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Abstract

Knowledge distillation is widely used as a means of improving the performance of a relatively
simple “student” model using the predictions from a complex “teacher” model. Several works
have shown that distillation significantly boosts the student’s overall performance; however,
are these gains uniform across all data subgroups? In this paper, we show that distillation can
harm performance on certain subgroups, e.g., classes with few associated samples, compared
to the vanilla student trained using the one-hot labels. We trace this behaviour to errors
made by the teacher distribution being transferred to and amplified by the student model,
and formally prove that distillation can indeed harm underrepresented subgroups in certain
regression settings. To mitigate this problem, we present techniques which soften the teacher
influence for subgroups where it is less reliable. Experiments on several image classification
benchmarks show that these modifications of distillation maintain boost in overall accuracy,
while additionally ensuring improvement in subgroup performance.

1 Introduction

Knowledge distillation is a technique for improving the performance of a “student” model using the predictions
from a “teacher” model. At its core, distillation involves replacing the one-hot training labels with the teacher’s
predicted label distribution. Empirically, distillation has proven successful for model compression (Bucilǎ
et al., 2006; Hinton et al., 2015), improving the performance of a fixed model architecture (Anil et al.,
2018; Furlanello et al., 2018), and semi-supervised learning (Radosavovic et al., 2018). Theoretically, several
works (Lopez-Paz et al., 2016; Mobahi et al., 2020; Tang et al., 2020; Menon et al., 2020; Zhang & Sabuncu,
2020; Ji & Zhu, 2020; Allen-Zhu & Li, 2020; Zhou et al., 2021; Dao et al., 2021) have studied how distillation
affects learning. Both strands of work further the understanding of when and why distillation helps.

In this paper, we are similarly motivated to better understand the mechanics of distillation, but pose a
slightly different question: does distillation help all data subgroups uniformly? Or, do its overall gains come
at the expense of degradation of performance on certain subgroups? To our knowledge, there has been no
systematic study (empirical or otherwise) of this question. This consideration is topical given the study of
fairness of machine learning algorithms on under-represented subgroups (Hardt et al., 2016; Buolamwini &
Gebru, 2018; Chzhen et al., 2019), and the study of the tension between average and subgroup performance
of common learning algorithms (Samadi et al., 2018; Sagawa et al., 2020a; Jones et al., 2021).

Our first finding is that even in standard settings — e.g., on image classification benchmarks such as CIFAR
— distillation can disproportionately harm performance on subgroups defined by the individual classes (see
Figure 1). Specifically, compared to the teacher model, distillation can worsen the performance on hard
classes, and amplify the gap between worst- and average-class performance. To discern the source of this
behaviour, we ablate the teacher and student architectures (§3.2), dataset complexity (§3.3), label frequencies
(§3.4). These point to the potential harms of distillation when the teacher confidently mispredicts on a
subgroup.

Having identified a potential limitation of distillation, we present two simple techniques to remedy it. These
apply per-subgroup mixing weights between the teacher and one-hot labels, and per-subgroup margins
respectively (§4). Intuitively, these limit the influence of teacher predictions on subgroups it models poorly.
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(b) ImageNet.

Figure 1: Illustration of the potential deleterious effects of distillation on data subgroups. We train a
ResNet-56 teacher on CIFAR-100-LT, a long-tailed version of CIFAR-100 (Cui et al., 2019; Cao et al.,
2019) where some labels have only a few associated samples, and a ResNet-50 teacher on ImageNet. For
each dataset, we self-distill to a student ResNet of the same depth. On CIFAR-100-LT, as is often observed,
distillation helps the overall accuracy over one-hot student training (∼2% absolute). However, such gains
come at significant cost on subgroups defined by the individual classes: on the ten rarest classes, distillation
harms performance by ∼1%. Similarly, on ImageNet, distillation harms the average accuracy of the worst-10
classes (as determined by the teacher’s performance) by ∼1.5%. Our proposed techniques (§4) can roughly
preserve the overall accuracy, while boosting subgroup performance. Notice that the label frequency may
not be always consistent with performance or performance improvement in an unbalanced dataset. However,
we find them to be strongly related: for CIFAR-100 LT, Spearman rank correlation coefficient between the
ordering according to frequencies and according to teacher’s performance is equal to 0.84.

Experiments on image classification benchmarks show that these methods typically maintain a boost in
overall accuracy, while ensuring a more equitable improvement across subgroups.

In sum, this work provides novel insights into distillation performance, with the following contributions:

(i) we identify a hitherto unexplored issue with distillation, namely, that its improvements in overall accuracy
may come at the expense of harming accuracy on certain subgroups (§3.1). Such a finding is topical given
the widespread practical use of generic learning paradigms such as distillation, and the increasing societal
applications of learning systems more broadly.

(ii) we ablate potential sources for the above phenomenon (§3.2, §3.3, §3.4), and in the process identify
certain characteristics of data (e.g., skewed label distributions) where it can manifest.

(iii) we provide a theoretical explanation for why distillation can hurt performance on rare subgroups in
certain settings (§3.8), building on the self-distillation analysis for kernel methods developed in Mobahi
et al. (2020).

(iv) we propose two simple modifications of distillation that mitigate the above problem, based on applying
per-subgroup mixing weights and margins (§4); these perform well empirically (§5).

At the outset, we note that while the paper’s analysis is primarily (though not exclusively) empirical, our
focus is on systematic analysis aiming at understanding a non-trivial phenomenon, rather than merely
empirical comparison. Specifically, §3 is devoted to carefully understanding the extent of, and causes for,
the non-uniform gains of distillation. This is in line with works which empirically analyse neural network
phenomena (Zhang et al., 2017; Müller et al., 2019; Nakkiran et al., 2020; Neyshabur et al., 2020).

2 Background and related work

Knowledge distillation. Consider a multi-class classification problem over instances X and labels Y =
[L] .= {1, . . . , L}. Given a training set S = {(xn, yn)}Nn=1 drawn from some distribution P, we seek a classifier
h : X → Y that minimises the misclassification error Eavg(h) .= P(h(x) 6= y). In practice, one may learn
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logits f : X→ RL to minimise R̂(f) = 1
N

∑N
n=1 `(yn, f(xn)), where ` is a loss function such as the softmax

cross-entropy, which for softmax probabilities py(x) ∝ exp(fy(x)) is `(y, f(x)) .= − log py(x). One may then
classify the sample via h(x) = arg maxy∈[L] fy(x).

Knowledge distillation (Bucilǎ et al., 2006; Hinton et al., 2015) employs the logits f t : X→ RL of a “teacher”
model to train a “student” model f s : X→ RL, via minimising

R̂dist(f) = 1
N

N∑
n=1

[
(1− α) · `(yn, f(xn)) + α ·

∑
y′∈[L]

pt
y′(xn) · `(y′, f(xn))

]
, (1)

where α ∈ [0, 1]. Here, one converts the teacher logits to probabilities pt : X→ ∆L for simplex ∆, e.g. via
a softmax transformation pt

y′(x) ∝ exp(f t
y′(x)). The second term smooths the student labels based on the

teacher’s confidence that they explain the sample. The first term includes the original label to prevent
incorrect teacher predictions from overwhelming the student. One further important trick is temperature
scaling of the teacher logits, so that pt

y′(x) ∝ exp(T−1 · f t
y′(x)). Setting T � 0 makes pt more uniform, thus

preventing overconfident predictions (Guo et al., 2017).

We focus here on logit-based distillation, where the training data for both the teacher and the student
is the same set of examples. This setup is widely considered when studying fundamental properties of
distillation (Mobahi et al., 2020; Menon et al., 2021; Dao et al., 2021; Zhou et al., 2021), and is employed
by the current state-of-the-art distillation technique of Beyer et al. (2021). There are other compelling
setups to consider, including distillation based on transferring feature representations Heo et al. (2019) or
self-supervised tasks Xu et al. (2020); Chuanguang Yang (2021); Yang et al. (2021) We leave these for future
work, as the study of fairness aspects of distillation remain undeveloped even in the logit-based setting.

Average versus subgroup performance. The above exposition treats the misclassification error Eavg(h)
as the fundamental performance measure of interest. However, suppose the data contains subgroups G =
{1, . . . , G}. Defining the per-subgroup errors errg(h) .= P(h(x) 6= y | g), we have Eavg(h) =

∑
g∈G P(g)·errg(h),

which may mask errors on samples with P(g) ∼ 0 (Sagawa et al., 2020a;b; Sohoni et al., 2020). To this end,
one may instead measure the balanced error (Menon et al., 2013) Ebal(h) .=

∑
g∈G

1
|G| · errg(h) which treats

the subgroup distribution as uniform, or the worst-subgroup error (Sagawa et al., 2020a;b; Sohoni et al.,
2020) Emax(h) .= maxg∈G errg(h), which focusses on the worst-performing subgroup. An intermediary is the
average of the k worst-performing subgroups (Williamson & Menon, 2019): for ith largest per-subgroup error
err[i](h), Etop−k(h) .= 1

k

∑k
i=1 err[i](h).

The definition of G is a domain-specific consideration. One special case is where each label defines a subgroup
(i.e., G = Y), and P(y) is skewed. In such long-tail settings (Buda et al., 2017), classifiers with good average
performance can perform poorly on “tail” labels where P(y) ∼ 0.

Related work. There is limited prior study that dissects distillation’s overall gains per subgroup. Zhao
et al. (2020) showed that in incremental learning settings, distillation can be biased towards recently observed
classes. We show that even in offline settings, distillation can harm certain classes. Recently, Zhou et al.
(2021) studied the standard aggregate performance Eavg of distillation, which was tied to a certain subset of
“regularisation samples”. By contrast, our goal is to understand the subgroup performance of distillation.

Study of the fairness of machine learning algorithms on under-represented data subgroups has received recent
attention (Dwork et al., 2012; Hardt et al., 2016; Buolamwini & Gebru, 2018; Chzhen et al., 2019). This has
prompted dissection of the performance of techniquess such as dimensionality reduction (Samadi et al., 2018),
increasing model capacity (Sagawa et al., 2020a), and selective classification (Jones et al., 2021). We follow
the general spirit of such works, studying a more delicate setting involving two separate models (the student
and teacher), each with their own inductive biases. We present more discussion of related directions in §6.
In a related effort, Hooker et al. (2019) explore how model compression may harm subgroup performance
compared to the original model.
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Setting Dataset Avg acc Worst
subgroup

acc
Baseline (§3.1) ImageNet +0.39 -0.43
Stronger teacher (§3.2) ImageNet +0.17 -1.19

Long tail (§3.4) CIFAR-100 LT +2.17 -1.46
ImageNet LT +0.21 -0.32

Fairness (§3.6) UCI Adult +3.10 -5.94

Reduce #classes (§3.3) CIFAR-10 +0.55 +0.90
CIFAR-10 LT +1.92 +4.40
CIFAR-100 +1.93 +3.33
ImageNet-100 +0.09 +0.06

Table 1: Summary of findings in the ablation analysis of distillation’s subgroup performance (§3). In a range
of different settings, distillation is seen to hurt the hardest subgroup accuracy (worst-k class accuracy or
worst subgroup according to an attribute), despite improving the average accuracy (upper rows). Decreasing
number of labels helps improve the hardest classes (bottom row).

3 Are distillation’s gains uniform?

We demonstrate that the gains of distillation are not uniform across subgroups: specifically, considering
subgroups defined by classes, distillation can harm the student’s performance on the “hardest” few classes
(§3.1). To understand the genesis of this problem, we perform ablations (cf. Table 3.1) that establish its
existence in settings where there are insufficient samples to model certain classes, either due to the number of
classes being large (§3.3), or the class distribution being skewed (§3.4). We then identify that the student may
amplify the teacher’s errors (§3.7). Next, we corroborate these results for a more general notion of subgroup
in a fairness dataset (§3.6). Finally, we show an analysis indicating that this behaviour is potentially a result
of the teacher confidently mispredicting on some classes (§3.7). We conclude with formally proving that
distillation can indeed harm rarest subgroups in the context of kernelized methods (§3.8).

3.1 Distillation hurts subgroup performance

To begin, we consider the effect of distillation on a standard image classification benchmark, namely, ImageNet.
We employ a self-distillation (Furlanello et al., 2018) setup, with ResNet-34 teacher and student models,
trained with standard hyperparameter choices (see Appendix B). Following Cho & Hariharan (2019), we
use early stopping on the teacher model. We now ask: what is the impact of distillation on the student’s
overall and per-class performance? The first question has an expected answer: distillation improves the
student’s average accuracy by +0.4% (see the Baseline setting in Table 3.1). Judged by this conventional
metric, distillation is thus a success.

A more nuanced picture emerges when we break down the source of the above improvement. We compute the
per-class accuracies for the one-hot and distillation models, to understand how the overall gains of distillation
are distributed. Figure 2 shows that these gains are non-uniform: distillation in fact hurts the worst-k class
performance for k ≤ 40. (See Appendix C for a detailed per-class breakdown.) Thus, distillation may harm
the student on classes that it already finds difficult. At the same time we note that distillation does improve
many classes, such as the classes with relatively high accuracies from the one-hot student.

Given that average accuracy improves, does it matter that performance on subgroups corresponding to the
“hardest” classes suffers? While ultimately a domain-specific consideration, in general exacerbating subgroup
errors may lead to issues from the fairness perspective. Indeed, we shall see that distillation can also harm in
settings where the subgroups correspond to sensitive variables; see §3.6.
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Figure 2: Cumulative gain of ResNet-34 self-distillation on ImageNet. For index k, we compute the gain
in average accuracy over the k worst classes. While average accuracy (k = 1000) improves by +0.4%, for
k ≤ 40, distillation harms over the one-hot model (evidenced by the negative gain).

Teacher Student Average
accuracy

Worst-
10

accuracy
EffnNet Res-50 +0.17 -1.19
EffnNet Res-34 0.00 -0.80
EffnNet Res-18 +0.05 -1.60

Teacher Student Average
accuracy

Worst-
10

accuracy
Res-50 Res-50 +0.34 -1.58
Res-50 Res-34 +0.39 -2.05
Res-50 Res-18 -0.09 -1.00

Teacher Student Average
accuracy

Worst-
10

accuracy
Res-34 Res-34 +0.42 -2.60
Res-34 Res-18 +0.15 -3.60
Res-18 Res-18 -0.13 -3.80

Table 2: Summary of effect of distillation on different teacher and student architectures considered for the
ImageNet dataset. The comparison is with respect to the one-hot (i.e., non-distilled) student. Distillation
consistently hurts accuracy of the worst 10 classes.

At this stage, it is apposite to ask whether the above is an isolated finding, or indicative of a deeper issue.
We thus study each of the following in turn: (i) does the finding hold in settings beyond self-distillation?
(ii) does the finding hold for other datasets, or is it simply due to the idiosyncrasies of ImageNet? (iii) what
are some general characteristics of settings where the problem is manifest?

3.2 Is distillation biased by the model architecture?

Having begun with a self-distillation setup, we now demonstrate that similar findings hold when the student
and teacher architectures differ. Continuing with the ImageNet dataset, in the second row in Table 3.1 we
report statistics for the overall average accuracy and average accuracy over the worst 10 classes when distilled
ResNet-50 student from a stronger teacher: Efficient-Net (Tan & Le, 2021) (more specifically, Efficient-NetV2
L) teacher achieving 85.7% accuracy. Again, we see improved average accuracy and harmed Worst subgroup
accuracy, composed of the 10 classes with the lowest accuracy according to teacher’s performance. In Table 2,
we report statistics when varying teacher and student architectures. The harming of hard class performance
under distillation holds across all scenarios: thus, our earlier results were not specific to self-distillation.

For self-distillation settings, smaller models appear to incur greater losses on the worst-class error. When
distilling between different architectures (e.g., from ResNet-50 to ResNet-18), we observe that even average
accuracy may not improve, as noted in Cho & Hariharan (2019). There is however no clear trend between the
difference in architectures and drop in worst class performance. Finally, we note that there is little change in
the teacher’s and student’s worst-k classes; see Figure 7 (Appendix).

3.3 Is distillation biased by a large number of classes?

Having seen that ImageNet consistently demonstrates a performance degradation on certain classes, we now
repeat the same analysis on a smaller image classification benchmark. We return to the self-distillation setup,
using ResNet-56 models on CIFAR-100. On this dataset, Table 3.1 shows a (perhaps more expected) result:
distillation boosts both the average and worst-1 class performance. This indicates that, at a minimum, the
behaviour of distillation’s performance gains are problem-specific; on CIFAR, distillation appears a complete
win for both the average and subgroup accuracy.
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One plausible hypothesis is that the tension between average and subgroup performance only manifests on
problems with many labels, which might informally be considered “harder”. To confirm this further while
fixing the dataset, we randomly select 10% of classes from the ImageNet dataset, and only keep examples
corresponding to those classes across the train and validation sets. Consistent with the results for CIFAR-100,
we again find that the worst-10 class accuracy is not harmed under distillation (see the right side of Table 3.1
where we report results on ResNet-34 self-distillation).

Next, we also consider the setting where the number of train examples is fixed but the number of classes
varies. To this end, we contrast results from experiments on CIFAR-10 and CIFAR-100, and CIFAR-10 LT
and CIFAR-100 LT. In each of these pairs of datasets, the set of the train examples is fixed but the number
of classes changes from 10 to 100. As reported in Table 3.1, we find that the accuracy over the worst 10%
classes according to the teacher does not drop for neither CIFAR-10 nor CIFAR-10 LT upon distillation.

The above indicates that for problems with a few, balanced labels or with sufficiently few labels with respect
there may not be a tension between average and worst-subgroup performance under distillation. However, we
now show that even for problems with relatively few labels, one may harm subgroup performance if there is
label imbalance.

3.4 Is distillation biased by class imbalance?

We now consider a long-tail setting, where the training label distribution P(y) is highly non-uniform. Following
the long-tail learning literature (Cui et al., 2019; Cao et al., 2019; Kang et al., 2020), we construct “long-tailed”
(LT) versions of the above datasets, wherein the training set is down-sampled so as to achieve a particular
label skew. For ImageNet, we use the long-tailed version from Liu et al. (2019). For other datasets, we
down-sample labels to follow P(y = i) ∝ 1

µi for constant µ and i ∈ [L] (Cui et al., 2019). The ratio of the
most to least frequent class is set to 100.

From the Long tail setting in Table 3.1, we note that on both CIFAR-100-LT and ImageNet-LT, accuracy
over the hardest classes drops (we report results from self-distillation using ResNet-56 for CIFAR-100 and
ResNet-50 ImageNet). The former is particularly interesting, given that the standard CIFAR-100 shows gains
amongst the hardest classes. This provides evidence that for some “harder” problems — e.g., where there are
insufficiently many samples from which to model a particular class — there may be a tension between the
average and subgroup performance.

3.5 Is distillation biased by hyperparameter choice?

We study the impact of hyper parameters on the bias of distillation in the case of CIFAR-100 LT and present
the results in Figure 3. We find that, across student architectures, for all temperatures and choices for the
mixing parameter α, distillation improves the average accuracy but harms the worst-10 class accuracy.

3.6 Beyond classes: other choices of subgroups

Our analysis thus far has focused on subgroups defined by classes. This choice is natural for long-tailed
problems, where it is important to ensure good model performance on rare classes (Kang et al., 2020). In
other problems, different choices of subgroups may be appropriate. For example, in problems arising in
fairness, one may define subgroups based on certain sensitive attributes (e.g., sex, race). In such settings,
does one similarly see varying gains from distillation across subgroups?

We confirm this can indeed hold on the UCI Adult dataset using random forest models (details in Appendix C.3).
This data involves the task of predicting if an individual’s income is ≥ 50K or not, and possesses subgroups
defined by the individual’s race and sex. Akin to the preceding results, we find that distillation can significantly
improve overall accuracy, at the expense of degrading accuracy on certain rare subgroups, e.g., Black women;
see Table 3.1, and Table 9 (Appendix). This further corroborates our basic observation on the non-uniform
distribution of distillation’s gains.

A distinct notion of subgroup was recently considered in Zhou et al. (2021), who identified the impact of
certain “regularisation samples” on distillation. These are a subset of training samples which were seen
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Figure 3: Impact of hyper parameters on the bias of distillation in the case of CIFAR-100 LT. We find
that, across student architectures, for all temperatures and choices for the mixing parameter α, distillation
improves the average accuracy but harms the worst-10 class accuracy.

to degrade the overall performance of distillation. It is of interest whether such a subgroup relates to our
previously studied subgroups of “hard” classes; e.g., is there an abundance of regularisation samples in
such subgroups, which might explain the poor performance of distillation? In Appendix C.4, we study the
relationship between regularisation samples, and the per-label subgroups from our analysis; we find that, in
general, these may be complementary notions.

3.7 Why distillation hurts subgroups: a margin view

The above has established that in a range of scenarios, distillation can hurt performance on subgroups defined
by classes. However, a firm understanding of why this happens remains elusive. To study this, we consider
ResNet-56 self-distillation on CIFAR-100-LT — which showed a stark gap between the average and subgroup
(i.e., worst-1 class) performance — and dissect the logits of the teacher and distilled student. (See the
Appendix for plots where the teacher and student architectures differ.) Across classes, we seek to understand:
(i) how aligned are the student and teacher accuracies? (ii) how reliable are the models’ probability estimates?
(iii) how do the models’ confidences behave?

For a test1 example (x, y) and predicted label distribution p(x) ∈ ∆L, we thus compute each models’
accuracy, log-loss `log(y, p(x)) = − log py(x), and margin (Koltchinskii & Panchenko, 2002) `marg(y, p(x)) =
py(x)−maxy′ 6=y py′(x). Note that the latter may be negative if the model predicts the incorrect label for
the example. Figure 4 shows these metrics on 10 class buckets: these are created by sorting the 100 classes
according to the teacher accuracy, and then creating 10 buckets of classes. Within each bucket, we compute
the average of the metric.

Remarkably, for 5 out of 10 class buckets, average margins are negative, suggesting that the teacher is often
wrong yet confident in predicting these classes. Here, the student accuracy generally worsens compared to the
teacher. Further, log-loss increases across all buckets (including those where accuracy improves), indicating

1The choice of test, rather than train, example is crucial: an overparameterised teacher will likely correctly predict all training
samples, thus rendering the above statistics of limited use. To leverage the insights from the above analysis in practice, we shall
use a holdout set that can be carved out from the training set.
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reduced confidence in the true class of the distilled student. This points at a potential source of the poorer
performance on the worst-1 accuracy. Recall that the distilled student’s aim is to mimic the teacher’s logits
on the training samples. This is a proxy to the student’s true goal, which is mimicking these logits on test
samples, so as to generalise similar to the teacher. When such generalisation happens, the student can be
expected to roughly inherit the teacher’s per-class performance; in settings like the above, this unfortunately
implies poor performance on classes with negative teacher margin.

3.8 Why distillation can hurt subgroups: theory

To complement the preceding empirical analysis, we now seek to theoretically establish certain conditions
under which distillation can provably harm performance on subgroups. We build upon the recent analysis
of self-distillation for kernelised models in Mobahi et al. (2020). Specifically, consider the ridge regression
problem:

min
fw∈F

N∑
n=1

(fw(xn)− zn)2 + λ‖w‖22, (2)

where F = {fw : x 7→ w>x | w ∈ RD}, and {zn}Nn=1 is a set of target labels. Let f∗ denote the minimizer
of (2) where each zn = yn. Similarly, let fdist denote the minimizer where each zn = f∗(xn), i.e., the
self-distillation solution. Mobahi et al. (2020) showed how such self-distillation can be interpreted as a
regulariser, in the sense of fdist implicitly down-weighting low variance directions in the data.

Our analysis holds for the following data distribution: suppose we have data from L subgroups, and targets yn ∈
R. Let {oi}i∈[L] be L orthonormal vectors in RD, corresponding to the input representation xi from different
subgroups. Let Mi denote all samples with subgroup i, and di = |Mi|. Let εi = 1

di·ȳ2
i

∑
k∈Mi

(f∗(xk)− yk)2

denote the mean error of examples from subgroup i, and εdist
i = 1

di·ȳ2
i

∑
k∈Mi

(fdist(xk) − yk)2 the mean
error from subgroup i of the distilled model. Here, the error is normalised by the mean subgroup target
ȳ2
i = 1

di

∑
k∈Mi

y2
k.

Theorem 1. Let the subgroups be in decreasing order according to their frequency with i < j implying di > dj .
For any 1 ≤ i < j ≤ L, if λ <

√
didj, then,

εj − εdist
j ≤ εi − εdist

i .

Theorem 1 shows that distillation has a worse effect on subgroup j compared to i. Thus, the less represented
directions of the data (e.g. those corresponding to the rare subgroups) would suffer more from the induced
regularisation, as long as the regularisation strength λ is sufficiently small. This is consistent with the
observation of hardest classes (often the rarest classes) suffering the most from distillation (and in particular,
self-distillation, as we extensively study in §5).

3.9 Discussion

We have found that distillation’s gains in average accuracy can be at the expense of degradation in “hard”
class accuracy, which can amplify the gap between worst- and average-class performance. Given a widespread
use of distillation, we believe this systematic drop in worst class accuracy is of interest. Further, we emphasise
that this is a more worrisome phenomenon than distillation potentially not helping worst class as much as it
helps the easiest classes.

4 Improving subgroup performance via adaptive distillation methods

We now study simple means of correcting distillation to prevent the degradation of subgroup performance.
These leverage the insight that the behaviour is potentially a result of the teacher confidently mispredicting
on some subgroups. In the following, for concreteness and simplicity, we focus on subgroups that are given by
the individual classes.
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Figure 4: Logit statistics on CIFAR-100 LT, for the teacher and distilled student under a self-distillation
setup (ResNet-56 → ResNet-56). We show the statistics on 10 class buckets: these are created by sorting
the 100 classes according to the teacher accuracy, and then creating 10 groups of classes. As expected, the
student follows the general trend of the teacher model. Strikingly, we observe that the teacher model tends
to systematically confidently mispredict samples in the higher buckets, thus incurring a negative margin; such
misplaced confidence is largely transferred to the student, whose accuracy suffers on such buckets. Note that
we consider statistics on the test set.
4.1 Distillation with adaptive mixing weights

In §3.7, we saw that distillation can hurt on classes where the teacher is inherently inaccurate. Such inaccuracy
may in fact be amplified by the student, which is hardly desirable. An intuitive fix is to simply rely less on the
teacher for classes where it performs poorly, or is otherwise not confident; instead, the student can simply fall
back onto the one-hot training labels themselves. Formally, for per-class mixing weights (α1, . . . , αL) ∈ [0, 1]L,
the student can minimise

R̄dist(f) = 1
N

N∑
n=1

[
(1− αyn) · `(yn, f(xn)) + αyn ·

∑
y′∈[L]

pt
y′(x) · `(y′, f(xn))

]
. (3)

This objective introduces a mixing weight αy per-class, which allows us to weigh between teacher predictions
and one-hot labels for each class independently. By contrast, in the standard distillation setup equation 1 we
only have a single weight α that is common for all classes.

How do we choose the weights αy? In the standard distillation objective equation 1, one only needs to tune a
single scalar α, which is amenable to, e.g., cross-validation. By contrast, equation 3 involves a single scalar
for each label, which makes any attempt at grid search infeasible. Following the observations in §3.7, we
propose the following intuitive setting of αy given teacher predictions pt:

αy = max
(
0,Ex|y

[
γavg(y, pt(x))

])
(4)

γavg(y, pt(x)) .= pt
y(x)− 1

L− 1
∑
y′ 6=y

pt
y′(x). (5)

Equation 4 places greater faith in the teacher model for those classes which it predicts correctly with confidence,
i.e., with large average margin γavg. When this margin is negative — so that the teacher is incorrect on
average, which can occur on classes that are rare in the training set — we set αy = 0, and completely ignore
the teacher predictions.

The above requires estimating the expectation Ex|y [·], which requires access to a labelled sample. This may
be done using a holdout set, which we follow in our experiments. It is worth noting the limitations of such an
approach. First, such a scheme is, of course, not feasible in settings where the teacher model is used to label
a large unlabelled pool of samples. While this is an important practical setting, further study of alternate
means of mitigating the amplification of biases is required. Further, when certain data subgroups only have
very few associated samples, it may not be feasible to hold out a part of the data. This issue also affects
popular approaches for mitigating subgroup bias, e.g., Sagawa et al. (2020a). It would be of interest for
future work to develop methods not requiring a holdout set for hyperparameter estimation. Nonetheless, in
the next section we report improvements from such a scheme even for long tail datasets.

9
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4.2 Distillation with per-class margins

Our second approach for improving distillation on harder classes is to leverage recent developments in long-tail
learning, where the goal is to improve performance on rare classes. Specifically, Menon et al. (2020) proposed
a variant of the softmax cross-entropy with label margins ρyy′ :

`(y, f(x)) = log

1 +
∑
y′ 6=y

ρyy′ · efy′ (x)−fy(x)

 . (6)

Intuitively, this penalises predicting label y′ instead of y when ρyy′ is large. For training label distribution
π, Cao et al. (2019) proposed to set ρyy′ ∝ exp(π−1/4

y ), so that rare labels receive a higher weight when
misclassified. Khan et al. (2018); Ren et al. (2020); Menon et al. (2020); Wang et al. (2021) showed gains
with ρyy′ ∝ πy′

πy
, so that rare labels are not confused with common ones.

We adapt such techniques to our setting, with the intuition that we ought to increase the student penalty
for misclassifying those “hard” classes that the teacher has difficulty modeling. We thus choose ρyy′ = αy′

αy
,

where αy is the adaptive per-class mixing weight from the previous section. This discourages the model from
confusing “hard” labels y with “easy” labels y′, when αy′ > αy. To avoid a division by 0 issue, we add a
small offset to αy when it becomes 0.

We may understand the effect of Equation 6 by studying how it impacts the Bayes-optimal student model
predictions, i.e., the optimal predictions in the infinite sample limit, and without a model capacity restriction.
We have the following.
Lemma 2. Let ` be per (6), with ρyy′

.= αy′

αy
. Let f∗ be the minimiser of Rdist(f) .= Ex(pt(x))>`(f(x)).

Then, ∀x ∈ X, y ∈ [L], f∗y (x) = log pt
y(x)
αy

.

Lemma 2 illustrates that using per-class margins encourages the student to mimic the teacher predictions
pt(x), but with an important modification: we up-weight the probabilities for classes that the teacher does
poorly on (αy ∼ 0). Intuitively, this makes it easier for the student to improve performance on classes with
small teacher margin.

4.3 Relation to existing work

Previous works varied distillation supervision across examples towards improving average accuracy. Proposals
included weighting samples based on the ratio (Tang et al., 2019; Zhou et al., 2021), and difference (Zhang et al.,
2020) between student and teacher score. Similarly, Zhou et al. (2020b) proposed to only apply distillation
on samples the teacher gets correct. In our experiments, we compare against the baseline from Zhou et al.
(2021), weighting examples based on teacher and student scores.

Other techniques modifying distillation towards improved average accuracy include: going beyond logit
matching and distilling intermediate layer representations (Li et al., 2019; Sun et al., 2020), introducing
auxiliary teachers of intermediate capacity for bridging the gap between the teacher and the student (Mirzadeh
et al., 2020), distilling using a large unlabel dataset annotated by the teacher (Cotter et al., 2021), or training
the student and the teacher jointly (Zhou et al., 2017). It will be of interest for future work to understand
the impact of these techniques on the worst-class performance of the student model.

In the special case where subgroups are defined by classes, and classes have an inherent skew, methods
from the class-imbalance or long-tail learning literature are also relevant. Prominent strategies to address
this problem include techniques that modify the sampling distribution (Kubat & Matwin, 1997; Wallace
et al., 2011; Mikolov et al., 2013; Mahajan et al., 2018; Yin et al., 2018; Iscen et al., 2021), adjust the
decision threshold post-hoc (Fawcett & Provost, 1996; Provost, 2000; Maloof, 2003; King & Zeng, 2001; Collell
et al., 2016), adjust the classifier weights post-hoc (Kim & Kim, 2019; Kang et al., 2020), modify the loss
function (Xie & Manski, 1989; Morik et al., 1999; Cui et al., 2019; Zhang et al., 2017; Cao et al., 2019; Tan
et al., 2020; Ren et al., 2020; Menon et al., 2020; Wang et al., 2021), perform data-augmentation (Chawla
et al., 2002; Müller et al., 2019; Chu et al., 2020; Temraz & Keane, 2022; Zada et al., 2022), ensemble the

10
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Table 3: Summary of student’s average accuracy using one-hot and distilled labels. Worst k denotes accuracy
over the worst k classes. Global and adaptive temperatures αy selected using a held out dev set. The proposed
AdaAlpha technique improves worst class accuracy over vanilla distillation. For AdaMargin on CIFAR-100
LT we observed divergence during training, presumably due to this method being sensitive to the selection of
hyperparameters, which in turn are estimated on very small number of examples per class.

Dataset Method
Per-class accuracy statistics

Mean Worst-1 Worst-10

CIFAR-100 One-hot 73.31± 0.10 45.67± 0.94 52.12± 0.47
Distillation 75.24± 0.10 49.00± 1.63 54.65± 0.79
AdaAlpha 75.43± 0.31 49.33± 0.94 56.42± 0.88
AdaMargin 75.15± 0.30 51.33± 0.47 56.62± 0.35

ImageNet One-hot 75.94± 0.05 12.00± 1.63 21.88± 0.76
Distillation 76.14± 0.10 14.00± 1.41 21.54± 0.58
AdaAlpha 76.15± 0.16 15.50± 2.18 23.07± 0.95
AdaMargin 76.08± 0.17 15.00± 1.00 22.42± 1.06

Dataset Method
Per-class accuracy statistics

Mean Worst-1 Worst-10 Worst-100

CIFAR-100 LT One-hot 43.22± 0.05 0.00± 0.00 2.33± 0.40 N/A
Distillation 45.17± 0.15 0.00± 0.00 1.80± 0.03 N/A
AdaAlpha 48.57± 0.11 0.67± 0.47 4.20± 0.24 N/A
AdaMargin* Training diverges

ImageNet LT One-hot 45.71± 0.14 0.00± 0.00 0.00± 0.00 0.68± 0.12
Distillation 45.78± 0.08 0.00± 0.00 0.00± 0.00 0.58± 0.02
AdaAlpha 45.90± 0.18 0.00± 0.00 0.00± 0.00 0.83± 0.09
AdaMargin 45.98± 0.25 0.00± 0.00 0.00± 0.00 0.85± 0.11

Table 4: Summary of student’s accuracy using one-hot and distilled labels across teacher and student
architectures on the CIFAR-100 LT dataset. W-k denotes accuracy over the worst k classes. We find that
the proposed methods improve worst class performance in all cases.

Teacher Student Method
Per-class accuracy statistics
Mean W-10 W-20

ResNet-56 ResNet-14 One-hot 39.95 0.80 3.30
Distillation 39.53 1.30 3.35
AdaAlpha 40.34 2.00 4.00
AdaMargin 40.80 2.40 4.80

ResNet-32 ResNet-14 One-hot 39.95 0.80 3.30
Distillation 39.84 1.20 3.00
AdaAlpha 40.21 1.70 3.95
AdaMargin 40.16 2.20 4.80

ResNet-14 ResNet-14 One-hot 39.95 0.80 3.30
Distillation 40.51 0.00 2.05
AdaAlpha 40.79 0.80 2.45
AdaMargin 41.26 1.20 3.70

base classifier (Fan et al., 1999; Chawla et al., 2003; Galar et al., 2012; Sharma et al., 2020; Zhou et al.,
2020a), perform reinforcement-learning (Fan et al., 2021), and attach exits for weighting examples by how
confidently they are predicted by the intermediate layers (Duggal et al., 2020). We refer the reader to Zhang
et al. (2021) for a more comprehensive survey of recent works.

While the above techniques are typically devised in a non-distillation setup, one may nonetheless consider
adapting them when training the student model; e.g., one may ensemble many distilled student models in
hopes of reducing any degradation on tail classes. We emphasise however that the long-tail learning setup is
only one instance of the problem considered in this work, wherein the data comprises subgroups that may
have perfectly balanced frequencies (e.g., the standard CIFAR and ImageNet datasets considered above). Many
of the above strategies are not immediately applicable in such cases (e.g., strategies that require adjusting
the sampling distribution based on frequency would correspond to standard uniform sampling).

5 Results for adaptive distillation methods

We now present results that further corroborate the potential non-uniform gains of distillation, and the ability
to mitigate this with the techniques of the previous section. We emphasise here that our goal is expressly not
to improve over the state-of-the-art in distillation techniques; rather, we wish to verify the key principles
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Table 5: Comparing the Ada* approaches against Zhou et al. (2021): a method weighting examples in
distillation based on teacher and student scores. Worst-k denotes accuracy over the worst k classes. We find
that Zhou et al. (2021) is competitive in terms of improving the mean accuracy, but, contrary to the Ada*
methods, does not mitigate the issue of distillation harming accuracy over the worst classes.

Dataset Method
Per-class accuracy statistics

Mean Worst-1 Worst-10 Worst-100

CIFAR-100 One-hot 73.31± 0.10 45.67± 0.94 52.12± 0.47 N/A
Distillation 75.24± 0.10 49.00± 1.63 54.65± 0.79 N/A
Zhou et al. (2021) 75.74± 0.20 50.33± 0.47 54.93± 0.34 N/A
AdaAlpha 75.43± 0.31 49.33± 0.94 56.42± 0.88 N/A
AdaMargin 75.15± 0.30 51.33± 0.47 56.62± 0.35 N/A

ImageNet LT One-hot 45.71± 0.14 0.00± 0.00 0.00± 0.00 0.68± 0.12
Distillation 45.78± 0.08 0.00± 0.00 0.00± 0.00 0.58± 0.02
Zhou et al. (2021) 46.02± 0.13 0.00± 0.00 0.00± 0.00 0.56± 0.00
AdaAlpha 45.90± 0.18 0.00± 0.00 0.00± 0.00 0.83± 0.09
AdaMargin 45.98± 0.25 0.00± 0.00 0.00± 0.00 0.85± 0.11

identified in the preceding study, which considers distillation from a novel angle (i.e., in terms of subgroup
rather than average performance).

Setup. We report results on the datasets used in §3: CIFAR-100, ImageNet; and long-tailed (LT) versions
of the same. For brevity, we report results under self-distillation. (For results with varying architectures,
see the Appendix.) Thus, for each dataset, we train a one-hot teacher ResNet model, which is distilled to a
student ResNet of the same depth. We use ResNet-56 models for CIFAR, and ResNet-50 models for all other
datasets. We employ the same hyper-parameters as used in §3, except we use non-early stopped teachers for
consistency across datasets; see the Appendix for details.

We compare: (i) one-hot training of the student (ii) standard distillation, i.e., minimising Equation 1
(iii) AdaAlpha, our proposed distillation objective with adaptive mixing between one-hot and teacher
labels Equation 3, and α as per Equation 4 (iv) AdaMargin, our proposed distillation objective with
adaptive margins (Equation 6), and ρyy′ = αy′

αy
. For each method, we report: (i) the standard mean accuracy

over all classes; (ii) the accuracy over the worst-1 class; and (iii) the mean accuracy over worst-10 (and
worst-100 for the LT datasets) classes.

For the Ada-* methods, per §4, creating the label-dependent αy requires estimating the teacher’s generalisation
performance. To do this, we create a random holdout split of the training set. For non-LT datasets, we
randomly split into 80% (new train) – 20% (dev). For LT datasets, for each class we hold out k examples
into the dev set (k = 50 for Imagenet-LT, k = 20 for CIFAR-100-LT), or half of examples for a class if the
total number of per class examples is ≤ 2k. We train an initial teacher on the new train slice of data, and
estimate its per-class performance on the holdout dev slice. We then estimate αy as per, e.g., Equation 4.

Table 3 summarises the results for all methods. We make the following observations.

AdaAlpha improves mean accuracy over distillation. The proposed AdaAlpha method consistently
improves standard mean accuracy over vanilla distillation. Thus, AdaAlpha does not sacrifice distillation’s
gains on average class performance, which is desirable. We note that while the improvement is not significant
for most scenarios, our main goal is in improving the worst-accuracy; thus, even a slight improvement in
mean accuracy is an additional desirable outcome. Other techniques sometimes perform slightly worse than
standard distillation on this metric; however, as we now see, this is compensated by gains on other important
dimensions.

AdaAlpha improves worst-accuracy over distillation. The proposed method consistently improves the
worst-class accuracy compared to standard distillation: thus, the technique largely fulfills their design goal of
improving performance on “hard” classes. Contrasting this observation, notice on ImageNet-LT dataset how
Zhou et al. (2021) can improve average accuracy, obtaining the best mean accuracy, however at the cost of
worsened worst-classes accuracy, as shown in Table 5. Finally, we notice that the improvement on the worst
classes is much more significant than on average for AdaAlpha. This is expected and desirable, as we set out
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to target the former in this work. Significantly improving both the worst and average class accuracies would
be a desirable future work.

Comparison of AdaAlpha and AdaMargin. In the Appendix, we report per class statistics for CIFAR-
100 LT. AdaMargin flattens both the margin and log-loss distributions, reducing confidence on the poorly
classified, tail classes. AdaAlpha consistently increases log-loss across classes, and improves margins on few
buckets, leading to a positive margin on one bucket where all other methods give negative margins. Intuitively,
AdaMargin tries to more aggressively control the worst-class accuracy; when this succeeds, there is a large
payoff, but there is also greater risk of overfitting. In Appendix C.6, we confirm that the success of AdaAlpha
is not immediately replicated by simpler baselines such as shuffling temperatures and removing distillation
from the hardest labels.

Varying teacher and student architectures In Table 4 we vary the teacher and student architectures
in the distillation experiments on the CIFAR-100 LT dataset. We find that the Ada* methods improve the
worst class performance in all cases. Particularly the AdaMargin method proves effective, and improves both
the average and the worst-10 accuracy by the highest margin.

6 Discussion and future work

Our goal of ensuring equitable performance across classes can be seen as encouraging fairness across subgroups
defined by the classes. This is subtly different to the classical fairness literature (Calders & Verwer, 2010;
Dwork et al., 2012; Hardt et al., 2016), wherein the subgroups are defined by certain sensitive attributes.
Broadly, fairness techniques attempt to learn models that predict the target label accurately, but the subgroup
label poorly; these are inadmissible for our setting, wherein the two labels exactly coincide. Ensuring fairness
across subgroups defined by the classes has been studied in Mohri et al. (2019); Williamson & Menon (2019);
Sagawa et al. (2020a). Adapting such algorithms to the distillation setting is of interest for future work. More
broadly, furthering the understanding of when distillation can hurt under-represented subgroups is of interest.
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A Proofs

Proof of Lemma 2. We may write

`(y, f(x)) = log

1 +
∑
y′ 6=y

αy′

αy
· efy′ (x)−fy(x)


= log

1 +
∑
y′ 6=y

elnαy′−lnαy · efy′ (x)−fy(x)


= log

1 +
∑
y′ 6=y

ef̄y′ (x)−f̄y(x)


= − log ef̄y(x)∑

y′∈[L] e
f̄y′ (x)

,

where f̄y(x) .= fy(x) + lnαy. The population loss is

Rdist(f) = Ex
[
(pt(x))>`(f(x))

]
= Ex

[
KL(pt(x) ‖ p̄s(x))

]
,

where p̄s
y(x) ∝ exp(f̄y(x)). Thus, at optimality we must have p̄s(x) = pt(x), or f̄y(x) = log pt

y(x). By
definition of f̄ , we thus see that fy(x) = log pt

y(x)− logαy = log pt
y(x)
αy

.

B Details of experiments

B.1 Architecture

We use ResNet with batch norm (He et al., 2016) for all our experiments with the following configurations.
For CIFAR, we experiment with ResNet-56 and ResNet-32. For ImageNet, we use ResNet-50. We list the
architecture configurations in terms of (nlayer, nfilter, stride) corresponding to each ResNet block in Table 6.

Architecture Configuration: [(nlayer, nfilter, stride)]

CIFAR ResNet-32 [(5, 16, 1), (5, 32, 2), (5, 64, 2)]
CIFAR ResNet-56 [(9, 16, 1), (9, 32, 2), (9, 64, 2)]
ImageNet ResNet-18 [(2, 64, 1), (2, 128, 2), (2, 256, 2), (2, 512, 2)]
ImageNet ResNet-34 [(3, 64, 1), (4, 128, 2), (6, 256, 2), (3, 512, 2)]
ImageNet ResNet-50 [(3, 64, 1), (4, 128, 2), (6, 256, 2), (3, 512, 2)]*

Table 6: ResNet Architecture configurations used in our experiments (He et al., 2016). [*] Note that ImageNet
ResNet-50 uses larger blocks with 3 convolutional layers per residual block compared to ResNet-18 and 34.
We refer to He et al. (2016) for more details.

B.2 Training set

For all datasets, we train using SGD and weight decay 10−4 for CIFAR, and 0.5× 10−4 for Imagenet datasets.
We have the following dataset specific settings.

CIFAR-100. We train for 450 epochs with an initial learning rate of 1.0, with a linear warmup in the first
15 epochs, and an annealed learning rate schedule. We drop the learning rate by a factor of 10 at epochs
number: 200, 300 and 400. We use a mini-batch size of 1024. We use SGD with Nesterov momentum of 0.9.
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Figure 5: Logit statistics for ResNet-50 self-distillation on ImageNet, for the (early-stopped) teacher, self-
distilled student, and one-hot (non-distilled) student. Per Figure 4, we first create 10 class buckets. We
zoom in on the “tail” bucket (comprising the 100 “hardest” classes), and further split them into 10 “tail
sub-buckets”. As in Figure 4, the teacher is seen to confidently mispredict most samples on the last few
buckets, with such misplaced confidence being transferred to the student.

For our distillation experiments we train only with the cross-entropy objective against the teacher’s logits.
For each method we find the best temperature from the list of values: {1, 2, 3, 4, 5}.

ImageNet. We train for 90 epochs with an initial learning rate of 0.8, with a linear warmup in the first
5 epochs, and an annealed learning rate schedule. We drop the learning rate by a factor of 10 at epochs
number: 30, 60 and 80. We use a mini-batch size of 1024.

For our distillation experiments we train with the distillation objective as defined in Equation 1 setting
α = 0.2. For each method we fix the temperature to 0.9.

Long-tail (LT) datasets. We follow setup as in the non-long tail version, except for the learning rate
schedule, which we change to follow the cosine schedule (Loshchilov & Hutter, 2017).

C Additional Experiments

We present additional experiments to those in the body.

C.1 Further varying datasets and model architectures

On Imagenet, we summarise statistics for three models: the early-stopped teacher, distilled student, and the
one-hot (non-distilled) student. As with CIFAR-100-LT, we sort classes by teacher accuracy, and bucket them
into 10 groups. Owing to the larger number of labels, we further zoom into the “tail” bucket (comprising the
100 “hardest” classes), and split them into 10 sub-buckets. From Figure 5, the distilled student performs
worse than its one-hot counterpart on the last bucket; this is in keeping with our results in Table 3.1.

Figure 6 shows logit statistics for additional settings to considered in the body. On ImageNet-LT, e.g., we
see again that the margin of the teacher model systematically worsens and becomes negative on the hardest
classes.

In Table 7 we report results from the inherently long-tailed iNaturalist 2018 dataset (Van Horn & Perona,
2017). Our observations made for other considered datasets hold: adaptive margin method improves over
both one hot and plain distillation in terms of the worst class accuracy. We also observe, how the average
accuracy improves.

C.2 Logit plots under Ada-* methods

Figure 8 shows the logit statistics under the proposed AdaMargin and AdaAlpha methods on CIFAR-100 LT.
We see that AdaMargin can generally improve the student margin and accuracy on the hardest classes, while
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Figure 6: Logit statistics for the teacher, student with one-hot labels, and student with distilled labels across:
datasets and architectures.
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Figure 7: Per-class accuracies for one-hot and self-distilled ResNet-18 (left) and ResNet-34 (right) on
ImageNet. The diagonal denotes classes where both models achieve the same accuracy. Distillation tends to
worsen performance on “hard” classes for the one-hot model, i.e., those with low accuracy (red rectangle).

also reducing the log-loss. This confirms that the gains of the method come from improving behaviour of the
scores on these hard classes.

C.3 Results on Adult dataset

We report the results of an experiment on the UCI Adult dataset. This data comprises ∼ 48K examples,
with the target being a binary label denoting whether or not an individual has income ≥ 50K. The data is
mildly imbalanced, with 24% of samples being positive.
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Method
Per-class accuracy statistics

Mean Worst 20 Top 20% ∆20

One-hot 53.00 5.00 100.00 48.00
Distill 52.67 5.00 100.00 47.67
AdaMargin 53.33 8.33 98.33 45.00
AdaAlpha avg 54.67 13.33 100.00 41.33

Table 7: Self-distillation experiments (from Resnet-50 to Resnet-50) on the iNaturalist dataset Van Horn
et al. (2018) with student’s average accuracy using one-hot and distilled labels. Worst 20 denotes accuracy
averaged over worst 20 classes ∆20 denotes the difference between the mean accuracy and the worst 20
classified classes. The proposed AdaMargin technique improves mean and worst-class accuracy over both
one-hot training and standard distillation.
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Figure 8: Logit statistics for ResNet-56 self-distillation on CIFAR-100 LT, for the teacher, self-distilled
student, and our adaptive methods. Per Figure 4, we create 10 class buckets. AdaMargin flattens both the
margin and log-loss distributions. AdaAlpha increases log loss across classes, while improving margins on few
buckets, including flipping the bucket 5 to have positive margin.

Inspired by Dao et al. (2021), we consider a random forest based distillation setup: we use a teacher model
that is a random forest classifier comprising 500 trees with a maximum depth of 20, and a student model
that is a random forest regressor comprising 1 tree with a maximum depth of 20. The teacher model achieves
a test (balanced) accuracy of 81.8%.

We perform distillation by feeding the student model the teacher’s prediction scores, mixed in with the
binary training labels with a weight α = 0.9. Distillation improves the student’s overall (balanced) accuracy
significantly, from 76.2% to 79.3%. However, this gain is not distributed uniformly: using per-label subgroups,
we find that distillation helps the positive class by +7.4%, but hurts the negative class by −1.2%. While
by itself suggestive of asymmetry in distillation performance, the data admits an arguably more natural
subgroup creation, based on available sex and sex features. For example, we find that amongst low-income
males, distillation hurts by −2.2%; further restricting to those who are Asian Pacific-Islander, the degradation
is −5.9%. This confirms that in scenarios where fairness may be a consideration, a naïve application of
distillation may be inadmissible.

C.4 Analysis of regularisation samples

Recently, Zhou et al. (2021) proposed the notion of regularisation samples to understand how distillation’s
performance can be improved. In brief, such samples correspond to cases where the teacher’s prediction on the
training label is less than the distilled student’s prediction on this label; these may be shown to correspond
to cases where a certain notion of “variance reduction” dominates a notion of “bias reduction”. Given our
analysis above of the asymmetric effects of distillation on certain subgroups, it is natural to consider whether
or not these relate to the presence of regularisation samples in these groups.
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Table 8: Difference between distillation and one-hot performance on Adult dataset. Here, subgroups are
defined by the sex and label. ∆ refers to the difference between the distilled and one-hot student’s accuracy
on the subgroup.

sex label ∆
Male 0 -2.222
Female 0 0.393
Female 1 2.373
Male 1 8.384

Table 9: Difference between distillation and one-hot performance on Adult dataset. Here, subgroups are
defined by the sex, race, and label. ∆ refers to the difference between the distilled and one-hot student’s
accuracy on the subgroup.

race sex label ∆
Amer-Indian-Eskimo Female 1 -66.667
Asian-Pac-Islander Male 0 -5.941
Other Male 0 -4.347
Black Female 1 -2.381
White Male 0 -2.248
Black Male 0 -1.639
Black Female 0 -0.140
Asian-Pac-Islander Female 0 0.000
White Female 0 0.388
Other Female 0 2.439
White Female 1 2.724
Amer-Indian-Eskimo Female 0 6.349
Amer-Indian-Eskimo Male 0 6.493
Asian-Pac-Islander Female 1 7.692
White Male 1 7.796
Black Male 1 9.489
Other Male 1 15.000
Asian-Pac-Islander Male 1 19.626
Other Female 1 20.000
Amer-Indian-Eskimo Male 1 25.000

Figure 9(a) visualises the distribution of regularisation samples inside subgroups defined by 10 label buckets.
where the labels are sorted in descending order of label frequency. Here, we compare the predicted probabilities
of the teacher and final distilled student models on all training samples (as was done in the analysis of Zhou
et al. (2021)). Interestingly, we see that the tail buckets tend to have very few regularisation samples; i.e., for
rare labels, the teacher prediction on the training label is generally higher than that of the distilled student
model. We confirm this in Figure 9(b).

While the analysis of Zhou et al. (2021) was primarily for training samples — since the aim in identifying
regularisation samples was to mitigate their influence during training — we may also identify the breakdown
of such samples on test data. Figure 10(a) shows that, compared to the training set, there are in absolute
terms more such samples across nearly every label bucket; however, there is again no clear correlation between
the label bucket and the fraction of such samples. In particular, the tail bucket is again the one with the
fewest regularisation samples. This is corroborated by the probability scores of the teacher and student in
Figure 10(b).
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Figure 9: Study of regularisation samples on training set, CIFAR-100 LT.
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Figure 10: Study of regularisation samples on test set, CIFAR-100 LT.

Method
Per-class accuracy statistics
Mean Worst 10 Top 10% ∆10

One-hot 44.16 3.00 87.70 41.16
Distillation 1× 45.49 0.90 88.10 44.59
Distillation 2× 45.22 0.00 88.40 45.22
Distillation 3× 44.80 0.00 87.60 44.80

Table 10: Results of repeated distillation on CIFAR-100 LT. Using a distilled student as teacher for a
subsequent round of distillation is seen to further hurt worst-class accuracy.

Overall, this results suggest that the existing notion of regularisation samples may not, by themselves, be
sufficient to predict the poor performance of distillation on certain subgroups defined by labels.

C.5 Impact of repeated distillation

In the body, we showed that performing distillation once can harm worst-class accuracy. However, what is
the effect of repeating this process, and distilling using the resulting student as a new teacher? Does the
worst-class accuracy get further harmed?

Table 10 shows that on CIFAR-100 LT, repeating distillation can indeed harm worst-class performance, even
though average performance remains roughly similar. This further highlights the potential tension between
average and worst-case performance under distillation.
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Table 11: Ablations of design choices in the proposed methods: 1) remove distillation signal from the bottom
10% of classes, according to confidence; 2) randomly shuffle per-class α values; 3) weight distillation based on
student and teacher confidence Zhou et al. (2021).

Dataset Method
Per-class accuracy statistics

Mean Worst-1 Worst-10

CIFAR-100 AdaAlpha 75.52± 0.10 49.33± 3.09 56.59± 0.44
remove hardest 10% 75.40± 0.04 48.33± 1.89 55.79± 1.19
shuffle temperatures 74.56± 0.93 46.00± 1.91 53.10± 1.22
Zhou et al. (2021) 75.74± 0.20 50.33± 0.47 54.93± 0.34

C.6 Additional ablations

We confirm that the success of AdaAlpha is not immediately replicated by simpler baselines: (i) remove
hardest 10%, which removes the distillation loss component on bottom 10% labels according to the per
class margins found using Equation 4. It helps analyze whether there is any additional gain beyond simply
removing teacher’s supervision where it is arguably wrong. (ii) shuffle temperatures, which randomly shuffles
the per-class αy values used in AdaAlpha. This determines whether the precise choice of which labels to up-
or down-weight is important; (iii) the adaptive distillation scheme of Zhou et al. (2021), where distillation is
weighted differently across examples depending on the teacher and student scores.

In Table 11, we find that the first two methods work worse than the proposed AdaAlpha method, indicating
that the precise choice of which labels to up- or down-weight is important, and that it does not suffice to
merely ignore the teacher on entire subgroups.

D Theoretical analysis

Consider the kernel ridge regression problem:

min
fw∈H

N∑
n=1

(fw(xn)− yn)2 + λ‖w‖22, (7)

where H = {fw : x 7→ w>Φ(x) | w ∈ `2}. Let the kernel function k(x,x′) = Φ(x)>Φ(x′), and let K ∈ RN×N
be the kernel matrix with Kij = k(xi,xj). Let f∗ denote the minimizer of equation 2, and f∗ be the vector
with f∗n = f∗(xn). Then f∗ = K(K + λ · IN )−1y, where y is the vector of targets with yn = yn.

Now suppose K admits an eigendecomposition V>DV, where V is an orthonormal and D a diagonal matrix.
Consequently,

f∗ = V>D [D + λ · IN ]−1 Vy = V>AVy, (8)

where A = D [D + λ · IN ]−1. From Mobahi et al. (2020), we know that using the predictions of f∗ for
distillation results in a solution

fdist = V>A2Vy. (9)

Recall that we consider the following data distribution for our analysis. Let oi, i ∈ [L] be L orthonormal
vectors in RD corresponding to the input representation xi from different subgroups L. Let each subgroup
have di number of examples indicating the subgroup frequency. In this setting the kernel matrix (Kij = x>i xj)
has a block diagonal structure, with blocks of ones size di × di.
Claim 3. Let oi, i ∈ [L] be L orthonormal vectors in RD. Let d1, · · · , dL be positive integers and N =

∑L
i=1 di.

Let the dataset {xi}i∈[N ] consist of di samples of vi,∀i. Then the eigenvalues of the N ×N kernel matrix K
(where Kij = x>i xj), are {di}i∈[L].
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Proof of Theorem 1. Observe that the regression error is

‖f∗ − y‖2 = ‖V>AVy− y‖2

= ‖V>AVy−V>Vy‖2 + ‖V>⊥V⊥y‖2

= ‖V>(A− I)Vy‖2 + ‖V>⊥V⊥y‖2

Here, V⊥ is the basis of the subspace orthogonal to V such that V>V + V>⊥V⊥ = I. Note that ‖V>⊥V⊥y‖2
corresponds to the error in subspace orthogonal to the kernel. Hence, this error is same for all the models.

Let Mi denote the subset of data points from subgroup i. The mean error component in the subspace of
examples from subgroup i is

1
di

∑
k∈Mi

‖V>k (A− I)Vy‖2 = 1
di

∑
k∈Mi

(
di

di + λ
− 1
)2

y2
k

=
(

λ

di + λ

)2
ȳ2
i .

Here ȳ2
i = 1

di

∑
k∈Mi

y2
k is the mean subgroup label. The above equations follow from noting that the

eigenvectors of examples from subgroup i (Vi) are non-zero ( 1√
di
) only for the indices corresponding to

examples in subgroup and zero everywhere else.

Recall that the predictions after one round of self distillation are fdist = V>A2Vy. Hence, we can similarly
compute the mean error of subgroup i after distillation as follows:

1
di

∑
k∈Mi

‖V>k (A2 − I)Vy‖2 = 1
di

∑
k∈Mi

(
d2
i

(di + λ)2 − 1
)2

y2
k

=
(
λ2 + 2λdi
(di + λ)2

)2

ȳ2
i .

Hence,

εi − εdist
i =

(
λ

di + λ

)2
ȳ2
i −

(
λ2 + 2λdi
(di + λ)2

)2

ȳ2
i

=
(
λ2(di + λ)2 − (λ2 + 2λdi)2

(di + λ)4

)
ȳ2
i

=
(
λ4 + λ2d2

i + 2λ3di − (λ4 + 4λ2d2
i + 4λ3di)

(di + λ)4

)
ȳ2
i

=
(
−3λ2d2

i − 2λ3di)
(di + λ)4

)
ȳ2
i .

We can show that if λ <
√
didj , then

εi − εdist
i =

(
−3λ2d2

i − 2λ3di)
(di + λ)4

)
>

(
−3λ2d2

j − 2λ3dj)
(dj + λ)4

)
= εj − εdist

j .
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