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Summary
Cyber resilience is the ability of a system to recover from an attack with minimal impact

on system operations. However, characterizing a network’s resilience under a cyber attack
is challenging, as there are no formal definitions of resilience applicable to diverse network
topologies and attack patterns. In this work, we propose a quantifiable formulation of re-
silience that considers multiple defender operational goals, the criticality of various network
resources for daily operations, and provides interpretability to security operators about their
system’s resilience under attack. We evaluate our approach within the CybORG environment,
a reinforcement learning (RL) framework for autonomous cyber defense, analyzing trade-offs
between resilience, costs, and prioritization of operational goals. Furthermore, we introduce
methods to aggregate resilience metrics across time-variable attack patterns and multiple net-
work topologies, comprehensively characterizing system resilience. Using insights gained
from our resilience metrics, we design RL autonomous defensive agents and compare them
against several heuristic baselines, showing that proactive network hardening techniques and
prompt recovery of compromised machines are critical for effective cyber defenses.

Contribution(s)
1. Formulation of a quantifiable resilience metric for autonomous cyber defense. The proposed

metric captures the temporal evolution of system resilience as the attack progresses.
Context: Prior work on resilience in the cyber defense domain are mostly qualitative
discussions about generic system functionality in time (Huang et al., 2022; Zhao et al.,
2022; Ligo et al., 2021; Linkov et al., 2023; Kott & Linkov, 2018; Fleming et al., 2021).

2. The proposed metric allows defenders to prioritize different objectives, such as confiden-
tiality, availability, and integrity, and certain services, according to their operational goals.
Context: Prior work discussing operational goals of confidentiality, integrity and availabil-
ity in cyber environments is not formulating, evaluating or prioritizing them in the context
of network resilience (Wiebe et al., 2023).

3. We develop new PPO-based defender agents that are trained to be proactive and to react
quickly to attacks in the network. We demonstrate how these characteristics increase the
resilience of a system under attack using the CybORG environment (Standen et al., 2021).
Context: Prior work on autonomous cyber defense has not studied the impact of proactive
and reactive defense characteristics on system resilience (Wiebe et al., 2023; Standen et al.,
2021; Hammar et al., 2024).

4. We show how our resilience metric can be aggregated over multiple attack patterns and
multiple network topologies to provide a comprehensive evaluation of the resilience of the
system across various settings.
Context: Weisman et al. (2025) presents results for autonomous vehicles, where markers
of resilience like fuel efficiency are averaged over multiple runs. Our analysis studies addi-
tional levels of aggregation such as clustering of resilience evolution patterns.
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Abstract

Cyber resilience is the ability of a system to recover from an attack with minimal impact1
on system operations. However, characterizing a network’s resilience under a cyber at-2
tack is challenging, as there are no formal definitions of resilience applicable to diverse3
network topologies and attack patterns. In this work, we propose a quantifiable formu-4
lation of resilience that considers multiple defender operational goals, the criticality of5
various network resources for daily operations, and provides interpretability to security6
operators about their system’s resilience under attack. We evaluate our approach within7
the CybORG environment, a reinforcement learning (RL) framework for autonomous8
cyber defense, analyzing trade-offs between resilience, costs, and prioritization of op-9
erational goals. Furthermore, we introduce methods to aggregate resilience metrics10
across time-variable attack patterns and multiple network topologies, comprehensively11
characterizing system resilience. Using insights gained from our resilience metrics, we12
design RL autonomous defensive agents and compare them against several heuristic13
baselines, showing that proactive network hardening techniques and prompt recovery14
of compromised machines are critical for effective cyber defenses.15

1 Introduction16

Cyber attacks can cause massive economic damage to an organization, lead to loss of information17
and privacy, and adversely affect all aspects of our society. Although techniques for defending18
cyber networks against attacks have been studied for a long time, rigorous methods to evaluate the19
impact of attacks on a system and its operations are generally lacking (Fleming et al., 2021). Cyber20
resilience, the ability of a system to resist and recover from a compromise, has been gaining attention21
as a key property of systems in cyber defense (Kott & Linkov, 2021; Linkov et al., 2023; Weisman22
et al., 2025). However, quantifying cyber resilience is challenging, as it involves trade-offs between23
different security and operational objectives and their associated costs.24

A resilient system must be able to absorb and mitigate the effect of an attack and adapt quickly to new25
threats. With recent developments in autonomous cyber operations, reinforcement learning (RL)26
provides the appropriate framework to design adaptive and optimal defense strategies. Autonomous27
solutions have the potential to reduce the burden on security operators when dealing with large28
search spaces over computer network features that contain vulnerabilities and entry points of attacks.29
Typically, RL-based autonomous defenses are evaluated by their cumulative returns (Vyas et al.,30
2023; Mcdonald et al., 2024; Hammar et al., 2024), but their impact on resilience in cyber networks31
has not been studied.32

In this paper, we define and evaluate new resilience metrics for cyber networks that generalize to33
multiple network topologies and attack patterns, provide interpretability to security operators, and34
support multiple resilience objectives as prioritized by defenders. We use the insights provided by35
resilience metrics to develop new RL-based defensive agents that incorporate both proactive actions36
and prompt recovery of detected threats. In more detail, our main contributions are as follows:37
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• Quantifying resilience: We provide a quantifiable formulation of resilience that takes into ac-38
count the operational goals of the defender (such as confidentiality, integrity, and availability) and39
the criticality of various network resources. We evaluate our metric using an operational workflow40
simulated in CybORG (Standen et al., 2021), a state-of-the-art cybersecurity RL environment.41

• Attacks evolving over time: We show how to evaluate resilience over time to gain insights about42
evolving attack patterns and system defenses, such as: Did the attack ever ramp up or was the43
defense able to absorb the compromise? How long did the system take to recover? Which defenses44
provide better resilience and faster response?45

• Balancing operational goals and costs: We show empirically how security operators can assess46
and balance the resilience of their network based on operational priorities and costs. We measure47
resilience in various situations of interest, such as when the availability of resources is prioritized48
over other objectives to provide uninterrupted service.49

• Aggregation across attack patterns and topologies: We show how our resilience metric can be50
aggregated over multiple attack patterns and multiple network topologies to provide a comprehen-51
sive evaluation of the resilience of the system in various settings.52

• Resilient RL defense strategies: We develop new PPO-based blue agents with resilience in mind.53
Our agents learn proactive network hardening strategies (such as deploying decoys on hosts to fend54
attackers) and reactive strategies (such as promptly restoring compromised machines to limit the55
attacker’s movement through the network). We show that our RL agents are significantly more56
resilient than other heuristic agents across a wide range of attacks and network topologies.57

2 Prior Work58

Before taking a closer look at related research, it is worth noting that resilience has been exten-59
sively studied in various disciplines, including engineering, biology, and economics. Hosseini et al.60
(2016) undertake a review of almost 150 research articles on quantifying resilience in several fields.61
In Table 1, we present the most relevant papers on cyber resilience. During the last decade, sev-62
eral studies have looked at resilience assurances for critical infrastructure, such as electrical power63
plants (Francis & Bekera, 2014), chemical plants (Rieger, 2014), or isothermal reactors (Segovia64
et al., 2020). These systems are usually modeled mathematically using linear equations based on the65
stability evolution of the specific physical process, a formulation that is orthogonal to our study.66

Fleming et al. (2021) recognized the importance of a systematic and rigorous method to manage67
the complexity of resilience, and developed the mission-aware cybersecurity framework. Similarly,68
Beling et al. (2021) proposed the Framework for Operational Resilience in Engineering and System69
Test (FOREST), a methodology to assess how well the resilience solution discovers and responds to70
attacks. These frameworks offer valuable guidelines, but without concrete mathematical formula-71
tion or quantitative tests of system resilience. The basis for the assessment of cyber resilience in the72
literature is a time-dependent system performance function, F (t), represented as a transition curve73
of system performance (Fang et al., 2016; Kott & Linkov, 2018; Linkov et al., 2023). In this repre-74
sentation, a more resilient system would exhibit a greater area under the curve (AUC). Resilience is75
therefore defined as the functionality averaged over the time of the mission. Kott & Linkov (2021)76
point out that such a generic definition of resilience is insufficient. In order to provide a viable re-77
sponse consisting of identifying the threat, containing it, and recovering from the disruption, it is78
necessary to define and quantify functionality with respect to operational goals.79

The use of RL as a feedback mechanism for designing resilient systems has seen a surge in interest in80
recent years (Huang et al., 2022; Ligo et al., 2021; Zhao et al., 2022). RL policies learn to choose the81
actions that optimally improve their expected return, but defining and measuring the resilience of the82
system remains a challenge. The work of Weisman et al. (2025) is one of the very few experimental83
studies that uses a simulated testbed to collect measurements of resilience-relevant metrics, namely84
the fuel efficiency and speed of a truck under attack. Closer to our setting of interest, cyber networks,85
Wiebe et al. (2023) use the CybORG simulation framework to evaluate the amount of compromise86
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Table 1: Related work on cyber resilience.

Paper Qualitative
discussion

Mathematical
formulation

Quantitative
evaluation RL Objectives of interest

for resilience

Our work ✓ ✓ ✓ ✓ confidentiality,
availability, integrity

Weisman et al.
(2025)

✓ ✓ ✓ ✓ fuel efficiency of trucks

Wiebe et al. (2023) ✓ ✓ confidentiality,
availability, integrity

Huang et al. (2022);
Zhao et al. (2022);
Ligo et al. (2021)

✓ ✓ functionality

Linkov et al. (2023);
Kott & Linkov
(2018)

✓ ✓ functionality

Fleming et al. (2021) ✓ mission goals
Fang et al. (2016) ✓ ✓ ✓ network link repair time
Segovia et al. (2020) ✓ ✓ ✓ operating pressure

(isothermal reactor)
Francis & Bekera
(2014)

✓ ✓ ✓ number of customers
receiving electric power

Rieger (2014) ✓ ✓ ✓ product quality and
waste (chemical plant)

in a network under attack. In this scenario, the attacker’s goal is to restrict the availability of services87
and affect the confidentiality and integrity of data. However, the authors do not study the connection88
between these metrics and network resilience.89

In this paper, we provide a formal definition of resilience for cyber networks under attack, that prior-90
itizes the defender objectives and captures the attack time evolution. To the best of our knowledge,91
we are the first to propose a quantifiable resilience metric in the cyber domain, and use this metric92
to perform an in-depth comparative analysis of various defenses for achieving system resilience.93

3 Problem Statement94

Cyber networks are private network infrastructures of an organization designed to connect and man-95
age devices, servers and applications. Cyber networks consist of multiple sub-networks (or subnets)96
to optimize performance, security, and management of resources. Examples of subnets are: client97
subnets including host devices such as desktops and laptops, and server subnets dedicated for critical98
enterprise servers, such as authentication, application, and database servers. An example of a cyber99
network topology is given in Figure 1, which includes three client subnets (Subnets 0, 1, and 2),100
and one server subnet (Subnet 3). In cyber defense, the defender’s goal is to maintain the network101
operations, even when confronted with unforeseen attacks. In particular, user and application work-102
flows must remain operational and ensure that network resources, applications, and users interact103
efficiently and securely to complete their regular tasks. We consider a case study workflow of an104
employee payroll system, in which employees connect to the web front end, log in using authen-105
tication credentials to submit their working hours, and retrieve data from the database server (e.g.,106
payslips).107

Adversarial objectives. A cyber attack attempts to exploit network vulnerabilities and compromise108
host or server machines on the network to achieve specific adversarial objectives, such as:109
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1. Confidentiality: The attacker obtains access to sensitive data, such as employee records that110
include private personal information or confidential financial documents.111

2. Availability: The attacker prevents users from achieving their operational goals by stopping an112
important service or overloading critical paths in the network. For instance, employees might113
not be able to submit their time sheets if the Database server is offline, or are logged out from114
important organization services if the Authentication server is not responsive.115

3. Integrity: The attacker is interested in modifying data stored on a host or server, such as the116
company’s financial records.117

Host-S0-0

Subnet 0 Subnet 1 Subnet 2 Subnet 3

Auth 
Server

Database 
Server

Front Web 
Server

Host-S2-1

Host-S2-0

Host-S2-k

Host-S0-1

Host-S0-i

Host-S1-0

Host-S1-1

Host-S1-j

… … …

Critical 
services

Attacker’s 
path

Non-
compromised 
hosts

Compromised 
hosts

Possible user 
connections

Figure 1: Topology of a cyber network, consisting of four subnets with a variable number of user ma-
chines and three critical servers for authentication, database and front web interface. The attacker’s
goal is to gain access to sensitive information (Confidentiality objective). The attacker establishes
foothold in the network by compromising Host-S0-0 in Subnet 0, then moves laterally by compro-
mising Host-S1-1 and Host-S2-k in Subnets 1 and 2, and finally compromises the Database server.

Cyber attacks consist of multiple stages over time, with an example shown in Figure 1. Typically an118
attack starts with establishing foothold in the network by compromising a particular host, and then119
propagates through the network to get to the target server. The figure shows a red path in the network120
from the initial compromised host to the Database server, for an adversary interested in exfiltrating121
employee records from the Database server (Confidentiality objective).122

RL-based defenses. Recently, there has been an increasing interest in automating cyber defense123
strategies using RL-based agents (Wiebe et al., 2023; Hammar et al., 2024). To model the inter-124
action between attackers and defenders, we use a state-of-the-art RL cybersecurity environment,125
CybORG (Standen et al., 2021; Kiely et al., 2023; TTCP CAGE Working Group, 2022). The RL126
game is modeled as a partially observable Markov decision process (POMDP), a special class of127
MDP where the agent cannot directly observe the underlying state (Oliehoek & Amato, 2016). The128
attacker and defender take actions at each time step to advance the attack or implement a defensive129
measure. Both agents are randomized and use probabilistic policies.130

The red agent (attacker) scans the network looking for vulnerable hosts or servers to exploit. Once131
it is able to create a user session on a vulnerable machine, the red agent attempts to gain root access132
and disrupt normal operations by performing an Impact action that targets and compromises critical133
services. Red agents obtain a reward if they successfully impact a host or server, and the reward134
value depends on the compromised machine’s criticality.135

The blue agent (defender) monitors and protects the network through a series of actions such as: an-136
alyze a host looking for malware files; start a decoy service on a host to monitor adversarial activity;137
remove suspicious processes from a host; restore the host to an earlier clean state. The observation138
space of the blue agents contains information about each host in the network, including the presence139
of incoming and outgoing scanning activity, and whether red sessions have been detected on a host.140
Blue agents obtain negative rewards if the adversary impacts a host or server, or if they perform an141
expensive host restore operation. Blue agents could be heuristic-based or trained with RL methods142
to maximize their cumulative return over episodes.143
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Problem definition and goals. In this work, we seek to quantify the extent to which different144
defenses provide resilience to a cyber network during emerging attacks. Our main goal is to formally145
define and evaluate network resilience metrics for a quantitative assessment of system operations146
across time-evolving attacks and various network topologies. Resilience metrics should have the147
following properties:148

P1 Aggregation across settings: Offer a quantifiable mathematical formulation that enables the149
measurement of resilience at different levels of aggregation, over multiple attacks and network150
topologies.151

P2 Temporal evolution: Capture the temporal evolution of resilience as the attack progresses, pro-152
viding interpretable insights to security operators about the resilience of a system during a cyber153
attack.154

P3 Prioritization of objectives: Allow defenders to prioritize multiple objectives such as confiden-155
tiality, availability and integrity, and certain services, according to their operational goals.156

P4 Comparison of defenses: Enable comparison of autonomous defenses in terms of their resilience157
in a repeatable and verifiable way.158

As discussed in Table 1, none of the existing papers introduces resilience metrics that satisfy all these159
properties. While the work of Wiebe et al. (2023) is the only one considering the operational goals160
of confidentiality, integrity and availability in cyber environments, they do not have a mathematical161
formulation of network resilience. Our work aims to fill this gap in the literature.162

4 Methodology163

We provide a quantitative formulation of resilience for a fixed attack and network topology in Sec-164
tion 4.1, after which we discuss temporal considerations in Section 4.2 and introduce a case study165
in Section 4.3. Finally, we discuss several RL agents for cyber defense in Section 4.4 motivated by166
resilience insights.167

4.1 Quantitative Formulation of Resilience168

Network resilience is the ability to recover from an attack with minimal impact on user and applica-169
tion workflows. Normal operations are dependent on critical servers that provide essential services,170
and these servers are usually the target of adversaries. In security scenarios, attackers are performing171
actions that impact or compromise critical servers over time, while defenders aim to restore these172
compromised services. The resilience metric aims to measure how much the impact operations on173
each critical asset affect the overall network resilience, according to the defender’s operational goals.174

In this section, we define the resilience metric in the context of a given network topology and red175
agent R. By fixing the topology and the attacker’s strategy, we can isolate and examine the properties176
of the resilience metric for different blue agents, under the same system configuration and specific177
threat. Later in Section 6 we show how the metric can be extended across topologies and attack178
patterns. We define the resilience metric over a time interval ∆t, motivated by property P2 (ability179
to capture evolution patterns). We denote by Nj(t) the indicator variable of a successful adversarial180
impact on the critical service j at time t, such that Nj(t) = 1 if the attacker’s action disrupted181
the service, and Nj(t) = 0 if not. Furthermore, cost(i, j) is the cost of disruption that affects the182
operational goal i due to impact on service j.183

We propose a definition for resilience drop within time interval ∆t as a weighted score that balances184
the defender’s operational goals:185

∆R(B,R,∆t) =
∑

i∈Op_Goals

wi

∑
j∈Assets

(∑
t∈∆t

Nj(t)

)
× cost(i, j), (1)

where
∑

i wi = 1, R if the red agent’s attack strategy and B is the blue agent’s defense strategy.186
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Figure 2: Resilience drop for various application of Gaussian filters with σ = ∆t
2 . Here ∆t influ-

ences the number of neighboring points considered. Higher σ leads to more smoothing, and as such,
we can control the trade-off between more detailed information by using smaller ∆t and clearer
attack shapes using larger ∆t.

To account for property P3 in our problem definition (Section 3), defenders can prioritize opera-187
tional goals (e.g., confidentiality, availability, integrity) by selecting weights wi and can also assign188
different weights to critical assets j for operational goals i by varying cost(i, j). Thus, our definition189
provides flexibility and can be tailored to the defender’s operational goals.190

4.2 Temporal considerations191

An important consideration for the resilience metric in Equation 1 is the granularity of the time192
interval over which we measure the resilience drop. A ∆t equal to the duration of the entire game193
is too coarse, since quantifying ∆R on the total number of impacts loses information about the194
recovery process. In contrast, a single step ∆t is too fine-grained, as only one impact operation can195
happen during each time step.196

We illustrate the effect of time granularity on the resilience drop metric in Figure 2, using an RL197
game between a PPO-trained blue agent and a heuristic red agent (details in Section 4.4. We198
use a Gaussian-based rolling mean to smooth the time-series data. This approach applies a one-199
dimensional Gaussian filter, focusing on data points nearest in time while preserving trends and200
reducing high-frequency noise (Figure 2). As ∆t increases, there is a trade-off between information201
loss and a clearer representation of the attack trend. In this case, the attack ramps up early in the202
game, and then the blue agent is able to recover and mitigate the adversary’s impact. When using203
∆t = 1, it is challenging to identify patterns within the attack. Through our experiments, we found204
that ∆t = T

10 allows for swift analysis of an attack pattern, helping to identify general patterns205
before reducing the window size for attacks that require further inspection.206

A clear assessment of cyber resilience needs to support different levels of aggregation across various207
settings, and facilitate the direct comparison of different defense strategies (properties P1 and P4208
from the problem formulation in Section 3). To support these properties, we normalize the resilience209
drop by dividing it to the maximum possible value drop per interval:210

∆Rnorm(B,R,∆t) = ∆R(B,R,∆t)/∆Rmax (2)

The maximum drop per interval ∆Rmax occurs when the attacker is successful within every indi-211
vidual step, for a total of N = ∆t impacts directed at the server with the highest impact cost:212

∆Rmax =
∑

i∈{C, A, I}

wi∆t max
j∈Assets

cost(i, j) (3)

Thus, through normalization, we can aggregate the resilience metric and compare defenses across213
topologies and attacks to understand the performance of an agent under various conditions (dis-214
cussed in Section 6).215
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4.3 Case study: Employee payroll workflow216

We consider an employee payroll workflow, where essential services include submitting work hours,217
retrieving documents, and various daily operations. At a minimum, three critical servers are present218
in the network: the authentication server AS, a database server DS, and a front web server WS.219
Given the three operational goals of confidentiality C, availability A and integrity I , we obtain the220
following formula for resilience drop due to potential cyber threats:221

∆R(B,R,∆t) =
∑

i∈{C, A, I}

wi

∑
j∈{AS,DS,WS}

(∑
t∈∆t

Nj(t)

)
× cost(i, j) (4)

The resilience decrease unifies the performance drop for the three objectives: ∆C – the confiden-222
tiality drop due to exfiltration of credentials and user records, ∆A – the availability decrease due to223
disruption of service for users, and ∆I – the integrity drop due to unauthorized website changes or224
data corruption:225

∆R(B,R,∆t) = wC∆C(B,R,∆t) + wA∆A(B,R,∆t) + wI∆I(B,R,∆t) (5)

An attacker targeting confidentiality (data theft) impacts the authentication and the database servers,226
but not the web server, hence the confidentiality drop can be defined as:227

∆C(B,R,∆t) =
∑

j∈{AS,DS}

(∑
t∈∆t

Nj(t)

)
× cost(C, j) (6)

Similarly, we can define the availability and integrity drop, as a function of number of impacts and228
cost on the associated critical services. Through this formulation, we can adapt the objectives to the229
use cases and tailor the costs to model the scenarios we are interested in. For example, in emergency230
response systems or critical infrastructure, where uninterrupted service is crucial, the availability231
objective and associated services will be modeled with weights and impact costs higher than those232
of other objectives or services. In corporate settings, sensitive data like proprietary algorithms and233
private customer information require increased protection to prevent industrial espionage and data234
theft, and can be modeled by increasing the cost associated with the confidentiality objective.235

4.4 Resilient RL defenses236

A resilient defense strategy requires both effective precautions (network hardening) and the ability to237
recover quickly from an attack. An autonomous agent must be able to absorb the attack quickly and238
with minimal impact on operations. Thus, a resilient blue agent incorporates the following features:239

1. Adaptive: Autonomous agents must be trained against multiple adversarial behaviors and topolo-240
gies to ensure that they can adapt to diverse settings.241

2. Reactive: Agents need to react quickly to evidence of compromise in the network, as soon as it is242
discovered. Specifically, the presence of indicators of compromise (IOCs) in the network, such243
as malicious files on a host or communication with known malicious IP addresses, should trigger244
immediate recovery actions. This is achieved by prioritizing recovery actions over other actions245
when IOCs are present in the agent’s observation.246

3. Proactive: Blue agents should prioritize actions that protect or harden the network (such as setting247
up decoys) to prepare for incoming attacks.248

Motivated by these principles, we developed several agents to investigate the contribution of each of249
the above characteristics to the success of the defense strategy.250

• PPO (adaptive): Our blue agent trained with PPO, after hyper-parameter tuning.251

• Blue-R (adaptive and reactive): A PPO-based agent trained with the same hyperparameters, which252
also features quick reaction to indicators of compromise in the network. Blue-R uses the Analyse253
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(a) Training (Reward) (b) Evaluation (Total Red Impacts)

Figure 3: Comparing blue agents. (a) Reward during training for the three PPO-based agents. (b)
Total number of successful adversarial impacts during evaluation, using trained RL models, and the
two heuristic baselines (averaged over 100 episodes).

action to determine if a host has been compromised. If so, Blue-R uses action masking to guide the254
PPO algorithm to choose the next action only from recovery actions such as Restore or Remove,255
on compromised machines.256

• Blue-RD (adaptive, reactive and proactive): An enhancement of Blue-R, which also uses Deploy257
Decoy action to harden hosts in the network proactively. This action strategically places fake258
services to lure attackers away from real operational services. The blue agent detects the activity259
of the attacker when the red agent interacts with the decoy service. If there are no indicators of260
compromise on the network, the blue agent prioritizes setting up fake services with the goal of261
having at least one decoy active on each host. Blue-RD also keeps track of all services to avoid262
any attempts to set up decoys on ports that are used by normal services.263

5 Experimental Results264

We ran the experiments on an extension of the CybORG Cage 2 framework, which allows the gener-265
ation of random network topologies consisting of 3 or 4 subnets, with 2 to 5 hosts per subnet, with a266
similar network setup as described in Figure 1. One of the subnets includes three critical servers that267
support system operations: an authentication, a database and a front web server. CybORG comes268
with a series of red and blue heuristic agents that can be used in testing. In our experiments, we used269
the CybORG’s strongest heuristic randomized red agent, B-line, which scans the hosts from its list270
of known hosts at random, looking for vulnerabilities, and attempts to reach the critical services fol-271
lowing the shortest path. We also used two heuristic blue agents (Monitor and Restore) as baselines272
to compare with the RL blue agents that we developed and trained.273

5.1 Comparing defense strategies274

We compare the RL agents presented in Section 4.4 with the CybORG heuristic agents in Figure 3.275
Figure 3a shows the reward during training for the three trained defenses, PPO, Blue-R, and Blue-276
RD. The blue agent is penalized (by -0.1) when the red agent is able to gain root access to a hosts,277
when the red agent is successful in calling the Impact action on a critical server (by -10), and when278
a machine is restored (by -1). The maximum possible reward for the blue agent is zero. Both279
Blue-R and Blue-RD converge faster than the basic PPO strategy, because they use action space280
masking to guide the defense in choosing from a tailored subset of actions based on the presence of281
indicators of compromise. Figure 3b presents how successful the attacker is against each defender282
by counting the number of Impacts during evaluation and averaging it over 100 episodes. The three283
trained defenses perform significantly better than the baseline rule-based blue agents provided in284
CybORG (Monitor and Restore). The Blue-RD defense is able to mitigate the attack the most, as285
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Figure 4: Resilience drop for each blue agent during the same attack. (Left) goals and assets are
equally important (Weights-1, Costs-1). (Center) availability of resources is prioritized (Weights-2,
Costs-1). (Right) authentication server is ranked the most critical resource (Weights-1, Costs-2).

it employs both proactive security measures and a fast response to compromise. At the end of the286
game, the network faced 2, 29, 99, 837, and 964 adversarial impacts under the Blue-RD, Blue-R,287
PPO, Restore, and Monitor defenses, respectively (100-episode averages).288

5.2 Resilience of the system under attack289

In Figure 3, we have compared the defense strategies based on episodic return and the number of290
adversarial impacts on critical servers. However, these cumulative metrics do not capture how the re-291
silience of the system has evolved during the attack. In this section, we are specifically investigating292
the evolution of resilience in the context of a single attack, while in Section 6 we will discuss how293
to understand and evaluate the resilience of a system over multiple attacks and network topologies.294
We selected one of the 100 episodes averaged in Figure 3b to evaluate the resilience metric during295
the course of an attack. A similar analysis can be applied to any other episode.296

Weights are used to balance the operational goals of confidentiality, availability, and integrity, while297
costs guide the criticality of each asset (authentication, database, and front web server) per opera-298
tional goal. In this analysis, we use the sets of weights and costs described next.299

• Weights-1: Equal importance for the three operational goals: wC = wA = wI = 1/3.300

• Weights-2: Higher importance for availability: wA = 0.8; wC = wI = 0.1.301

• Costs-1: Same cost for all assets relevant to each goal.302

• Costs-2: Different costs per asset. The authentication server is considered the most critical and303
an impact cost is assigned that is 2× higher than the other servers.304

We explore the following research questions in Figure 4:305

(Q1) How do different defenses compare in terms of resilience? The ability to compare defenses306
in a repeatable and verifiable way (Property P4 from Section 3) is a necessary feature for a resilience307
metric, as it informs what security measures must be implemented in the network. The graph in308
Figure 4-Left quantifies the drop in resilience when all operational goals and relevant assets are309
equally important (Weights-1, Costs-1). Although the ranking of defenses is the same as before310
(Figure 3b), thus reinforcing the findings that both proactive and reactive security measures are311
needed to maintain operational workflows, the plot provides new insights about the evolution of the312
system under attack.313

Property P2 of the metric, specifically the ability to capture time-dependent evolution patterns, is314
crucial in understanding when the attack starts, how soon it is contained, and whether the system315
is able to absorb the attack, bounce back, or simply collapse and never recover. The Monitor blue316
agent, which only collects alerts, but does not actively defend the network, incurs the largest drop in317
resilience; once the attacker has reached an essential service (i.e., the authentication server) it will318
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keep using the Impact action to collect rewards. The Restore blue agent cleans out some of the hosts319
that present suspicious processes, but, eventually, the red agent successfully exploits and impacts320
one of the critical services, and the Restore agent is not able to regain functionality of that service.321
The PPO blue agent experiences a strong attack within the first part of the game but is able to learn322
to recover and prevent future attacks from escalating. The Blue-R successfully mitigates the attack323
with timely recovery actions that prevent it from spreading, while the Blue-RD strategy performs324
the best, fully maintaining the system operations by proactively hardening hosts.325

(Q2) How does the resilience drop depend on operational goals? Emergency response systems or326
critical infrastructure are just some of the cases where the need for uninterrupted service outweighs327
other concerns. In Figure 4-Center, we study a situation where the availability of resources is more328
important than other operational goals (Weights-2, Costs-1). During the attack studied here, the329
PPO and Restore defenses fail to protect essential services (the front web server and the database,330
respectively), which leads to a decrease in resilience.331

Note that although the attack is the same as in Figure 4-Left (same number of adversarial impacts)332
prioritizing availability makes the same disruptions carry more weight. In the case of the PPO de-333
fense, for example, the largest service interruption in the network occurs on the front web server334
(126 total impacts). For e-commerce platforms, which rely heavily on online operations, the avail-335
ability of the front web server is crucial to prevent revenue loss. Hence, adjusting the weights on336
operational goals accordingly helps defenders correctly assess the scale of the problem and employ337
the most effective defenses. In this case, securing the front web server should be the highest priority338
for defenders.339

(Q3) How does the resilience drop depend on the importance of different services? Observing340
which machines are driving down the resilience of the system can inform specific security measures341
to prevent or mitigate attacks. However, such measures often require an investment in redundant342
equipment, security software or human labor and can increase the financial costs of maintaining343
operations. To limit these costs, it is necessary to understand the degree of impact that various344
network components have on the resilience of the system.345

In Figure 4-Right, we present a situation where the authentication server is the most critical resource346
in the network (Weights-1, Costs-2). This is the case in various domains like healthcare, banking,347
finance, where authentication is essentially the first line of defense against unauthorized access to348
sensitive data and systems. As a central network resource for security management, an authentica-349
tion server must run special and usually expensive software (Shinder & Cross, 2008).350

During the attack investigated here, PPO and Restore have a difficult time protecting the front web351
server and the database, but they are both effective at securing the authentication server. Therefore,352
the decrease in resilience for PPO and Restore in Figure 4-Right, where the authentication server is353
crucial, is smaller than in Figure 4-Left, where all services were ranked equally important. Whether354
this level of resilience is sufficient depends on the real-world application. Nevertheless, using a355
metric that can prioritize objectives and services according to operational goals is essential to help356
balance the cost effectiveness of security solutions with long-term resilience goals.357

6 Quantifying System Resilience over Multiple Attacks and Topologies358

In Section 5, we evaluated the resilience of a blue agent for a fixed red agent (attacker) and network359
topology. Here, we first discuss several methods to summarize information over multiple runs of a360
game (Section 6.1). Then we apply these methods to evaluate the resilience of the system across361
multiple attacks on the same topology (Section 6.2) and on various topologies (Section 6.3). Note362
that the aggregation property of the resilience metric (Property P1 from Section 3) is essential to363
understand the resilience of the system in diverse settings of interest.364
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Figure 5: Resilience drop for PPO blue agent over multiple attacks on the same topology. (Left)
Each attack is shown individually. (Center) Attacks are Clustered into K = 3 clusters. (Right)
Attacks are summarized using the average resilience decrease and the standard deviation.

6.1 Summarizing Information From Multiple Games365

Let S be the total number of game steps and N the number of games. Each game essentially366
includes a different randomized attack, controlled by varying the random seed of the environment.367
Each game can be represented as a vector of resilience drops r∆t = [r1∆t

, · · · , · · · rT∆t
] ∈ RT368

where T = ⌊ S
∆t⌋; rk∆t

represents the value of ∆R during the k-th time interval ∆t. From ri∆t
of369

all attack vectors i ∈ {1, · · · , N} we can build the resilience drop matrix RN×T .370

Fine-Grained View: Individual Attacks. We can inspect the resilience of a blue agent for individ-371
ual attacks; however, while each attack provides us with a fine-grained view of the resilience, it does372
not facilitate a comparison of defenses over multiple settings.373

Coarse View: Averages and Standard Deviations. We use R to calculate the mean resilience374
drops as µ = 1

N 1TR ∈ R1×T , from which we obtain the centered matrix of resilience drop R̃ =375
R − 1µ ∈ RN×T , where 1 = [1, · · · , 1]T ∈ RN×1. We then obtain the standard deviation of the376

resilience drop as σ =
√

1
N 1T (R̃⊙ R̃) ∈ R1×T where ⊙ is the Hadamard product. We use µ and377

σ to obtain an overview of the resilience of an agent. Although this approach gives us a summary of378
the resilience of an agent, it provides a coarse view and might miss variations of resilience patterns.379

Balanced View: Clustering Attacks. Instead of taking the average over all attacks, we can first380
apply a clustering algorithm to group attacks that share patterns. We compute the pairwise distance381
matrix D such that Di,j = d(ri, rj) using the Euclidean distance d(ri, rj) = ||ri−rj||2. We perform382
an agglomerative clustering using Ward’s method (Ward, 1963) based on the distance matrix, with383
a fixed number of clusters (K = 3). These clusters partition R into subsets of rows, which we384
interpret as K resilience drop matrices {Rk}k∈1,··· ,K where Rk ∈ RNk×T represents the resilience385
drop matrix associated with the k-th cluster and Nk is the number of attacks within cluster k. We386
then compute their respective means µk and standard deviations σk.387

6.2 Resilience for multiple attacks on the same topology388

We present several experiments using the PPO agent, with the goal of characterizing the global389
resilience of the system when faced with multiple attack patterns on the same network topology. We390
ran 100 different games on a fixed topology, each game having a different random seed and thus,391
representing a different attack. We used a time interval ∆t of 100 to visualize the resilience drop392
across time. Figure 5-Left shows the decrease in resilience during individual runs. Figure 5-Right393
presents a coarse-grained average resilience drop over all 100 attacks. Note that the mean resilience394
follows the shape of single-attack resilience curves. Simply by inspecting the mean resilience curve,395
one can tell that the adversary is usually successful in ramping up an attack against the PPO blue396
agent, but, eventually, the blue agent recovers and is able to mitigate the attack. Figure 5-Center397
partitions attacks into three clusters based on the resilience patterns over the course of the games.398
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Figure 6: Resilience drop averaged over 5 different network topologies and 100 attacks per topology.
(Left) goals and assets are equally important (Weights-1, Costs-1). (Center) availability of resources
is prioritized (Weights-2, Costs-1). (Right) authentication server is ranked the most critical resource
(Weights-1, Costs-2).

The blue agent is able to recover partially after 300 steps and mitigate the attack, but for 16% of399
the attacks, resilience decreases twice as much as the overall average (note the 0.4 peak of Cluster400
2 compared to 0.2 in the rightmost graph). Security operators can use this information as feedback401
to investigate attack patterns from Cluster 2 and incorporate additional defenses to better handle and402
adapt to this group of attacks.403

6.3 Resilience for multiple attacks on various topologies404

We consider a set S of topologies, where |S| is the number of topologies in the set. Let R(s) ∈405
RN×T be the resilience drop matrix of a blue agent over N attacks on a given topology s. For the406
set of topologies, we have an associated set of resilience drop matrices {R(s)}s∈S of size |S|. We407
build Rtotal as the concatenation of R(s), specifically Rtotal = [· · · ,R(s), · · · ]T ∈ R(N×|S|)×T .408
We can then apply the summarization methods discussed before to Rtotal and evaluate the resilience409
of the blue agents over multiple topologies and attacks.410

Using this approach, we compare the five blue agents Monitor, Restore, PPO, Blue-R and Blue-RD411
over five different topologies |S| = 5, and N = 100 attacks on each topology. From Figure 6, we412
see that the ranking of the defenses is consistent with what was observed in Figure 3 for a single413
attack. Blue-RD, the agent that incorporates both proactive and reactive measures, outperforms the414
other strategies and is able to keep the system resilient across all the settings studied here. Resilience415
averaging smooths out more extreme variations in individual runs, offering a more conclusive com-416
parison. Counterintuitively, Monitor, the agent that simply observes the network, without taking any417
action to defend it, does not reach a resilience drop of 1 in all cases. The reason is that once the red418
agent is able to compromise a service, it will choose to impact the same service to collect rewards,419
if no defense deters it. However, the affected service may be less critical for the operational goals;420
since the maximum possible resilience drop is not reached, the normalized value will be less than 1.421

7 Conclusion422

This work introduced a quantitative resilience metric to evaluate autonomous cyber defense agents.423
This metric allows security operators to assess and compare defensive strategies across various at-424
tack patterns and network topologies. It can also be adapted to align with specific operational goals425
and asset criticality. Using this metric, we demonstrated the value of integrating proactive and reac-426
tive defensive measures. In particular, reinforcement learning-based agents incorporating network427
hardening techniques and rapid response mechanisms significantly enhance resilience. Our frame-428
work prioritizes key security objectives—confidentiality, integrity, and availability—and provides429
actionable insights for optimizing cyber defenses in dynamic threat environments.430
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