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Abstract

Despite the increasing attention on tackling001
anaphora resolution in an end-to-end multitask002
learning fashion, the state of the research topic003
is still unsatisfactory in that most works focus004
only on a subset of relations (either bridging005
or coreference), lacking generalizability and006
granularity for more complicated anaphoric re-007
lations. Moreover, the evaluations are still a008
mix of diverse metrics for different subtasks.009
We leverage a multitask learning framework010
from the Relation Extraction field which can011
be extended to perform fine-grained anaphora012
resolution and introduce a heterogeneous graph013
representation to evaluate coreference and other014
anaphoric relations using one uniform metric.015
All the data and source code will be publicly016
available. 1017

1 Introduction018

Anaphora resolution is the task of linking nominal019

expressions to entities in the context of interpreta-020

tion 2. Typical anaphoric relations include corefer-021

ence, where two mentions refer to the same entity,022

as well as bridging reference, which indicates an023

associative, non-coreferential relation.024

Although recent works, such as PairSpanBERT025

(Kobayashi et al., 2023) enable anaphora resolu-026

tion in a ‘real-world’ setting, meaning that given027

a raw document, the system can predict the coref-028

erent or bridging anaphor and their antecedents,029

there are still a few weaknesses to the current meth-030

ods. First, the anaphoric relations are predefined031

and lack generalizability. The models do not al-032

low extensions for other task-specific associative033

relations. Second, previous works can only pre-034

dict at a coarse level, treating bridging relations as035

one anaphoric relation even though the annotation036

1Anonymized for reviewing.
2We do not consider event anaphora (Sukthanker et al.,

2020; Xie et al., 2023) for the present paper.

has a finer granularity. Third, although the train- 037

ing is done jointly with all types of the relations, 038

different evaluation metrics are used for different 039

types. The existing metrics are originally designed 040

for subtasks of anaphora resolution, and it is very 041

hard to evaluate globally across different anaphoric 042

types. To address the aforementioned issues, we 043

trained a fine-level multi-class joint model for both 044

problems, by adopting a multitask learning frame- 045

work, an approach to solve the relation extraction 046

problem. We also propose a metric that can be 047

uniformally applied for evaluating both types of 048

anaphora resolution problems. 049

2 Related Work 050

End-to-end coreference resolution models (Lee 051

et al., 2017, 2018; Xu and Choi, 2020; Wu et al., 052

2020; Kirstain et al., 2021) refer to systems that can 053

detect candidate mentions and find their possible 054

antecedents. In contrast to studies on applicability 055

of such end-to-end framework to the coreference 056

resolution problem, a broader problem of bridging 057

resolution is less studied and the vast majority of ex- 058

isting bridging resolution systems are evaluated in 059

rather unrealistic settings, where the gold mentions 060

are assumed as input (Hou et al., 2014; Roesiger 061

et al., 2018; Hou et al., 2018; Yu and Poesio, 2020). 062

Kobayashi et al. (2022b) is the first attempt to 063

evaluate bridging resolution in an end-to-end set- 064

ting where a resolver needs to identify bridging re- 065

lations given a raw document. It is also found from 066

previous works (Yu and Poesio, 2020) that training 067

coreference and bridging resolvers jointly is benefi- 068

cial to both tasks. As a result, more research in doc- 069

ument level end-to-end multitask learning anaphora 070

resolution has recently emerged (Kobayashi et al., 071

2022b,a, 2023). Although the models are jointly 072

trained, only Kobayashi et al. (2022b) evaluates 073

the coreference resolver of their framework. The 074

others only report the performances of the bridging 075

resolvers. Moreover, the experiments in Kobayashi 076
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et al. (2022b) are conducted on ISNotes (Markert077

et al., 2012) and BASHI (Rösiger, 2018). To our078

best knowledge, this paper is the first attempt to uni-079

formly evaluate different subtypes of anaphoric res-080

olution systems, as well as the first work to use the081

ARRAU corpus for evaluating anaphora resolvers.082

There has been a growing body of literature083

that explores anaphoric relations tailored to task-084

oriented text, considering the diverse natures of085

the corpora involved. (Fang et al., 2021, 2022;086

Rim et al., 2023). However, due to their vastly dif-087

ferent contextual characteristics, we argue that it088

is necessary to distinguish the anaphoric relations089

found in instruction-heavy text. We propose to re-090

fer to bridging as static anaphoric relations, where091

the definition is fixed and refers to the lexical and092

referential bridging defined by Clark (1975). Task-093

specific relations are called dynamic, as objects094

in these relations tend to change according to the095

types of texts being annotated. Besides the capabil-096

ity to predict static anaphoric relations, our model097

also tries to generalize on the dynamic relations.098

Traditionally, MUC (Vilain et al., 1995), B3099

(Bagga and Baldwin), and CEAF (Luo, 2005) have100

been popular choices as evaluation metrics for101

coreference resolution, where the metrics empha-102

size link, mention, and entity respectively. An av-103

erage score of the three metrics is often reported as104

a comprehensive evaluation result. All these met-105

rics are mathematically clean and elegant. How-106

ever, the fact that these metrics are designed for107

coreference alone makes it difficult to generalize108

to non-identity anaphoric relations. Specifically,109

link-based metrics are designed for identity links110

and can only handle one relation type. Moreover,111

mention-entity based metrics assume unique set-112

membership where each entity can only have one113

membership at a time. This constraint renders the114

evaluation of split-antecedents impossible without115

creating intermediate accommodation sets. It also116

prohibits the evaluation of mentions existing in dif-117

ferent clusters based on different relations. But118

in reality, a mention in a coreference cluster can119

sometimes hold other anaphoric relation types (e.g.,120

bridging relation) with another mention.121

When it comes to bridging resolution, intuitively,122

people use pairwise F1 as the metric since bridg-123

ing relations are annotated in pairs. Despite the124

straightforwardness, this metric lacks the capabil-125

ity to propagate the relation from one mention to126

other mentions that are not immediately connected127

to it. Our proposed uniform metric can handle all128

these challenges while also evaluating the system 129

globally. 130

3 Document-level Anaphora Graph 131

We propose a graph representation as a unified 132

output representation specifically for end-to-end 133

anaphora resolution frameworks, where all three 134

subtasks can be evaluated simultaneously. Further- 135

more, a graph data structure can help address the 136

current issues with evaluation discussed above. For- 137

mally, given a document D, we convert it into a 138

graph G by first adding a document vertex vD. For 139

all the mentions in the document {mi}Mi=1, they 140

are turned into vertices {vi}Mi=1. We connect vD 141

with all mentions with edges eD. This is for eval- 142

uation of mention extraction. For mentions in a 143

coreference cluster cj , their corresponding vertices 144

are fully connected by coreference edges ej . If 145

mention ma1 in coreference cluster ca and mention 146

mb1 in cluster cb hold a bridging relation r, then 147

vertices in ca and vertices in cb are fully connected 148

by that relation edge er. We use fully connected 149

graphs instead of minimum spanning to properly 150

penalize the system missing a bridging edge be- 151

tween two mentions if any of which belongs to a 152

large cluster, which is usually more informative 153

and critical to understand text. This heterogeneous 154

graph structure allows for evaluation at a fine level 155

as well as the extension of dynamic relations. And 156

it also addresses the inability of previous evaluation 157

metrics to handle split-antecedents. While we sym- 158

pathize with the method of accommodation sets 159

(Paun et al., 2022), we find it semantically more 160

natural to treat split-antecedents as a bridging re- 161

lation rather than coreference. Refer to A.1 to see 162

more subgraph examples. 163

4 Datasets 164

We select ARRAU RST (Poesio and Artstein, 2008; 165

Uryupina et al., 2020) and CUTL (Rim et al., 2023) 166

as our two datasets. ARRAU RST contains annota- 167

tions of coreference and static anaphoric relations 168

on newswire texts. CUTL is annotated on recipe 169

data with coreference and dynamic anaphoric rela- 170

tions such as Transformation where an ingredient 171

has undergone some transformations, e.g., baking, 172

but remain substance identical (Ye et al., 2023). 173

5 Baseline System 174

We adapt the relation extraction model TAG from 175

Zhang et al. (2023) and use it as the baseline for 176

our experiments. It is an end-to-end joint extraction 177

model of entities and relations trained and evalu- 178

ated on the DOCRED dataset (Yao et al., 2019). 179
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Given a raw document, the extraction process180

consists of three subtasks: (1) Mention extraction;181

(2) Coreference resolution; and (3) Relation ex-182

traction. The mention extraction task extracts all183

possible spans for entities formulated as a tagging184

task. Both coreference resolution and relation ex-185

traction are trained jointly with a table-to-graph186

generation model.187

For our task, we keep the mention extractor188

and coreference resolver as they are and formu-189

late bridging resolution as an extraction task of190

anaphoric relations by replacing the predefined re-191

lations from DOCRED to corresponding bridging192

references in our anaphora corpora. To alleviate193

the problem of data imbalance between corefer-194

ence and bridging examples, we adapt the model195

by adding a new hyperparameter, β, to balance196

coreference and bridging relation loss. The new197

loss function is defined as follows, where Ltc and198

Lgc are coarse and fine level coreference extraction199

losses, Ltr and Lgr are bridging extraction losses,200

and α is a hyperparameter balancing coarse and201

fine level loss.202

L = β · Ltc + Ltr

+ α · (β · Lgc + Lgr)
(1)203

6 Experiments204

Model training and parameter tunining We205

train and evaluate the TAG model on ARRAU and206

CUTL datasets. We use the Roberta-base model207

(Liu et al., 2019) as the encoder and reuse the hy-208

perparameters from Zhang et al. (2023). We train209

for 100 epochs on the mention extraction task and210

200 epochs for coreference and bridging resolution.211

We set the balancing loss weight β to 0.3 after fine212

tuning on the ARRAU dev set. The training process213

takes about 3 hours on a TITAN Xp GPU.214

Data preprocessing Given the high complexity215

of the model and the limitation of our computation216

resources, we are forced to filter out documents of217

over 400 tokens to avoid out-of-memory problem.218

And to recover all the ‘drop arguments’ in CUTL219

documents, we follow their Dense Paraphrasing220

pipeline, specifically using GPT3 to paraphrase the221

missing arguments in the surface form. Note that222

the paraphrasing would generate new tokens in the223

text, so this step happens before filtering.224

Train-test partition Table 1 shows the statistics225

and train-test distribution of the two datasets af-226

ter filtering. We follow the train-test split of the227

original datasets.228

Train Dev Test All
ARRAU RST 104 5 14 123
CUTL 80 N/A 20 100

Table 1: Train-test split of filtered data. CUTL did not
release a separate ‘dev’ split

P R F1
ARRAU 83.29 65.68 73.44
CUTL 92.92 95.37 94.13

Table 2: Results of mention extraction.

7 Results 229

We evaluate the performance of our baseline model 230

in two settings: (1) THE LOCAL LEVEL: Since the 231

end-to-end anaphoric resolution consists of three 232

subtasks, we report the individual performance on 233

each task using the standard metrics for them. (2) 234

THE GLOBAL LEVEL: We convert the extracted 235

mentions and anaphoric relations into a heteroge- 236

neous graph and use a triple-based measure as a 237

unified metric. 238

7.1 Local Level Evaluation 239

Mention extraction Results of mention extrac- 240

tion are reported in table 2, where precision, recall 241

and F1 scores are calculated on the entire set of 242

mentions where the mention can be either a direct 243

anaphor or a bridging anaphor. The F1 scores on 244

both datasets are very good, especially for CUTL 245

where the score is over 0.94. 246

Coreference resolution For coreference resolu- 247

tion, we use the standard MUC, B3 and CEAF 248

metrics and their unweighted average CoNLL score. 249

Table 3 shows the results on both datasets. The 250

TAG model achieves an average CoNLL score of 251

0.45 on ARRAU. This is lower than other coref- 252

erence specific models like Yu et al. (2020), indi- 253

cating that ARRAU is a challenging corpus that 254

needs extra features and tuning to achieve good 255

performance. As for the results on CUTL data, the 256

TAG model achieves an average CoNLL score of 257

0.85. To invesigate the competence of our baseline 258

model, we run the model from Rim et al. (2023) 259

MUC B3 CEAFe CoNLL
ARRAU TAG 61.06 59.07 14.28 44.80

CUTL
Rim et al. (2023) 85.22 40.03 45.72 57.00
TAG 89.11 94.91 69.76 84.59

Table 3: Results of coreference resolution on ARRAU
and CUTL. We also report the score of Rim et al. (2023)
on CUTL.
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P R F1
PairSpanBERT 21.2 16.9 18.8
TAG 16.67 4.65 7.27

Table 4: Results of coarse level bridging resolution on
ARRAU RST.

Relation P R F1
Other 50.00 5.26 9.52
Split-antecedents 66.67 8.33 14.81

Table 5: Results of fine level bridging resolution on
ARRAU RST.

on CUTL and the results show that the TAG-based260

model achieves significantly better F1 score.261

Bridging resolution We use precision, recall and262

F1 as the standard metrics for bridging resolution.263

Table 4 shows the results of our baseline model at264

coarse level where all bridging relations are col-265

lapsed into one. PairSpanBERT is also doing bridg-266

ing resolution at a coarse level in a very similar267

end-to-end setting, so we include their reported268

scores here. It is worth noting that this is not fully269

comparable since we used a subset of ARRAU and270

the PairSpanBERT implementation is not released,271

which makes it hard to replicate their model in272

our setting. However, the higher scores suggest273

that TAG is also not performing well on bridging274

resolution on newswire texts. We also report the re-275

sults of a fine-grained bridging resolution in table 5.276

We only include two relations, i.e., other and split-277

antecedents, in the table because the model can278

only predict these two relations correctly. The com-279

paratively higher scores on split-antecedents imply280

that the model can understand the aggregation of281

singular mentions to plural references. Neverthe-282

less, the low overall performance indicates that283

bridging resolution at a fine level is still very chal-284

lenging. Finally, the results of a fine level bridging285

resolution on CUTL data are presented in table286

6. Except for the two relations that both models287

failing to predict correctly, i.e., Metonym and Sepa-288

ration, the TAG model is also unable to predict any289

Meronym relation but achieves better F1 scores on290

Rim et al. (2023) TAG
Relation P R F1 P R F1
MERONYM 25.57 7.11 11.13 N/A N/A N/A
TRANS. 82.51 58.21 68.26 81.20 86.75 83.88
AGG. 82.03 59.23 68.79 82.18 69.75 75.46

Table 6: Results of fine level bridging resolution on
CUTL.

P R F1
ARRAU TAG 67.00 46.26 54.73

CUTL Rim et al. (2023) 69.25 60.13 64.37
TAG 84.74 79.14 81.84

Table 7: Smatch score of TAG on ARRAU RST and
CUTL. We also report the score of Rim et al. (2023) on
CUTL.

Transformation and Aggregation. The failure to 291

perform prediction is most likely due to the small 292

number of examples for those relations. The result 293

suggests that TAG generalizes well on dynamic 294

anaphoric relations. 295

7.2 Global Level Evaluation 296

We use the document-level anaphora graph we pro- 297

pose as the data structure and use a triple-based 298

metric inspired by Smatch (Cai and Knight, 2013) 299

for evaluation. The score is computed in terms of 300

the matching triples (vi, ej , vk) in the graphs using 301

precision, recall and F1. Given two graphs Gpred 302

and Ggold, m is the number of matching triples, t is 303

the total number of triples in the first graph, g is the 304

total number of triples in the second graph. M , T 305

and G are the sum of m, t and g of all documents 306

in the evaluation batch. The precision score is de- 307

fined as P = M/T , recall is defined as R = M/G. 308

The final Smatch score (F ) is their harmonic mean. 309

Table 7 shows the results of our model on the two 310

datasets as well as our replication of the model 311

from Rim et al. (2023) on CUTL. It can be seen 312

that the model achieves higher scores on CUTL 313

than ARRAU showing that anaphora resolution on 314

ARRAU is a more challenging task, which can be 315

attributed to the complexity of newswire texts and 316

their annotation scheme. Also, TAG outperforms 317

the CUTL model by a large margin, which aligns 318

with the standard metrics in our previous experi- 319

ments. This suggests that TAG is an overall more 320

competent model on anaphora resolution. 321

8 Conclusion 322

We adapt an end-to-end relation extraction frame- 323

work into the field of anaphora resolution and show 324

that the model is competent on extracting dynamic 325

anaphoric relations. We also propose a graph based 326

metric to evaluate anaphoric resolution system in 327

an end-to-end setting. This generalized method 328

can accommodate dynamic anaphoric relations and 329

evaluate the system at the global level. 330
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9 Limitations331

We train and evaluate models for end-to-end332

anaphora resolution at a fine level and propose a333

new uniform metric. Given the fact that there is no334

related work that conducts experiments in the same335

setting as we do, plus we only use a subset of data,336

our results on ARRAU RST are not fully compa-337

rable to any previous work. In addition, since we338

exclude documents of long sequence, further inves-339

tigations are needed to evaluate the model on long340

documents where complex anaphoric relations may341

occur more frequently.342
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A Appendix531

A.1 Graph Representation Examples532

We present two graph representations of the533

anaphoric relations in documents in ARRAU and534

CUTL in figure 1 and 2. For the purpose of bet-535

ter visualization, we only show subgraphs of them.536

The value of the vertex is shown in the form of537

{mention sentenceindex.wordindex}. The dotted538

edge refers to the document edge. Edges of differ-539

ent colors refer to the relations of matching color.540
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Figure 1: Graph representation of anaphoric relations in a document in ARRAU. The black edges are coreference
relations. The green edges refer to Element relation.

Figure 2: Graph representation of anaphoric relations in a document in CUTL. The black edges are coreference
relations. The red edges refer to Aggregation relation while the blue ones refer to Transformation.
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