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Abstract

We address the task of point cloud denoising by leverag-001
ing a diffusion-based generative framework augmented with002
adversarial training. While recent diffusion models have003
demonstrated strong capabilities in learning complex data004
distributions, their effectiveness in recovering fine geomet-005
ric details remains limited, especially under severe noise006
conditions. To mitigate this, we propose Adversarial Dif-007
fusion Bridge Model (ADBM), a novel approach for de-008
noising 3D point cloud data by integrating diffusion bridge009
model with adversarial learning. ADBM incorporates a010
lightweight discriminator that guides the denoising process011
through adversarial supervision, encouraging sharper and012
more faithful reconstructions. The denoiser is trained us-013
ing a denoising diffusion objective based on Schrödinger014
bridge, while the discriminator distinguishes between real015
clean point clouds and generated outputs, promoting per-016
ceptual realism. Experiments are conducted on the PU-Net017
and PC-Net datasets, with performance evaluated employ-018
ing the Chamfer Distance and Point-to-Mesh metrics. Qual-019
itative and quantitative results both highlight the effective-020
ness of adversarial supervision in enhancing local detail021
reconstruction, making our approach a promising direction022
for robust point cloud restoration.023

1. Introduction024

Point cloud denoising is critical for enhancing data qual-025
ity in applications where accurate spatial representation di-026
rectly impacts system performance and user accessibility.027
Point clouds acquired via LiDAR, depth sensors, or pho-028
togrammetry frequently contain noise from environmental029
interference, sensor limitations, or motion artifacts. This030
degradation is especially critical in accessibility applica-031
tions such as assistive navigation, where noisy inputs cause032
errors in object detection [2, 11, 16] and scene reconstruc-033
tion [14]. Also, the presence of noise can obscure fine geo-034
metric details and lead to inaccurate shape representations,035

Figure 1. Visual examples of point cloud denoising results using
the proposed method, ADBM. Each row represents a different ob-
ject category. From left to right: noisy input point cloud, denoised
output by ADBM, and clean ground-truth shape. The ADBM ef-
fectively removes noise and restores fine-grained geometric struc-
tures, producing outputs that are closely aligned with the original
clean shapes.

which are especially problematic for applications requiring 036
high-precision measurements. As the reliance on 3D point 037
cloud data also continues to grow across diverse fields such 038
as robotics [5, 12], urban mapping [18, 19], and medical 039
imaging [1, 3], the demand for robust and effective denois- 040
ing techniques becomes increasingly important. 041

Traditional 3D point cloud denoising approaches [7, 10, 042
24, 28] have mainly relied on geometric priors and statis- 043
tical optimization. These approaches demonstrated mea- 044
surable denoising efficacy under controlled conditions, par- 045
ticularly for Gaussian-type noise distributions. However, 046
they consistently struggled with structural oversimplifica- 047
tion in real-world scenarios, where rigid smoothing opera- 048
tors erode fine features like edges and corners, degrading 049
geometric fidelity. Also, non-Gaussian noise from LiDAR 050
or other sensors caused performance collapse, while itera- 051
tive optimization hindered real-world deployment. These 052
limitations have prompted a shift toward learning-based de- 053
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noising approaches to adaptively model complex noise pat-054
terns while maintaining geometric fidelity.055

Recent years have seen generative models, particularly056
diffusion models, emerge as powerful tools for 3D point057
cloud data synthesis and restoration [13, 17, 22]. By iter-058
atively refining their understanding of complex data distri-059
butions, these models achieve high-fidelity reconstruction060
of noisy inputs through the structured denoising process.061
However, traditional diffusion approaches suffer from slow062
sampling speeds, sampling trajectory design inefficiencies,063
and instability when handling complex noise distributions.064
Diffusion bridges [4, 20, 21, 23] address these gaps by pre-065
dicting a direct probabilistic pathway between noisy and066
clean data distributions, through mitigating the constraints067
on the prior distribution. While the direct pathway offers068
improved sampling efficiency and stability, achieving op-069
timal denoising performance, particularly against complex070
and unknown noise patterns, necessitates a more adaptive071
and self-improving mechanism.072

Inspired by the success of adversarial learning in genera-073
tive model [8, 9, 25, 27], we propose Adversarial Diffusion074
Bridge Model (ADBM), which integrates adversarial super-075
vision into the diffusion bridge framework to enhance 3D076
point cloud denoising. Specifically, a lightweight discrimi-077
nator is incorporated into the training pipeline to compel the078
diffusion bridge model to generate outputs that are not only079
distributionally close to clean data but also perceptually re-080
alistic. As shown in Fig. 1, ADBM effectively restores081
clean shapes from severely noisy inputs across various ob-082
ject categories. The adversarial signal complements the083
original diffusion bridge objective, providing an additional084
learning signal that facilitates the recovery of fine geo-085
metric details, particularly under complex or non-Gaussian086
noise conditions. We validate ADBM on PC-Net [26], PU-087
Net [17] 3d object-level point cloud datasets. Experimental088
results demonstrate that ADBM consistently outperforms089
existing state-of-the-art denoising methods in terms of both090
fidelity and generalization.091

2. Related work092

2.1. Traditional denoising methods093

Traditional methods for 3D point cloud denoising mainly094
leverage geometric priors and local statistics to suppress095
noise while preserving structural features. Han et al. [7]096
proposed a position-guided linear filter for 3D point cloud097
denoising that significantly improves computational effi-098
ciency while preserving geometric features. To preserve099
sharp features in noisy point clouds, Zheng et al. [28] pro-100
posed a guided filter extension that assigns multiple nor-101
mals to feature points via k-medial skeleton extraction and102
k-means clustering. To enhance the quality of noisy point103
sets, Yadav et al. [24] introduced a constraint-based de-104

noising method utilizing a vertex-based normal voting ten- 105
sor and binary eigenvalue optimization. Their approach it- 106
eratively filters vertex normals and updates positions with 107
feature-aware constraints, enabling effective noise removal 108
while preserving geometric sharpness. To address the trade- 109
off between noise removal and feature preservation, Liu 110
at al. [10] developed a two-stage point cloud denoising 111
method that decouples normal filtering from position up- 112
dating. Their optimization-based framework maintains the 113
underlying geometric structures, achieving high-quality de- 114
noising without oversmoothing sharp edges. 115

2.2. Deep-learning-based methods 116

To overcome the limitations of traditional denoising ap- 117
proaches, recent research has shifted toward learning-based 118
methods that leverage neural networks to model complex 119
noise patterns in point clouds. PointCleanNet [17] intro- 120
duced supervised frameworks that learns mappings from 121
noisy to clean point clouds using regression-based losses. 122
They employs an acchitecture that explicitly encodes spatial 123
features while incorporating a two-step denoising mecha- 124
nism to refine predictions iteratively. Another notable ap- 125
proach is score-based point cloud denoising [13], which 126
introduces a probabilistic generative framework based on 127
score matching and Langevin dynamics. By learning a 128
score function that estimates the gradient of the data dis- 129
tribution, this method can denoise corrupted point clouds 130
through iterative updates. However, the stochastic nature 131
and high iteration cost of score-based sampling remain key 132
challenges. More recently, the P2P-Bridge [22] frame- 133
work proposes a diffusion-bridge-based model that con- 134
structs a direct probabilistic path between noisy and clean 135
point clouds via a Schrödinger bridge formulation [4]. This 136
method utilizes a learnable forward diffusion and reverse 137
denoising to generate geometrically consistent reconstruc- 138
tions, offering improved sample efficiency and generation 139
quality. 140

While P2P-Brige demonstrates strong performance, it re- 141
mains limited in adaptively learning discriminative features 142
for real-world noise, due to the absence of an explicit adver- 143
sarial signal. In this work, we integrate adversarial learning 144
on the diffusion bridge model based on P2P-Bridge to fur- 145
ther enhance robustness against diverse noise types. 146

2.3. Adversarial training approaches 147

Recent studies have explored adversarial training to im- 148
prove the quality and realism of diffusion-based generative 149
models. Ko et al. [8] introduces dual discriminators in time 150
and frequency domains to enhance speech fidelity in multi- 151
speaker TTS tasks. Zeng et al. [27] leverages semantic pri- 152
ors and adversarial loss for self-supervised shadow removal, 153
enabling structure-preserving generation without paired la- 154
bels. Liu et al. [9] combines adversarial learning approach 155

2



ICCV
#*****

ICCV
#*****

ICCV 2025 Submission #*****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Figure 2. Overview of the proposed adversarial diffusion bridge model (ADBM) training pipeline. The model takes paired clean and noisy
point clouds as input and samples an intermediate latent point cloud. A denoising network predicts the noise from this sample, which is
used to reconstruct a clean version of the input through reverse sampling. The reconstructed output is evaluated by a discriminator trained
to distinguish real clean point clouds from generated ones. The generator is trained with a combination of denoising loss and adversarial
feedback, encouraging both accurate reconstruction and perceptual realism.

with torsion angle priors to ensure biologically valid back-156
bones in protein structure generation. A structure-guided157
discriminator [25] has also been proposed to finetune dif-158
fusion models under layout constraints, improving both se-159
mantic consistency and image quality. These approaches160
demonstrate the effectiveness of adversarial signals in guid-161
ing diffusion models toward more realistic and task-aligned162
outputs.163

3. Methods164

We propose ADBM, an adversarial diffusion bridge model165
based on P2P-Bridge, which formulates point cloud denois-166
ing as a Schrödinger Bridge problem between clean and167
noisy distributions. This approach enables efficient sam-168
pling of intermediate states without numerically solving169
stochastic differential equations, by leveraging a Gaussian170
approximation under a paired data boundary condition. By171
predicting the underlying noise component, the model iter-172
atively refines the input through a learned reverse process.173
To improve the perceptual quality of the denoised outputs,174
we further incorporate an adversarial training objective. A175
lightweight discriminator is trained to distinguish real clean176
point clouds from generated samples, providing an addi-177
tional supervisory signal to guide the denoising network.178
Fig. 2 presents the overall framework.179

3.1. Diffusion bridge training 180

We formulate point cloud denoising as a Schrödinger 181
Bridge problem, which seeks a stochastic process that in- 182
terpolates between two marginal distributions: the clean 183
data distribution pdata(x0) and the noisy prior distribution 184
pprior(xT ). The goal is to find a path measure p∗(x0:T ) that 185
minimizes the Kullback-Leibler divergence from a refer- 186
ence process pref(x0:T ) while satisfying the boundary con- 187
ditions: 188

p∗(x0) = pdata(x0), p∗(xT ) = pprior(xT ). (1) 189

Following the formulation proposed in P2P-Bridge, the op- 190
timal diffusion path is modeled by a pair of forward and 191
backward stochastic differential equations (SDE), given re- 192
spectively by: 193

dxt =
[
f(xt, t) + g2(t)∇ logψt(xt)

]
dt+ g(t)dwt,

dxt =
[
f(xt, t)− g2(t)∇ log ψ̂t(xt)

]
dt+ g(t)dw̄t,

(2) 194

where f(xt, t) is a vector-valued drift function, g(t) is a 195
scalar-valued diffusion coefficient controlling the noise and 196
wt, w̄t are independent standard Wiener processes. The ψt 197
and ψ̂t are potential functions associated with the forward, 198
backward processes and these two processes are coupled as 199
follows: 200

ψ0 ψ̂0 = pdata, ψT ψ̂T = pprior, pt = ψt ψ̂t. (3) 201
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This structure ensures that the marginal density pt interpo-202
lates the clean data distribution at t = 0 and the noisy prior203
at t = T , forming a time-consistent probabilistic bridge be-204
tween the two distributions.205

However directly solving the system of Eq. 2 is not prac-206
ticable for high-dimensional data. To address this, recent207
works approximates this bridge under a paired data assump-208
tion p(x0, xT ) = pdata(x0) pprior(xT | x0), and assumes lin-209
ear drift with zero external force, i.e., f = 0, yielding a210
tractable Gaussian posterior. Under the assumption of a lin-211
ear drift f = 0 and a known diffusion schedule g(t), the212
posterior of the latent process xt conditioned on the end-213
points x0 and xT can be written in closed form as a Gaus-214
sian distribution:215

q(xt | x0, xT ) = N (µt,Σt), (4)216

where the mean µt and the covariance Σt are given by:217

µt =
σ̄2
t

σ̄2
t + σ2

t

x0 +
σ2
t

σ̄2
t + σ2

t

xT , Σt =
σ2
t σ̄

2
t

σ̄2
t + σ2

t

I, (5)218

where σ2
t =

∫ t

0
g2(τ) dτ and σ̄2

t =
∫ 1

t
g2(τ) dτ repre-219

sent the accumulated forward and backward variances up220
to time t, respectively. This analytic form enables effi-221
cient sampling of intermediate states xt without requiring222
numerical integration of the SDE. During training, we sam-223
ple xt ∼ q(xt | x0, xT ), and define the target noise as the224
residual between the noisy sample and the clean sample as225
follows:226

ϵ =
xt − x0
σt

. (6)227

The denoiser network ϵθ(xt, t) is trained to predict this228
noise using MSE loss:229

LMSE = ∥ϵθ(xt, t)− ϵ∥2 . (7)230

This training objective is conceptually aligned with denois-231
ing diffusion probabilistic models, but is distinct in that the232
noise is conditioned on paired clean and noisy samples, fol-233
lowing the diffusion bridge model.234

3.2. Adversarial training method235

While the diffusion bridge framework optimizes a noise236
prediction loss based on the Schrödinger Bridge formu-237
lation, we further enhance the denoising performance by238
incorporating an adversarial learning objective. Inspired239
by GAN-based training schemes [6], we introduce a dis-240
criminator network that encourages the generation of sam-241
ples which are indistinguishable from clean point clouds.242
Specifically, let xpred denote the model-generated clean243
sample obtained via reverse diffusion, and let xgt denote the244
corresponding ground truth clean point cloud. We define a245
discriminator D(·) that learns to assign high scores to real246

samples and low scores to generated samples. During each 247
training step, we first sample xt ∼ q(xt | x0, xT ) and use 248

the denoising network ϵθ to estimate xpred
0 . We then obtain 249

xpred via reverse sampling. The discriminator is trained to 250
distinguish real clean point clouds from those synthesized 251
by the denoising model. Following the typical GAN formu- 252
lation, the discriminator loss is defined as: 253

254

LD = −Exgt∼pdata [logD(xgt)] 255

− Expred∼pθ
[log (1−D(xpred))] . (8) 256

The generator (i.e., the diffusion bridge model) is trained 257
not only to minimize the original noise prediction loss 258
LMSE, but also to fool the discriminator by maximizing its 259
predicted score. This adversarial objective for the generator 260
is defined as: 261

Ladv = −Expred∼pθ
[logD(xpred)] , (9) 262

which encourages the generator to maximize the discrimi- 263
nator’s belief that xpred is a real sample. The adversarial sig- 264
nal thus acts as an additional supervisory signal, particularly 265
effective in recovering complex geometric features that are 266
difficult to optimize solely through point-wise regression. 267
To balance the reconstruction and adversarial objectives, we 268
define the final generator loss as a weighted sum: 269

LG = LMSE + λadvLadv, (10) 270

where λadv controls the influence of the adversarial signal. 271
This adversarial extension encourages the generator to pro- 272
duce denoised point clouds that not only minimize numeri- 273
cal reconstruction error but also align with the distribution 274
of real clean point clouds. 275

The procedure of adversarial diffusion bridge training, 276
including noise prediction, adversarial loss computation, 277
and alternating updates of the generator and discriminator 278
is summarized in Algorithm 1. In the training procedure, 279
we employ λadv to 0.7 to balance the MSE and adversarial 280
objectives. 281

3.3. Implementation 282

In this work, we adopt the point cloud denoiser network 283
proposed in P2P-Bridge [22] as our backbone denoiser ar- 284
chitecture. The model is designed to predict the drift vec- 285
tor field between clean and noisy point clouds, following 286
the Schrödinger Bridge formulation. The denoiser network 287
follows the encoder-decoder structure of PointNet++ [15], 288
consisting of multi-scale set abstraction modules and fea- 289
ture propagation modules. 290

To facilitate adversarial learning, we introduce a 291
lightweight discriminator network, which is designed to dis- 292
tinguish between ground-truth clean point clouds and de- 293
noised samples generated by the diffusion bridge model. 294
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Algorithm 1: Training of Adversarial Diffusion
Bridge Model

Input: Noise schedule {αt}Tt=0, {σt}Tt=0;
Batch size B;
Weight λadv for adversarial loss;
Output: Trained denoising network parameters θ
Initialize network parameters θ and discriminator D;
while not converged do

Sample minibatch {(xi0, xiT )}Bi=1 from
pdata(x0) pprior(xT | x0);

Sample t ∼ U [0, 1], compute µt,Σt from
Eq. (5);

Sample xit ∼ N (µt,Σt) for each pair (xi0, x
i
T );

Compute target noise: ϵi = xi
t−xi

0

σt
;

Predict noise: ϵ̂iθ = ϵθ(x
i
t, t);

Compute LMSE = 1
B

∑B
i=1 ∥ϵ̂iθ − ϵi∥2;

Perform reverse sampling to obtain predicted
clean sample xipred;

Compute adversarial loss
Ladv = − 1

B

∑B
i=1 logD(xipred);

Update generator parameters θ using:
LG = LMSE + λadvLadv;

Freeze θ, unfreeze D;
Compute discriminator loss:

LD =

− 1
B

∑B
i=1

[
logD(xi0) + log(1−D(xipred))

]
;

Update D with gradient of LD;
return θ

The architecture of the discriminator first applies a point-295
wise encoder composed of two linear layers with ReLU ac-296
tivation and layer normalization, transforming each point297
into a latent feature. The resulting latent features are then298
aggregated via average pooling across the point dimension,299
yielding a global feature vector for each sample. This global300
representation is further processed by a two-layer MLP to301
produce a scalar output indicating the realism of the input.302

4. Experiments303

4.1. Datasets304

We evaluate our method on two benchmark datasets: PU-305
Net [26] and PC-Net [17]. The PU-Net dataset contains306
40 object categories for training and 20 categories for test-307
ing. For each object, ground truth point clouds are provided308
at three resolutions: 10000, 30000, and 50000 points. To309
standardize the training input size, we apply farthest point310
sampling [15] to extract 2048 points from each noisy input,311
regardless of its original resolution. This allows the model312
to be trained on a fixed-size representation while leverag-313
ing geometric information from diverse scales. The PC-Net314

dataset is used solely for testing to assess the generalization 315
ability of the model. It consists of 10 object categories, each 316
provided at three resolutions, totaling 30 test samples. Dur- 317
ing evaluation, the model outputs a 2048-point cloud, which 318
is then compared to the ground truth using alignment tech- 319
niques and point-wise distance metrics. This setup allows 320
us to evaluate denoising performance of the model on both 321
seen and unseen object distributions across varying resolu- 322
tions. 323

4.2. Evaluation measure 324

To quantitatively assess the quality of denoised point 325
clouds, we adopt two widely used metrics: Chamfer Dis- 326
tance (CD) and Point-to-Mesh Distance (P2M). The CD 327
evaluates the average bidirectional proximity between pre- 328
dicted and ground-truth point sets. It penalizes both miss- 329
ing and redundant points, promoting accurate reconstruc- 330
tion and uniform coverage. Formally, it is defined as: 331

332

CD(P̂,P) =
1

2n

n∑
i=1

∥x̂i − NN(x̂i,P)∥22 333

+
1

2m

m∑
j=1

∥∥∥xj − NN(xj , P̂)
∥∥∥2
2
, (11) 334

where P̂ and P denote the predicted and reference point 335
clouds, and NN(·, ·) returns the nearest neighbor. To eval- 336
uate the geometric consistency with the underlying surface, 337
we also compute the P2M distance. This metric compares 338
points to a mesh surface, taking into account both the dis- 339
tance from points to the mesh and vice versa. It is defined 340
as: 341

342

P2M(P̂,M) =
1

2n

n∑
i=1

min
f∈M

d(x̂i, f) 343

+
1

2|M|
∑
f∈M

min
x̂i∈P̂

d(x̂i, f). (12) 344

Here, M denotes the ground-truth mesh, and d(x, f) mea- 345
sures the shortest distance between a point and a mesh face. 346
The first term captures how well the predicted points lie on 347
the mesh surface, while the second encourages surface cov- 348
erage. All point clouds and meshes are normalized to the 349
unit sphere before evaluation to ensure scale invariance. 350

4.3. Training details 351

Training is conducted on a single NVIDIA H100 GPU 352
80GB with an Intel(R) Xeon(R) Platinum 8480+ CPU, run- 353
ning Ubuntu 22.04.2 LTS. The model is trained for a total of 354
650000 iterations with a batch size of 32. Automatic Mixed 355
Precision is enabled for memory and computing efficiency, 356
and gradient clipping with a maximum norm of 1.0 is ap- 357
plied to stabilize training. Both the denoiser network and 358
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Table 1. Comparison of denoising performance (CD↓ / P2M↓) under different Gaussian noise levels and point counts.

Dataset

Number of points 10·103 Points 50·103 Points

Gaussian noise level 1% 2% 3% 1% 2% 3%

Method / Metric CD P2M CD P2M CD P2M CD P2M CD P2M CD P2M

PU-Net [26]

PC-Net [17] 3.52 1.15 7.47 3.97 13.1 8.74 1.05 0.35 1.45 0.61 2.29 1.29

ScoreDenoise [13] 2.52 0.46 3.69 1.07 4.71 1.94 0.72 0.15 1.29 0.57 1.93 1.04

P2P-Bridge [22] 2.45 0.39 3.27 0.86 4.07 1.47 0.60 0.09 0.95 0.35 1.63 0.90

ADBM(Ours) 2.18 0.34 3.15 0.77 3.98 1.40 0.57 0.08 0.90 0.32 1.61 0.88

PC-Net [17]

PC-Net [17] 3.85 1.22 6.04 1.45 5.87 1.29 0.29 0.11 0.51 0.25 3.25 1.08

ScoreDenoise [13] 3.37 0.95 4.52 1.16 6.78 1.94 1.07 0.17 1.66 0.35 2.49 0.66

P2P-Bridge [22] 2.87 0.63 4.52 0.92 5.65 1.34 0.92 0.12 1.39 0.26 2.17 0.51

ADBM(Ours) 2.82 0.59 4.43 0.86 5.57 1.27 0.90 0.11 1.37 0.25 2.14 0.49

the discriminator of ADBM are trained using the AdamW359
optimizer. The denoiser network training uses a constant360
learning rate of 0.0003, while the discriminator is trained361
with a learning rate of 0.0001. The exponential moving av-362
erage of the denoiser network parameters is maintained with363
a decay factor of 0.999. We use 10 reverse diffusion steps364
during both adversarial training and evaluation to generate365
denoised point clouds.366

4.4. Experimental results367

We evaluate our method, ADBM on the PU-Net and PC-368
Net datasets under varying Gaussian noise levels and point369
cloud resolutions. Tab. 1 presents the quantitative compar-370
ison of denoising performance with Chamfer Distance and371
Point-to-Mesh distance, where lower values indicate better372
denoising performance. On the PU-Net dataset with 10k373
input points, ADBM consistently outperforms all baselines374
across all noise levels. At 1% noise, ADBM records a CD of375
2.18 and a P2M of 0.34, outperforming P2P-Bridge which376
achieves 2.45 for CD and 0.39 for P2M. When the noise377
level increases to 2%, ADBM achieves 3.15 for CD and378
0.77 for P2M, showing improvements over P2P-Bridge’s379
3.27 and 0.86, respectively. At the highest noise level380
of 3%, ADBM achieves 3.98 for CD and 1.40 for P2M,381
compared to 4.07 and 1.47 by P2P-Bridge. For the high-382
resolution setting with 50k points, ADBM continues to out-383
perform the baselines. At 1% noise, ADBM achieves a CD384
of 0.57 and P2M of 0.08, showing improvements over P2P-385
Bridge’s values of 0.60 and 0.09. At 2% noise, the CD and386
P2M values achieved by ADBM are 0.90 and 0.32, respec-387
tively, whereas P2P-Bridge achieves 0.95 and 0.35. At 3%388
noise, ADBM yields 1.61 for CD and 0.88 for P2M, outper-389
forming P2P-Bridge’s values of 1.63 and 0.90.390

On the PC-Net dataset, which is used to evaluate gener-391
alization to unseen shapes, our method, ADBM also shows392

robust performance. At 10k input points and 1% noise, 393
ADBM records a CD of 2.82 and a P2M of 0.59, slightly im- 394
proving upon P2P-Bridge’s results of 2.87 and 0.63. For 2% 395
noise, ADBM achieves 4.43 for CD and 0.86 for P2M, again 396
outperforming P2P-Bridge which reports 4.52 and 0.92. At 397
3% noise, ADBM shows a clear advantage with a CD of 398
5.57 and a P2M of 1.27, while P2P-Bridge reports 5.65 and 399
1.34. For the 50k point resolution, the same trend holds. 400
At 1% noise, ADBM achieves a CD of 0.90 and a P2M of 401
0.11, whereas P2P-Bridge reports 0.92 and 0.12. With 2% 402
noise, ADBM records 1.37 for CD and 0.25 for P2M, im- 403
proving upon P2P-Bridge’s 1.40 and 0.27. At 3% noise, 404
ADBM achieves 2.14 for CD and 0.49 for P2M, while P2P- 405
Bridge results in 2.17 and 0.51. These comprehensive re- 406
sults demonstrate that our proposed method not only consis- 407
tently outperforms existing baselines across all noise levels 408
and resolutions, but also generalizes effectively to unseen 409
object categories, yielding the best performance in terms of 410
both point-wise accuracy and surface-level fidelity. 411

To qualitatively evaluate the denoising performance, 412
Fig. 3 presents visual comparisons across various object cat- 413
egories. The first row shows the ground-truth clean point 414
clouds, uniformly sampled with 10k points per object. To 415
generate the noisy inputs shown in the second row, Gaussian 416
noise with a standard deviation of 1% unit sphere radius is 417
added to the clean shapes. These noisy point clouds ex- 418
hibit substantial structural distortion and irregular point dis- 419
tribution, particularly around thin or intricate regions such 420
as the camel’s legs, the chair’s backrest, and the curvature 421
of the duck shape. The third row shows the outputs pro- 422
duced by the P2P-Bridge baseline without adversarial learn- 423
ing. While the overall shapes are recovered to some extent, 424
the results often suffer from blurring or loss of fine details. 425
For instance, the camel’s hump and legs appear less dis- 426
tinct, and the reconstructed chair structure lacks geomet- 427
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Figure 3. Qualitative comparison of point cloud denoising results. The first row shows the clean ground truth point clouds, each containing
10k points. The second row presents the noisy inputs generated by adding Gaussian noise with a standard deviation of 1% of the unit
sphere. The third and fourth rows show the denoised results with and without and our proposed method, respectively.

ric sharpness and completeness. In comparison, the pro-428
posed method in fourth row, restores both global structure429
and fine-grained geometric details. The denoised results ex-430
hibit more faithful alignment with the ground-truth, better431
preserving object-specific characteristics and surface conti-432
nuity. Moreover, the point distribution appears more uni-433
form and natural, indicating improved surface coverage and434
sampling quality. These qualitative observations are consis-435
tent with the quantitative results, highlighting the superior436
denoising capability and structural fidelity of our method437
across diverse shapes.438

Fig. 4 shows per-point error heatmaps between the439
denoised outputs and the ground truth shapes, where the440
color represents the Euclidean distance to the correspond-441
ing ground truth point. All samples consist of 10k points,442
and the input noise follows a Gaussian distribution with a443
standard deviation of 1% of the unit sphere. Overall, our444
method achieves low reconstruction errors across most sur-445
face regions, especially in smooth and planar areas such as446
the camel’s torso or the cow’s flank. These regions are pre-447
dominantly rendered in blue, indicating accurate point-wise448
recovery. However, increased reconstruction errors are ob-449
served in geometrically complex areas, including thin struc-450
tures and high-curvature boundaries such as the camel’s451

legs, the edges of the chair’s backrest, and the tail of the 452
horse. These failure cases typically arise due to the local 453
sparsity or overlapping noise in the input, which can dis- 454
tort fine geometric cues during denoising. To mitigate these 455
localized failures, future work may focus on stabilizing the 456
adversarial training process and improving the loss function 457
to better capture fine-grained geometric discrepancies. In 458
particular, incorporating region-aware weighting schemes 459
or multi-scale structural constraints into the training objec- 460
tive could enhance the model’s sensitivity to delicate fea- 461
tures. These improvements may lead to more faithful re- 462
constructions in challenging regions. 463

5. Conclusion 464

In this paper, we proposed an adversarial diffusion bridge 465
training method for 3D point cloud denoising. Build- 466
ing on the Schrödinger bridge formulation, our method 467
models the interpolation between noisy and clean point 468
clouds, enabling effective restoration of fine-grained geom- 469
etry. To further improve the perceptual quality and fidelity 470
of denoised outputs, we introduced an adversarial learn- 471
ing scheme, where a lightweight discriminator is trained 472
to guide the generator toward producing samples indis- 473
tinguishable from real clean point clouds. The proposed 474
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Figure 4. Visualization of per-point Euclidean errors between the denoised outputs and ground truth point clouds. All samples contain
10k points, and Gaussian noise with a standard deviation of 1% of the unit sphere is added to the inputs. Blue regions indicate low
reconstruction errors, while red regions highlight areas with higher deviations

method achieves superior reconstruction fidelity, showing475
strong generalization performance across diverse object cat-476
egories. However, as shown in Fig. 4, denoising perfor-477
mance in highly corrupted or geometrically complex re-478
gions remains challenging. These cases highlight the need479
for further refinement of the adversarial component. In fu-480
ture work, we aim to explore improved training stability481
through adversarial loss regularization and conduct system-482
atic studies on how varying the weighting parameter (e.g.,483
λadv) influences denoising quality and convergence behav-484
ior.485
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