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Abstract

Holistic surgical scene segmentation in robot-assisted surgery (RAS) enables surgi-
cal residents to identify various anatomical tissues, articulated tools, and critical
structures, such as veins and vessels. Given the firm intraoperative time constraints,
it is challenging for surgeons to provide detailed real-time explanations of the
operative field for trainees. This challenge is compounded by the scarcity of expert
surgeons relative to trainees, making the unambiguous delineation of go- and no-go
zones inconvenient. Therefore, high-performance semantic segmentation models
offer a solution by providing clear postoperative analyses of surgical procedures.
However, recent advanced segmentation models rely on user-generated prompts,
rendering them impractical for lengthy surgical videos that commonly exceed an
hour. To address this challenge, we introduce Surg-SegFormer, a novel prompt-free
model that outperforms current state-of-the-art techniques. Surg-SegFormer at-
tained a mean Intersection over Union (mIoU) of 0.80 on the EndoVis2018 dataset
and 0.54 on the EndoVis2017 dataset. By providing robust and automated surgical
scene comprehension, this model significantly reduces the tutoring burden on ex-
pert surgeons, empowering residents to independently and effectively understand
complex surgical environments.

1 Introduction

Accurate decision-making in robot-assisted surgery (RAS) requires a thorough understanding using
computer vision models (1). These models need to identify and segment anatomical structures
and articulated tools to interpret and understand the relation between objects within the scene (2)).
Nevertheless, accurate and comprehensive surgical scene segmentation remains a significant challenge
due to the complexity of anatomical structures and the dynamic nature of the surgical environment.

Entry-level surgeons can benefit from using these models to convert surgical scenes into self-
explanatory videos, as they are not accustomed to how these structures appear in live surgery
settings (3). Simply, the output video highlights critical zones and detects various articulated tools
within the frame. Moreover, such automation frees expert surgeons from suspending the operation to
answer the trainees’ questions (4)). Once objects within the surgical scene are accurately identified,
understanding the procedure becomes significantly easier.

Cutting-edge segmentation models, e.g., AdaptiveSAM (3)), exhibit excellent performance; however,
their dependence on manual prompts restricts their autonomy and scalability in real surgical practice.
This limitation is particularly significant in post-operative analysis, as surgical videos often exceed
three hours, making manual prompting infeasible. In comparison, models like ISINet (6), SegNet
(7), and Ternaus (8]) are more efficient and better suited for large-scale automated surgical analysis.
Despite their autonomy, the promptable model still outperforms.

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.



36
37
38
39
40
41
42

43

44
45
46

47
48
49

50
51
52

53

54

55
56
57
58
59
60
61
62
63
64
65

66
67
68
69

70
71
72

Fusion of Dual Model
Output

SegAnatomy

A

Anatomy Mask |

oW

Ty, Priority Based
) Conditional

Tool Mask ~ Fusion

\ SegTools

Figure 1: Surg-SegFormer Architecture

To overcome these limitations, we extend SegFormer (9) by developing a dual-instance pipeline.
The first instance employs the SegFormer B2 variant, fine-tuned exclusively for anatomical structure
segmentation—referred to as SegAnatomy. The second instance uses B5 variant encoder and
incorporates a custom-designed, lightweight decoder optimized for segmenting articulated surgical
tools, which we refer to as SegTool. In the end, the outputs of the two instances are fused using a
priority-weighted conditional fusion strategy, offering comprehensive and consistent segmentation of
surgical frames. We call this complete pipeline Surg-SegFormer.

This paper has three main contributions:

1. Dual-Model Segmentation Framework: A framework for robotic-assisted surgery (RAS)
that uses two distinct models specialized in segmenting anatomical structures and surgical
instruments.

2. Priority-Weighted Conditional Fusion Strategy: An advanced fusion strategy that combines
both model outputs, prioritizing valuable segmentation cues to enhance overall accuracy
and robustness.

3. Comprehensive Evaluation on Benchmark Datasets: Validation of our framework on two
benchmark datasets, demonstrating superior segmentation performance compared to current
state-of-the-art (SOTA) methods.

2 Methods

2.1 Model Overview

We propose Surg-SegFormer, a dual-model framework that leverages two SegFormer instances and
fuses their outputs. Figure 1 shows the model’s architecture and the connection between the two
instances. The first instance, SegAnatomy, is fine-tuned specifically on anatomical structures. The
second instance, SegTool, uses a SegFormer encoder fine-tuned for tool segmentation and replaces
the original decoder with a lightweight design that incorporates skip connections. This modification
enhances the retention of spatial information—especially for smaller objects like surgical tool tips,
which are prone to information loss during down-sampling. We introduce a priority-weighted
conditional fusion strategy to merge the outputs from both instances, ensuring that critical features
are preserved in the final segmentation. We evaluate performance using mean intersection over union
(IoU) and Dice scores, demonstrating the model’s efficacy in both anatomical and tool segmentation
tasks.

As surgical data usually suffers from class imbalance, we implemented a combined loss function
(Eq. [6) that integrates Tversky loss (Eq. @) with cross-entropy loss (Eq. [5). We applied geometric
augmentations—Aflips, cropping, and rotations—that preserved color distribution and maintained
segmentation precision.

We set a = 0.7 and S = 0.3 to penalize false negatives, enhancing the segmentation of delicate
structures such as suturing needles and instrument shafts. This configuration enabled consistent
improvement in Dice and mlIoU scores while avoiding overfitting.
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Equation 1: Tversky Index formula (14).

TP
Tversky Index = 1
versky Index TP+a FP+ 5 FN (1)

Equation 2: Cross Entropy formula (13)).

N
Cross Entropy = — Z yi log(7;) 2)
i=1
Equation 3: Combined loss.
Combined_Loss = « - Tversky_Loss + (1 — «) - CE_Loss 3)

3 Results and Discussion

We thoroughly assessed Surg-SegFormer on two publicly available benchmarks for robot-assisted
surgery—EndoVis2017 (I7) and EndoVis2018 (18) —and compared it with SOTA models. The
model demonstrated notable performance on classes with subtle structures. EndoVis2017 focuses
on segmenting seven instruments: Bipolar Forceps, Prograsp Forceps, Large Needle Driver, Vessel
Sealer, Grasping Retractor, Monopolar Curved Scissors, and Ultrasound Probe. On the other hand,
EndoVis2018 is divided into two tasks: Task 1 (Holistic scene segmentation) originally contains 12
labels spanning anatomy and instrument parts; following common practice, we merge the three fine-
grained part labels—instrument shaft, wrist, and clasper—into a single Robotic Instrument Part class,
yielding seven labels for per-class analysis: Background Tissue, RI, Kidney Parenchyma, Covered
Kidney, Small Intestine (SI), Suturing Needle (SN), and UP. Task 2 (instrument-type segmentation)
likewise comprises seven categories—BF, PF, LND, MCS, UP, Suction Instrument (SI), and Clip
Applier (CA). Across both datasets and tasks, Surg-SegFormer achieved SOTA performance, with
particular increase over SOTA in SN and UP classes. The per-class performance of Surg-SegFormer
on EndoVis 2017 in table 2]and for EndoVis 2018 in table [3in the appendix section.

DeSAM Surg-Segformer
Image CL UNet (trained on parts) (Ours)
Endovis2018 ¢
Parts and
Anatomy . (
Original SegFormer
Endovis2018
Tools - j >
Endovis2017 « 5 4
Tools

Figure 2: Models’ Performance on Different Segmentation Tasks

3.1 Performance Analysis

Table [T| reveals that several baseline architectures excel on a single benchmark yet underperform
on the other. S3Net and AdaptiveSAM, for instance, lead the instrument—only EndoVis2017 task
(mIoU 0.72) but fall to 0.74 and 0.65, respectively, when anatomy and part labels are introduced
in EndoVis2018. A complementary pattern appears for MATIS, which ranks near the top for
EndoVis2018 instrument—type segmentation (0.77 mloU) yet drops to 0.63 on EndoVis2017.



97
98
99
100
101
102
103
104

105
106
107
108

109

110
111
112
113
114
115
116
117
118

119
120
121
122
123

124

125
126
127

128
129

Table 1: Models’ Overall Performance
Parts 2018  Type 2018  Type 2017

Model mloU Dice mloU Dice mloU Dice
UNet* 0.53 0.58 057 060 049 0.51
SurgicalSAM (16)) - - 0.80 - 0.70 -
TernausNet (16) - - 0.40 - 0.13 -
ISI-Net (16) - - 0.71 - 0.52 -
S3Net (16) - - 0.74 - 0.72 -
MATIS (16) - - 0.77 - 0.63 -
MedT (S) 0.64 0.68 - - 0.29 0.31
AdaptiveSAM (5) 0.65 0.69 - - 0.72 0.74
SAM-ZS (5) 0.06 0.10 - - 0.03 0.06
SegFormer* (Single Model) 0.57 0.59 046 047 041 0.42
Surg-SegFormer* 0.80 0.89 064 0.66 054 0.56

Parts 2018: EndoVis2018, Type 2018: EndoVis2018 dataset tools type only. Type 2017: EndoVis2017 dataset
tools type only. The * means that we trained the models from our side and reported the results. The rest of the
results were taken from the models’ papers.

Surg-SegFormer presents a more balanced profile. Although its 0.54 mIoU on EndoVis2017 trails
the prompt-tuned leaders by roughly eighteen percentage points, it remains well ahead of classical
U-Net (0.49) and the re-trained SegFormer backbone (0.41). The same architecture rises to the top of
EndoVis2018 Task 1 with 0.80 mIoU and 0.89 Dice, outperforming the strongest transformer-based
baseline, MedT, by sixteen percentage points. Qualitative examples in Fig. [2| confirm the numerical
trend: in scenes with overlapping tools and ambiguous tissues, baseline outputs either smooth away
fine structures or miss entire parts, whereas Surg-SegFormer retains complete masks and sharp
boundaries.

The consistency across the two datasets is attributed to three design elements: a dual-branch encoder
that specialises separately in tissue and metallic cues; a priority-weighted fusion rule that reduces false
negatives in crowded frames; and a hybrid Tversky—cross-entropy loss that counteracts background
dominance while preserving sub-pixel detail.

4 CONCLUSION

In this work, we presented Surg-SegFormer, a unified and lightweight transformer-based architecture
tailored for surgical scene understanding. Unlike many existing models that specialize in either
anatomical or tool segmentation, Surg-SegFormer addresses both tasks simultaneously, demonstrat-
ing strong performance in multi-class and single-class surgical segmentation. Through extensive
experiments on the EndoVis2017 and EndoVis2018 datasets, our model consistently outperformed
classical and recent SoTA approaches, including prompt-based methods, particularly in anatomically
complex or visually challenging scenes. This suggests that Surg-SegFormer can serve as a robust
backbone for real-time, intraoperative surgical assistance systems, providing precise segmentation of
both instruments and critical anatomy.

The high segmentation accuracy—achieved without reliance on handcrafted prompts, large models, or
heavy post-processing—emphasizes the efficiency and scalability of our approach. The incorporation
of a hybrid loss function (Tversky + Cross-Entropy) proved particularly effective in handling class
imbalance, contributing to more stable training and better performance across underrepresented
categories.
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.1 Experimental Setup

In this section we present the full training pipeline, hyperparameters, and the specifications of the
used GPU. In this work we two GPUs were used to evaluate the model’s performance: a local
NVIDIA RTX4090, 24GB and a cloud-based NVIDIA V100-32G. Larger models were trained on
the cloud to reduce runtimes. The code was implemented in PyTorch, and hyperparameters were
selected empirically. We used the Adam optimizer with weight decay of 10~* and a learning rate of
5 x 1075, enabling the model to learn fine details while avoiding early plateaus. A cyclic learning
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rate scheduler and a batch size of 4 were employed to help the model escape local minima across 100
training epochs.

To address class imbalance between extensive background regions and smaller, complex instrument
areas, we implemented a combined loss function (Eq. [6)) that integrates Tversky loss (Eq. @) with
cross-entropy loss (Eq. [5). We applied geometric augmentations—flips, cropping, and rotations—that
preserved color distribution and maintained segmentation precision.

We set @ = 0.7 and S = 0.3 to penalize false negatives, enhancing the segmentation of delicate
structures such as suturing needles and instrument shafts. This configuration enabled consistent
improvement in Dice and mloU scores while avoiding overfitting.

Equation 1: Tversky Index formula (14).

TP
Tversky Index — 4
VY e = P o - FP+3-FN @

Equation 2: Cross Entropy formula (15).

N
Cross Entropy = — Z yi log(9;) 5)
i=1
Equation 3: Combined loss.
Combined_Loss = « - Tversky_Loss + (1 — «) - CE_Loss 6)

A Detailed Results

In this section we show more detailed results of Surg-SegFormer against SOTA models.

A.1 EndoVis2017

On the seven-instrument EndoVis2017 benchmark (see Table[T)), Surg-SegFormer achieved an overall
mloU of 0.54 and Dice of 0.56. Recent prompt-driven models such as AdaptiveSAM reported
higher mIoU (0.72); Surg-SegFormer clearly outperforms the canonical U-Net (0.49/0.51), the re-
trained SegFormer backbone (0.41/0.42), and the task-specific ISI-Net (0.52). Class-wise inspection
underscores the model’s strength on fine tools. Results in table [2| shows the model’s best IoUs on
three classes: Ultrasound Probe (0.87) and Monopolar Curved Scissors (0.69). Lower scores for
Bipolar Forceps (0.24) and Prograsp Forceps (0.16) likely stem from limited visual diversity and
inter-class ambiguity among graspers, yet overall the method delivers balanced segmentation without
task-specific tuning.

Table 2: mIoU Values on EndoVis2017 - Tools Type

Model BF PF LND VS GR MCS UP
UNet* 0.27 020 039 035 041 0.65 0.65
TernausNet (16) 0.13 0.12 0.21 0.06 0.01 0.01 0.17
ISI-Net (16) 0.39 039 050 027 0.02 029 0.13
S3Net (16) 0.75 0.54 0.62 0.36 027 043 0.28
MATIS (16) 0.66 0.51 0.52 033 0.16 0.19 0.24
SegFormer* 0.00 0.0 0.003 045 047 049 097

Surg-SegFormer* 0.24 0.16 0.47 045 047 0.69 0.87

BF: Bipolar Forceps, PF: Prograsp Forceps, LND: Large Needle Driver, VS: Vessel Sealer, GR: Grasping
Retractor, MCS: Monopolar Curved Scissors, UP: Ultrasound Probe

For the instrument-type task Table [3]illustrates the strong performance of Surg-SegFormer, which
remains among the top three in five of seven tools, leading on Suction Instrument (0.83) and nearly
matching the best on Clip Applier (0.93). Lower loUs for Prograsp Forceps (0.13) and Large Needle
Driver (0.09) echo trends already seen in EndoVis2017 and can be traced to visually similar end-
effectors and a paucity of examples in the training split. These fine-grained insights confirm that
Surg-SegFormer’s hybrid scale-aware design excels when subtle structural cues differentiate classes,
while leaving room for future work on grasper-type instruments with high intra-class variance.
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Table 3: mIoU Values on EndoVis2018 - Tools Type

Model BF PF LND MCS UP SI CA
UNet* 0.64 0.12 0.12 0.66 0.54 0.73 0.8
TernausNet (8)) 0.44 0.05 0.00 0.50 0.00 0.00 0.00
ISI-Net (16) 0.74 049 0.31 0.88 0.02 0.38 0.00
S3Net (16) 0.77 0.50 0.20 092 0.07 0.51 0.00
MATIS (16) 0.83 039 040 093 0.16 0.64 0.04
SegFormer* 0.04 0.05 0.08 0.20 0.76 0.80 0.95

Surg-SegFormer* 0.67 0.13 0.086 0.82 0.70 0.83 0.93

BF: Bipolar Forceps, PF: Prograsp Forceps, LND: Large Needle Driver, MCS: Monopolar Curved Scissors, UP:
Ultrasound Probe, SI: Suction Instrument, CA: Clip Applier.

B Ablation Study

Our ablation study was conducted to evaluate the impact of various configurations on the performance
of the Surg-SegFormer model. The model went through different configurations for different aspects,
such as loss functions, and the data fusion operation of the dual model output.

Loss Functions We chose the model’s loss function through examining various single-loss-function
methodologies versus composite loss methodologies. The combined loss function in our model
integrates Tversky Loss and Cross-Entropy Loss, addressing the inherent class imbalance present in
surgical datasets dominated by background pixels. Tversky loss excels at managing class imbalance
and highlighting the boundaries of segmented objects, whereas multi-class cross-entropy is superior
in achieving overall classification accuracy across multiple classes. The synergistic Tversky loss and
multi-class cross-entropy use their strengths to improve training. This approach effectively penalizes
false negatives, particularly for small and intricate objects like suturing needles and tool-tips, ensuring
better delineation against complex surgical backgrounds.

First, we tested the single-loss functions approach—Tversky loss function and multi-class cross-
entropy loss, then compared it with the combination of the two. To achieve the best balance between
class imbalance and classification accuracy, the parameters o and 3 are optimized through testing.
We found that the configuration, with & = 0.7 and S = 0.3, prioritizes the penalization of false
negatives to enhance segmentation accuracy for challenging regions. As seen in Table[d] our combined
strategy had the highest mIoU of 85.7% and Dice coefficient of 89.21%, outperforming the single-loss
approaches, and demonstrating that combining Tversky loss with multi-class cross-entropy effectively
optimizes segmentation accuracy and addresses class imbalance.

Loss Function mloU  Dice

Tversky 64.79 65.54
Cross-entropy 74.34 76.18
Combined loss 85.70 89.21

Table 4: Loss Functions Comparisons

Future refinements could explore dynamic loss weighting schemes, where weights adjust adaptively
based on the proportion of each class within a frame. Additionally, focal Tversky Loss could be
incorporated to down-weight well-classified regions while emphasizing hard-to-segment examples.
These enhancements would further improve segmentation robustness in highly imbalanced datasets,
paving the way for more accurate and generalizable models.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our abstract describes the problem that our model is trying to solve, while the
introduction presents existing solutions with their limitations. Both sections highlight the
contribution and findings of our work.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: In our paper we discussed our main findings and the limitation of one of
the model’s elements, which we elaborated on in the appendix section under "Ablation."
We believe that the model can be enhanced for smoother use by integrating the tools and
anatomical instance together, which is one of our current work motivations. Additionally,
the existence of two instances led to the use of static priority-based operation, which can be
converted to a dynamic loss weighting scheme.

. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: This paper does not include any theoretical assumptions.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: This work has a detailed explanation of the methodology and experimental
setup, which is added to the appendix. As we believe that research is about transparency
to give a chance for researchers to build on our approach and improve the field instead of
redundant repetition of experiments.

. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: At this stage we are not releasing the code, as our methodology is well-
explained and enables reproducibility. However, once our final modified model is ready, all
codes will be released.

. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Yes, our paper mentions all model specifications and training pipeline to ensure
reproducipility.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
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Answer: [NA]

Justification: The paper does not report any error bars, as they are not applicable.

. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper includes the GPU specification, which was the model trained on as
part of the experimental setup.

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification:
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer:[Yes]

Justification: Our paper represents the issue that the surgical society is facing here in the
country and suggests a solution, which is Surg-SegFormer. As the model showed great
results, it is in the process of the clinical validation phase.

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: [TODO]
Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: [TODO]
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA] .
Justification: This paper does not release new assets.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA] .
Justification: No crowdsourcing was used.

Institutional review board (IRB) approvals or equivalent for research with human
subjects


https://neurips.cc/public/EthicsGuidelines
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16.

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA] .
Justification: No involvement of crowdsourcing.
Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer:

Justification: This paper does not use LLMs in either ideation or writing. loss weighting
schemes,
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