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ABSTRACT

The correct detection of dense article layout and the recognition of characters in
historical newspaper pages remains a challenging requirement for Natural Language
Processing (NLP) and machine learning applications on historical newspapers
in the field of digital history. Digital newspaper portals for historic Germany
typically provide Optical Character Recognition (OCR) text, albeit of varying
quality. Unfortunately, layout information is often missing, limiting this rich
source’s scope. Our dataset is designed to enable the training of layout and OCR
models for historic German-language newspapers. The Chronicling Germany
dataset contains 693 annotated historical newspaper pages from the time period
between 1852 and 1924. The paper presents a processing pipeline and establishes
baseline results on in- and out-of-domain test data using this pipeline. Both our
dataset and the corresponding baseline code are freely available online. This work
creates a starting point for future research in the field of digital history and historic
German language newspaper processing. Furthermore, it provides the opportunity
to study a low-resource task in computer vision.

1 INTRODUCTION

Newspapers are essential sources of information, not just for modern readers, but particularly in
the past when other communication channels like the internet or radio were not yet available. Even
more importantly, historical newspapers allow historians and social scientists to study social groups’
opinions and cultural values and to use information from newspapers in causal models (for more
details, see A.4). This paper presents the Chronicling Germany -dataset, consisting of 693 annotated
high-resolution scanned newspaper pages from the period between 1852 and 1924.

With the emergence of digital newspaper portals, using historical newspapers has become easier in
recent years 1. These portals provide text via Optical Character Recognition (OCR) but often lack
reliable layout information for their German language content, which is essential for digital history
applications, many of which would require newspaper articles to be treated as individual documents.
Our dataset will help to reduce the character error rate and aims at considerably improving the
detection of individual elements of a newspaper page, like articles or single advertisements. The
former is important to prevent algorithms from connecting unrelated text regions and preserve the
order in which text regions should be read. To this end, the text layout is systematically annotated
using nine classes.

From a computer science view, a collection of successful approaches allows us to process modern
documents (Blecher et al., 2023; Davis et al., 2022). For historical documents, large-scale data sets
exist (Dell et al., 2024) but are mostly focused on English language material set in Antiqua-like
typefaces. For continental European languages, existing datasets are much smaller (Abadie et al.,
2022; Kodym & Hradis, 2021; Clausner et al., 2015; Nikolaidou et al., 2022) .

Until more annotated data becomes available, the processing of historical continental European
newspaper pages is, therefore, a low-resource task, highlighting the need for more data. While
low-resource tasks are well-established in natural language processing (Adams et al., 2017; Fadaee

1For Germany, e.g., the Deutsche Zeitungsportal ( https://www.
deutsche-digitale-bibliothek.de/newspaper/) and zeit.punkt NRW (https:
//zeitpunkt.nrw/)
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Figure 1: Left: Number of available digitized newspapers per year at www.
deutsche-digitale-bibliothek.de/newspaper over time. Data from January
2024. Center: Front page of the Kölnische Zeitung from the 1st of January 1924. Right:
Corresponding annotation to the page at the center of this figure.

et al., 2017; Hedderich et al., 2021; Zoph et al., 2016) , low-resource settings remain under-explored
in computer vision (Zhang et al., 2024) . Historical German newspapers are interesting in this context
due to their dense layout (see also Supplementary Figure 5 ) and the Fraktur font. Fraktur differs
significantly from the Antiqua typefaces that dominate modern Western texts. To the contemporary
eye, Fraktur letters appear dense, which also impacts layout recognition. Furthermore, in addition to
the font, our dataset features the archaic ’long s’ or ’ s ’, which is no longer used today. The ’sz’ or
’ß’ is specific to the German language and also appears in the data. Historically, it emerged when
the common combination ’sz’ merged into a single letter ’ß’, unlike the ’long s’ it still appears in
contemporary texts. The abovementioned differences limit our ability to transfer existing solutions
designed for modern documents or English-language historical newspapers. This motivates the
collection of additional data.

The task of processing German newspapers is also highly relevant to history scholars. Especially in the
19th century, local communities, interest groups, and political parties created their own newspapers.
The Deutsche Zeitungsportal2 counts 698 German newspapers in 1780, this number rose to over
14,000 in 1860 and peaked at 50,848 papers in 1916 (see Figure 1).

Plenty of digitized pages allow researchers to systematically search for cultural values and historical
change. Unfortunately, most of the pages available on such platforms contain either no or incorrect
layout information. With text lines being in disarray, the pre-processed text data from these pages
cannot be analysed computationally. Additionally, untrained modern human readers struggle with font
differences, limiting the usefulness of unprocessed data to researchers lacking this specific skill. Thus,
creating a pipeline capable of accurately processing this vast amount of data to a format readable to
both a machine and a researcher without specific language and typeface skills is an important step
in making these resources accessible. Furthermore, the availability of machine-readable newspaper
archives is valuable to social scientists who recently started to use historical newspapers to track
treatment variables or measure the impact of institutions or policies on social life (Beach & Hanlon,
2023).

Additionally, the layout of German historical newspapers is often complex, consisting of several
columns, multiple horizontal sections and up to 500 elements to annotate per page. To create
this dataset, eleven student assistants with a background in history have spent a total of 1,500
hours annotating the layout of 693 pages. These include approx. 1,900 individually annotated
advertisements that consist of approx. 5,700 polygon regions. We also provide ground truth text
annotations, which are not as costly since we start from network-generated OCR -output and correct
errors. Overall, our dataset includes almost 30,000 layout polygon regions as well as approx. 350,000
text lines and almost 3 million words. See Table 1 for an overview of the dataset details.

This dataset is larger than the Europeana corpus Clausner et al. (2015) with its 528 pages from
European newspapers, the 197-page "Deutscher Reichsanzeiger und Preußischer Staatsanzeiger"

2https://www.deutsche-digitale-bibliothek.de/newspaper/
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Table 1: Datasheet listing newspaper names, page counts, lines, words and polygon-regions. As
layouts change in a paper’s history, we include issues from different years. In such cases a paper
appears more than once in the table.

Year Newspaper Pages Lines Words Regions

1785 Schwäbischer Merkur 11 1,023 7,071 77
1813 Donau Zeitung 4 302 1,704 47
1834 Fränkischer Kurier 4 422 3,095 62
1851 Ostpreussische Zeitung 4 1,176 9,428 123
1856 Der Bazar 11 1,331 10,253 114
1857 Berliner Börsen Zeitung 5 1,197 7,386 169
1866 Bonner Zeitung 4 1,405 10,209 176
1866 Neue Berliner Musikzeitung 8 1,054 7,805 116
1866 Fränkischer Kurier 6 1,809 12,204 302
1866 Pfälzer Zeitung 4 1,089 7,571 127
1866 Vossische Zeitung 31 4,739 33,499 1,129
1866 Weisseritz-Zeitung 8 818 5,609 114
1866 Kölnische Zeitung 420 249,483 2,133,614 17,054
1867 Hannoverscher Courier 4 1,994 13,563 226
1867 Neue preussische Zeitung 4 2,896 16,491 203
1852-1888 Special editions Kölnische Zeitung 20 831 8,044 134
1891 Bonner Zeitung 4 1,470 9,446 402
1924 Kölnische Zeitung 141 79,832 672,295 9,067

Sum 693 352,871 2,989,301 29,642

Table 2: Data-set sizes of this paper and related work in comparison.
Dataset Pages

Chronicling Germany (ours) 693
Europeana (Clausner et al., 2015) 528
News Eye Finnish (Muehlberger & Hackl, 2021c) 200
Reichs- und Staatsanzeiger (UB-Mannheim, 2023b) 197
News Eye French (Muehlberger & Hackl, 2021a) 183
Neue Züricher Zeitung (Ströbel & Clematide, 2019) 167
News Eye Austrian (Muehlberger & Hackl, 2021b) 158
News Eye Competition (Michael et al., 2021) 100

3
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(UB-Mannheim, 2023b) data set or the 167-page Neue Züriche Zeitung (Ströbel & Clematide, 2019;
UB-Mannheim, 2023a) corpus. Ground truth lines are compared in Table 2. Our dataset adds a
significant number of new lines. Consequently, we argue that progress has been made.

Our dataset features sections and elements that are especially challenging for OCR and baseline
models. For example, advertisement pages mix large and small font sizes and include drop capitals,
where the initial letter of an advertisement spans over multiple rows but is read as part of the first row.
Both features are a challenge for the baseline detection task. Other challenges are fractions in stock
exchange news and abbreviations in lists of casualties. Overall, 83,8% of our dataset scans fall into a
range between 4500 and 5499 width times 6500 and 7499 height pixels. The largest and smallest
width are 5375 and 1800, for the height we have a maximum of 7230 and a minimum of 2510 pixels.
3

In summary, this paper makes the following contributions: (1) We introduce the Chronicling Germany-
dataset. Its 693 manually annotated high-resolution pages make it the largest German-language
historic newspaper dataset (see Table 1 for dataset details). (2) We establish a baseline recognition
pipeline for the layout detection, text-line recognition, and OCR-tasks. (3) We verify generalization
properties using 112 historic newspaper pages from the earlier 1785 - 1866 period, which we call
the out-of-distribution test set. We observe good generalization performance for OCR tasks, despite
layout generalization not being satisfactory. This is due to the fact, that for correctly reading text it is
not necessary to correctly detect the class of a text segment. The dataset and code for our pipeline are
freely available online. 4

2 RELATED WORK

Unfortunately, from a digital history perspective, many modern systems focus on recent data and
suffer from poor performance in a historical setting.5 The current situation has led to a large body of
OCR error correction work (Carlson et al., 2023), highlighting the need for specialized data sets and
software. Liebl & Burghard (2020), for example, combines existing open-source components for this
task.

Related datasets include the Europeana corpus (Clausner et al., 2015), the Deutsche Reichsanzeiger
(UB-Mannheim, 2023b), and the Neue Züricher Zeitung (UB-Mannheim, 2023a; Ströbel & Clematide,
2019). The Europeana dataset contains 528 annotated pages from European sources. The Reich-
sanzeiger and the Neue Züricher Zeitung sets consist of 197 and 174 annotated pages, respectively,
but have so far only been used for OCR training but not in any layout training pipeline (cf. 2).
The layout annotation of these two projects is comparable to ours but less granular, and we have
annotated considerably more pages.6 More recently Dell et al. (2024), published perhaps the largest
American historical newspaper dataset to date. Their dataset also includes layout annotations. Our
work complements these existing datasets by additionally providing compatible annotations for
German historical newspapers that differ significantly from other Western European and American
newspapers. Furthermore, we annotate advertisements in detail, which significantly add to the
complexity of the OCR-task (Dell et al., 2024) and are not annotated in the Reichsanzeiger and the
Neue Züricher Zeitung. Advertisements are particularly interesting to scholars of economic history
who are interested in labour markets, for example. Globally, the Historical Japanese Dataset (Shen
et al., 2020) , a collection of over 2,000 annotated pages of complex layouts from the Japanese Who
is Who of 1953, is quite important.

2.1 COMMON PROCESSING PIPELINE ELEMENTS

Layout Segmentation is a longstanding task in document processing. For example, dhSegment
(Oliveira et al., 2018) proposes a UNet structure based on the popular ResNet50 architecture (He
et al., 2016). As described by Ronneberger et al. (2015), the network features a contracting and an
expanding part. The contracting subnetwork uses ResNet50 as an encoder, and an additional expansive

3Our dataset includes pages from 1866, when the Austro-Prussian War was raging in the German Bund.
4Repository links withheld for double-blind peer-review. We will restore the links once the review process

has been completed.
5For an example see Figure 5 in A.2, alco compare Shen et al. (2020).
6We aim to combine those two datasets with Chronicling Germany in future work.
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subnetwork produces segmentation maps at the resolution of the original input. Transformer-based
solutions trained on modern documents are available for similar tasks (Davis et al., 2022). However,
Convolutional Neural Networks (CNNs) are cheaper to run (Dell et al., 2024) and require less training
data, making them a budget-friendly solution.

Baseline-detection or text-line detection, means finding the straight line that connects the base points
from each letter. Early work employed quadratic splines for this task (Smith, 2007). Modern solutions
often employ architectures devised for segmentation or object detection tasks. Kodym & Hradis
(2021) for example, choose a U-Net. Object detection pipelines are alternatively used instead of
baseline detection; e.g., Dell et al. (2024) work with YOLOv8. Following Kodym & Hradis (2021),
we employ a U-Net to detect text baselines in this project. Our annotations are consistent with the
Europeana-corpus from Clausner et al. (2015) and the work from UB-Mannheim (2023a;b) that also
features Fraktur letters. This design choice allows combining our datasets in future work.

Optical Character Recognition (OCR) is an important tool in digital history. Liebl & Burghard
(2020), successfully work with a topological feature extraction step followed by a classifier as
described by Smith (2007) for the digitization of the Berliner Börsen Zeitung. Following Breuel
(2007), Kiessling (2022) uses a Recurrent Neural Network (RNN) based system. Dell et al. (2024)
apply the contrastive learning approach presented by Carlson et al. (2023). Using a vision encoder,
characters are projected into a metric space. The system works because patches containing the same
character will cluster together.

3 THE CHRONICLING GERMANY DATASET

Our Dataset contains 693 pages from historic German newspapers, mostly from 1866, specifically
from the period of the Austro-Prussian War. Of these 693 pages, 15 pages contain only advertisements
with approx. 1,900 individual advertisement blocks. The backbone of the dataset is the Kölnische
Zeitung, a large regional newspaper from Western Germany, but we also include newspaper pages
from the entire German Empire. Overall, we consider the dataset to be a very good representation
of the various layout styles of historical German newspapers. (For a more detailed description and
justification of the composition of the dataset, see A.5).

We split our data into train, validation and test datasets (Table 3), where the test dataset consists of in
distribution in distribution (id) and out of distribution out of distribution (ood). Id test pages are from
the Kölnsche Zeitung, while ood pages are taken from other German newspapers (Table 1). The train
and validation data splits only contain id data.

Polygons placed by our expert human annotators capture the layout for each page.7 All annotations
are stored in PAGE-XML files. The Polygons capture different text-region types. Subclasses can exist
within these. Each region type has a unique XML tag: TextRegion, SeparatorRegion,
TableRegion and GraphicRegion. Graphic regions are always assigned the class image.
Within text regions, we include the following classes: paragraph, header, heading,
caption, inverted_text. Within table regions, the only possible subclass is table. To facil-
itate correct reading order detection, we introduce the separator subclass separator_vertical,
and separator_horizontal. Vertical separators highlight different columns of a page. Hori-
zontal separators split the page into sections and are relevant for the reading order if they span over
multiple columns. Otherwise, they are found at the beginning of a new article or between caption or
header elements. The header category covers the newspaper’s name, which appears at the top of the
front pages. To the left and right of the newspaper name, historical newspapers often have smaller
blocks with additional information, such as the name of the editor-in-chief, the publication date, or
the subscription price. These polygons are annotated as captions. Polygons that cover paragraphs,
headlines, and tables are annotated, respectively. See Figure 1 for an annotation sample. Overall, the
dataset includes 29,642 polygon regions.

We primarily use a combination of the classes described above to annotate the historic advertisements.
We have decided not to introduce new classes to avoid confounding the model’s training. This applies,
in particular, to the separator classes. Therefore, we use the classes separator_vertical
and separator_horizontal for the annotation of separator regions around individual adver-
tisements. Advertisements tend to use text blocks with bigger fonts. To be consistent with our

7The annotation process is documented in A.5, the annotation guidlines are reported in A.6.

5
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Table 3: Dataset split (left), test data is divided into in distribution (id)- and out of distribution
(ood)-data. The right hand side shows label distribution-percentages per pixel.

pages polygons lines

train 492 21.819 279.097
validation 30 1.422 17.463
test id 59 3.014 33.586
test ood 112 3.387 22.725

sum 693 29.642 352.871

label class frequency

0 background 38.16%
1 caption 0.72%
2 table 2.88%
3 paragraph 53.61%
4 heading 0.97%
5 header 0.68%
6 separator vertical 0.62%
7 separator horizontal 0.60%
8 image 0.05%
9 inverted text 0.02%

annotations, we mark these as heading . For the same reason, the normal-sized text is annotated
as paragraph . Additionally, we include the classes inverted_text and graphic elements as
image . These are present, especially in the advertisement pages, as well as the 1924 pages. Table 3
illustrates this numerically. The two classes inverted_text and image are only present in a
subset of the data, which explains its low share of pixels overall.

Regions of each page have a reading order number assigned to them. These numbers are assigned
automatically and not corrected manually. Reading order is not the main scope of this dataset.
Automatic assignment leads to satisfactory results for most pages. For advertisement pages, however,
it does not. Yet, advertisements don’t need a meaningful reading order, as they are comprised of
elements that are independent of each other.

In addition to the layout data, we include transcribed text divided into text lines. In our dataset,
each text line is comprised of a polygon, which contains all characters, as well as a baseline and
the corresponding text. Baselines and text transcriptions are initially generated automatically using
the pipeline proposed by Kodym & Hradis (2021) , and then corrected by expert annotators. Line
polygons and baselines are only corrected when there are significant mistakes. This is especially the
case within the advertisement pages, where some initial letters of advertisements span over more than
one line. Correct drop capital detection is challenging for current text-line detectors. The correction
process is ongoing. Overall, our dataset includes 352,871 text lines. The transcription follows the
OCR-D guidelines, level 2 (Johannes Mangei, 2024) . This means the text is transcribed in a visual
style, preserving, for example, the archaic ’long s’ or ’ s’. For a complete discussion, see supplemental
section A.6.

4 EXPERIMENTS AND RESULTS

Data: All experiments work with fixed train, test and validation splits as outlined in Table 3.

Pipeline: Figure 2 presents a pipeline overview. Overall, we employ two U-Nets for layout recognition
and text-line detection and, finally, a Long Short-Term Memory (LSTM) cell for OCR. The pixel-
wise layout inference is converted into polygons during the post-processing step. We use targets
like Kodym & Hradis (2021) for training the baseline U-Net. The model recognizes baselines,
ascender-, descender-, and end-points, which are converted into line regions and baselines during
post-processing. The post-processing code is an adapted version from Kodym & Hradis (2021).
Contrary to their approach, we use the layout regions from the previous step to cut out parts of the
image and identify all baselines for each region. These baselines are then used as input for the LSTM
OCR model and the original image. The pipeline is sensitive to the character resolution. A small
letter "a", for example, should be about 20x20 pixels in size. If the resolution deviates significantly
(more than five pixels in either dimension), we rescale the input images accordingly.

6
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Layout InferenceInput image

LSTM
Inference

Köln-
Gießener

Eisenbahn.
Mit Bezug auf unsere Veröffentlichung

vom 23. v. Mts. machen wir hierdurch be-
kannt, daß vom Mittwoch den 11. d. Mts.

ab auf den Strecken Deutz-Wetzlar und Betz-
dorf-Siegen alle Personenzüge wieder fahr-
vlanmäßig abgelassen und Güter ohne Be-

schränkung befördert werden, wogegen auf der
Strecke Wetzlar-Gießen bis auf Weiteres noch

jeder Verkehr unterbrochen bleibt.
Köln, den 9. Juli 1866.

Die Direction der Köln-Mindener Eisenbahn-
Gesellschaft.

Optical Character Recognition

Text-Line Inference

Figure 2: Flow chart of the entire prediction pipeline. The layout detection, text-line inference and
Optical Character Recognition (OCR)-tasks use separate networks each. The output is machine-
readable and can be processed further. For example in a machine translation step.

4.1 LAYOUT-SEGMENTATION

Training: Our layout segmentation setup follows Oliveira et al. (2018). For layout training, all pages
are scaled down by a factor of 0.5 and split into 512 by 512-pixel crops. Cropping leads to 34,376
training crops overall. During training, we work with 24 crops per batch per graphics card. The
training runs on a node with four graphics processing units (GPUs) . Consequently, the effective
batch size is 96, with 358 training steps per epoch. Initially, optimization of the contracting network
part can start from pre-trained ImageNet weights, while optimization of the expanding path has to
start from scratch. The expanding subnetwork starts with the encoding from the contracting network
and produces a segmentation output at the input resolution. To improve generalization, input crops
are augmented using rotation, mirroring, gaussian blurring, and randomly erasing rectangular regions.
An AdamW-Optimizer (Loshchilov & Hutter, 2017) trains this network with a learning rate of 0.0001,
with a weight decay parameter of 0.001 for 50 Epochs in total, while using early stopping to save the
best model. We use transfer learning via pre-training on the Europeana dataset (Clausner et al., 2015).
We initialize the encoder using ImagNet weights, train on Europeana first and continue training on
our data. We use only in distribution data for training and validation.

Results: Table 4 column two lists network performance on the test dataset, and column four lists
performance on the id test data only. We compute F1 Score values for all individual classes on pixel
level. Generally, we find good performance with id data, while ood data poses a challenge. Table 7
additionally shows overall test data compared to ood only data. Results of the ood only data show,
that rarer classes like headlines and separators are a challenge, while the paragraph class shows
good generalization. In all cases the especially rare classes image and inverted_text are not
recognized as well. Figure 4 presents an id advertisement page from our test set with ground truth
and prediction side by side.

We also compare our model results to the pipeline developed by Dell et al. (2024) . For this purpose,
we evaluated our test set on their pipeline and report the results in columns three and five of table 4.
Overall, our pipeline performs slightly better on the comparable classes of our test dataset then Dell
et al. (2024). However, we do not fine-tune their model on our training data and there are significant
differences between the Chronicling Germany dataset and the American Stories dataset, that distort
the comparison. The most significant difference between the two datasets are the more detailed

7
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Table 4: Layout detection results. This table lists F1 Score values for all individual classes. N/A
values in columns (3) and (5) are due to differing annotations between our approach and Dell et al.
(2024). In columns (2) and (4) we report our model results for in distribution (id) + out of distribution
(ood) and in distribution (id) only data. (Out of distribution only results for layout in Table 7)

F1 Score (id + ood) F1 Score (id only)

class ours Dell et al. ours Dell et al.

background 0.84 ± 0.001 0.80 0.96 ± 0.003 0.82
caption 0.36 ± 0.017 N/A 0.82 ± 0.031 N/A
table 0.46 ± 0.019 0.43 0.76 ± 0.037 0.49
paragraph 0.91 ± 0.003 0.88 0.99 ± 0.001 0.90
heading 0.63 ± 0.008 0.53 0.87 ± 0.009 0.60
header 0.46 ± 0.010 0.10 0.88 ± 0.028 0.10
separator vertical 0.27 ± 0.027 N/A 0.83 ± 0.009 N/A
separator horizontal 0.56 ± 0.019 N/A 0.89 ± 0.006 N/A
image 0.08 ± 0.016 N/A 0.25 ± 0.029 N/A
inverted text 0.02 ± 0.002 N/A 0.14 ± 0.035 N/A

headline annotations in the Chronicling Germany dataset.8 Dell et al. (2024) seem to assign the
headline class less frequently to headlines that do not stand out clearly. This leads to a significant
amount of headline regions from the Chronicling Germany test-set to be classified as paragraph
by the Dell-pipeline. Furthermore, the Chronicling Germany dataset includes annotated separator
regions, while American Stories does not.9 Moreover, Dell et al. (2024) treats the entire header of
a newspaper front page as one class, while Chronicling Germany differentiates between the header
itself and the captions that are typically left and right of the header.

4.2 BASELINE DETECTION

Training: Following Kodym & Hradis (2021) we train an U-Net for the text-baseline prediction task.
The raw input image as well as ground truth baselines serve as starting points for the optimization.
The training process minimizes a joint text-line and text-block detection objective as introduced by
Kodym & Hradis (2021) . We run an AdamW-optimizer (Loshchilov & Hutter, 2017) with a learning
rate of 0.0001 and a batch size of 16. During training, inputs are randomly cropped to 256 by 256
images. To improve the robustness of the resulting network the input pipeline includes color jitter,
gaussian blur, random grayscale and gaussian blur perturbations during training.

Results: We measure precision, recall, and F1 score (see Table 5 ). Generally, we observe values
around 0.9. These observations are in line with Kodym & Hradis (2021), who observe similar
numbers on the cBAD2019 dataset (Diem et al., 2017). Dell et al. (2024) do not provide baseline data,
instead opting for extracting the text for each region as a whole employing a Yolo v8 architecture.
Since we did not annotate the ground-truth text boxes, there is no adequate way to compare the
two pipelines for this specific task. The historic newspaper community either works with baseline
detection or direct text object detection pipelines. We decided to follow Kodym & Hradis (2021)
and employ a U-Net to detect text baselines. This is consistent with other European projects like the
Europeana-corpus from Clausner et al. (2015) and the work from UB-Mannheim that also features
Fraktur letters. This choice allows combining these European datasets in future work, and is a key
design decision, since we aim to boost performance in the Fraktur-subset of historical newspapers.

4.3 OPTICAL CHARACTER RECOGNITION (OCR)

Training Based on the Kraken-OCR-engine (Kiessling, 2022) we train a LSTM-cell for the OCR
-task and employ baselines to extract individual line polygons. Alongside the annotations, which our

8Segmentation of headlines is of particular interest for historical research, as they allow for the layout based
identification of and differentiation between individual articles.

9In the case of the Kölnische Zeitung identifying horizontal page spanning separators is of cruicial importance
for the reading order, as they act like a page break. This means the reader should not continue reading down the
current column but go back up to the next one.
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Table 5: Baseline detection results. We measure performance in precision, recall and F1 score.
Detected lines are matched with ground truth lines and are considered a true positive if the predicted
line has an IoU score of more than 0.7 compared to the corresponding ground truth line. Results are
averaged over all test pages.

Model precision recall F1 score

UNet 0.934 ± 0.008 0.892 ± 0.01 0.911 ± 0.008

Table 6: Optical Character Recognition (OCR) results. Levenshtein distance per character appears
in the first column. We computed the percentage of completely error-free lines for each model. The
second column lists these results. Finally, we consider a line to have many errors if we observe a
Levenshtein distance of more than 0.1 per character. We report the percentage of many error lines in
the final column. We list the mean and standard deviation for multiple seeds.

Model Data Levenshtein-Distance fully correct [%] many errors [%]

LSTM (UBM 2024) id + ood 0.02 43.5 7.2
id only 0.01 48.9 3.2

ood only 0.03 35.5 13.0

LSTM finetuned (ours) id + ood 0.02 ± 0.001 60.5 ± 0.34 8.1 ± 0.66
id only 0.01 ± 0.001 71.3 ± 0.21 2.9 ± 0.19

ood only 0.04 ± 0.004 44.6 ± 1.27 15.8 ± 1.96

Transformer (ours) id + ood 0.04 ± 0.01 56.2 ± 1.3 12.5 ± 2.3
id only 0.04 ± 0.01 66.1 ± 1.64 9.7 ± 2.7

ood only 0.04 ± 0.01 41.7 ± 0.89 16.6 ± 2.13

human domain experts have checked, these serve as input and ground truth pairs. Adam (Kingma &
Ba, 2015) optimizes the network with a learning rate of 0.001. Optimization runs for eight epochs
with a batch size of 32 sequences. We use early stopping to prevent the model from overfitting and
include pixel-dropout, blur, rotation and see-through-like augmentations during training to improve
generalization.

Results: Compared to the model trained by the Universitätsbibliothek Mannheim (Jan Kamlah, 2024)
we observe improved results after finetuning (see: Table 6 ). We also find the OCR-transformer
proposed by Kodym & Hradis (2021) in their pero-application with our LSTM results still being
slightly better. The antiqua-pretrained OCR model from Dell et al. (2024) does not generalize well to
the Fraktur-texts. For this pipeline, we observe an average Levensthein distance of 0.58 on the test
set (not included in Table 6).10

4.4 OVERALL PIPELINE PERFORMANCE

So far, we have evaluated components individually using ground truth inputs from previous steps. We
additionally evaluate the complete pipeline on the test set (Table 9). We choose the best model of
each component, according to the validation set (30 pages), to use in our pipeline. Then, we evaluate
the resulting transcription with our ground truth. All predicted and ground truth lines are matched
based on the intersection over the minimum of the corresponding text lines. Lines without a match
were paired with an empty string. Our pipeline achieves an overall Levenshtein distance per character
of 0.03 across the entire test set.

5 PIPELINE-GENERALIZATION

Test-Data : We train only on in distribution data from the Kölnsche Zeitung, as this is the by far
largest part of our data. To verify generalization, our test dataset contains 112 out of distribution

10Please note that we cannot fine-tune the OCR engine proposed by Dell et al. (2024) on our Fraktur-data
because of differences in the text detection step (see above).
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Dortugall.
(Ein LuftBall.) Zu Liss abon wurden die gero
statischen Ma schinen als eine Erfindung, die
wider die Allmacht Gottes wäre, im vorigen
fahr verboten — und weil doch nun der dasi-
ge Hof mag gefunden haben, daß die ganze
übrige Christenheit auch Vernunft habe, die

diese Versuche nicht bloß duldet , sondern so gar
unrerstüzt: s o haben J. J. K. K. M. M. aller-

gnadigsi geruht zu Caxias ( oder eigentlich Cascaes)
sich und dem haufig herzugelaufenen Volke

das schau spiel von 2 acrostati schen Maschinen
zu geben; die eine ward dem Winde preis ge-

gegeben; die andere in der Luft die ganze Nacht
tgehalten und illuminirt!

— sehr sinnreich!

Figure 3: Generalization test set sample image. This figure shows a page element with detected
baselines on the left. The right side presents the automatically created transcription.

pages from many different papers and time periods (Table 1 and Table 3). These contain also a small
amount of out of domain antiqua font, enabling the evaluation not only on the trained Fraktur font.

Inference : Additional to the full test set evaluation, we run the entire pipeline on the out of
distribution data only (Table 9). Overall, we measure a Levenshtein distance per character of 0.06.
Figure 3 presents an example taken from a 1785 issue of the Schwäbischen Merkur. The sample
is a report from Portugal. Readers learn that hot-air balloons or "aerostatische Maschinen" where
banned "last year" because hot-air balloons were initially deemed to be "incompatible with the
omnipotence of god". Later, however, the court changed it’s mind and bought two for a demonstration.
Linguistically, the sample is close enough to modern German to be machine-translated.

6 CONCLUSION AND FUTURE WORK

This work introduces the Chronicling Germany -dataset, the currently largest dataset of German
language historic newspaper pages. In addition to the dataset, it presents a neural network-based
processing baseline with test-set OCR-accuracy results. Our paper creates a starting point for
researchers who wish to improve historical newspaper processing pipelines or are looking for a
low-resource computer vision challenge. To create the dataset, history students spent 1,500 hours
annotating the layout. The dataset’s 693 pages, make it the largest fully annotated collection of
historic German newspaper pages. The dataset includes 1,900 individually annotated advertisements.
Furthermore, the out of distribution part of our test set includes 112 pages from historic newspapers
that are not part of the training set. We verify baseline pipeline performance on the out-of-distribution
pages. By following the OCR-D annotation guidelines (Johannes Mangei, 2024) we ensure our
annotations’ compatibility with concurrent and future work.
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A SUPPLEMENTARY

A.1 ACRONYMS

CNN Convolutional Neural Network

GPU graphics processing unit

id in distribution

LSTM Long Short-Term Memory

NLP Natural Language Processing

OCR Optical Character Recognition

ood out of distribution

RNN Recurrent Neural Network

A.2 ADDITIONAL FIGURES

paragraph

heading

caption

header

seperator vertical

table

image

inverted text

separator horizontal

Figure 4: Target labels on the left and segmentation prediction on the right. The top left part of this
advertisement page also appears in Figure 2.

A.3 PROJECT LIMITATIONS AND SOCIAL IMPACT

This dataset contains newspaper pages set in Fraktur-letters. The font is very different from modern
fonts. The ’long s’ or ’s ’, for example, is completely foreign to modern eyes. While our generalization
dataset also includes four pages in Antiqua font, which have been predicted with sufficient accuracy,
networks trained exclusively on our dataset are not likely to outperform more specialized networks on
modern newspaper pages. There still exist some limitations of our pipeline. This includes the correct
recognition of the drop-capitals present in advertisement pages and abbreviations and fractions in the
market and stock exchange reports of the newspapers.

Ideally, our work will enable the processing of millions of pages of historical data, making vast
resources easily available to future researchers who can then build upon the transcribed source
material, for example, with machine translation and Natural Language Processing (NLP) pipelines.
Countless research questions concerning economic, societal, political and scientific development
can be addressed with such data. For a more detailed description of the relevance of such data for
historical research, see Supplementary Section A.4 . We hope this dataset will help to improve our
understanding of the past. We therefore expect a positive impact on society as a whole.
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Figure 5: Layout recognition error in the Kölnische Zeitung. A researcher tried to select text in
the first column on the very left but the column layout it not understood correctly. This page was
published on September 26, 1880. Digital versions are available at the zeit.punkt NRW website.
Layout recognition and transcription generated by Transkribus.

A.4 MACHINE LEARNING IS IMPORTANT FOR THE STUDY OF HISTORY

Figure 1 illustrates the breakthrough of the newspaper industry in the 19th century.11 While the
number of newspapers listed in the Deutsche Zeitungsportal grew at a rate of 2.9 percent p.a. in
the first two-thirds of the 19th century, the increase rose to 3.4 percent p.a. after the foundation
of the German Empire. There were three main reasons for this increase: firstly, the literacy of the
population increased over the century. Secondly, considerable technological advances made it easier
to produce a newspaper. Thirdly, state control of newspapers declined from the middle of the century.
A significant milestone was the Press Act of 1874, which finally abolished censorship (although
some restrictions remained so that even after 1874, there was no complete freedom of the press in
the German Empire). Nevertheless, no later than the last third of the 19th century, a mass market for
print media had emerged in Germany, which was served by many newspapers whose content and
political orientation were very heterogeneous.

Historical newspapers contain a wealth of information about past societies. They provide information
about the spatial occurrence of events, about contemporary perceptions of social and economic
change, and allow tracing of cultural change. Blevins (2014), for example, uses the mentioning of
place names in the Houston Post to draw a mental map of the Nation around 1900. Measured by
the mention of place names, the region west of Houston was deeply rooted in the newspaper and its
readership. The East Coast and the Midwest were also present in the imagination of contemporaries.
However, the Southwest, the Northwest, and California hardly appear on this mental map. Based
on the newspaper’s coverage, one could argue that readers of the Houston Post around 1900 were
barely aware of the Nation as a geographical entity. In economic history, historical newspapers have
recently been used to identify treatments or measure variables of interest. Beach & Hanlon (2023)
give an overview of the recent use of historical newspaper data in economic history. An interesting
recent example is Ferrara et al. (2024) , who used digitized newspaper archives to measure a county’s
exposure to the boll weevil around 1900. The boll weevil is a pest of cotton that hit the American
South between 1892 to 1922. The pest reduced cotton production and, consequently, hastened social
changes in the primarily Black rural communities, like the fertility transition and higher investment
in education.

11Note that the Deutsche Zeitungsportal does not collect all historical newspapers. There is probably a
selection bias towards more prominent outlets with extended publication periods. However, on the whole, figure
1 should reflect the development of the newspaper market in Germany quite well.
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Even though newspaper portals are an essential source for historians and other disciplines interested
in history, such as economics, their potential has not yet been fully realized (Beach & Hanlon, 2023) .
Firstly, researchers have so far mainly used US-American portals. The reason for this bias may be
these portals have been established longer than in other regions of the world. Secondly, the mass
utilization of newspaper data is often limited to a keyword search, which usually only covers the
entire page and does not discriminate between articles. Therefore, the joint occurrence of two or
more search terms is recorded for the page, not the article, and information retrieval is thus still
very imprecise (Oberbichler & Pfanzelter, 2021) . Thirdly, the text cannot always be downloaded
easily, which makes further processing by researchers more difficult. On the other hand, the image
files of individual newspaper pages are easy to obtain via the portals. Deep learning algorithms that
recognize the layout of a newspaper page and capture the text at the article level, therefore, promise
great benefits for historical research. The Chronicling Germany data set presented here, comes with
layout annotations for every page. It is intended to stimulate the further development of deep learning
algorithms and to promote the increased use of non-American newspaper portals.

In addition to more accurate and straightforward information retrieval, downloadable article-level
data will also allow scholars of history to apply advanced NLP-methods in the future, including
document and text embedding techniques and fine-tuning large language models to 19th-century
German.

A.5 DATASET DESCRIPTION

A.5.1 CONSTRUCTION OF THE DATASET

The Chronicling Germany dataset includes 17 newspapers from all over Germany (Figure: 6 ). Most
of the data (581 pages) is from the Kölnische Zeitung but we have added 112 pages from other
newspapers covering the time period 1785-1891 (Table 1 ). Currently, these 17 newspapers are
completly in the test set. However, in an updated version we will also include different newspapers
into the training pipeline. Overall, we have annotated 688 pages including over 2.9 million words
and almost 30,000 region polygons. Aside from availability and representation, we selected these
newspapers for the following reasons: Our focus is on 1866, the year of the Austro-Prussian War.
Aside from its historical importance as the second of the three unification wars and the decisive
turning point towards the "Kleindeutsche Lösung", this year gives certain advantages to make our
data more diverse: During this year, most newspapers across Germany reported lists of the fallen,
missing and deserted as well as reports on military careers of officers. These are usually printed in
a considerably different layout, thus diversifying our data. Additionally, most states - particularly
during wartime - obliged newspapers in their territory to publish "Öffentliche Bekanntmachungen"
or official notices. In 1866, all states handled this differently, resulting in more diverse newspaper
layouts across Germany (compared to 1871). Also , focusing on this year allows users of our dataset
to evaluate separately how well a model generalizes to different newspapers of the same time and
how well it generalizes to newspapers from other decades. When no newspapers from 1866 were
available, we sometimes included an issue from 1867. The different newspapers have been chosen to
maximize variation between them. We include newspapers from various regions of (past) Germany,
like Berlin, Eastern Prussia, the Rhineland, Lower Germany (Hannover), Bavaria, The Palatinate, and
Saxony. We also take care to include larger national as well as regional newspapers, and newspapers
with a special non-political interst, like the Neue Berliner Musikzeitung (New Berlin Musics Paper)
and Der Bazar (a paper on "women’s topics" - mostly written by men). We dedicated extra attention
to the Vossische Zeitung, because it is one of the most-read newspapers of its age and - due to its bad
printing quality - it is particularly difficult for layout detection and OCR. The amount of pages per
newspaper varies, since we include full issues of each newspaper, regardless of their length. This is
done to ensure that the entire diversity in layout and font across different sections of the newspaper is
represented in the dataset. The years from 1924 onwards constitutes a natural end for the dataset,
since German newspapers gradually started using latina fonts instead of Fraktur during that period.

A.5.2 ANNOTATION PROCESS

The annotation process follows the annotation guidlenes in A.6 . A human domain expert carried out
all layout annotations that were then cross-checked by another human domain expert. Annotating and
correcting text is extremely time-consuming. For the moment an automatic transcription is checked
and corrected by a single human domain expert. Currently, we have corrected 446 pages in of the
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Figure 6: Map of historic Germany from 1867 with labeled regions and regions of newspaper origins
beyond the Kölnische Zeitung.

Kölnische Zeitung, and 112 pages in the generalization part of the dataset. To improve quality further
we will run a second correction round, where all lines will again by proofread by different annotators.

A.6 ANNOTATION GUIDELINES

A.6.1 INTRODUCTION

These annotation guidelines are an adaptation of the OCR-D rules ( https://ocr-d.de/en/
gt-guidelines/trans/transkription.html ). We outline additional rules, we created
to ensure consistency of the Chronicling Germany dataset.

A.6.2 PAGE TYPES AND TYPE AREA

The OCR-D guidelines provide for a distinction to be made between page types and the type area
during layout analysis. The type area usually contains the text body, but not elements such as the
page number. In the Chronicling Germany data set, these steps are currently not taken into account.

A.6.3 REGIONS

Region-types The OCR-D guidelines distinguish between different types of regions, such as text,
image and separator regions. In the Bonn Newspaper dataset, the regions are generally recorded
in accordance with OCR-D page region level 1 ( https://ocr-d.de/de/gt-guidelines/
trans/ly_level_1_5.html ). However, tables are also recorded as a separate region and
no distinction is made between images and drawings; instead, all images, photos, illustrations and
drawings are grouped together under the GraphicRegion. The entire contiguous region is always
marked as a block. For text regions, this applies to contiguous blocks of the same class.

• TextRegion: All texts that are not tables. Table headings are not marked as a text region.

• TableRegion: All parts of the page that contain tabular information. These are often,
but not always, clearly recognizable as tables by small separators. Text that is only separated
by separators does not count as a table, but a structure must be recognizable that assigns
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certain meanings to rows and columns. Table headings are included with corresponding
tables.

• SeparatorRegion: All dividing lines are marked as SeparatorRegion. This also in-
cludes decorative elements that, like other separator lines, separate areas from each other
and are not purely cosmetic in nature. The separators are divided into vertical and horizontal
separators and marked with “separator_vertical” and “separator_ horizontal”.

• GraphicRegion: All graphics, images, photos, illustrations, and drawings.

A.6.4 TEXTREGION SUBTYPES

TextRegions are divided into different subtypes. The subdivision corresponds to the OCR-D guide-
line for text regions (https://ocr-d.de/de/gt-guidelines/trans/lytextregion.
html#textregionen__textregion_ ). However, drop capitals are treated differently from
OCR-D. These are counted as part of the paragraph instead of being marked as a separate text region
so that models trained on this data will include them in the correct position in their text output. In
addition, headlines (caption) and inverted text (inverted-text) are also recorded in the Chronicling
Germany data set. Instead of annotating advertisements separately, the classes created for other
newspaper pages are applied to the advertisements as far as possible. Because headlines should be
visually identified, this leads to a large number of text in the advertisements marked as headlines,
which contradicts a semantic definition of a headline. Therefore, it makes sense to treat these pages
separately in practice and not differentiate between headings and other text. The following elements
from the OCR-D guidelines are not represented in the Chronicling Germany dataset due to lack of
occurrence:
page-number, marginalia, footnote, signature-mark, catch-word, floating, TOC-entry

We discuss the definition for the text subclasses below:

• paragraph: Standard text type that includes paragraphs. These are usually kept compact
to accommodate as much text as possible in the available space. If a text region cannot be
assigned to any other type, it falls under the paragraph label.

• heading: Headings that can be clearly distinguished visually from the rest of the text. This
is achieved by using a significantly larger or bold font and centered text, which is clearly
different from the block layout of paragraphs. A heading is located above a paragraph and is
sometimes separated from the previous text by a separator. A thin separator between the
heading and the text can occur. However, if there is too much space between them or a thick
separator, the two texts no longer count as belonging together in the sense of heading and
paragraph. If a text is not superordinate to a paragraph, it cannot be a heading.

• header: Page or column titles that appear prominently above the entire page. These are
centered at the top of the page and can appear in different font sizes.

• caption: Title lines that are located to the right and left of a page heading or text heading.
They often contain information such as the date.

• inverted-text: Text that is printed white on black. This is often part of decorative elements
but is not marked as a graphic element.

A.6.5 OCR

A prerequisite for text recognition is baseline or text-line recognition. Both the baseline itself and a
polygon around the text line are annotated. These are generated automatically and only corrected if
the baseline connects non-contiguous text passages. Lines that have been divided into two baselines
are not corrected. Tables and inverted text are not given baselines.

The text is corrected according to its optical appearance. What is written on the page is transcribed,
even if there are errors in the print or scan. Completely illegible passages are not transcribed, passage
that are largly illegible are transcribed but marked with the "unknown" tag of Transkibus. Thes
passage are not used in training.

The transcription is carried out according to level 2 of the OCR-D guidelines ( https://ocr-d.
de/en/gt-guidelines/trans/level_2_2.html ). This includes the transcription of
special characters such as the ’long s’ (U+017F) or long hyphens (U+2014, em dash). Consistency
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with the rest of the data is important here. As these were generated automatically, it is best to look for
another example and adopt that version if the special characters are unclear.

Unlike in the OCR-D guideline, fractions are not transcribed with special characters. Instead, the
fraction is represented with a slash:
1 3
4 = 1 3/4.

In this case, it is important to separate the whole number from the fraction with a space. The same
applies to times with an underscore. Example for clock times: 1145 =11_45 or 11.45 =11._ 45. (For
both, use non-breaking spaces in future (U+202F))

The case of a number that is followed by a unit (e.g. 100M) is not dissolved in the OCR-D guidelines.
We always add a space between the number and the unit (e.g. 100M becomes: 100 M)

Transkribus allows the selection of special characters with a virtual keyboard. However, it must
be ensured that the character used is unique. For example, U+2014 and U+2015 are visually
indistinguishable. U+2014 must be used for long hyphens. If the characters are unclear, the OCR-D
guidelines, which include tables for the use of special characters, can also be consulted:

• https://ocr-d.de/en/gt-guidelines/trans/trLigaturen2.html

• https://ocr-d.de/en/gt-guidelines/trans/trFremdsprache.html

• https://ocr-d.de/en/gt-guidelines/trans/ocr_d_
koordinationsgremium_codierung.html

• https://ocr-d.de/en/gt-guidelines/trans/trBeispiele.html

• https://ocr-d.de/en/gt-guidelines/trans/tr_level_1_3.html

• https://ocr-d.de/en/gt-guidelines/trans/trAnfZeichen.html

• https://ocr-d.de/en/gt-guidelines/trans/trGedankenstrich.
html
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A.7 FURTHER RESULTS

A.7.1 OUT OF DISTRIBUTION LAYOUT RESULTS

Table 7: Layout detection results on the out of distribution test set. This table lists F1 Score values
for all individual classes. N/A values for Dell et al. (2024) are due to annotation differences. Since
YOLOv8 detects bounding boxes, we do not require seperator detection. (Main results for layout in
Table 4)

F1 Score (ood only)

class ours YOLOv8 Dell et al.

background 0.78 ± 0.011 0.716 ± 0.013 0.74
caption 0.44 ± 0.005 0.112 ± 0.021 N/A
table 0.31 ± 0.039 0.285 ± 0.042 0.21
paragraph 0.91 ± 0.006 0.768 ± 0.028 0.86
heading 0.41 ± 0.014 0.405 ± 0.021 0.42
header 0.18 ± 0.034 0.164 ± 0.027 0.1
separator vertical 0.38 ± 0.036 N/A N/A
separator horizontal 0.40 ± 0.024 N/A N/A
image 0.1 ± 0.022 0.117 ± 0.050 N/A
inverted text 0.15 ± 0.01 0.000 ± 0.000 N/A

A.7.2 YOLOV8 LAYOUT RESULTS

Table 8: Layout detection results. This table lists F1 Score values for all individual classes form a
YOLOv8 detection model trained on our dataset. Since YOLOv8 detects bounding boxes, we do not
require seperator detection.

class F1 Score (id + ood) F1 Score (id only) F1 Score (ood only)

background 0.786 ± 0.009 0.830 ± 0.008 0.716 ± 0.013
caption 0.575 ± 0.005 0.947 ± 0.002 0.112 ± 0.021
table 0.696 ± 0.037 0.881 ± 0.007 0.285 ± 0.042
paragraph 0.859 ± 0.013 0.916 ± 0.007 0.768 ± 0.028
heading 0.673 ± 0.007 0.827 ± 0.014 0.405 ± 0.021
header 0.622 ± 0.050 0.842 ± 0.071 0.164 ± 0.027
image 0.178 ± 0.036 0.503 ± 0.191 0.117 ± 0.050
inverted text 0.157 ± 0.016 0.420 ± 0.078 0.000 ± 0.000

A.7.3 PIPELINE OCR RESULTS

Table 9: Optical Character Recognition (OCR) results for running the entire pipeline on our dataset.
Levenshtein distance per character appears in the first column. We computed the percentage of
completely error-free lines for each model. The second column lists these results. Finally, we
consider a line to have many errors if we observe a Levenshtein distance of more than 0.1 per
character. We report the percentage of many error lines in the final column. All predicted and ground
truth lines are matched based on the intersection over the minimum of the corresponding text lines.

Model Data Levenshtein-Distance fully correct [%] many errors [%]

Complete Pipeline
id + ood 0.03 49.9 21.8
id only 0.03 63.1 9.9

ood only 0.06 34.6 35.4
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