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ABSTRACT

The integration of fully homomorphic encryption (FHE) in federated learning (FL)
has led to significant advances in data privacy. However, during the aggregation
phase, it often results in performance degradation of the aggregated model, hin-
dering the development of robust representational generalization. In this work,
we propose a novel multimodal quantum federated learning framework that uti-
lizes quantum computing to counteract the performance drop resulting from FHE.
For the first time in FL, our framework combines a multimodal quantum mix-
ture of experts (MQMoE) model with FHE, incorporating multimodal datasets for
enriched representation and task-specific learning. Our MQMoE framework en-
hances performance on multimodal datasets and combined genomics and brain
MRI scans, especially for underrepresented categories. Our results also demon-
strate that the quantum-enhanced approach mitigates the performance degradation
associated with FHE and improves classification accuracy across diverse datasets,
validating the potential of quantum interventions in enhancing privacy in FL.

1 INTRODUCTION

Federated Learning (FL) has emerged as a powerful paradigm for collaboratively training machine
learning models across decentralized data sources (McMahan et al. (2023)), allowing multiple
clients to enhance model performance while preserving data privacy and complying with regula-
tions such as the general data protection regulation (GDPR). FL alone is insufficient to fully protect
data privacy, as the global model and updates shared between clients and the central server remain
vulnerable to inference attacks. For instance, membership inference attacks use the model param-
eters or gradients to deduce whether a specific data sample was part of the training dataset (Shokri
et al. (2017)). Similarly, attribute inference attacks attempt to uncover sensitive attributes of in-
dividual data samples by exploiting correlations between model updates and data features (Melis
et al. (2019)). Fully homomorphic encryption (FHE) was proposed by Gentry (2009) to mitigate
vulnerabilities by allowing computations on encrypted data without decryption, ensuring that sensi-
tive information remains secure even during model training and aggregation within new gen FL. It
works well against gradient leakage attacks, in which hackers try to recover private information by
looking at the gradients that are sent back and forth during training (Phong et al. (2018)). Adding
FHE to FL adds a lot of extra work to computers, causing delays and less accurate models during
the aggregation phase (Zhang et al. (2023)). Consequently, while FHE protects data privacy, it can
hinder the overall performance of FL systems, which is crucial for applications requiring high accu-
racy or real-time predictions. Despite the growing interest in multimodal FL, which aims to leverage
various types of data from multiple clients, there exists a gap in research that addresses the unique
challenges posed by FHE in this context (Gong et al. (2024a)). Furthermore, the application of quan-
tum computing (QC) to enhance FL frameworks has been largely unexplored. QC has the potential
to accelerate specific computations, which could alleviate performance bottlenecks introduced by
FHE (Dutta et al. (2024)).

To mitigate the performance degradation that occurs during model aggregation, we propose a novel
integration of QC with FHE in FL, taking into account the nature of the problem. Our method
employs QC to counteract the model degradation resulting from FHE, allowing for an improved
collection of model updates while protecting privacy, and for the first time, we present a novel
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multimodal quantum mixture of experts (MQMoE) model within the FL framework that employs
FHE. We design this architecture to handle diverse multimodal data with MoE (Yu et al. (2023a))
from various clients, enhancing representational and task-specific learning performance.

The main contributions, as illustrated in Fig. 1, are as follows:

• Conducting a comprehensive range of single-modality experiments, from classical central-
ized approaches to FHE-based quantum federated learning (QFL), demonstrating how QC
can mitigate model accuracy degradation caused by CKKSTensor-based FHE.
• Developing a novel algorithmic framework for seamlessly integrating multimodal datasets
with QC and FL while maintaining FHE constraints.
• Proposing a novel MQMoE in the FL-FHE setup that leverages quantum layer outputs in
its gating mechanism, achieving enhanced representational generalizability for task-specific
learning.
• Validating our approach through experiments in the biological domain, where we create
a biological MQMoE incorporating two distinct expert types specifically designed for han-
dling sensitive medical information (genomics and brain magnetic resonance imaging (MRI)
scans).

Classical

Quantum

Classical FL

QFL 

FL+FHE

QFL+FHE

Clients

Server
MQFL-FHE Framework (Section 4)

QFL with FHE (Section 4.1)

MQFL with FHE (Section 4.2)

MQMoE with FHE (Section 4.3)

Testing different centralized and federated 

setups (Section 5)

MQFL-FHE

Deployment

Evaluation

Federated

Different 

datasets

CIFAR-10

MRI Scan

PCOS

DNA 

Sequence

Centralized

Figure 1: Overview of our novel contributions.

2 RELATED WORKS

QC in FL: Innan et al. (2024a) introduced the federated quantum neural network (FedQNN), which
integrates quantum machine learning (QML) with QFL principles (Biamonte et al. (2017)). The
experiments were conducted across genomics and healthcare datasets, laying the groundwork for in-
vestigations into quantum-enhanced learning methods in privacy-sensitive domains. This has been
further advanced by efforts in QFL, which are creating new avenues in QML. In particular, studies
like Chen & Yoo (2021); Chehimi & Saad (2022) have emphasized using QFL in quantum systems
and decentralized data frameworks. Applications in healthcare and other domains, using both quan-
tum hardware and classical simulations, have shown promising results (Lusnig et al. (2024); Bhatia
& Bernal Neira (2024); Innan et al. (2024b); Javeed et al. (2024); Bhatia et al. (2023); Kais et al.
(2023)). Despite this progress, challenges related to resource allocation and efficient implementa-
tion persist, as noted by Larasati et al. (2022); Ren et al. (2023); Gurung et al. (2023), highlighting
ongoing efforts to address these issues.

Privacy preservation in FL: Rahulamathavan et al. (2023) proposed FheFL, which incorporates a
multi-key additive homomorphic encryption scheme to mitigate privacy risks associated with gradi-
ent sharing in FL. The experimental results confirmed that FheFL maintains model accuracy while
providing robust security against potential data breaches, emphasizing the necessity of integrating
FHE techniques into federated learning frameworks to enhance data privacy. FedSHE was created
by Pan et al. (2024). It is a useful FL scheme that uses adaptive segmented CKKS homomorphic
encryption to keep gradients safe from leakage attacks. Their analysis of security parameters under-
scores the trade-offs between correctness, efficiency, and security in FL environments.

Multimodal data handling in FL: Yu et al. (2023b) developed CreamFL, a framework designed
for multimodal FL. This method enables clients with heterogeneous model architectures to con-
tribute to a unified global model without sharing their private data. By implementing a contrastive

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

representation ensemble strategy, CreamFL effectively addresses the challenges posed by modality
discrepancies and task diversities. Gong et al. (2024b) further advanced this area by introducing a
multimodal vertical FL framework utilizing bivariate Taylor series expansion for encryption, thus
eliminating the reliance on third-party encryption providers.

Unlike the aspects discussed in previous literature, our methodology tackles the problem of manag-
ing multimodal data while reducing performance degradation due to FHE. We propose a seamless
algorithm that integrates QC techniques with multimodal FL setups within the FHE domain.

3 PROBLEM FORMULATION

Consider a FL setup with K clients, each with local data Dk, where k ∈ {1, 2, . . . ,K}. Each client
trains a local model with parameters wt

k and shares the encrypted updates E(wt
k) with a central

server. During the aggregation step, the global update is computed as E(wt+1) = 1
K

∑K
k=1 E(wt

k),
ensuring data privacy by performing operations on encrypted weights without decryption.

FHE schemes, like Cheon-Kim-Kim-Song (CKKS), allow both homomorphic addition and multi-
plication with the help of cyclotomic polynomial ring topologies. For homomorphic addition, the
server computes the encrypted sum E(w1+w2) = E(w1)+E(w2). The decryption at the client side
yields the sum w1 +w2 ≈ Dec(E(w1) + E(w2)). For homomorphic multiplication, the encrypted
product of two ciphertexts E(w1 ·w2) expands into three components. To control ciphertext growth,
a re-linearization step reduces the result to two components, i.e., Relin(E(w1) · E(w2)).

Despite the privacy benefits, the use of FHE leads to significant challenges like computational
overhead and model accuracy. The encryption and decryption processes, along with operations
on encrypted data, introduce noise and quantization errors which accumulate during operations
like multiplications, resulting in the degradation of the decrypted model’s accuracy wt+1 ≈
w1 + w2 + · · · + wK . Therefore, the primary challenge is to mitigate this accuracy degradation,
especially when multiple rounds of homomorphic operations are performed during model aggrega-
tion in FL. To address this, we propose leveraging QC to reduce noise accumulation, thus preserving
model accuracy while maintaining the privacy guarantees of FHE.

4 METHODOLOGY

We propose a novel framework that integrates FHE with QFL to improve privacy-preserving ma-
chine learning without compromising performance. Our approach leverages quantum computations
to counterbalance the degradation introduced by FHE during model aggregation, particularly in mul-
timodal settings. The key components of the proposed methodology include the integration of FHE
with QFL, multimodal quantum federated learning (MQFL), and the novel multimodal quantum
mixture of experts (MQMoE).

4.1 QFL-FHE: INTEGRATING FULLY HOMOMORPHIC ENCRYPTION WITH QUANTUM
FEDERATED LEARNING

In the QFL framework, the integration of FHE allows us to homomorphically aggregate encrypted
weights across distributed clients securely, presenting a complex but highly secure approach for data
privacy preservation as shown in Fig. 2 considering there to be a single type of input modality.

Let’s look at the CKKS (Cheon-Kim-Kim-Song) encryption scheme. This scheme is particularly
well-suited for federated learning because it allows approximate arithmetic on encrypted data, en-
abling repeated additions and multiplications while maintaining fidelity. Each client i holds local
data xi and computes model updates through a local update function gi. The encrypted model up-
dates can be expressed as:

EncCKKS(gi(θ, xi)) =

N∑
j=0

cj ·Xj + E,

where cj are the coefficients of the cyclotomic polynomial representation, N is the degree of the
polynomial, X is a complex root of unity associated with the cyclotomic polynomial tied to the
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Figure 2: Overview of the MQFL-FHE framework. Each client (e.g., client 1, client 2, etc.) trains a local
model on its private dataset, encrypts the model weights using the CKKS homomorphic encryption scheme,
and sends the encrypted local model wenc

k to the central server. The global server securely aggregates the
encrypted local models using a weighted sum based on client data contributions. The aggregated model is then
decrypted, optimized, and distributed back to all clients as the updated global model wg . A single key setup is
used for both encryption and decryption, ensuring secure communication throughout the process.

encryption parameters, and E is the error term introduced by the CKKS encoding. This ensures
that each client securely computes and sends back the encrypted results EncCKKS(gi(θ, xi)) to the
central server, maintaining privacy throughout the process. Upon receiving the encrypted updates
from all clients, the server performs aggregation of these encrypted model updates. Utilizing the
homomorphic properties of the CKKS scheme, the aggregated update can be represented as:

EncCKKS

(
M∑
i=1

gi(θ, xi)

)
=

N∑
j=0

cj ·

(
M∑
i=1

gi(θ, xi)

)j

+ E′,

where E′ is the error introduced during the aggregation process. This capability allows the server
to perform necessary computations without needing to decrypt the data. The CKKS scheme is
configured with a polynomial modulus degree of 8192, which defines the ring size Z[X]/(Xn + 1)
with n = 8192, providing a security level of 128 bits. The coefficient modulus is split into four
primes with bit sizes [60, 40, 40, 60], resulting in a total modulus size of 200 bits, balancing security
and computational efficiency. The global scaling factor of 240 ensures sufficient precision for fixed-
point arithmetic. Each client further incorporates quantum principles, beginning by encoding its
classical data into a quantum state |xi⟩ using a unitary operation defined as:

|xi⟩ ≡ U†(xi)|0⟩ =
dh⊗
j=1

R†x(xij)|0⟩,

where Rx(xij) denotes the rotation operation applied to the input features xij . The quantum model
update qi is then encrypted using a hybrid lattice-based encryption scheme, resulting in ciphertexts
that ensure both classical and quantum model privacy, denoted as ci = EncCKKS(|xi⟩). For client i,
let the encrypted model parameters be Ci = EncCKKS(θi), where θi denotes the local parameters of
the quantum model. By applying the FedAvg aggregation algorithm to homomorphically aggregate
encrypted model parameters from all participating clients, the global aggregation of these parameters
is expressed as:

Cglobal = EncCKKS

(
1

N

N∑
i=1

M(θ)

)
=

1

N

N∑
i=1

Ci.

The operation of M(θ) can be expressed in terms of individual quantum gates applied to the state
|x⟩. This can be formalized as:

|y⟩ =M(θ)|x⟩ = Uk(θk) · · ·U1(θ1)|x⟩,
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where Uj(θj) represents the j-th quantum gate acting on the state. Following the homomorphic
encryption properties, the output state |y⟩ is encrypted as cy = EncCKKS(|y⟩). This capability allows
for the evaluation of functions of the quantum state without direct access to the raw data. The
parameterized quantum circuit (PQC) employed in the experiments is defined as:

M(θ) =

L∏
l=1

(
n∏

i=1

RX(θl,i)

)(
n−1∏
i=1

CNOT(i, i+ 1)

)
,

where L is the number of layers, RX(θ) is the X-rotation gate, and CNOT(i, j) is the controlled-
NOT gate with qubit i as control and qubit j as target. This aggregation process effectively maintains
the privacy of individual client models while enabling the creation of a global model θglobal.

4.2 MQFL-FHE: MULTIMODAL QUANTUM FEDERATED LEARNING WITH FULLY
HOMOMORPHIC ENCRYPTION

Building upon the QFL-FHE foundation, we introduce MQFL, which handles heterogeneous data
modalities such as image & text data across clients, leveraging QC to enhance both representational
learning and model aggregation. The integration is detailed in Algorithm 1 and illustrated in Fig. 2.

Algorithm 1 Multimodal Quantum Federated Learning with Fully Homomorphic Encryption

1: Require:
2: ctx: Fully homomorphic encryption context
3: N : Number of federated clients
4: params: Encryption parameters
5: G: Quantum gate set
6: D: Parameterized Quantum Circuit (PQC) depth
7: M : Number of modalities (e.g., images, text)
Ensure: Aggregated global model wg

8: Initialization:
9: Generate CKKS context ctx← CKKSContext(params)
10: Generate Galois keys for rotations keys← ctx.generate galois keys()
11: Initialize global Multimodal QNN model wg ← InitializeMQNN(D,G,M)

12: Client-Side QNN Training and Encryption:
13: for each client k ∈ {1, . . . , N} in parallel do
14: Data Preprocessing for multimodal datasetDk ← PrepareMultimodalDataset(k) ▷ Handle multiple data types
15: Train local Multimodal QNN wk ← TrainMultimodalQNN(Dk,wg, D,G)

16: Quantize and encrypt the local model wenc
k ← Encrypt(Quantize(wk), ctx)

17: Send encrypted model wenc
k to the server

18: end for
19: Server-Side Aggregation:
20: Initialize S ← 0 ▷ Accumulator for weighted sum
21: ntotal ←

∑N
k=1 nk ▷ Total number of samples across all clients

22: for each client k ∈ {1, . . . , N} do
23: Receive wenc

k from client k
24: Aggregate encrypted weights S ← S + wenc

k · nk
ntotal

25: end for
26: Client-Side Decryption and Global Model Update:
27: for each client k ∈ {1, . . . , N} in parallel do
28: Decrypt aggregated model wg ← Decrypt(S, secret key)
29: Update global multimodal QNN model wg on the client
30: end for
31: PQC Update:
32: Adjust PQC parameters and architecture wg ← OptimizePQC(wg, D,G)

33: Model Distribution:
34: for each client k ∈ {1, . . . , N} in parallel do
35: Send global model wg to client k
36: end for
37: Repeat from step 11 until maximum communication rounds
38: return wg

In MQFL-FHE, we employ an immediate feature-level fusion by utilizing multi-head attention
mechanisms (Vaswani (2017)) to extract relevant features from diverse input modalities. The client-
specific preprocessing function is represented as Dk ← PrepareMultimodalDataset(k), ensuring
that varying input types are effectively managed and allowing local models to learn from different
sources. The local model update for client k can be expressed as:

wk =Mk(wg,Dk) =Mk

(
wg,

M⋃
m=1

Dk,m

)
, Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V,
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where X represents the input features obtained after concatenating features from multiple modali-
ties, and Q = XWQ, K = XWK , and V = XWV are the query, key, and value matrices computed
as learned linear projections of X . Here, WQ, WK , and WV are the projection weight matrices,
and Mk represents the multimodal training function that leverages extracted features from multiple
modalities Dk,m such as images and text through attention-based mechanisms.

In contrast to QFL-FHE, where each client handles a singular data modality, MQFL-FHE’s architec-
ture allows for a plug-and-play approach. This scalability is further supported by the abstraction of
the PrepareMultimodalDataset function, which can be generalized for various data types without
necessitating extensive modifications to the overall algorithm. In this paper, we define the pro-
cess of handling both modalities where DNA sequences are split into k-mers, converted into text,
and represented using TF-IDF vectorization, while MRI images are preprocessed using standard
transformations. These modalities are then paired and prepared for training, after which the data is
passed through a hybrid classical-quantum architecture. The algorithm’s structure, particularly in
the server-side aggregation step, can be mathematically articulated as:

S =

N∑
k=1

(
wenc

k · nk
ntotal

)
=

N∑
k=1

(
EncCKKS (Mk(θ,Dk)) ·

nk
ntotal

)
,

where nk represents the number of samples for client k and ntotal is the aggregate sample size across
all clients.

4.3 MQMOE-FL-FHE: MULTIMODAL QUANTUM MIXTURE OF EXPERTS BASED
FEDERATED LEARNING WITH FULLY HOMOMORPHIC ENCRYPTION

MRI
Input

Conv2d+ReLU

2 Linear
+ReLU

MaxPool

Quantum Layer 
(6 Qubits)

Feature
Concatenation

Multi-Head
Attention
(11 heads)

Fully Connected 
Layer+Softmax

2 Linear
+ReLU Fully 

Connected Layer
+ReLU

Quantum Layer 
(6 Qubits)2 Linear

+ReLU

Weighted
Sum

MRI Output
Layer

DNA Output
Layer

DNA
Input

Data Encoding: Classical data is encoded
using rotation gates .

Quantum Neural Network: The encoded
data is processed through parameterized

quantum gates with entanglement.

Measurement: Quantum state is
measured, and parameters  are updated

using the Adam Optimizer and Cross
Entropy Loss for classical optimization.

Data Encoding Measurement

AngleEmbedding

Quantum Neural Network

Output

Update Cross entropy LossAdam Optimizer

Enhances feature 
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Figure 3: The model workflow follows a MQMoE approach. MRI and DNA data are processed through
distinct classical layers, where MRI inputs pass through convolutional and pooling layers, while DNA inputs are
processed through linear layers. After classical preprocessing, both inputs are passed through quantum layers
outlined in the figure, representing QNNs, with 6-qubit quantum layers for both MRI & DNA to create two
quantum expert representational vectors. These quantum layers serve as specialized experts to extract complex
feature representations. The outputs from the quantum experts are combined through feature concatenation,
enhanced by a multi-head attention (MHA) mechanism to capture key features from the input data. For experts,
the MHA+FC layer+Softmax is the gating network. Combined with the weighted sum, this integrates the
quantum expert outputs, leading to their respective output layers. This process optimizes the final predictions
for both MRI and DNA output layers.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

We extend the idea of MQFL-FHE to introduce the MQMoE framework. This approach enhances
the capabilities of the previous work by employing a mixture-of-experts strategy within the FL
setting while maintaining FHE for privacy preservation. In the framework of MQMoE-FL-FHE,
the network consists of a gating mechanism to dynamically select expert models tailored to the
various modalities of input data, which allows for improved representational learning. Each client
k maintains a set of local experts Ek = {ek,1, ek,2, . . . , ek,m} designed to specialize in different
modalities as shown in Fig. 3. The gating function gk and the overall output yk are computed as
follows:

gk(x) = softmax(Wg · ϕ(x)) and yk =

m∑
j=1

gk,j · ek,j(x),

where Wg represents the learned weights of the gating network, ϕ(x) is the feature representation
of the input data x, and gk,j denotes the gating weight for expert ek,j . In contrast to the basic
MQFL-FHE architecture, which aggregates encrypted model updates without distinguishing be-
tween modalities, MQMoE-FL-FHE incorporates a gating strategy that adjusts based on the specific
characteristics of the incoming data. Each expert’s output ek,j(x) is generated through a PQC de-
fined as:

ek,j(x) = Uj(θj)|x⟩,
where Uj(θj) denotes the quantum operation applied to the input state, allowing for encoding clas-
sical data into quantum states.

5 DISCUSSION

In the experimental setting of our study, we use datasets that vary significantly in terms of image
or sequence count and imbalance factors to evaluate our models under a variety of conditions. The
CIFAR-10 dataset, with a balanced distribution (imbalance factor of 1), includes 60, 000 images and
employs a batch size of 128 for training, as shown in Table 1. In contrast, the DNA Sequence dataset
(Singh (2023)) presents a higher challenge with an imbalance factor of 5.595 and a total of 4, 380
sequences, trained with a smaller batch size of 16, to possibly mitigate the effects of its substantial
class imbalance. Other datasets, such as MRI Scan and PCOS (Hub et al. (2024)) with imbalance
factors of 1.207 and 2.544, respectively, and total counts of 7, 022 and 3, 200, use a batch size of
32. Regarding the hyperparameters, a learning rate of 1 × 10−3 is applied, which may increase
to 3 × 10−3 if learning plateaus, as detailed in Table 2. The FL utilizes the FLWR library (Beutel
et al. (2020)) to manage training across 10 clients over 20 communication rounds with 10 epochs per
client, contrasting with the 25 total epochs in the centralized approach. Simultaneously, Pennylane
(Bergholm et al. (2018)) is employed to execute quantum computations within the same FL setup.
The experiments are conducted on hardware with an AMD EPYC 7F72 (96) @ 3.685GHz CPU
and NVIDIA A100-PCIE-40GB GPUs to ensure efficient processing and computation. This setup,
incorporating diverse batch sizes and a range of hyperparameters, ensures comprehensive evaluation
across both federated and centralized learning settings.

Table 1: Dataset overview & batch size chosen for
the datasets for every experiment.

Dataset Imbalance Total Images/ Batch Classes
Factor (IF) Sequences Size

CIFAR-10 1 60, 000 128 10
MRI Scan 1.207 7, 022 32 4

PCOS 2.544 3, 200 32 2
DNA Sequence 5.595 4, 380 16 7

Table 2: Hyperparameters and settings.

Parameter Value
Learning Rate 1e− 3 (higher if plateauing: 3e− 3)
Train-Val Split FL: 90− 10, Centralized: 80− 20

Test Set Same for both
Number of Clients 10 (FL only)

Communication Rounds 20 (FL only)
Epochs per Client 10 (FL only)

Total Epochs 25 (Centralized only)
Client Resources {“num gpu”: 1 }

The test results show that the classical and quantum models perform very differently in both cen-
tralized and federated setups. This is because different computational approaches and datasets have
their unique dynamics. In the centralized experiments, as outlined in Table 1, the classical setup
consistently achieves high accuracy, with CIFAR-10 reaching a test accuracy of 76.59%, compared
to the quantum setup’s 74.33%. The MRI Scan dataset presents the highest accuracy in the clas-
sical centralized setup, with training and testing accuracy of 99.74% and 93.45%, respectively. In
the multimodal setup combining DNA and MRI data, the classical approach reports test accuracy of
84.64% for DNA and 90.62% for MRI, slightly decreasing in the quantum centralized setting. In the
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Table 3: Centralized experiment results for different setups and datasets.

Experiment Setup Dataset Train Loss Test Loss Train Accuracy Test Accuracy Time (sec)

Classical
Centralized

CIFAR-10 0.29 0.659 89.70% 76.59% 214.58± 0.03
DNA Sequence 0.0102 0.508 99.71% 94.50% 97.51± 0.04

MRI Scan 0.0068 0.566 99.74% 93.45% 412.23± 0.06
PCOS 0.1263 0.91 94.79% 74.22% 158.17± 0.05

DNA+MRI DNA: 0.027 DNA: 0.855 DNA: 99.24% DNA: 84.64%
Multimodal MRI: 0.012 MRI: 0.751 MRI: 99.71% MRI: 90.62% 372.23± 0.07

Quantum
Centralized

CIFAR-10 0.37 0.707 87.63% 74.33% 850.93± 0.13
DNA Sequence 1.266 1.33 94.54% 88.63% 524.98± 0.08

MRI Scan 0.0073 0.2903 99.86% 92.12% 608.23± 0.09
PCOS 0.47 1.02 89.66% 72.33% 253.38± 0.02

DNA+MRI DNA: 0.067 DNA: 0.979 DNA: 98.70% DNA: 86.53%
Multimodal MRI: 0.058 MRI: 0.560 MRI: 98.54% MRI: 85.37% 649.64± 0.12

FL experiments, as described in Table 2, the QFL with CIFAR-10 shows a test accuracy of 72.16%,
marginally outperforming its classical counterpart at 71.03%. This indicates the quantum model’s
potential in federated settings despite complex data privacy constraints. For the multimodal datasets
in federated settings, the DNA and MRI datasets maintain high training accuracy, with slight re-
ductions in test accuracy under quantum models, emphasizing the nuanced challenges in applying
quantum computations to complex data types. Furthermore, the experiments highlight the extended
computation times associated with quantum models and encryption methods. Specifically, the QFL
setup for CIFAR-10 necessitates approximately 9091.34 ± 2.11 seconds, significantly more than
the classical FL’s 3405.67 ± 1.89 seconds. Introducing FHE in federated setups notably increases
computational demands, with QFL + FHE requiring up to 9747.32 ± 2.23 seconds for CIFAR-10.
In our study, we extensively analyze the performance of federated learning models applied to DNA

Table 4: Federated experiment results for various setups and datasets.

Experiment Setup Dataset Test Loss Train Accuracy Test Accuracy Time (sec)

Classical FL

CIFAR-10 1.257 100.00% 71.03% 3405.67± 1.89
DNA Sequence 1.203 100.00% 94.09% 3926.97± 2.42

MRI Scan 1.524 100.00% 93.75% 5510.97± 2.92
PCOS 1.416 100.00% 65.37% 2167.52± 1.21

DNA+MRI DNA: 0.416 DNA: 99.01% DNA: 94.75%
Multimodal MRI: 1.072 MRI: 98.75% MRI: 85.56% 5563.82± 4.31

QFL

CIFAR-10 1.202 97.15% 72.16% 9091.34± 2.11
DNA Sequence 1.228 100.00% 93.76% 6809.63± 2.74

MRI Scan 0.338 100.00% 89.71% 7215.89± 3.22
PCOS 0.903 100.00% 73.29% 3433.54± 1.56

DNA+MRI DNA: 0.349 DNA: 99.23% DNA: 94.24%
Multimodal MRI: 0.906 MRI: 98.70% MRI: 85.83% 8531.73± 5.34

FL + FHE

CIFAR-10 1.322 97.69% 68.53% 4021.75± 1.97
DNA Sequence 1.434 100.00% 91.87% 4421.45± 2.52

MRI Scan 0.402 100.00% 88.40% 5904.54± 3.10
PCOS 1.379 100.00% 64.11% 2645.88± 1.49

DNA+MRI DNA: 0.408 DNA: 98.75% DNA: 93.75%
Multimodal MRI: 1.738 MRI: 98.21% MRI: 83.33% 7520.98± 4.95

QFL + FHE

CIFAR-10 0.0937 97.90% 71.12% 9747.32± 2.23
DNA Sequence 0.782 100.00% 94.32% 7123.91± 2.91

MRI Scan 0.360 100.00% 88.75% 7851.86± 3.54
PCOS 1.090 100.00% 70.15% 3942.60± 1.65

DNA+MRI DNA: 0.174 DNA: 99.64% DNA: 95.31%
Multimodal MRI: 0.713 MRI: 100% MRI: 87.26% 10314.34± 6.28

and MRI datasets, with and without the integration of quantum computing enhancements and FHE.
Fig.4 presents these models’ receiver operating characteristic (ROC) curves, offering a detailed view
of their discriminative abilities under different configurations. For the DNA dataset, the ROC analy-
sis reveals that the classical FL-FHE model achieves a micro-average and macro-average area under
the curve (AUC) of 0.92, indicating robust predictive performance across multiple classes. How-
ever, when quantum enhancements are applied through the QFL-FHE setup, there is a noticeable
improvement, with the micro-average AUC increasing to 0.94 and the macro-average rising to 0.95.
This enhancement validates that integrating QC can refine the model’s sensitivity and specificity,
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particularly in managing complex patterns within the DNA sequences. In contrast, the MRI dataset
exhibits different dynamics. Under the FL-FHE setup, the micro-average and macro-average ROC
AUCs are reported at 0.93, demonstrating high efficacy in class discrimination. In the QFL-FHE
setup, these metrics improve to 0.97 for both micro-average and macro-average AUCs. This signif-
icant increase underscores the potential of quantum enhancements in effectively handling the intri-
cacies of MRI data, potentially due to the quantum model’s capability to process high-dimensional
data more efficiently.

Figure 4: ROC curves for DNA and MRI datasets under FL with and without quantum enhancements. Panels
(a) and (b) show the ROC curves for the DNA dataset under FL-FHE and QFL-FHE setups, respectively, high-
lighting the performance across various classes. Panels (c) and (d) show the ROC curves for the MRI dataset
under FL-FHE and QFL-FHE setups, respectively. Each panel demonstrates the true positive rate against the
false positive rate for each class, including micro-average and macro-average ROC curves, illustrating the mod-
els’ discriminative ability in a privacy-preserving federated learning context.

5.1 ABLATION STUDY

Our analysis is crucial for understanding how each technology influences performance and privacy
when diverse data types are integrated within federated and centralized settings:

• Impact of technology removal: Removing QC from the multimodal setup significantly
reduces the system’s ability to effectively integrate and process heterogeneous data in fed-
erated and centralized environments. We observe a noticeable decrease in AUC metrics,
highlighting QC’s role in managing complex data interactions within the framework.

• Effects of FHE modifications: Altering the complexity of the encryption method impacts
the setting’s capacity to secure data across various modalities without compromising com-
putational efficiency in both settings. This change leads to a slight decrease in performance
metrics, emphasizing the need for a robust encryption method that balances security with
operational efficiency.

• Combined effects in multimodal settings: The simultaneous removal of QC and FHE
substantially degrades the framework’s functionality, particularly affecting its ability to
perform secure and efficient multimodal data integration in both federated and centralized
systems. This underlines the synergistic importance of both technologies in enhancing data
processing and security.

• Efficacy of the MQMoE approach: The MQMoE approach, specifically designed for mul-
timodal data, exhibits resilience and enhanced capability when equipped with QC and FHE.
It maintains high performance in integrating and processing multimodal data, ensuring ac-
curacy and privacy across both federated and centralized configurations. The removal or
modification of these technologies from this setup elucidates their critical roles in support-
ing advanced multimodal FL and centralized systems.

• Centralized systems outperform federated ones, but trend varies with QC: Notably,
analysis reveals that centralized systems generally outperform federated ones in terms of
computational efficiency and ease of implementing privacy-preserving techniques. How-
ever, federated systems using QML can surpass centralized models under certain condi-
tions. Specifically, with smaller datasets, QML in federated learning performs better due
to its ability to generate richer representations, which is particularly effective for smaller
problems. In federated settings, where data is split across clients, QML’s strengths in han-
dling sparse and fragmented data lead to improved performance for decentralized problems,
making it more effective than centralized models for such datasets.

9
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• FL+FHE vs QFL+FHE: To evaluate the impact of each module on the final performance
of the global model, we conduct experiments on DNA+MRI multimodal datasets for an
ablation study. As Fig. 5 shows, the confusion matrices show that QFL+FHE significantly
improves classification accuracy compared to FL+FHE. For example, in the DNA dataset,
QFL+FHE achieves better diagonal dominance, especially in class 6 with 0.31 accuracy,
compared to 0.34 for FL+FHE. In the MRI dataset, QFL+FHE shows superior performance
for crucial classes such as glioma and pituitary, with values of 0.26 and 0.2, respectively,
compared to 0.17 and 0.03 for FL+FHE. This highlights that QFL+FHE which is FL+FHE
when integrated with QC offers improved classification performance and better separation
of challenging classes, particularly for more difficult or underrepresented categories.

Figure 5: Confusion matrices for DNA and MRI datasets under FL with and without quantum enhancements.
The first two matrices on the left illustrate the classification performance for the DNA dataset using FL+FHE
and QFL+FHE settings, respectively. These matrices show the distribution of true labels versus predicted labels,
with the intensity of the colors indicating the proportion of predictions. The right two matrices focus on the
MRI dataset under the same setting, FL+FHE, and QFL+FHE. Each matrix highlights how effectively each
model categorizes different tumor types, such as glioma, meningioma, notumor, and pituitary, with brighter
colors representing higher frequencies of predictions.

This study clarifies the substantial contributions of QC and homomorphic encryption in managing
multimodal datasets within both federated and centralized settings. Their integration boosts perfor-
mance metrics and upholds privacy standards, making them indispensable for future advancements
in secure and effective learning solutions. This is particularly evident in centralized systems, where
integrating these technologies has demonstrably enhanced concurrent performance and privacy.

6 CONCLUSION

Our study has shown that FL, despite its advantages for collaborative model training across de-
centralized data sources, faces significant challenges in data privacy and computational efficiency.
These challenges are particularly critical when high accuracy and quick processing are required,
such as in real-time applications. The introduction of FHE has proven effective in enhancing data
privacy by allowing computations on encrypted data. However, FHE increases the computational
load significantly, which can reduce the performance and speed of model training. To tackle these
issues, our research introduces an integration of QC with FL and FHE. This new approach has shown
potential in reducing FHE’s performance drawbacks and efficiently managing complex, multimodal
datasets. Our MQMoE framework demonstrates how QC can improve the learning performance
and privacy of federated learning systems. The results from various experimental setups, including
classical and quantum models, indicate that while quantum solutions add complexity, they offer po-
tential computational advantages. These findings suggest that quantum-enhanced federated learning
could be a viable solution for handling large-scale, privacy-sensitive applications. In summary, this
research points out the limitations of current FL systems and proposes a novel solution that uses QC
to enhance security and efficiency. While QC is not without its challenges, it represents a promis-
ing start in the search for more effective FL technologies. This could be particularly valuable in
fields where privacy and quick data processing are essential, marking a significant step forward in
developing advanced FL technologies.
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7 APPENDIX

7.1 MATHEMATICAL ANALYSIS OF ERROR PROPAGATION AND NOISE STABILIZATION IN
FHE-QUANTUM HYBRID MODELS

Noise in FHE-based hybrid architectures arises primarily from errors introduced during the encryp-
tion and decryption processes of FHE. These errors accumulate as computations progress, and their
propagation can significantly impact the fidelity of the results. Mathematically, such errors can be
modeled as deviations in state evolution during computation, represented by transformations in the
Hilbert space. However, the inherent properties of quantum operations, governed by the special uni-
tary group SU(2), impose strict constraints on the behavior of noise. Quantum operations on qubits
correspond to rotations on the Bloch sphere, represented by the unitary matrix U(ϕ, θ, ψ)(Sultanow
et al. (2024)). These operations adhere to the condition U†U = I , ensuring the preservation of the
norm of the quantum state vector. Specifically, for a state vector v⃗, the transformation v⃗′ = Uv⃗
satisfies:

∥v⃗′∥ = ∥Uv⃗∥ = ∥v⃗∥,
where ∥ · ∥ denotes the Euclidean norm. This preservation of norm inherently bounds the prop-
agation of errors and ensures that noise cannot grow arbitrarily during iterative transformations.
The preservation of the quantum state’s magnitude constrains deviations introduced by errors, ef-
fectively limiting their impact. By analyzing rotation-induced discrepancies, particularly azimuthal
(∆az) and elevation (∆el) angular errors, which emerge during qubit transformations. These errors
are of interest as they can counterbalance the accumulation of FHE-induced errors. When the rota-
tion matrix S(ϕ, θ, ψ) is applied iteratively to a state vector v⃗, it introduces these angular deviations
with a predictable periodicity. This behavior is mathematically described as:

∆az(t) = ∆az(v⃗ · SP (t), v⃗err · SP (t)),

∆el(t) = ∆el(v⃗ · SP (t), v⃗err · SP (t)),
where SP (t) = etJ represents the finite rotation matrix generated by J , satisfying:

J =

[
0 −ϕ− ψ θ

ϕ+ ψ 0 0
−θ 0 0

]
.

The eigenvalues of J determine the fundamental frequency of these oscillations, given by:

ω =
2π√

θ2 + (ϕ+ ψ)2
.

In hybrid classical-quantum neural network architectures, the quantum layer plays a role in mit-
igating noise through periodic error cancellation. This can be understood through the following
mechanisms:

• Quantum Noise Confinement: Quantum noise, unlike classical noise, evolves under the
unitary constraints of SU(2). The preservation of the norm ensures that errors remain
bounded, preventing indefinite accumulation. The bounded evolution introduces oscillatory
noise patterns, where errors are periodically ”reset” to smaller magnitudes.

• Error Correction Through Hybridization: The output of the quantum layer, with its
stabilized noise, is passed to the classical neural network. The classical network pro-
cesses the signal while suppressing residual quantum noise, leveraging the strengths of
both paradigms to enhance overall error tolerance(Kundu & Ghosh (2024))
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The noise propagation retains its periodic or quasi-periodic characteristics for general Euler angles
(ϕ, θ, ψ), using infinitesimal rotations SP (∂t), the time evolution of the system can be expressed
as:

SP (t) = exp(tJ), where J is traceless and governs periodicity.

This ensures that error propagation does not lead to unbounded growth, instead oscillating with pe-
riodicity ω. FHE, which is inherently prone to noise accumulation during encrypted computations,
benefits significantly from this framework. By introducing a quantum layer within a hybrid architec-
ture, the controlled periodic evolution of noise prevents uncontrolled error growth. The preservation
of the norm in quantum operations further supports this by limiting the magnitude of deviations.
This periodic ”resetting” mechanism enhances the fidelity of encrypted information, even for deep
computations.

7.2 EFFECTS OF FHE MODIFICATIONS

In terms of machine learning applications, the key parameters influencing performance include the
bit scale, poly modulus degree, and number of extremas, which together deter-
mine how many values can be encrypted and processed within a given system.

Bit
Scale

Polymodulus
Degree

Extrema
Count

Encrypted
Parameter
Count

Time
(s)

40 32768 8 15000 290
30 16384 8 15000 17
20 8192 8 20000 319
20 8192 1 50000 209
30 8192 1 85000 338
40 4096 1 180000 440
40 8192 1 140000 326
30 8192 1 350000 391
20 4096 1 410000 339
20 32768 1 690000 432

Table 5: Impact of encryption parameters (bit scale, poly-
modulus degree, extrema count) on the number of encrypted
values and computational time, highlighting trade-offs be-
tween security, efficiency, and scalability.

The main insight from the above ta-
ble is that reducing parameters like
the bit scale, polynomial modulus de-
gree, or extrema count enables en-
crypting more values but often comes
at the expense of security. For ex-
ample, decreasing the bit scale from
40 to 20 increases the number of en-
cryptable values to 690, 000, but it
also lowers the security level. Sim-
ilarly, a smaller polynomial modu-
lus degree allows for encrypting more
values, but it reduces both the se-
curity level and the depth of opera-
tions. In FHE systems, communica-
tion costs are as critical as computa-
tional efficiency, especially when en-
crypted data is transmitted, such as
in cloud-based machine learning sce-
narios.

Larger ciphertexts, which result from higher encryption parameters or deeper computational mod-
els, require greater bandwidth, increasing communication overhead. Thus, optimizing encryption
parameters like bit scale or polynomial degree is crucial for balancing security, computational effi-
ciency, and communication costs. For example, reducing these parameters can minimize ciphertext
size and improve efficiency while maintaining an acceptable level of security. Applications like
secure machine learning rely on managing computational and communication trade-offs to achieve
robust performance and maintain high levels of security. Additionally, a higher global scale pro-
vides increased precision for more accurate computations but demands more memory. The coef-
ficient modulus size determines the encryption depth, where smaller modulus sizes enable faster
encryption but limit the number of encryptable values and reduce security. Balancing these factors
is critical for practical FHE implementations.

7.3 EFFICACY OF MQMOE APPROACH

The efficacy of the MQMoE approach is demonstrated through its versatile compatibility with di-
verse datasets and modalities, as shown in Table 6. This adaptability highlights its potential to handle
complex multimodal tasks, integrating text, image, audio, and video inputs effectively. A notable
example is the RAVDESS (Ryerson Audio-Visual Database of Emotional Speech and Song) dataset,
which is widely used in emotion recognition research.
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Figure 6: Comparision of matrix size growth and time required for encryption.

Dataset/Modality Text Image Audio Video

CIFAR-10 × ✓ × ×
DNA Sequence ✓ × × ×
MRI Scan × ✓ × ×
PCOS ✓ × × ×
DNA+MRI ✓ ✓ × ×
RAVDESS × ✓ ✓ ✓

Table 6: Framework compatibility with datasets and modal-
ities.

The dataset contains audio-visual
recordings of 24 professional ac-
tors (12 male and 12 female), each
expressing eight emotions: calm,
happy, sad, angry, fearful, surprised,
disgust, and neutral. The data is syn-
chronized, with both speech and song
modalities, making it ideal for multi-
modal emotion recognition tasks that
require the joint analysis of audio
and visual cues. This richness in
data supports the evaluation of the
MQMoE approach in handling real-
world, emotionally nuanced inputs across different modalities.
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