE + GAN Transformer
TextLogoLayout (Wang et al., 2022) Graphics Glyph VAE + GAN RNN, CNN
LayoutMCL (Nguyen et al., 2021) Graphics Bbox category ARM RNN, CNN
CanvasEmb (Xie et al., 2021) Graphics Bbox category, attribute vector ARM Transformer
LayoutTransformer (Gupta et al., 2021) Graphics, natural scenes, 3D Bbox category ARM Transformer
BLT (Kong et al., 2022) Graphics, natural scenes, 3D Bbox category ARM Transformer
UniLayout (Jiang et al., 2022a) Graphics Bbox category ARM Transformer
Parse-Then-Place (Lin et al., 2023) Graphics Text ARM LLM, Transformer
LayoutFormer++ (Jiang et al., 2023) Graphics Bbox category, spatial relation ARM Transformer
PLay (Cheng et al., 2023) Graphics Bbox category, guideline Diffusion Transformer
DLT (Levi et al., 2023) Graphics Bbox category Diffusion Transformer
LayoutDiffusion (Zhang et al., 2023) Graphics Bbox category Diffusion Transformer
CGL-GAN (Zhou et al., 2022) Graphics Bg image GAN + DETR Transformer
ICVT (Cao et al., 2022) Graphics Bg image VAE + DETR Transformer

LayoutDETR-GAN (ours) Graphics Bbox category, bg/fg images, text GAN + DETR Transformer
LayoutDETR-VAE (ours) Graphics Bbox category, bg/fg images, text VAE + DETR Transformer
LayoutDETR-VAE-GAN (ours) Graphics Bbox category, bg/fg images, text VAE + GAN + DETR Transformer

images, foreground images, or foreground texts, but not all. A comprehensive taxonomy of layout
generation methods is in Table 1.

None of the existing multimodal layout generation methods is designed to handle all the background
and foreground modalities at once: LayoutGAN+ (Li et al., 2020) and NDN (Lee et al., 2020) are
unaware of background and foreground image elements in their formulation. CGL-GAN (Zhou
et al., 2022), ICVT (Cao et al., 2022), and DS-GAN (Hsu et al., 2023) are unaware of foreground
text and image elements in their formulation. ContentGAN (Zheng et al., 2019) does not take layout
spatial information for training and does not even use complete background images as input during
training. This does not benefit the layout representation, layout regularity, or final quality (e.g., text
readability) after rendering foreground elements onto the background. Vinci (Guo et al., 2021) relies
on a finite set of predefined layout candidates to choose background images from a pool of food and
beverage domains. Their method is unable to design layouts conditioned on arbitrary backgrounds
in open domains, natural or handcrafted, plain or cluttered, like ours. Considering multimodal layout
design persists as a challenging problem, we focus our scope on graphic layouts: mobile application
UIs and our newly-organized large-scale ad banners.

Object detection. The goal of object detection is to predict a set of bounding boxes and their
categories for each object of interest in a query image. Modern detectors address this in one of
three ways: Two-stage detectors (Girshick, 2015; He et al., 2017) predict boxes based on proposals;
single-stage detectors predict boxes based on anchors (Lin et al., 2017) or a grid of possible object
centers (Redmon et al., 2016); direct detectors (Carion et al., 2020; Dai et al., 2021) avoid those
hand-crafted initial guesses and directly predict absolute parameters of boxes in the query images.
Direct detectors (Carion et al., 2020; Dai et al., 2021) inspire us to leverage their powerful image
understanding capability, and combine it with modern layout generators, in order to address the
problem of multimodal layout generation. Similar in spirit to CGL-GAN (Zhou et al., 2022) or
ICVT (Cao et al., 2022), we take advantage of the transformer encoder-decoder architecture and
generalized intersection over union (gIoU) loss (Rezatofighi et al., 2019) in DETR to learn layout
distributions from background image contexts. Unlike prior art, our layout outputs are additionally
conditioned on foreground image/text elements.

3 LAYOUTDETR
Problem statement. A graphic layout sample L is represented by a set of N 2D bounding
boxes {bi}Ni=1. Each bi is parameterized by a vector with four elements: its center location in
a background image (yi, xi), height hi, and width wi. In order to handle background images
B with arbitrary sizes (H,W), we normalize box parameters by their image size correspond-
ingly, i.e., L = {(yi/H, xi/W, hi/H,wi/W)}Ni=1

.
= {b̂i}Ni=1. The multimodal inputs are the

3

Under review as a conference paper at ICLR 2024

background image B and a set of N foreground elements, in the form of either text elements
T = {ti}Mi=1 = {(si, ci, li)}Mi=1 or image patches P = {pi}Ki=1, where M ≥ 0, K ≥ 0,
M +K = N . si is a text string, ci is the text class from the set {header text, body text, disclaimer
text, button text}, and li is the length of the text string. Each foreground element corresponds to a
bounding box in the layout, indicating its location and size. In case there are foreground elements
that we are not interested in, e.g., button underlays or embellishments, we leave them as part of the
background. Our goal is to learn a layout generator G that takes a latent noise vector z and the
multimodal conditions as input, and outputs a realistic and reasonable layout complying with the
multimodal control: G(z,B, T ∪ P) 7→ Lfake.

3.1 GENERATIVE LEARNING FRAMEWORKS

GAN variant. Following the GAN paradigm (Goodfellow et al., 2014; Brock et al., 2019; Kar-
ras et al., 2018; 2019; 2020; Yu et al., 2020; 2021; Sauer et al., 2022; Lee et al., 2022; Yu et al.,
2022), the generator G is simultaneously and adversarially trained against discriminator D training.
We formulate a multimodal-conditional discriminator Dc(L,B, T ∪ P) 7→ {0, 1}, as well as an
unconditional discriminator Du(L) 7→ {0, 1}.

It has been observed that the discriminators are insensitive to irregular bounding box posi-
tions (Kikuchi et al., 2021). For example, the discriminators tend to overlook the unusual layout
where a header texts is placed at the bottom. As a result, we follow the self-learning technique
in (Liu et al., 2020) and add position-aware regularization to our discriminators. Similar to (Kikuchi
et al., 2021), we add an auxiliary decoder to each discriminator to reconstruct its input. The decoders
F c/F u take the output features f c/f u of their discriminators Dc/Du, add them with learnable posi-
tional embeddings Ec = {ec

i}Ni=1 / Eu = {eu}Ni=1, and reconstruct the bounding box parameters and
multimodal conditions that are the input of the discriminators: F c(f c, Ec) 7→ Lc

dec,Bdec, Tdec ∪ Pdec
/ F u(f u, Eu) 7→ Lu

dec. Using Ec/Eu is necessary, without which the reconstructed bounding boxes in
a layout would have no variance as they would be conditioned on identical features. The decoders
are jointly trained with the discriminators to minimize the reconstruction loss. It enforces the dis-
criminators to fully condition on all their inputs for the binary classification. See Fig. 2 Yellow for
the diagram. Thus, our adversarial learning objective is:

min
G

max
Dc,F c,Ec,Du,F u,Eu

LGAN = LGAN fake + LGAN real (1)

LGAN fake
.
= Ez∼N (0,I),{B,T ∪P}∼Pdata − logDc(Lfake,B, T ∪ P)− logDu(Lfake) (2)

LGAN real
.
= E{Lreal,B,T ∪P}∼Pdata logD

c(Lreal,B, T ∪ P) + logDu(Lreal)− Ldec (3)

Ldec = λlayout
(
Llayout(Lc

dec,Lreal)+Llayout(Lu
dec,Lreal)

)
+λim

(
||Bdec−B||2+Lim(Pdec,P)

)
+Ltext(Tdec, T) (4)

Llayout(L1,L2) =
1

N

N∑
i=1

||b̂i
1 − b̂i

2||2 (5)

Lim(P1,P2) =
1

N

N∑
i=1

||p1
i − pi

2||2 (6)

Ltext(T1, T2) =
1

N

N∑
i=1

(
λstrLstr(s1, s2) + λclsLcls(c1, c2) + λlenLlen(l1, l2)

)
(7)

where Lstr, Lcls, Llen are the reconstruction losses for foreground text strings, text classes, and text
lengths respectively. Lstr is the auto-regressive loss according to BERT language modeling (Devlin
et al., 2019; Li et al., 2022b). Lcls is the standard classification cross-entropy loss. So is Llen,
considering we quantize and classify a string length integer into one of 256 levels [0, 255]. λlayout =
500.0, λim = 0.5, λstr = 0.1, λcls = 50.0, and λlen = 2.0.

VAE variant. VAEs are an alternative paradigm to GANs for generative models. Following the
VAE paradigm (Kingma & Welling, 2013; Rezende et al., 2014), the generator G is jointly trained
with an encoder E that maps from the layout space to the latent noise distribution space. The output
of E are the mean µ and covariance matrix Σ of a multivariate Gaussian distribution, E(L) 7→ µ,Σ,
the samples of which are input to G: sample(µ,Σ) = zT0 Σ

1
2 z0 + µ, z0 ∼ N (0, I). It represents

the differentiable reparameterization trick in the standard VAE pipeline (Kingma & Welling, 2013;
Rezende et al., 2014). See Fig. 2 Blue.

4

Under review as a conference paper at ICLR 2024

Figure 2: Our unified training framework covers three generator variants: GAN-, VAE-, and VAE-GAN-based.
The layout generator network (darker color and bold) appears in all variants. Its DETR-based multimodal
architecture is at the bottom left. During inference, only the generator is needed.

The conditional VAE minimizes the reconstruction loss:

min
E,G

LVAE
.
= E{Lreal,B,T ∪P}∼PdataλlayoutLlayout(Lfake,Lreal) + λKLKL

(
E(Lreal)||N (0, I)

)
(8)

KL(·||·) is the Kullback-Leibler (KL) Divergence used in standard VAE (Kingma & Welling,
2013; Rezende et al., 2014) to regularize the encoded latent noise distribution.The hyper-parameters
λlayout = 500.0 and λKL = 1.0.

VAE-GAN variant. VAEs and GANs are also compatible with each other. See Fig. 2 Blue plus
Yellow. Following (Larsen et al., 2016; Zheng et al., 2019), we jointly optimize Eq. 1 and 8:

min
E,G

max
Dc,F c,Ec,Du,F u,Eu

LGAN + LVAE (9)

3.2 ADDITIONAL OBJECTIVES
Other losses and regularization terms also play important roles in the generated layout quality. First,
we add bounding box supervision as in DETR (Carion et al., 2020). We use the generalized inter-
section over union loss gIoU(·, ·) (Rezatofighi et al., 2019) between generated layout and its ground
truth LgIoU(Lfake,Lreal), where:

LgIoU(L1,L2)
.
= λgIoU

1

N

N∑
i=1

gIoU(b̂i
1, b̂

i
2) (10)

where the hyper-parameter λgIoU = 4.0.

Second, we introduce an auxiliary reconstructor R for the generator to enhance the controllability
of input conditions. R takes the last features of G, F = {f g

i }Ni=1, as input tokens before outputting
box parameters, and learns to reconstruct P and T : R(F) 7→ Prec, Trec.

Jointly with G training, we learn to minimize:

Lrec
.
= λimLim(Prec,P) + Ltext(Trec, T) (11)

with Lim from Eq. 6 and Ltext from 7. See Fig. 2 Green.

Third, reasonable layout designs typically avoid overlapping between foreground elements. We
leverage the overlap loss Loverlap

.
= λoverlapLoverlap(Lfake) from (Li et al., 2020) that discourages

overlapping between any pair of bounding boxes in a generated layout. We set λoverlap = 7.0.

5

Under review as a conference paper at ICLR 2024

Fourth, aesthetically appealing layouts usually maintain one of the six alignments between a pair
of adjacent bounding boxes: left, horizontal-center, right, top, vertical-center, and bottom aligned.
We leverage the misalignment loss Lmisalign

.
= λmisalignLmisalign(Lfake) follow (Li et al., 2020) that

discourages misalignment. We set λmisalign = 17.0.

Finally, our training objective is formulated as follows.

min
E,G,R

max
Dc,F c,Ec,Du,F u,Eu

LGAN + LVAE + LgIoU + Lrec + Loverlap + Lmisalign (12)

All the λs are trivially set to align the order of magnitude of each loss term. We use an identical set
of λs for all the datasets to validate our performance is insensitive to λs.

3.3 DETR-BASED MULTIMODAL ARCHITECTURES

Architecture design is where we integrate object detection with layout generation. Detection trans-
former (DETR) (Carion et al., 2020) is employed and modified for LayoutDETR generator G and
conditional discriminator Dc.

As depicted in Fig. 2 bottom left, G and Dc contain a background encoder and a layout transformer
decoder. The encoder is the same as in DETR (Carion et al., 2020). The decoder is inherited from the
DETR decoder with self-attention and encoder-decoder-cross-attention mechanisms (Vaswani et al.,
2017). Different from DETR, we replace their freely-learnable object queries with our foreground
embeddings as the input tokens to the decoder. The decoder then transforms the embeddings to
layout bounding box parameters. Foreground embedding is a concatenation of noise embedding
and text/image embedding. Text embedding is a concatenation of text string embedding (BERT-
pretrained and fixed), text class embedding (via learning dictionary), and text length embedding (via
learning dictionary). See more clarifications on our design choices in Section A in Appendix. See
the implementations of the other networks in Section B in Appendix. In particular, other networks
are transformer-based as well. Only the input and output formats differ depending on the network
functionality. We do not choose a wire-frame discriminator since its empirical performance is worse,
as also observed in (Kikuchi et al., 2021).

4 NEW AD BANNER DATASET

Not all existing datasets are suitable for multimodal layout design because they do not always pro-
vide multi-modality information, e.g. natural scene datasets or Crello graphic document dataset (Ya-
maguchi, 2021). Other datasets, such as PubLayNet document dataset (Zhong et al., 2019) and
PartNet 3D shape dataset (Yu et al., 2019) render layouts only on plain background. Magazine
dataset (Zheng et al., 2019) does not provide complete background images since they have masked
out foreground layouts from the background. On the other hand, ad banner datasets are composed of
multimodal elements and lead to several previous layout design techniques (Guo et al., 2021; Zhou
et al., 2022; Cao et al., 2022; Hsu et al., 2023). Unfortunately, none of their datasets is publicly
available, except for CGL dataset (Zhou et al., 2022), PKU PosterLayout (Hsu et al., 2023), Text-
LogoLayout dataset (Wang et al., 2022) which, however, do not contain the widely used English
modality. We therefore collect a new large-scale ad banner dataset of 7,196 samples containing
English characters, which are ready to release.

Each of our samples consists of a well-designed banner image, its layout ground truth, foreground
text strings, text classes, and background image. The banner images are filtered from Pitt Image
Ads Dataset (Hussain et al., 2017) and crawled from Google Image Search Engine. Their layouts
and text classes are manually annotated by Amazon Mechanical Turk (AMT). The text classes are
{header text, body text, disclaimer text, button text}, with logos categorized as header text. The text
strings are extracted by OCR (pad) and removed by image inpainting (Suvorov et al., 2022) to obtain
the text-free background image. Examples and more details about data collection are in Section C
and Fig. 4-5 in Appendix.

5 EXPERIMENTS

Datasets. Ablation study and user study are conducted on our ad banner dataset with 7,196 samples.
Comparisons to baselines are additionally performed on the CGL dataset with 59,978 valid Chinese
ad banner samples (Zhou et al., 2022), and on the CLAY dataset with 32,063 valid mobile application
UI samples (Li et al., 2022a). We apply the same OCR and image inpainting processes to CGL and
CLAY datasets, in order to extract texts as part of input conditions, and separate apart foreground
from background. 90% of the samples are used for training and 10% for testing.

6

Under review as a conference paper at ICLR 2024

Table 2: Ablation study w.r.t. loss config (top) or conditional embedding config (bottom) on our ad banner
dataset. Each row is progressively ablated from its row above. Each cell contains mean±std. For FIDs and
KIDs, they are the statistics over 10 runs. ⇑/⇓ indicates a higher/lower value is better. Bold/underline font
indicates the top/second best value in the column.

Realism Accuracy Regularity
Layout FID Layout KID Image FID Image KID IoU DocSim Overlap Misalign

Method ⇓ (×10−3) ⇓ ⇓ (×10−5) ⇓ ⇑ ⇑ ⇓ (×10−2) ⇓
Random layout 58.21±4.04 525.93±45.08 51.01±0.41 582.47±7.53 – – – –

Conditional LayoutGAN++ 11.33±0.10 44.77±0.36 36.06±0.02 115.16±3.37 0.111±0.001 0.121±0.001 0.374±0.006 2.194±0.058

+ Aux. Dec. (Eq. 4-7) 4.25±0.01 16.62±0.05 28.40±0.06 58.5±1.45 0.163±0.002 0.130±0.001 0.104±0.003 0.759±0.021

+ Gen. Rec. (Eq. 11) 3.27±0.01 11.80±0.04 29.56±0.06 11.29±0.20 0.186±0.002 0.148±0.001 0.125±0.003 0.853±0.016

+ Uncond. Dis. Du 3.70±0.05 16.23±0.08 29.21±0.08 25.09±0.02 0.177±0.002 0.140±0.001 0.103±0.003 0.681±0.011

+ gIoU loss (Eq. 10) 3.23±0.01 11.60±0.02 28.20±0.04 10.51±0.09 0.182±0.002 0.138±0.001 0.106±0.003 0.721±0.011

+ Overlap & Misalign loss 3.19±0.01 5.62±0.01 27.35±0.04 8.31±0.80 0.208±0.002 0.151±0.000 0.101±0.003 0.646±0.011.
= LayoutDETR-GAN (ours)

- Text length embeddings 3.24±0.01 9.25±0.05 28.65±0.03 11.42±0.35 0.191±0.002 0.144±0.001 0.117±0.003 0.807±0.012

- Text class embeddings 25.17±0.54 171.88±5.17 29.25±0.25 139.16±4.44 0.166±0.002 0.132±0.001 0.110±0.001 0.000±0.000

Baselines. We select six recent methods covering a variety of generative paradigms and architectures
listed in Table 1: LayoutGAN++ (Kikuchi et al., 2021), READ (Patil et al., 2020), Vinci (Guo et al.,
2021), LayoutTransformer (Gupta et al., 2021), CGL-GAN (Zhou et al., 2022), and ICVT (Cao
et al., 2022). We noted that LayoutTransformer (Gupta et al., 2021) is empirically superior to the
more recent work BLT (Kong et al., 2022), the same observation as Row 1 v.s. Row 8 in Table 2
of (Jiang et al., 2022a). We therefore did not experiment with BLT. Several baselines do not allow
background conditions and/or foreground text/image conditions. We integrate our encoders to their
models for fair comparisons.

Evaluation metrics. (1) For the realism of generated layouts, we calculate the Fréchet dis-
tances (Heusel et al., 2017) and kernel distances (Bińkowski et al., 2018) between fake and real
feature distributions. All the real testing samples are used, and the same number of generated sam-
ples are used. We consider two feature spaces: the layout features pretrained by (Kikuchi et al.,
2021), and VGG image features pretrained on ImageNet (Heusel et al., 2017). We obtain the output
banner images by overlaying foreground image patches and rendering foreground texts on top of
background images according to the generated layout. The rendering process and examples are in
Fig. 3. (2) For the sample-wise accuracy of generated layouts w.r.t. their ground truth, we calculate
the layout-to-layout IoU (Kikuchi et al., 2021) and DocSim (Patil et al., 2020). Box-level matching
is trivial as the correspondences between generated and ground truth boxes are given by the condi-
tioning input. (3) For the regularity of generated layouts, our metrics are the overlap loss (Li et al.,
2020) and misalignment loss (Li et al., 2020) in Section 3.2.

5.1 ABLATION STUDY

Loss configurations. We start from the LayoutGAN++ (Kikuchi et al., 2021) baseline implementa-
tion and additionally enable it to take multimodal foreground and background as input conditions.
We then progressively add on extra loss terms and report the quantitative measurements in Table 2
top section. We observe: (1) Row 1 contains the far worse results of randomly generated layouts
on real backgrounds, indicating that the quality of layouts itself matters. (2) Comparing Row 2 and
3, all the metrics are improved, as the auxiliary decoder enhances the discriminator’s conditioning
and representation. (3) Comparing Row 3 and 4, all the metrics are improved, thanks to the en-
hanced controllability through the reconstruction of conditional inputs. (4) Comparing Row 4 and
5, unconditional discriminator benefits the layout regularity due to its approximation power between
generated layout parameters and real regular ones. (5) Comparing Row 5 and 6, the supervised
gIoU loss boosts the realism and accuracy by a significant margin, yet seemingly contradicts the
regularity. (6) Fortunately, in Row 7, adding overlap loss and misalignment loss optimizes all the
metrics. We name this ”LayoutDETR-GAN (ours)” and stick to it for the following experiments.
(7) Error margins after “±” are consistently smaller than value differences across rows, indicating
the differences are statistically significant.

Conditional embedding configurations. We do not consider foreground images in this ablation
study as the embeddings are simply image features. Whereas for foreground texts, we examine the
importance of text length embeddings and text class embeddings by progressively removing them
from the training. From Table 2 bottom section we observe: (1) Comparing Row 7 and 8, text length
embeddings are beneficial all around. We reason that text length is a strong indicator of a proper
text box size. This validates the strong positive correlation between text lengths and box sizes. (2)
Comparing Row 8 and 9, text label embeddings serve as an essential role in the generation. Layout
FID and Layout KID deteriorate significantly without text label embeddings (Row 9) as bounding
boxes of similar texts tend to collapse to the same regions (referring to the 0.0 misalignment). This
implies that text content itself is not as discriminative as text labels to differentiate box parameters.

7

Under review as a conference paper at ICLR 2024

Table 3: Quantitative comparisons to baselines. Each cell contains mean±std. For FIDs and KIDs, they are the
statistics over 10 runs. ⇑/⇓ indicates a higher/lower value is better. Bold/underline font indicates the top/second
best value in the column.

Realism Accuracy Regularity
Layout FID Layout KID Image FID Image KID IoU DocSim Overlap Misalign

Method ⇓ (×10−3) ⇓ ⇓ (×10−5) ⇓ ⇑ ⇑ ⇓ (×10−2) ⇓
Our ad banner dataset

LayoutGAN++ 4.25±0.01 16.62±0.05 28.40±0.06 58.54±1.45 0.163±0.002 0.130±0.001 0.104±0.003 0.759±0.021

READ 4.45±0.02 15.21±0.21 32.10±0.13 77.53±2.23 0.177±0.002 0.141±0.001 0.093±0.002 2.867±0.040

Vinci 38.97±0.10 231.70±1.22 58.12±0.20 833.00±3.55 0.104±0.001 0.143±0.001 0.243±0.003 0.271±0.010

LayoutTransformer 5.47±0.01 13.87±0.01 39.70±0.01 134.87±1.03 0.080±0.001 0.115±0.001 0.127±0.003 3.632±0.065

CGL-GAN 4.69±0.01 17.58±0.02 30.50±0.02 13.52±1.40 0.154±0.002 0.127±0.001 0.116±0.003 1.191±0.025

ICVT 12.54±0.06 64.49±0.12 30.11±0.05 62.29±2.54 0.163±0.002 0.137±0.001 0.423±0.006 0.682±0.018

LayoutDETR-GAN 3.19±0.01 5.62±0.01 27.35±0.04 8.31±0.80 0.208±0.002 0.151±0.000 0.101±0.003 0.646±0.011

LayoutDETR-VAE 3.25±0.03 11.97±0.26 27.47±0.04 7.70±0.22 0.216±0.002 0.152±0.001 0.119±0.002 1.737±0.037

LayoutDETR-VAE-GAN 3.23±0.02 10.75±0.09 27.88±0.11 4.18±0.24 0.210±0.002 0.151±0.001 0.117±0.002 1.439±0.023

CGL Chinese ad banner dataset
LayoutGAN++ 11.43±0.05 59.02±0.26 11.92±0.05 1082.68±20.71 0.061±0.001 0.083±0.000 0.593±0.007 0.729±0.017

READ 10.51±0.04 107.30±1.24 6.58±0.08 465.96±14.92 0.269±0.002 0.127±0.001 0.145±0.002 0.704±0.098

Vinci 12.06±0.01 80.45±0.43 5.38±0.02 320.99±6.30 0.266±0.002 0.125±0.001 0.093±0.002 0.433±0.042

LayoutTransformer 5.11±0.01 33.72±0.54 4.65±0.01 286.08±2.99 0.186±0.002 0.114±0.001 0.340±0.005 0.276±0.027

CGL-GAN 5.63±0.01 36.99±0.30 7.26±0.09 744.49±12.73 0.107±0.001 0.093±0.001 0.297±0.004 0.538±0.011

ICVT 10.76±0.14 119.10±1.14 4.22±0.05 109.33±3.85 0.169±0.002 0.109±0.001 0.327±0.004 0.340±0.060

LayoutDETR-GAN 2.40±0.01 13.60±0.29 4.11±0.06 22.60±0.79 0.157±0.002 0.106±0.000 0.187±0.003 0.464±0.010

LayoutDETR-VAE 8.57±0.10 94.84±1.09 4.21±0.03 144.27±5.18 0.208±0.002 0.120±0.001 0.288±0.003 0.374±0.064

LayoutDETR-VAE-GAN 2.65±0.05 12.37±0.60 2.66±0.02 19.30±1.04 0.180±0.002 0.110±0.001 0.134±0.002 0.401±0.070

CLAY mobile application UI dataset
LayoutGAN++ 14.12±0.06 60.20±0.52 7.49±0.02 148.33±4.02 0.049±0.001 0.078±0.001 0.817±0.115 1.057±0.028

READ 3.68±0.01 21.98±0.15 5.38±0.02 91.43±3.24 0.312±0.003 0.121±0.001 0.099±0.002 2.045±0.045

Vinci 22.98±0.02 216.90±0.66 13.04±0.05 677.42±7.22 0.178±0.002 0.104±0.001 0.253±0.004 2.526±0.055

LayoutTransformer 2.64±0.01 5.03±0.18 5.27±0.01 55.99±2.49 0.216±0.003 0.106±0.002 0.357±0.006 0.833±0.032

CGL-GAN 47.74±0.02 190.96±1.11 8.96±0.02 226.81±4.65 0.034±0.001 0.066±0.000 1.153±0.141 1.099±0.011

ICVT 4.56±0.04 18.35±0.26 5.26±0.03 69.83±2.24 0.208±0.002 0.105±0.001 0.396±0.006 1.066±0.043

LayoutDETR-GAN 1.84±0.02 3.01±0.15 5.22±0.02 11.19±1.39 0.261±0.003 0.113±0.001 0.083±0.002 0.773±0.016

LayoutDETR-VAE 4.99±0.01 30.18±0.32 5.49±0.03 107.55±3.57 0.327±0.003 0.123±0.001 0.205±0.004 5.119±0.019

LayoutDETR-VAE-GAN 3.98±0.12 18.39±0.98 5.87±0.02 82.31±1.56 0.158±0.002 0.108±0.001 0.148±0.002 0.691±0.030

5.2 COMPARISONS TO BASELINES

Quantitative comparisons are in Table 3. We evaluate three of our alternative model variants: GAN-
, VAE-, and VAE-GAN-based. We observe: (1) On our ad banner dataset, at least one of our variants
outperforms all the baselines in terms of realism and accuracy. Our LayoutDETR-GAN achieves
the second best in terms of regularity. The margin to the best baseline is minor. This evidences the
efficacy of our understanding of multi-modality and sophisticated loss configurations. (2) On CGL
Chinese ad banner dataset, our variants lead in the most important realism metrics by significant
margins. Our LayoutDETR-VAE-GAN variant is the best overall and outperforms the LayoutDETR-
GAN variant. This is because CGL has more elements per sample and VAE plays a more important
role than GAN for complex layout arrangements. LayoutTransformer achieves a similarly balanced
performance. READ and Vinci lead in the accuracy metrics yet significantly underperform in at least
one other metric. (3) On CLAY dataset, at least one of our variants outperforms all the baselines
in all metrics. Our efficacy generalizes in at least these two multimodal foreground domains: texts
and images. (4) Error margins after “±” are consistently smaller than value differences across rows,
indicating the differences are statistically significant.

Qualitative comparisons are in Fig. 3. We observe: (1) For our and CGL ad banner datasets, our
designs understand the background the most effectively. For example, they never overlay foreground
elements on top of clutter background subregions. If the background looks symmetric, our layouts
are placed in the middle of the banners. (2) For these two datasets, our designs also approximate
the real layout distribution the most closely, in terms of the relative font sizes (box sizes) and spatial
relations (box orders and distances). Even for samples not close to their ground truth, our design
variants still look the most reasonable and most harmonic together with backgrounds. (3) CLAY
dataset is more challenging in terms of multimodal conditioning, as it has more tiny foreground
elements. Still, our layouts appear the best aligned and least overlapping, with reasonable designs to
harmonize with backgrounds, although different from the ground truth. Appendix Fig. 7-9 and the
attached video show more uncurated results, including the impact of varying texts on layouts and
our limitation in challenging scenarios.

5.3 GRAPHICAL SYSTEM DESIGN AND USER STUDY

We integrate generators into a graphical system for user-friendly applications in practice. The UI
design is in Section D in Appendix and the demo video is attached in the supplementary material.
With the graphical system, we can test a massive number of cases and collect generation results in
the wild. This facilitates us to analyze users’ subjective preferences for our designs. In specific,
we tested on 308 ad banner samples by rendering our designs and baseline designs via the graphical
system. We configured a binary comparison task between each pair of designs. In total, we launched

8

Under review as a conference paper at ICLR 2024

Figure 3: Left: comparisons on the testing set of our ad banner dataset. We apply the same rendering
process to all methods: (1) Text font sizes and line breakers are adaptively determined to tightly fit into their
inferred boxes. (2) Text font colors and button pad colors are adaptively determined to be either black or white
whichever contrasts more with the background. (3) Button text colors are then determined to contrast with
the button pads. (4) Text font is set to Arial. (5) Boxes are enforced to horizontally center-align with each
other. Middle: comparisons on CGL Chinese ad banner dataset. Image patches that contain foreground text
elements are resized and overlaid on the background following the generated layouts. Right: comparisons on
CLAY mobile application UI dataset.

Table 4: Pairwise user preferences (column method over row method) on our ad banner dataset.
Method READ Vinci LayoutTransformer CGL-GAN ICVT LayoutDETR-GAN (ours)

LayoutGAN++ 49.8%p=0.4 45.6%p=3e−3 44.4%p=3e−4 53.9%p=0.01 47.1%p=0.04 55.7%p=2e−4

READ – 45.1%p=1e−3 44.5%p=3e−4 53.8%p=0.01 53.0%p=0.04 54.2%p=5e−3

Vinci – – 51.7%p=0.2 55.8%p=2e−4 56.9%p=1e−5 62.6%p=3e−15

LayoutTransformer – – – 57.1%p=8e−6 56.0%p=2e−4 63.5%p=2e−17

CGL-GAN – – – – 48.9%p=0.2 54.7%p=3e−3

ICVT – – – – – 55.4%p=6e−4

308 ×
(
7
2

)
= 6, 468 jobs on AMT, and randomly assigned three workers for each job. We simply

asked each worker “Which of the two images looks better?” We intentionally did not pre-define any
criterion for the preference so as to fully respect their subjective judgments. All workers have an
approval rate history above 90% on AMT. We did not set any restrictions for workers’ gender, race,
sexuality, demographics, locations, remuneration rates, etc. Our user study has been reviewed and
approved by our ethical board.

Table 4 lists the ratio of users that prefer one design over another. To quantify the statistical sig-
nificance of our user study, we calculate the p-value of a null hypothesis that the results of binary
comparisons are equivalent to tossing a fair coin. We calculate it via the cumulative distribution
function of binomial distribution, the smaller the more significant. In the last column all ratios are
above 50%: a majority of users prefer our designs over any baseline significantly, considering all
p-values ≪ 0.05. This validates that our layout designs are more appealing to users. We attribute
this to our effective approximation of real layout distributions and multimodal understanding.

6 CONCLUSION

We present LayoutDETR for customizable layout design. It inherits the high quality and realism of
generative models, and benefits from object detectors to understand multimodal conditions. Exper-
iments show that we achieve a new state-of-the-art performance for layout generation on a new ad
banner dataset and beyond. We implement our solution as a graphical system that facilitates user
studies. Users prefer our designs over several recent works. Future work includes: (1) exploring
diffusion models (Song et al., 2021; Rombach et al., 2022) for multimodal layout generation; (2)
establishing datasets that benchmark multimodal layout generation for 2D/3D natural scenes.

9

Under review as a conference paper at ICLR 2024

REPRODUCIBILITY STATEMENT

In accordance with the principles of open science and with the aim of promoting reproducibility,
transparency, and follow-up research, we commit to granting open-source access to all the mate-
rials associated with our study. Part of our dedication is underscored in Appendix, including the
implementation details in Section B (where we integrate the following GitHub repositories: Style-
GAN3 (Sty), LayoutGAN++ (Lay), DETR (DET), UP-DETR (UP-), BLIP (BLI)), dataset collection
details in Section C, and graphical system design details in Section D. Our code and demo video
of the system have been attached in the supplementary material. We promise to release our dataset,
well-trained models, and fully-documented system. In addition to offering these resources, we com-
mit to their maintenance and providing necessary support. Our goal is to contribute to our research
community, making it more supportive and inclusive.

REFERENCES

https://github.com/salesforce/BLIP. 10

https://github.com/facebookresearch/detr. 10

https://github.com/ktrk115/const_layout. 10

https://github.com/NVlabs/stylegan3. 10

https://github.com/dddzg/up-detr. 10

https://www.freepik.com/. 20

https://www.mturk.com/. 16

https://github.com/PaddlePaddle/PaddleOCR. 6, 19

https://www.pmi.com/. 21

Diego Martin Arroyo, Janis Postels, and Federico Tombari. Variational transformer networks for
layout generation. CVPR, 2021. 3

Irwan Bello, Barret Zoph, Ashish Vaswani, Jonathon Shlens, and Quoc V Le. Attention augmented
convolutional networks. ICCV, 2019. 15

Mikołaj Bińkowski, Danica J Sutherland, Michael Arbel, and Arthur Gretton. Demystifying mmd
gans. ICLR, 2018. 7

Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale gan training for high fidelity natural
image synthesis. ICLR, 2019. 2, 4

Yunning Cao, Ye Ma, Min Zhou, Chuanbin Liu, Hongtao Xie, Tiezheng Ge, and Yuning Jiang.
Geometry aligned variational transformer for image-conditioned layout generation. Multimedia,
2022. 1, 2, 3, 6, 7

Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and
Sergey Zagoruyko. End-to-end object detection with transformers. ECCV, 2020. 1, 3, 5, 6,
15

Alexandre Carlier, Martin Danelljan, Alexandre Alahi, and Radu Timofte. Deepsvg: A hierarchical
generative network for vector graphics animation. NeurIPS, 2020. 3

Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bojanowski, and Armand Joulin.
Unsupervised learning of visual features by contrasting cluster assignments. 2020. 2

Gang Chen, Peihong Xie, Jing Dong, and Tianfu Wang. Understanding programmatic creative: The
role of ai. Journal of Advertising, 2019. 1

Xi Chen, Nikhil Mishra, Mostafa Rohaninejad, and Pieter Abbeel. Pixelsnail: An improved autore-
gressive generative model. ICML, 2018. 1, 2

10

https://github.com/salesforce/BLIP
https://github.com/facebookresearch/detr
https://github.com/ktrk115/const_layout
https://github.com/NVlabs/stylegan3
https://github.com/dddzg/up-detr
https://www.freepik.com/
https://www.mturk.com/
https://github.com/PaddlePaddle/PaddleOCR
https://www.pmi.com/

Under review as a conference paper at ICLR 2024

Chin-Yi Cheng, Forrest Huang, Gang Li, and Yang Li. Play: Parametrically conditioned layout
generation using latent diffusion. arXiv, 2023. 1, 2, 3

Zhigang Dai, Bolun Cai, Yugeng Lin, and Junying Chen. Up-detr: Unsupervised pre-training for
object detection with transformers. CVPR, 2021. 3, 16

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. NAACL, 2019. 2, 4, 16

Ross Girshick. Fast r-cnn. ICCV, 2015. 3

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial networks. NeurIPS, 2014. 1, 2, 4

Shunan Guo, Zhuochen Jin, Fuling Sun, Jingwen Li, Zhaorui Li, Yang Shi, and Nan Cao. Vinci: an
intelligent graphic design system for generating advertising posters. CHI, 2021. 1, 2, 3, 6, 7

Kamal Gupta, Justin Lazarow, Alessandro Achille, Larry S Davis, Vijay Mahadevan, and Abhinav
Shrivastava. Layouttransformer: Layout generation and completion with self-attention. ICCV,
2021. 1, 2, 3, 7

Simon Haykin and N Network. A comprehensive foundation. Neural networks, 2004. 2

Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. ICCV, 2017. 3

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked
autoencoders are scalable vision learners. CVPR, 2022. 15

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
Gans trained by a two time-scale update rule converge to a local nash equilibrium. NeurIPS,
2017. 7

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. NeurIPS,
2020. 2

Hsiao Yuan Hsu, Xiangteng He, Yuxin Peng, Hao Kong, and Qing Zhang. Posterlayout: A new
benchmark and approach for content-aware visual-textual presentation layout. CVPR, 2023. 1, 2,
3, 6

Zaeem Hussain, Mingda Zhang, Xiaozhong Zhang, Keren Ye, Christopher Thomas, Zuha Agha,
Nathan Ong, and Adriana Kovashka. Automatic understanding of image and video advertise-
ments. CVPR, 2017. 6, 16

Zhaoyun Jiang, Huayu Deng, Zhongkai Wu, Jiaqi Guo, Shizhao Sun, Vuksan Mijovic, Zijiang Yang,
Jian-Guang Lou, and Dongmei Zhang. Unilayout: Taming unified sequence-to-sequence trans-
formers for graphic layout generation. arXiv, 2022a. 3, 7

Zhaoyun Jiang, Shizhao Sun, Jihua Zhu, Jian-Guang Lou, and Dongmei Zhang. Coarse-to-fine
generative modeling for graphic layouts. AAAI, 2022b. 3

Zhaoyun Jiang, Jiaqi Guo, Shizhao Sun, Huayu Deng, Zhongkai Wu, Vuksan Mijovic, Zijiang James
Yang, Jian-Guang Lou, and Dongmei Zhang. Layoutformer++: Conditional graphic layout gen-
eration via constraint serialization and decoding space restriction. CVPR, 2023. 3

Akash Abdu Jyothi, Thibaut Durand, Jiawei He, Leonid Sigal, and Greg Mori. Layoutvae: Stochas-
tic scene layout generation from a label set. ICCV, 2019. 2, 3

Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of gans for im-
proved quality, stability, and variation. ICLR, 2018. 4

Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative
adversarial networks. CVPR, 2019. 4

Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and Timo Aila. Analyz-
ing and improving the image quality of stylegan. CVPR, 2020. 1, 2, 4, 16

11

Under review as a conference paper at ICLR 2024

Kotaro Kikuchi, Edgar Simo-Serra, Mayu Otani, and Kota Yamaguchi. Constrained graphic layout
generation via latent optimization. ACM MM, 2021. 1, 2, 3, 4, 6, 7, 15

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. ICLR, 2015. 16

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. ICLR, 2013. 1, 2, 4, 5

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. ICLR, 2017. 2

Xiang Kong, Lu Jiang, Huiwen Chang, Han Zhang, Yuan Hao, Haifeng Gong, and Irfan Essa. Blt:
Bidirectional layout transformer for controllable layout generation. ECCV, 2022. 2, 3, 7

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. NeurIPS, 2012. 2

R Landa. Graphic design solutions/robin landa. Wadsworth, Boston, 2010. 1

Anders Boesen Lindbo Larsen, Søren Kaae Sønderby, Hugo Larochelle, and Ole Winther. Autoen-
coding beyond pixels using a learned similarity metric. ICML, 2016. 1, 2, 5, 15

Donghoon Lee, Sifei Liu, Jinwei Gu, Ming-Yu Liu, Ming-Hsuan Yang, and Jan Kautz. Context-
aware synthesis and placement of object instances. NeurIPS, 2018. 2

Hsin-Ying Lee, Lu Jiang, Irfan Essa, Phuong B Le, Haifeng Gong, Ming-Hsuan Yang, and Weilong
Yang. Neural design network: Graphic layout generation with constraints. ECCV, 2020. 2, 3

Kwonjoon Lee, Huiwen Chang, Lu Jiang, Han Zhang, Zhuowen Tu, and Ce Liu. Vitgan: Training
gans with vision transformers. ICLR, 2022. 4

Elad Levi, Eli Brosh, Mykola Mykhailych, and Meir Perez. Dlt: Conditioned layout generation with
joint discrete-continuous diffusion layout transformer. arXiv, 2023. 2, 3

Gang Li, Gilles Baechler, Manuel Tragut, and Yang Li. Learning to denoise raw mobile ui layouts
for improving datasets at scale. CHI, 2022a. 6

Jianan Li, Jimei Yang, Aaron Hertzmann, Jianming Zhang, and Tingfa Xu. Layoutgan: Generating
graphic layouts with wireframe discriminators. ICLR, 2019. 2, 3

Jianan Li, Jimei Yang, Jianming Zhang, Chang Liu, Christina Wang, and Tingfa Xu. Attribute-
conditioned layout gan for automatic graphic design. TVCG, 2020. 2, 3, 5, 6, 7

Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. Blip: Bootstrapping language-image pre-
training for unified vision-language understanding and generation. ICML, 2022b. 4, 16

Jiawei Lin, Jiaqi Guo, Shizhao Sun, Weijiang Xu, Ting Liu, Jian-Guang Lou, and Dongmei Zhang.
A parse-then-place approach for generating graphic layouts from textual descriptions. ICCV,
2023. 2, 3

Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense object
detection. ICCV, 2017. 3

Bingchen Liu, Yizhe Zhu, Kunpeng Song, and Ahmed Elgammal. Towards faster and stabilized gan
training for high-fidelity few-shot image synthesis. ICLR, 2020. 4

Simon Lok and Steven Feiner. A survey of automated layout techniques for information presenta-
tions. Proceedings of SmartGraphics, 2001. 1

Nelson Nauata, Kai-Hung Chang, Chin-Yi Cheng, Greg Mori, and Yasutaka Furukawa. House-gan:
Relational generative adversarial networks for graph-constrained house layout generation. ECCV,
2020. 3

Nelson Nauata, Sepidehsadat Hosseini, Kai-Hung Chang, Hang Chu, Chin-Yi Cheng, and Yasutaka
Furukawa. House-gan++: Generative adversarial layout refinement network towards intelligent
computational agent for professional architects. CVPR, 2021. 3

12

Under review as a conference paper at ICLR 2024

David D Nguyen, Surya Nepal, and Salil S Kanhere. Diverse multimedia layout generation with
multi choice learning. Multimedia, 2021. 3

Niki Parmar, Ashish Vaswani, Jakob Uszkoreit, Lukasz Kaiser, Noam Shazeer, Alexander Ku, and
Dustin Tran. Image transformer. ICML, 2018. 15

Akshay Gadi Patil, Omri Ben-Eliezer, Or Perel, and Hadar Averbuch-Elor. Read: Recursive autoen-
coders for document layout generation. CVPR Workshops, 2020. 1, 2, 3, 7

Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look once: Unified,
real-time object detection. CVPR, 2016. 3

Hamid Rezatofighi, Nathan Tsoi, JunYoung Gwak, Amir Sadeghian, Ian Reid, and Silvio Savarese.
Generalized intersection over union: A metric and a loss for bounding box regression. CVPR,
2019. 3, 5

Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and
approximate inference in deep generative models. ICML, 2014. 4, 5

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. CVPR, 2022. 1, 2, 9

Tim Salimans, Andrej Karpathy, Xi Chen, and Diederik P Kingma. Pixelcnn++: Improving the
pixelcnn with discretized logistic mixture likelihood and other modifications. ICLR, 2017. 2

Axel Sauer, Katja Schwarz, and Andreas Geiger. Stylegan-xl: Scaling stylegan to large diverse
datasets. SIGGRAPH, 2022. 4

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. ICLR, 2015. 2

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Y Ng,
and Christopher Potts. Recursive deep models for semantic compositionality over a sentiment
treebank. EMNLP, 2013. 2

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. ICLR,
2021. 2, 9

Mary Stribley. Rules of composition all designers live by. Retrieved May, 2016. 1

Roman Suvorov, Elizaveta Logacheva, Anton Mashikhin, Anastasia Remizova, Arsenii Ashukha,
Aleksei Silvestrov, Naejin Kong, Harshith Goka, Kiwoong Park, and Victor Lempitsky.
Resolution-robust large mask inpainting with fourier convolutions. WACV, 2022. 6, 19, 20

Fuwen Tan, Crispin Bernier, Benjamin Cohen, Vicente Ordonez, and Connelly Barnes. Where and
who? automatic semantic-aware person composition. WACV, 2018. 2

Aaron Van den Oord, Nal Kalchbrenner, Lasse Espeholt, Oriol Vinyals, Alex Graves, et al. Condi-
tional image generation with pixelcnn decoders. NeurIPS, 2016. 2

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. NeurIPS, 2017. 2, 6, 16

Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaiming He. Non-local neural networks.
CVPR, 2018. 15

Yizhi Wang, Guo Pu, Wenhan Luo, Yexin Wang, Pengfei Xiong, Hongwen Kang, and Zhouhui Lian.
Aesthetic text logo synthesis via content-aware layout inferring. CVPR, 2022. 3, 6

Yuxi Xie, Danqing Huang, Jinpeng Wang, and Chin-Yew Lin. Canvasemb: learning layout repre-
sentation with large-scale pre-training for graphic design. Multimedia, 2021. 3

Kota Yamaguchi. Canvasvae: learning to generate vector graphic documents. ICCV, 2021. 3, 6

13

Under review as a conference paper at ICLR 2024

Fenggen Yu, Kun Liu, Yan Zhang, Chenyang Zhu, and Kai Xu. Partnet: A recursive part decompo-
sition network for fine-grained and hierarchical shape segmentation. CVPR, 2019. 6

Jiahui Yu, Xin Li, Jing Yu Koh, Han Zhang, Ruoming Pang, James Qin, Alexander Ku, Yuanzhong
Xu, Jason Baldridge, and Yonghui Wu. Vector-quantized image modeling with improved vqgan.
ICLR, 2022. 4

Ning Yu, Ke Li, Peng Zhou, Jitendra Malik, Larry Davis, and Mario Fritz. Inclusive gan: Improving
data and minority coverage in generative models. ECCV, 2020. 4

Ning Yu, Guilin Liu, Aysegul Dundar, Andrew Tao, Bryan Catanzaro, Larry S Davis, and Mario
Fritz. Dual contrastive loss and attention for gans. ICCV, 2021. 4

Junyi Zhang, Jiaqi Guo, Shizhao Sun, Jian-Guang Lou, and Dongmei Zhang. Layoutdiffusion:
Improving graphic layout generation by discrete diffusion probabilistic models. ICCV, 2023. 2, 3

Hengshuang Zhao, Xiaohui Shen, Zhe Lin, Kalyan Sunkavalli, Brian Price, and Jiaya Jia.
Compositing-aware image search. ECCV, 2018. 2

Xinru Zheng, Xiaotian Qiao, Ying Cao, and Rynson WH Lau. Content-aware generative modeling
of graphic design layouts. TOG, 2019. 1, 2, 3, 5, 6, 15

Xu Zhong, Jianbin Tang, and Antonio Jimeno Yepes. Publaynet: largest dataset ever for document
layout analysis. ICDAR, 2019. 6

Min Zhou, Chenchen Xu, Ye Ma, Tiezheng Ge, Yuning Jiang, and Weiwei Xu. Composition-aware
graphic layout gan for visual-textual presentation designs. IJCAI, 2022. 1, 2, 3, 6, 7, 19

14

Under review as a conference paper at ICLR 2024

A MOTIVATIONS OF USING EACH NETWORK COMPONENT

The generator G and conditional/unconditional discriminators Dc/Du serve as the fundamental com-
ponents for the GAN variant of our solution. The use of conditional discriminator Dc is straight-
forward due to the nature of our multimodal conditions: it encourages foreground elements to be
harmonic and reasonable to the background after being overlaid according to the generated layout.
The unconditional discriminator Du differs from Dc by ignoring background and foreground ele-
ments, and focusing only on the realism of layouts themselves. Therefore, the use of Du additionally
encourages the mutual relations among bounding boxes in a generated layout to be realistic and rea-
sonable, regardless of multimodal conditions. The empirical effectiveness of Du is evidenced in
Table 2 Row 5 in the main paper.

The motivation of using auxiliary decoders F c/F u following Dc/Du is inspired by (Kikuchi et al.,
2021). F c/F u targets to self-reconstruct all the input information of Dc/Du through the bottleneck
discriminator features. It encourages the input information to be fully encoded into the discrimina-
tor features such that the discriminator classification is fully justified by the input. The empirical
effectiveness of F c/F u has been validated in (Kikuchi et al., 2021) Table 2 last column.

Positional embeddings Ec/Eu in the auxiliary decoders F c/F u are inherited from Layout-
GAN++ (Kikuchi et al., 2021) and are necessary, without which the reconstructed bounding boxes
in a layout would have no variance as they are conditioned on the same discriminator’s final fea-
tures f c/f u. They differ from the positional embeddings in the visual transformer (ViT) background
encoder. The latter is used to differentiate patch embeddings in different image coordinates.

The layout encoder E and generator G serve as the fundamental components for the VAE variant of
our solution. VAEs and GANs are alternative paradigms of generative models, and are complemen-
tary to each other in terms of data distribution learning and feature representation learning (Larsen
et al., 2016). Inspired by (Zheng et al., 2019), we combine the strengths of VAEs and GANs and
apply them for layout generation.

The use of auxiliary reconstructor R following G stems from the same motivation as the use of
auxiliary decoders F c/F u. Its empirical effectiveness is evidenced in Table 2 Row 4 in the main
paper.

The motivation of using DETR architecture (Carion et al., 2020) for background image encoding and
understanding stems from its state-of-the-art performance for object detection using the state-of-the-
art ViT encoder architecture (Wang et al., 2018; He et al., 2022). In our scenarios, “detection” is
equivalent to “generation” as both processes output bounding box parameters. Although “detection”
lacks the “layout” concept, it is complemented by the layout discriminator and encoder networks.
“Object” stands for the non-clutter subregions in a background that are suitable for overlaying fore-
ground elements. ViT tokenizes visual features that facilitate cross attention with other foreground
element features, e.g., tokenized text features, so that multimodal conditions can synergize jointly.

Incorporating DETR into multimodal layout generation is non-trivial. Directly applying the DETR
architecture in the encoder did not achieve optimal performance. Tuning around different generator
paradigms (Sec. 3.1), loss configurations (Sec. 5.2), and conditional embedding configurations (Sec.
5.2) leads us towards the empirical optimum.

B IMPLEMENTATION DETAILS

Architecture design is where we integrate object detection with layout generation. Detection trans-
former (DETR) architecture (Carion et al., 2020) is employed and modified for LayoutDETR gen-
erator G and conditional discriminator Dc. It targets to boost the understanding of background from
the perspective of visual detection, and enhance the controllability of background on the layout.

As depicted in Figure 2 bottom left in the main paper, G and Dc contain a visual transformer encoder
for background understanding and a transformer decoder for layout generation or discriminator fea-
ture representation. The encoder part is the same as in DETR (Carion et al., 2020), and is identical
in G and Dc. It consists of a CNN backbone that extracts a compact feature representation from
a background image, as well as a multi-head ViT encoder (Wang et al., 2018; He et al., 2022) that
incorporates positional encoding inputs (Parmar et al., 2018; Bello et al., 2019). It outputs tokenized
visual features for cross-attention in the following layout transformer decoder.

15

Under review as a conference paper at ICLR 2024

The layout decoder is also inherited from the DETR transformer decoder with self-attention and
encoder-decoder-cross-attention mechanisms (Vaswani et al., 2017). In G, it transforms each of
the N input embeddings (corresponding to N foreground elements) into layout bounding box pa-
rameters, whereas in Dc, it transforms each of the N bounding box embeddings into discriminator
features. Our architecture differs from DETR where we have foreground elements as inputs to drive
the transformation, while DETR does not. Therefore, we replace their freely-learnable object queries
with our foreground embeddings as the input tokens to the decoder, which are detailed below.

In G, foreground elements are composed of texts T = {ti}Mi=1 = {(si, ci, li)}Mi=1 and image patches
P = {pi}Ki=1. Thence, each foreground embedding is a concatenation of noise embedding and
either text embedding or image embedding. To calculate the text embedding, we separately encode
text string s, text class c, and text length l, and concatenate the features together. The text string
is encoded by the pretrained and fixed BERT text encoder (Devlin et al., 2019). The text class and
quantized text length are encoded by learning a dictionary. To calculate the image embedding, we
use the same ViT as used for background encoding. The weights are shared and initialized by the
Up-DETR-pretrained model (Dai et al., 2021). Note that the font color is not considered in the
modeling because it is trivial information. According to our empirical observation, font colors are
dominated by two and only two modes: black and white. As indicated in Fig. 3 caption in the main
paper: Text font colors and button pad colors are adaptively determined to be either black or white
whichever contrasts more with the background.

For the other networks F c, Du, F u, E, and R that do not take background images as an input condi-
tion, we simply use the above transformer decoder architecture as their implementations. Following
transformers, for each foreground image reconstruction in F c and R, we employ the StyleGAN2
image generator architecture (Karras et al., 2020). For each text string reconstruction, we employ
the pretrained BERT language model decoder (Devlin et al., 2019; Li et al., 2022b). For each text
class and text length decoding, we use 3-layer MLPs.

We implement LayoutDETR in PyTorch and use Adam optimizer (Kingma & Ba, 2015) to train the
models on 8 NVIDIA A100 GPUs, each with 40GB memory. Because bounding box parameters
are normalized by image resolutions, during training and inference we downsize arbitrary images
to 256 × 256 without losing generality. For final rendering and visualization, we resize them back
to their original resolutions. Small and unified image size allows us to train models with a large
enough batch size, e.g., 64 in our experiments. During training, we set the learning rate constantly
as 10−5 and train for 110k iterations in 4 days. Inference is much more efficient: we load only G
into a single NVIDIA A100 GPU and it consumes only 2.82GB of memory. It takes only 0.38 sec
to generate a layout given foreground and background conditions.

The training and inference code is attached with the supplementary material.

C DETAILS OF OUR AD BANNER DATASET COLLECTION

The sources of raw ad banner images consist of two parts. First, we manually went through all the
images in Pitt Image Ads Dataset (Hussain et al., 2017). We filtered out those with single modality,
low quality, or old-fashioned designs. We then selected 3,536 valid ad banner images. Second, we
searched on Google Image Search Engine with the keywords ”XXX ad banner” where ”XXX” goes
through a list of 2,765 retailer brand names including the Fortune 500 brands. For each keyword
search, we crawled the top 20 results and manually filtered out non-ads, single-modality, low-quality,
or offensive-content images. We then selected 4,321 valid ad banner images. Combining the two
sources, we in total obtained 7,857 valid ad banner images with arbitrary sizes.

Next, we crowdsourced on Amazon Mechanical Turk (AMT) (mtu) to obtain human annotations
for the bounding box and class of each text phrase in each image. The class space spans over 11
categories as shown in the AMT interface in Figure 4 top. Without losing representativeness, we
focus on the top-4 most common categories in this work: {header, body text, disclaimer / footnote,
button}. We also linked a detailed instructional document with examples for workers to fully un-
derstand the annotation task. See the instruction in Figure 4 bottom. We assigned each annotation
job to three workers. For the final annotation results, we averaged over three workers’ submissions
and incorporated our judgments for the tie cases. In total there were 67 workers involved in the task.
On average each worker submitted 314 jobs in around 3 minutes per job. All of the workers have
an approval rate history above 90% on AMT. We did not set any restrictions for workers’ gender,

16

Under review as a conference paper at ICLR 2024

(a) AMT interface

(b) Instructional example

Figure 4: Top: AMT interface with instructions on the left for users to annotate the bounding box and class
of each existing copywriting text on each image. Bottom: one instructional example of the definitions of text
bounding boxes and text classes.

17

Under review as a conference paper at ICLR 2024

Figure 5: Reverse engineering examples of separating foreground elements from background images using
OCR and image inpainting techniques.

(a) Initial page (b) Step 1

(c) Step 2 (d) Step 3

Figure 6: Step-by-step usage of our graphical system for customizable multimodal graphic layout design.

18

Under review as a conference paper at ICLR 2024

race, sexuality, demographics, locations, remuneration rates, etc. Our annotation process has been
reviewed and approved by our ethical board.

After annotation, it is necessary to reverse the design by separating foreground elements from back-
ground images to configure the training/testing data. We apply a modern optical character recogni-
tion (OCR) technique (pad) to extract the text inside each bounding box, and adopt a modern image
inpainting technique (Suvorov et al., 2022) to erase the texts. The separation of texts from back-
ground images is exemplified in Figure 5. After filtering out a few samples with undesirable OCR
or inpainting results, we finally obtain 7,196 valid samples for the following experiments.

It is worth noting that inpainting clues may leak the layout bounding box ground truth information
and shortcut training. Therefore, during training, we intentionally inpaint background images at
additional random subregions that are irrelevant to their layouts.

D GRAPHICAL SYSTEM STEP-BY-STEP DESIGNS

Since we validate that our solution sets up a new state of the art for multimodal layout design, it is
worth integrating it into a graphical system for user-friendly service in practice. Figure 6 demon-
strates our step-by-step UI designs. In specific:

(1) Figure 6(a) shows the initial page that allows users to customize their background images and
optionally foreground elements: header text, body text, footnote/disclaimer text, button text, as well
as button border radius (zero radius means a rectangular button). Text colors, button pad colors, and
text fonts can also be customized.

(2) Once users upload their background and foreground elements, they are previewed on the right
part of the same page, as shown in Figure 6(b). The locations and sizes of foreground elements in
the preview are meaningless: they just conceptually show what contents are going to be rendered on
top of the background.

(3) Once users click ”Next”, it moves on to the next page with our design results, as shown in
Figure 6(c). Given one layout designed in the backend, we post-process it by randomly jittering
the generated box parameters by 20% while keeping the original non-overlapping and alignment
regularity.

(4) Afterwards, the system renders foreground elements given the layout bounding boxes. Text font
sizes and line breakers are adaptively determined so as to tightly squeeze into the boxes. Consid-
ering header texts usually have short strings yet are assigned with large boxes, their font sizes are
naturally large enough. Text font styles can also randomly vary. This optional feature is shown in
our supplementary video. We showcase six of our rendered results on this page, and allow users to
select one or more satisfactory designs.

(5) Once users make their selection(s) and click ”Save Selection”, it moves onto the last page as
shown in Figure 6(d). On this page, users are allowed to manually customize the size and location
of each rendered foreground element. Once they finish, they click ”Save” to exit our system.

More live demonstrations are nested in our supplementary video.

E MORE QUALITATIVE RESULTS

We show in Fig. 7 more uncurated qualitative results of layout designs and text rendering on back-
ground images in the wild and on CGL Chinese ad banner inpainted background (Zhou et al., 2022).
Conditioned on multiple text inputs in varying categories, our designs appear aesthetically appealing
and harmonic between foreground and background.

We show in Fig. 8 the impact of varying texts on layouts given the same background image. We
observe: (1) the scales of bounding boxes are adaptively proportional to the varying lengths of texts
such that the font sizes remain approximately unchanged, and (2) the global and relative locations
of bounding boxes are stable regardless of the changes of texts, which are reliably harmonic with
the background structure.

19

Under review as a conference paper at ICLR 2024

Figure 7: Left: uncurated layout designs and text rendering on background images in the wild (extracted
from PSD data downloaded from (fre) with searching keywords “ad banner”). Rendering rules: (1) Text font
sizes and line breakers are adaptively determined to tightly fit into their inferred boxes. (2) Text font colors
and button pad colors are adaptively determined to be either black or white whichever contrasts more with
the background. (3) Button text colors are then determined to contrast with the button pads. (4) Text font
is set to Arial. Right: uncurated layout designs and text rendering on CGL Chinese ad banner background
images inpainted by (Suvorov et al., 2022). Image patches that contain foreground text elements are resized
and overlaid on the background following the generated layouts.

20

Under review as a conference paper at ICLR 2024

Figure 8: Top: ad banner design given the same background image (downloaded from (pmi)) and varying text
combinations. Bottom: ad banner design given the same background image and varying only the header text
component.

Figure 9: Imperfect layout designs for over-clutter background images and wordy texts. Image sources are
from (pmi).

21

Under review as a conference paper at ICLR 2024

F LIMITATION ON CHALLENGING SAMPLES

We show in Fig. 9 a few imperfect layout designs for challenging samples. When the background
images are over-clutter and texts are wordy, none of our rendering variants looks very ideal. Our
model struggles between (1) placing layouts in the middle regardless of background and (2) placing
layouts over less busy areas at edges that breaks the spatial balance. A possible workaround could
be introducing gradient blending masks into the rendering post-processing.

22

