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Abstract

Holistic surgical scene segmentation in robot-assisted surgery (RAS) enables surgi-1

cal residents to identify various anatomical tissues, articulated tools, and critical2

structures, such as veins and vessels. Given the firm intraoperative time constraints,3

it is challenging for surgeons to provide detailed real-time explanations of the4

operative field for trainees. This challenge is compounded by the scarcity of expert5

surgeons relative to trainees, making the unambiguous delineation of go- and no-go6

zones inconvenient. Therefore, high-performance semantic segmentation models7

offer a solution by providing clear postoperative analyses of surgical procedures.8

However, recent advanced segmentation models rely on user-generated prompts,9

rendering them impractical for lengthy surgical videos that commonly exceed an10

hour. To address this challenge, we introduce Surg-SegFormer, a novel prompt-free11

model that outperforms current state-of-the-art techniques. Surg-SegFormer at-12

tained a mean Intersection over Union (mIoU) of 0.80 on the EndoVis2018 dataset13

and 0.54 on the EndoVis2017 dataset. By providing robust and automated surgical14

scene comprehension, this model significantly reduces the tutoring burden on ex-15

pert surgeons, empowering residents to independently and effectively understand16

complex surgical environments.17

1 Introduction18

Accurate decision-making in robot-assisted surgery (RAS) requires a thorough understanding using19

computer vision models (1). These models need to identify and segment anatomical structures20

and articulated tools to interpret and understand the relation between objects within the scene (2).21

Nevertheless, accurate and comprehensive surgical scene segmentation remains a significant challenge22

due to the complexity of anatomical structures and the dynamic nature of the surgical environment.23

Entry-level surgeons can benefit from using these models to convert surgical scenes into self-24

explanatory videos, as they are not accustomed to how these structures appear in live surgery25

settings (3). Simply, the output video highlights critical zones and detects various articulated tools26

within the frame. Moreover, such automation frees expert surgeons from suspending the operation to27

answer the trainees’ questions (4). Once objects within the surgical scene are accurately identified,28

understanding the procedure becomes significantly easier.29

Cutting-edge segmentation models, e.g., AdaptiveSAM (5), exhibit excellent performance; however,30

their dependence on manual prompts restricts their autonomy and scalability in real surgical practice.31

This limitation is particularly significant in post-operative analysis, as surgical videos often exceed32

three hours, making manual prompting infeasible. In comparison, models like ISINet (6), SegNet33

(7), and Ternaus (8) are more efficient and better suited for large-scale automated surgical analysis.34

Despite their autonomy, the promptable model still outperforms.35
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Figure 1: Surg-SegFormer Architecture

To overcome these limitations, we extend SegFormer (9) by developing a dual-instance pipeline.36

The first instance employs the SegFormer B2 variant, fine-tuned exclusively for anatomical structure37

segmentation—referred to as SegAnatomy. The second instance uses B5 variant encoder and38

incorporates a custom-designed, lightweight decoder optimized for segmenting articulated surgical39

tools, which we refer to as SegTool. In the end, the outputs of the two instances are fused using a40

priority-weighted conditional fusion strategy, offering comprehensive and consistent segmentation of41

surgical frames. We call this complete pipeline Surg-SegFormer.42

This paper has three main contributions:43

1. Dual-Model Segmentation Framework: A framework for robotic-assisted surgery (RAS)44

that uses two distinct models specialized in segmenting anatomical structures and surgical45

instruments.46

2. Priority-Weighted Conditional Fusion Strategy: An advanced fusion strategy that combines47

both model outputs, prioritizing valuable segmentation cues to enhance overall accuracy48

and robustness.49

3. Comprehensive Evaluation on Benchmark Datasets: Validation of our framework on two50

benchmark datasets, demonstrating superior segmentation performance compared to current51

state-of-the-art (SOTA) methods.52

2 Methods53

2.1 Model Overview54

We propose Surg-SegFormer, a dual-model framework that leverages two SegFormer instances and55

fuses their outputs. Figure 1 shows the model’s architecture and the connection between the two56

instances. The first instance, SegAnatomy, is fine-tuned specifically on anatomical structures. The57

second instance, SegTool, uses a SegFormer encoder fine-tuned for tool segmentation and replaces58

the original decoder with a lightweight design that incorporates skip connections. This modification59

enhances the retention of spatial information—especially for smaller objects like surgical tool tips,60

which are prone to information loss during down-sampling. We introduce a priority-weighted61

conditional fusion strategy to merge the outputs from both instances, ensuring that critical features62

are preserved in the final segmentation. We evaluate performance using mean intersection over union63

(IoU) and Dice scores, demonstrating the model’s efficacy in both anatomical and tool segmentation64

tasks.65

As surgical data usually suffers from class imbalance, we implemented a combined loss function66

(Eq. 6) that integrates Tversky loss (Eq. 4) with cross-entropy loss (Eq. 5). We applied geometric67

augmentations—flips, cropping, and rotations—that preserved color distribution and maintained68

segmentation precision.69

We set α = 0.7 and β = 0.3 to penalize false negatives, enhancing the segmentation of delicate70

structures such as suturing needles and instrument shafts. This configuration enabled consistent71

improvement in Dice and mIoU scores while avoiding overfitting.72
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Equation 1: Tversky Index formula (14).73

Tversky Index =
TP

TP + α · FP + β · FN
(1)

Equation 2: Cross Entropy formula (15).74

Cross Entropy = −
N∑
i=1

yi log(ŷi) (2)

Equation 3: Combined loss.75

Combined_Loss = α · Tversky_Loss + (1− α) · CE_Loss (3)

3 Results and Discussion76

We thoroughly assessed Surg-SegFormer on two publicly available benchmarks for robot-assisted77

surgery—EndoVis2017 (17) and EndoVis2018 (18) —and compared it with SOTA models. The78

model demonstrated notable performance on classes with subtle structures. EndoVis2017 focuses79

on segmenting seven instruments: Bipolar Forceps, Prograsp Forceps, Large Needle Driver, Vessel80

Sealer, Grasping Retractor, Monopolar Curved Scissors, and Ultrasound Probe. On the other hand,81

EndoVis2018 is divided into two tasks: Task 1 (Holistic scene segmentation) originally contains 1282

labels spanning anatomy and instrument parts; following common practice, we merge the three fine-83

grained part labels—instrument shaft, wrist, and clasper—into a single Robotic Instrument Part class,84

yielding seven labels for per-class analysis: Background Tissue, RI, Kidney Parenchyma, Covered85

Kidney, Small Intestine (SI), Suturing Needle (SN), and UP. Task 2 (instrument-type segmentation)86

likewise comprises seven categories—BF, PF, LND, MCS, UP, Suction Instrument (SI), and Clip87

Applier (CA). Across both datasets and tasks, Surg-SegFormer achieved SOTA performance, with88

particular increase over SOTA in SN and UP classes. The per-class performance of Surg-SegFormer89

on EndoVis 2017 in table 2 and for EndoVis 2018 in table 3 in the appendix section.90

Figure 2: Models’ Performance on Different Segmentation Tasks

3.1 Performance Analysis91

Table 1 reveals that several baseline architectures excel on a single benchmark yet underperform92

on the other. S3Net and AdaptiveSAM, for instance, lead the instrument–only EndoVis2017 task93

(mIoU 0.72) but fall to 0.74 and 0.65, respectively, when anatomy and part labels are introduced94

in EndoVis2018. A complementary pattern appears for MATIS, which ranks near the top for95

EndoVis2018 instrument–type segmentation (0.77 mIoU) yet drops to 0.63 on EndoVis2017.96
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Table 1: Models’ Overall Performance

Model Parts 2018 Type 2018 Type 2017
mIoU Dice mIoU Dice mIoU Dice

UNet* 0.53 0.58 0.57 0.60 0.49 0.51
SurgicalSAM (16) - - 0.80 - 0.70 -
TernausNet (16) - - 0.40 - 0.13 -
ISI-Net (16) - - 0.71 - 0.52 -
S3Net (16) - - 0.74 - 0.72 -
MATIS (16) - - 0.77 - 0.63 -
MedT (5) 0.64 0.68 - - 0.29 0.31
AdaptiveSAM (5) 0.65 0.69 - - 0.72 0.74
SAM-ZS (5) 0.06 0.10 - - 0.03 0.06
SegFormer* (Single Model) 0.57 0.59 0.46 0.47 0.41 0.42
Surg-SegFormer* 0.80 0.89 0.64 0.66 0.54 0.56

Parts 2018: EndoVis2018, Type 2018: EndoVis2018 dataset tools type only. Type 2017: EndoVis2017 dataset
tools type only. The * means that we trained the models from our side and reported the results. The rest of the

results were taken from the models’ papers.

Surg-SegFormer presents a more balanced profile. Although its 0.54 mIoU on EndoVis2017 trails97

the prompt-tuned leaders by roughly eighteen percentage points, it remains well ahead of classical98

U-Net (0.49) and the re-trained SegFormer backbone (0.41). The same architecture rises to the top of99

EndoVis2018 Task 1 with 0.80 mIoU and 0.89 Dice, outperforming the strongest transformer-based100

baseline, MedT, by sixteen percentage points. Qualitative examples in Fig. 2 confirm the numerical101

trend: in scenes with overlapping tools and ambiguous tissues, baseline outputs either smooth away102

fine structures or miss entire parts, whereas Surg-SegFormer retains complete masks and sharp103

boundaries.104

The consistency across the two datasets is attributed to three design elements: a dual-branch encoder105

that specialises separately in tissue and metallic cues; a priority-weighted fusion rule that reduces false106

negatives in crowded frames; and a hybrid Tversky–cross-entropy loss that counteracts background107

dominance while preserving sub-pixel detail.108

4 CONCLUSION109

In this work, we presented Surg-SegFormer, a unified and lightweight transformer-based architecture110

tailored for surgical scene understanding. Unlike many existing models that specialize in either111

anatomical or tool segmentation, Surg-SegFormer addresses both tasks simultaneously, demonstrat-112

ing strong performance in multi-class and single-class surgical segmentation. Through extensive113

experiments on the EndoVis2017 and EndoVis2018 datasets, our model consistently outperformed114

classical and recent SoTA approaches, including prompt-based methods, particularly in anatomically115

complex or visually challenging scenes. This suggests that Surg-SegFormer can serve as a robust116

backbone for real-time, intraoperative surgical assistance systems, providing precise segmentation of117

both instruments and critical anatomy.118

The high segmentation accuracy—achieved without reliance on handcrafted prompts, large models, or119

heavy post-processing—emphasizes the efficiency and scalability of our approach. The incorporation120

of a hybrid loss function (Tversky + Cross-Entropy) proved particularly effective in handling class121

imbalance, contributing to more stable training and better performance across underrepresented122

categories.123
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.1 Experimental Setup172

In this section we present the full training pipeline, hyperparameters, and the specifications of the173

used GPU. In this work we two GPUs were used to evaluate the model’s performance: a local174

NVIDIA RTX4090, 24GB and a cloud-based NVIDIA V100-32G. Larger models were trained on175

the cloud to reduce runtimes. The code was implemented in PyTorch, and hyperparameters were176

selected empirically. We used the Adam optimizer with weight decay of 10−4 and a learning rate of177

5× 10−6, enabling the model to learn fine details while avoiding early plateaus. A cyclic learning178

5



rate scheduler and a batch size of 4 were employed to help the model escape local minima across 100179

training epochs.180

To address class imbalance between extensive background regions and smaller, complex instrument181

areas, we implemented a combined loss function (Eq. 6) that integrates Tversky loss (Eq. 4) with182

cross-entropy loss (Eq. 5). We applied geometric augmentations—flips, cropping, and rotations—that183

preserved color distribution and maintained segmentation precision.184

We set α = 0.7 and β = 0.3 to penalize false negatives, enhancing the segmentation of delicate185

structures such as suturing needles and instrument shafts. This configuration enabled consistent186

improvement in Dice and mIoU scores while avoiding overfitting.187

Equation 1: Tversky Index formula (14).188

Tversky Index =
TP

TP + α · FP + β · FN
(4)

Equation 2: Cross Entropy formula (15).189

Cross Entropy = −
N∑
i=1

yi log(ŷi) (5)

Equation 3: Combined loss.190

Combined_Loss = α · Tversky_Loss + (1− α) · CE_Loss (6)

A Detailed Results191

In this section we show more detailed results of Surg-SegFormer against SOTA models.192

A.1 EndoVis2017193

On the seven-instrument EndoVis2017 benchmark (see Table 1), Surg-SegFormer achieved an overall194

mIoU of 0.54 and Dice of 0.56. Recent prompt-driven models such as AdaptiveSAM reported195

higher mIoU (0.72); Surg-SegFormer clearly outperforms the canonical U-Net (0.49/0.51), the re-196

trained SegFormer backbone (0.41/0.42), and the task-specific ISI-Net (0.52). Class-wise inspection197

underscores the model’s strength on fine tools. Results in table 2 shows the model’s best IoUs on198

three classes: Ultrasound Probe (0.87) and Monopolar Curved Scissors (0.69). Lower scores for199

Bipolar Forceps (0.24) and Prograsp Forceps (0.16) likely stem from limited visual diversity and200

inter-class ambiguity among graspers, yet overall the method delivers balanced segmentation without201

task-specific tuning.202

Table 2: mIoU Values on EndoVis2017 - Tools Type

Model BF PF LND VS GR MCS UP
UNet* 0.27 0.20 0.39 0.35 0.41 0.65 0.65
TernausNet (16) 0.13 0.12 0.21 0.06 0.01 0.01 0.17
ISI-Net (16) 0.39 0.39 0.50 0.27 0.02 0.29 0.13
S3Net (16) 0.75 0.54 0.62 0.36 0.27 0.43 0.28
MATIS (16) 0.66 0.51 0.52 0.33 0.16 0.19 0.24
SegFormer* 0.00 0.0 0.003 0.45 0.47 0.49 0.97
Surg-SegFormer* 0.24 0.16 0.47 0.45 0.47 0.69 0.87

BF: Bipolar Forceps, PF: Prograsp Forceps, LND: Large Needle Driver, VS: Vessel Sealer, GR: Grasping
Retractor, MCS: Monopolar Curved Scissors, UP: Ultrasound Probe

For the instrument-type task Table 3 illustrates the strong performance of Surg-SegFormer, which203

remains among the top three in five of seven tools, leading on Suction Instrument (0.83) and nearly204

matching the best on Clip Applier (0.93). Lower IoUs for Prograsp Forceps (0.13) and Large Needle205

Driver (0.09) echo trends already seen in EndoVis2017 and can be traced to visually similar end-206

effectors and a paucity of examples in the training split. These fine-grained insights confirm that207

Surg-SegFormer’s hybrid scale-aware design excels when subtle structural cues differentiate classes,208

while leaving room for future work on grasper-type instruments with high intra-class variance.209
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Table 3: mIoU Values on EndoVis2018 - Tools Type

Model BF PF LND MCS UP SI CA
UNet* 0.64 0.12 0.12 0.66 0.54 0.73 0.8
TernausNet (8) 0.44 0.05 0.00 0.50 0.00 0.00 0.00
ISI-Net (16) 0.74 0.49 0.31 0.88 0.02 0.38 0.00
S3Net (16) 0.77 0.50 0.20 0.92 0.07 0.51 0.00
MATIS (16) 0.83 0.39 0.40 0.93 0.16 0.64 0.04
SegFormer* 0.04 0.05 0.08 0.20 0.76 0.80 0.95
Surg-SegFormer* 0.67 0.13 0.086 0.82 0.70 0.83 0.93

BF: Bipolar Forceps, PF: Prograsp Forceps, LND: Large Needle Driver, MCS: Monopolar Curved Scissors, UP:
Ultrasound Probe, SI: Suction Instrument, CA: Clip Applier.

B Ablation Study210

Our ablation study was conducted to evaluate the impact of various configurations on the performance211

of the Surg-SegFormer model. The model went through different configurations for different aspects,212

such as loss functions, and the data fusion operation of the dual model output.213

Loss Functions We chose the model’s loss function through examining various single-loss-function214

methodologies versus composite loss methodologies. The combined loss function in our model215

integrates Tversky Loss and Cross-Entropy Loss, addressing the inherent class imbalance present in216

surgical datasets dominated by background pixels. Tversky loss excels at managing class imbalance217

and highlighting the boundaries of segmented objects, whereas multi-class cross-entropy is superior218

in achieving overall classification accuracy across multiple classes. The synergistic Tversky loss and219

multi-class cross-entropy use their strengths to improve training. This approach effectively penalizes220

false negatives, particularly for small and intricate objects like suturing needles and tool-tips, ensuring221

better delineation against complex surgical backgrounds.222

First, we tested the single-loss functions approach—Tversky loss function and multi-class cross-223

entropy loss, then compared it with the combination of the two. To achieve the best balance between224

class imbalance and classification accuracy, the parameters α and β are optimized through testing.225

We found that the configuration, with α = 0.7 and β = 0.3, prioritizes the penalization of false226

negatives to enhance segmentation accuracy for challenging regions. As seen in Table 4, our combined227

strategy had the highest mIoU of 85.7% and Dice coefficient of 89.21%, outperforming the single-loss228

approaches, and demonstrating that combining Tversky loss with multi-class cross-entropy effectively229

optimizes segmentation accuracy and addresses class imbalance.230

Loss Function mIoU Dice
Tversky 64.79 65.54
Cross-entropy 74.34 76.18
Combined loss 85.70 89.21

Table 4: Loss Functions Comparisons

Future refinements could explore dynamic loss weighting schemes, where weights adjust adaptively231

based on the proportion of each class within a frame. Additionally, focal Tversky Loss could be232

incorporated to down-weight well-classified regions while emphasizing hard-to-segment examples.233

These enhancements would further improve segmentation robustness in highly imbalanced datasets,234

paving the way for more accurate and generalizable models.235
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NeurIPS Paper Checklist236

1. Claims237

Question: Do the main claims made in the abstract and introduction accurately reflect the238

paper’s contributions and scope?239

Answer: [Yes]240

Justification: Our abstract describes the problem that our model is trying to solve, while the241

introduction presents existing solutions with their limitations. Both sections highlight the242

contribution and findings of our work.243

2. Limitations244

Question: Does the paper discuss the limitations of the work performed by the authors?245

Answer: [Yes]246

Justification: In our paper we discussed our main findings and the limitation of one of247

the model’s elements, which we elaborated on in the appendix section under "Ablation."248

We believe that the model can be enhanced for smoother use by integrating the tools and249

anatomical instance together, which is one of our current work motivations. Additionally,250

the existence of two instances led to the use of static priority-based operation, which can be251

converted to a dynamic loss weighting scheme.252

3. Theory assumptions and proofs253

Question: For each theoretical result, does the paper provide the full set of assumptions and254

a complete (and correct) proof?255

Answer: [NA]256

Justification: This paper does not include any theoretical assumptions.257

4. Experimental result reproducibility258

Question: Does the paper fully disclose all the information needed to reproduce the main ex-259

perimental results of the paper to the extent that it affects the main claims and/or conclusions260

of the paper (regardless of whether the code and data are provided or not)?261

Answer: [Yes]262

Justification: This work has a detailed explanation of the methodology and experimental263

setup, which is added to the appendix. As we believe that research is about transparency264

to give a chance for researchers to build on our approach and improve the field instead of265

redundant repetition of experiments.266

5. Open access to data and code267

Question: Does the paper provide open access to the data and code, with sufficient instruc-268

tions to faithfully reproduce the main experimental results, as described in supplemental269

material?270

Answer: [No]271

Justification: At this stage we are not releasing the code, as our methodology is well-272

explained and enables reproducibility. However, once our final modified model is ready, all273

codes will be released.274

6. Experimental setting/details275

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-276

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the277

results?278

Answer: [Yes]279

Justification: Yes, our paper mentions all model specifications and training pipeline to ensure280

reproducipility.281

7. Experiment statistical significance282

Question: Does the paper report error bars suitably and correctly defined or other appropriate283

information about the statistical significance of the experiments?284
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Answer: [NA]285

Justification: The paper does not report any error bars, as they are not applicable.286

8. Experiments compute resources287

Question: For each experiment, does the paper provide sufficient information on the com-288

puter resources (type of compute workers, memory, time of execution) needed to reproduce289

the experiments?290

Answer: [Yes]291

Justification: The paper includes the GPU specification, which was the model trained on as292

part of the experimental setup.293

9. Code of ethics294

Question: Does the research conducted in the paper conform, in every respect, with the295

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?296

Answer: [Yes]297

Justification:298

10. Broader impacts299

Question: Does the paper discuss both potential positive societal impacts and negative300

societal impacts of the work performed?301

Answer:[Yes]302

Justification: Our paper represents the issue that the surgical society is facing here in the303

country and suggests a solution, which is Surg-SegFormer. As the model showed great304

results, it is in the process of the clinical validation phase.305

11. Safeguards306

Question: Does the paper describe safeguards that have been put in place for responsible307

release of data or models that have a high risk for misuse (e.g., pretrained language models,308

image generators, or scraped datasets)?309

Answer: [NA]310

Justification: [TODO]311

12. Licenses for existing assets312

Question: Are the creators or original owners of assets (e.g., code, data, models), used in313

the paper, properly credited and are the license and terms of use explicitly mentioned and314

properly respected?315

Answer: [Yes]316

Justification: [TODO]317

13. New assets318

Question: Are new assets introduced in the paper well documented and is the documentation319

provided alongside the assets?320

Answer: [NA] .321

Justification: This paper does not release new assets.322

14. Crowdsourcing and research with human subjects323

Question: For crowdsourcing experiments and research with human subjects, does the paper324

include the full text of instructions given to participants and screenshots, if applicable, as325

well as details about compensation (if any)?326

Answer: [NA] .327

Justification: No crowdsourcing was used.328

15. Institutional review board (IRB) approvals or equivalent for research with human329

subjects330
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Question: Does the paper describe potential risks incurred by study participants, whether331

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)332

approvals (or an equivalent approval/review based on the requirements of your country or333

institution) were obtained?334

Answer: [NA] .335

Justification: No involvement of crowdsourcing.336

16. Declaration of LLM usage337

Question: Does the paper describe the usage of LLMs if it is an important, original, or338

non-standard component of the core methods in this research? Note that if the LLM is used339

only for writing, editing, or formatting purposes and does not impact the core methodology,340

scientific rigorousness, or originality of the research, declaration is not required.341

Answer:[No]342

Justification: This paper does not use LLMs in either ideation or writing. loss weighting343

schemes,344
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