
Under review as a conference paper at ICLR 2021

SYMBOL-SHIFT EQUIVARIANT NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Neural networks have been shown to have poor compositionality abilities: while
they can produce sophisticated output given sufficient data, they perform patchy
generalization and fail to generalize to new symbols (e.g. switching a name in a
sentence by a less frequent one or one not seen yet). In this paper, we define a
class of models whose outputs are equivariant to entity permutations (an analog
being convolution networks whose outputs are invariant through translation) with-
out requiring to specify or detect entities in a pre-processing step. We then show
how two question-answering models can be made robust to entity permutation us-
ing a novel differentiable hybrid semantic-symbolic representation. The benefits
of this approach are demonstrated on a set of synthetic NLP tasks where sample
complexity and generalization are significantly improved even allowing models to
generalize to words that are never seen in the training set. When using only 1K
training examples for bAbi, we obtain a test error of 1.8% and fail only one task
while the best results reported so far obtained an error of 9.9% and failed 7 tasks.

1 INTRODUCTION

Previous work have shown how neural networks fail to generalize to new symbols (Lake & Baroni,
2018; Sinha et al., 2019; Hupkes et al., 2019). In particular, Lake & Baroni (2018) showed that
seq2seq models are able to perfectly learn a set of rules given enough data, however they fail to
generalize these learned rules to new symbols.

4 (original) 100 1000 10000
Number of names

0

20

40

60

80

100

Te
st

 e
rro

r

5% error limit
MN
SMN
TPR
STPR

Figure 1: Test error on first bAbi task
when increasing the number of names.
Error of symbolic models are all bellow
1%.

We illustrate the generalization issue of current models in
the context of question-answering (QA) on the first task
of bAbi (Weston et al., 2015). This dataset identified a set
of tasks testing which type of reasoning can be achieved
by a question-answering system (e.g. several support-
ing facts, compound reference, positional reasoning, etc).
Each task consists in a set of stories with an associated
question such as:

“John took the apple. John traveled to the hallway.
Who has the apple?”

Clearly, we would expect a QA system to be able to an-
swer the previous example when “John” is replaced by
“Sasha”, “Bob”, or any possible name even if it has not
been seen during training. To investigate whether QA
models perform abstraction over symbols, we perform an
experiment where the training and test sets of the first
bAbi task are regenerated with an increasing number of
names. Fig. 1 shows how the performance of Memory-
Networks (MN) (Sukhbaatar et al., 2015) and Third-order

tensor product RNN (TPR) (Schlag & Schmidhuber, 2018) dramatically drops as the number of
names increases in contrast to their symbolic counter-part SMN and STPR proposed in this paper.
Both models reach low error well below the 5% limit even when the number of names and vocabu-
lary become considerably larger than the original task.

1

Under review as a conference paper at ICLR 2021

The main contribution of this paper is the proposal of a hybrid semantic/symbolic representation that
is equivariant to entity permutation. The main advantage and novelty of our approach is that entities
are not required to be identified in advance as we rely solely on differentiation to determine whether
a word acts like an entity. We show how to extend two question-answering models to handle this
hybrid representation and demonstrate in extensive experiments the benefit of such an approach:
the sample-complexity is significantly improved, better compositionality is obtained and symbolic
models reach better accuracy on the studied tasks in particular when being trained with less training
data.

The paper starts by reviewing related works, we then introduce formally what it means to permute
entities. We then define layers that are robust to such perturbation and show how two recent question-
answering models can be adapted in this context. Finally, experiments are conducted to assess the
benefits of our method.

2 RELATED WORKS

Improving compositionality of neural networks has been an important on-going effort in the past
years. The SCAN dataset proposed from Lake & Baroni (2018) initially showed how standard
neural networks baselines can fail to generalize to new symbols when learning a set of artificially
constructed rules. Several approaches were proposed to solve this issue. For instance, Lake (2019)
designed meta-learning episodes that led the model to solve the task, (Nye et al., 2020) showed how
one could infer symbolic neural programs with a similar meta-learning procedure. Alternatively,
Gordon et al. (2020) proposed to design an equivariant model (a model whose latent representations
are unchanged when permuting symbols). A common limit of those approaches is that they require
specifying which words are symbols in advance (Lake (2019); Nye et al. (2020) also requires sub-
stantial amount of supervision and designing meta-episodes). An exception is Russin et al. (2019)
which proposed to decompose syntax and semantic for SCAN. None of those approaches can gen-
eralize to arbitrary large amount of entities or entities not seen in the training as the one we propose.

The problem of compositionality becomes much easier if symbols (or entities) are detected before-
hand. For instance, Li et al. (2015) showed that replacing entities by dedicated token placeholders
leads to significant improvement in question answering. The same approach has also been applied
in Machine Translation and Data to Text generation Luong et al. (2015); Serban et al. (2016); Lebret
et al. (2016), to enable sequence to sequence models to generalize to unseen words at inference time.
While specifying entities in advance (or detecting them in a pre-processing step with Named-entity
recognition (Marsh & Perzanowski, 1998)) before applying a model may give compositionality, we
would clearly want instead models to be able to infer automatically whether a word should behave
as a symbol or not. While positional encoding (Graves et al., 2014; Vaswani et al., 2017) may
give some compositionality - as it allows to reason over positions - this solution is not practical for
language as inter-word distances are not fixed. For instance the distance between a noun and its verb
varies and positional embedding is not enough to achieve compositionality (Hupkes et al., 2019).

An interesting line of research have been the study of equivariant models whose representations
are invariant (or equivariant) to symmetries present in the data (Zaheer et al., 2017; Ravanbakhsh
et al., 2017). Adding invariance to data symmetries has been theoretically shown to drastically
reduces sample complexity (Sannai & Imaizumi, 2019). For instance, convolution neural networks
require significantly less training data and achieve much better performance than a MLP as they are
invariant to image translation. Gordon et al. (2020) proposed the first NLP model provably capable
of handling symmetries between symbols albeit requiring the need to specify such symmetries in
advance.

Tensor product representation (TPR) Smolensky (1990) allows to stores complex relations between
value and variables with distributed representations and offer some compositionality. Recently,
Schlag & Schmidhuber (2018) proposed an architecture able to learn TPR parameters by differ-
entiation and obtained state-of-the-art results for bAbi at the time of publishing. However, the
compositionality of the proposed approach is limited (as shown in Fig. 1) by the fact that every
entity needs to be seen sufficiently many times so that a proper entity vector is found, in addition the
model has been shown to learn orthogonal representation for entities which requires as many hidden
dimensions as the total number of entities.

2

Under review as a conference paper at ICLR 2021

John took the apple.
Who took the apple?

Sasha took the apple.
Who took the apple?

John Sasha

John took the apple.
Who took the apple?

John took the orange.
Who took the orange?

John
John

Sasha

apple
orange

lemon

Paul
took

the is

JohnWord parameters
Lisa

Ana
Mary

Figure 2: Illustration of symbol-shift equivariance. Left: representation of word parameters (identi-
cal words are depicted close so that they can be distinguished). Middle and right: two cases where
Φ is symbol-shift equivariant for two different symbol-shifts.

Finally, the VARS approach (Vankov & Bowers, 2020) consists in outputting a one-hot vector repre-
senting a symbolic variable that is randomly assigned to different positions during training to enforce
compositionality. While this approach grants some compositionality, the approach is limited as one
must draw symbol permutations so that each object is seen in all possible one-hot values. In addi-
tion, one must specify in advance which object or word behaves as a symbol and the method only
support symbolic output and cannot represent symbolic inputs nor perform computation with hybrid
representation as we propose (combining semantic and symbolic representation).

3 SYMBOL-SHIFT EQUIVARIANCE

When we learn to answer “John” given a specific context we would like to be able to answer “Sasha”
if both names were permuted in the context. In what follows, we introduce the notion of symbol-
shift equivariance: e.g. a condition restricting possible permutations as some permutations may
perturb the sentence grammar (permuting “John” by “why”) or cause ambiguity (permuting “John”
by “Mary” if the question involves a gender).

We assume all words are taken from a vocabulary V which is a discrete set of n words. We are
interested in providing an answer a ∈ V given a context consisting in a question q = [q1, . . . , qnq

] ∈
V nq and a list of sentences (or stories) x = [x1, . . . , xT] with xi = [xi1, . . . , xini] ∈ V ni . We
denote X = (x, q) and Φ(X) = a the function that predicts the answer a ∈ V given the context
X = (x, q) ∈ X .

Let Γ : V → V a word permutation. Given a sequence [y1, . . . , yn], we define Γ(y) =
[Γ(y1), . . . ,Γ(yn)] where the permutation is applied to each word in the sequence, similarly,
Γ(X) = ([Γ(x1), . . . ,Γ(xT)],Γ(q)).

Assuming each word has an associated vector parameter, we say that a permutation is a symbol-shift
if it preserves vectors parameters. For instance in Figure 2, a map permuting “John” with “Sasha” is
a symbol-shift as both words share the same parameters but a map permuting “John” and “lemon”
is not. Formally, assuming each word i ≤ n has an associated set of parameters vi ∈ RD, we say
that a permutation Γ : V → V is a symbol-shift if vi = vΓ(i) for all i ≤ n.

We are now ready to define symbol-shift equivariance. A critical advantage is that we do not need
to specify symmetries in advance between entities, as we instead rely on vector semantics whose
embeddings will be learned end-to-end.

Definition 1. Let Φ : X → V a function mapping a context to an answer. We say that Φ is symbol-
shift equivariant if for any symbol-shift Γ and for any X ∈ X ,

Φ(Γ(X)) = Γ(Φ(X))

4 SYMBOLIC QUESTION ANSWERING

In this section, we show how to define symbol-shift-equivariant models. The main idea consists of
concatenating two representations, a standard semantic representation in Rd as well as a symbolic
representation in Rm where m denotes the number of distinct words in the stories and question.
The symbolic representation will be made such that for i ≤ m, the i-th component of the symbolic
representation corresponds to the i-th word appearing in the context. For instance in Figure 3, there
arem = 5 words in the context and “apple” is the fourth word by order of appearance so its symbolic

3

Under review as a conference paper at ICLR 2021

embedding is the fourth one-hot vector. The model symbolic output has larger probability for the
fourth word of the context which is dereferenced to “Apple”.

We now describe formally how the symbolic representations are constructed and how we perform
linear transformation and projection back to the original vocabulary. Finally, we derive the sym-
bolic counter-part of Memory-Networks and TPR models that will be proved to be symbol-shift
equivariant.

Mapping words into and from symbolic representations. In each input example, the set of
words present in the stories x and the question q is denoted as

CX = {q} ∪ {{xi}, i ≤ T}

and we letm = |CX | be the number of distinct words in the context. To project words to its symbolic
representation Rm, we represent each unique word by a one-hot vector representing the position of
its first appearance, using the bijection ϕX : CX → [1,m]1.

To dereference a symbolic representation in Rm back to its vocabulary id, we define the matrixBϕ ∈
Rn×m that maps one-hot vectors of symbolic representations to one-hot vectors in Rn representing
the word id in the vocabulary as shown in Fig. 3, such that Bϕemj = enϕ−1(j) for j ≤ m where
ekl ∈ Rk denotes the l-th one-hot vector in Rk 2.
Note given a one-hot symbolic representation p̃ ∈ Rm, the i-th coordinates of Bϕp̃ ∈ Rn is given
by :

[Bϕp̃]i =

{
p̃ϕ(i) if i ∈ C
0 else

(1)

hence Bϕ allows to dereference a symbolic representation p̃ ∈ Rm to a word vector Bϕp̃ ∈ Rn.

Hybrid semantic-symbolic embeddings. We embed words with the concatenation of a standard
semantic word embedding as well as a symbolic embedding respectively parametrized byA ∈ Rd×n
and α ∈ [0, 1]n. The semantic embedding maps a word x ∈ [1, n] to Aex ∈ Rd. While the symbolic
embedding of x consists in the one-hot vector of the order of appearance of the word x in its context
multiplied by a learned parameter. More precisely, it is defined as αxeϕ(x) ∈ Rm, where αx is an
output of a sigmoid unit on a learnable parameter, i.e. 0 < αx < 1, that indicates how much each
word should behave as a symbol 3, and eϕ(x) is the one-hot vector of the order of appearance of the
word x in its context. The final embedding of a word of x then consists in the concatenation of the
semantic and symbolic parts:

x 7→ Aex ⊕ αxeϕ(x) ∈ Rd+m, (2)

where ⊕ denotes the concatenation operator. Note that all parameters are differentiable allowing
the model to learn both word semantic and how much each word should behave as a symbol. The
symbolic part will be shown to allow the model to be robust to symbol permutation while being
able to represent an arbitrary number of symbols and generalize to new ones. For instance in Fig. 3,
one can see that permuting “John” by “Sasha” would not change embeddings (as long as both name
share the same parameters) as both words will still appear in the same order in the context.

Symbolic projection. Given an internal state h = hsem ⊕ hsym ∈ Rd+m, we interpret it as a
distribution on the vocabulary p ∈ Rn with

psem = softmax (Bhsem) psym = Bϕsoftmax (hsym) (3)
p = β psem + (1− β) psym (4)

where B ∈ Rn×d and β ∈ [0, 1] are parameters to learn.

The final distribution is a mixture of two distributions psem and psym. The first one psem is seen as
a semantic output as it increases answer probability of a word if its semantic embedding is closer

1From now on, we drop the subscript notation when there is no ambiguity and denote C,ϕ
2we later omit superscript dimension as they will always be implicitly defined
3Note that if αx = 0 for all word x, the model is reduced to a standard semantic-only model

4

Under review as a conference paper at ICLR 2021

Model

John the apple Who took
1 -1 1 0 0 0 0 -3 2 0 1 0 0 0 2 3 0 0 1 0 0 -1 1 0 0 0 1 0

took the apple
2 3 0 0 1 0 0 -1 1 0 0 0 1 08 -3 0 0 0 0 1 -3 2 0 1 0 0 0

-1 1 1. 0 0 2 0

apple John orange... ...

psem = softmax (Bhsem) ∈ Rn

sem. emb. Ax ∈ Rd

hsym ∈ Rmhsem ∈ Rd

apple John orange... ...

psym = Bϕsoftmax (hsym) ∈ Rn

symb. emb. αxϕx ∈ Rm

Bϕ

ϕ the apple Whotook
1 2 3 4 5

apple John orange... ...

... ...

0
0
0
1
0

1
0
0
0
0

0
0
0
0
0

Figure 3: Illustration of symbolic representation in a case where d = 2 and m = 5.

to the semantic state hsem. The second one psym interprets hsym as probabilities of words from the
context using Bϕ to dereference positions. Indeed, denote p̃ = softmax (hsym) ∈ Rm and using Eq.
1, we get that the i-th coefficient of psym is given by

[psym]i = [Bϕp̃]i =

{
p̃ϕ(i) if i ∈ C
0 else

(5)

Symbolic transformation. We perform a linear transformation of an internal symbolic represen-
tation h = hsem ⊕ hsym ∈ Rd+m with:

hsem ⊕ hsym 7→Whsem ⊕ (λI + γ11T)hsym ∈ Rd+m, (6)

where W ∈ Rd×d, λ ∈ R, γ ∈ R are parameters to learn, I ∈ Rm×m is the identity matrix and
1 = [1, . . . , 1]T ∈ Rm×1. The linear transformation for the symbolic part is taken from Zaheer et al.
(2017) where it was shown to be the unique form of a linear parametric equivariant function. In our
case, the symbolic transformation is invariant to permutation of symbolic coordinates, allowing the
model to be independent from the choice of a particular bijection ϕ.

4.1 SYMBOLIC MODELS

We are now ready to show how question-answering models can be extended so that they become
symbol-shift equivariant. We recall the definition of Memory-Networks (Sukhbaatar et al., 2015)
and Third-order tensor product RNN (Schlag & Schmidhuber, 2018) models before deriving their
symbolic counter-part.

Memory-Networks. Memory-Networks iteratively updates an internal question representation
with K ≥ 1 self-attention layers (or hops) before projecting the final representation to the answer
distribution. The model parameters consists in K + 1 embedding matrices A(0), . . . , A(K) ∈ Rd×n.
The query representation is initially set to u(0) =

∑nq

j=1A
(0)eqj and iteratively updated with:

mi =

ni∑
j=1

A(k)exij
, ci =

ni∑
j=1

A(k+1)exij
(7)

u(k+1) = u(k) +

n∑
i=1

softmax
(
mT
i u

(k)
i

)
ci (8)

In words, the internal representation is updated with the vector of output memories ci weighted by
similarity between the current question representation u(k)

i and the input memory mi. The final
internal representation u(K) ∈ Rd is mapped to the answer distribution with:

p = softmax
(
A(K)Tu(K)

)
∈ Rn

so that the probability of every word being the answer is a function of the similarity of its embedding
in A(K) and the final question representation u(K). In addition the paper proposes temporal and
positional encoding to allow distinguishing words or stories order which we discuss in the appendix.

5

Under review as a conference paper at ICLR 2021

Symbolic Memory-Networks. We extend Memory-Networks by using K + 1 symbolic embed-
dings from Eq. 2 and concatenating semantic and symbolic representation. This model has the
parameters A(k) ∈ Rn×d and α(k) ∈ Rn for 0 ≤ k ≤ K as well as β ∈ [0, 1]. Instead of mapping
internal representations into Rd, we map them to Rd+m with:

mi =

ni∑
j=1

A(k)exij
⊕ α(k)

xij
eϕ(xij), ci =

ni∑
j=1

A(k+1)xij ⊕ α(k+1)
xij

eϕ(xij) (9)

The internal representation is updated K times with Eq. 8 to obtain a final internal representation
u(K) ∈ Rd+m. To obtain the output predictive distribution, we project u(K) ∈ Rd+m as described
in Eq. 4 with BT = A(K) and β ∈ [0, 1].

TPR. Third-order tensor product RNN proposes to encode stories with a non-standard RNN whose
representation is a tensor product representation (Schlag & Schmidhuber, 2018). More precisely, the
model state consists in a tensor denoted as Ft ∈ RE×R×E that is initialized with zeros and updated
at each story with:

Ft = Ft−1 + ∆Ft

The update term ∆Ft depends on a learned parametric representation of entities and roles that are
obtained by mapping the story representation st with MLPs. The story representation is obtained
by summing the k words of a story with st =

∑nt

j=1Aextj
� pj where � denotes the component-

wise product, A denotes an embedding matrix and pi are positional embeddings. Once the story
representation is obtained, entities and roles representations are obtained with MLPs:

e
(i)
t = fe(i)(st; θe(i)) ∈ RE r

(j)
t = fr(j)(st; θr(j)) ∈ RR (10)

for 1 ≤ i < 3, 1 ≤ j < 4 and where f is an MLP and θ its parameters. The update term ∆Ft
is given by a close form formula designed to update entity information into Ft given the entity and
role embeddings e(i)

t and r(i)
t , we detail it in the appendix for space reasons.

The internal representation Ft is updated after reading each story and to perform inference, the
final internal representation FT is used to decode the entity and role representation of the question.
Similarly to the story embedding, entities and role representations of the questions are first obtained
by mapping the question embedding sQ =

∑nq

j=1Aeqj � pj through a MLP:

n = fn(sQ; θn) ∈ RR, lj = flj (sQ; θlj) ∈ RE , 1 ≤ j < 4 (11)

Given those representations, the distribution over possible answer is obtained by first obtaining the
following internal representations:

î(1) = (FT • n) • 34 l
(1), î(2) = (FT • î(1)) • 34 l

(2), î(3) = (FT • î(2)) • 34 l
(3), (12)

where •34 denotes tensor inner-product, finally the answer distributions is obtained with the follow-
ing projection:

p = softmax

(
B

3∑
k=1

LN(̂i(k))

)
∈ Rn (13)

where LN denotes layer-normalization (Ba et al., 2015) and B ∈ Rn×E are projection parameters.
For MLPs, Schlag & Schmidhuber (2018) proposes to use two hidden layers with internal dimension
d and tanh activation functions, hyperparameters of the method are given in the appendix. The pa-
rameters of the models are word and positional embeddings, MLPs parameters as well as projections
parameters.

Symbolic TPR. We modify TPR to handle symbolic representations for entity, role as well as
intermediate representations. All entities, roles and intermediate representations are embedded into
Rd+m. Stories are embedded symbolically with:

st =

nt∑
j=1

(Aextj
� pj)⊕ (αxtj

eϕ(xtj)) ∈ Rd+m

6

Under review as a conference paper at ICLR 2021

500 1000 1500 2000 2500 3000 3500 4000
Iteration

20

25

30

35

40

Te
st

 e
rro

r

1K examples

500 1000 1500 2000 2500 3000 3500 4000
Iteration

0

10

20

30

40

Te
st

 e
rro

r

10K examples
MN
SMN
TPR
STPR

Figure 4: Learning curves of average accuracy when training with 1K and 10K examples of bAbi.

Then, we use symbolic MLPs to find entity and role representations:

e
(i)
t = f̃e(i)(st; θe(i)) ∈ Rd+m, r

(j)
t = f̃r(j)(st; θr(j)) ∈ Rd+m, (14)

where f̃ denotes a symbolic MLP with linear transformation as described in Eq. 6.

The tensor representation is updated with the same equations as TPR to obtain a final representa-
tion FT ∈ R(d+m)3 . Given the symbolic embedding of the question sQ =

∑nq

j=1(Aeqj � pj) ⊕
(αqjeϕ(qj)), we extract symbolic roles and entities with a symbolic MLP:

n = f̃n(sQ; θn) ∈ Rd+m, lj = f̃lj (sQ; θlj) ∈ Rd+m (15)

We then obtain the hidden representation h =
∑3
k=1 LN(̂i(k)) ∈ Rd+m with Eq. 12 that is projected

to an answer distribution as described in Eq. 4 whereB ∈ Rn×d, β ∈ [0, 1] are additional projection
parameters.

A key result justifying the symbolic qualifier is that SMN and STPR are symbol-shift equivariant.

Theorem. SMN and STPR are symbol-shift equivariant.

The proof is in the appendix A for space reasons. The main idea consists in remarking that embed-
dings are invariant to symbol-shift and consequently, latent representations are invariant too since
the model is deterministic. The proof then shows that having identical latents gives equivariance
given our symbolic projection construction.

We observe that in practice, the learned semantic embeddings of different entities will not be exactly
the same as in Figure 2: in particular the semantic embeddings of “apple” and “orange” may be close
but different for instance. Our experiments will show that having symbol-shift equivariant models is
a good inductive bias improving accuracy and compositionality of the studied models even if entities
vectors are not exactly aligned.

5 EXPERIMENTS

We perform experiments on bAbi tasks (Weston et al., 2015) with version v1.2 of the dataset. The
initial dataset consists in a set of 20 synthetic question-answering tasks designed to test capabilities
of a dialog agent. In each example, an answer must be provided given a question and stories con-
sisting in a sequence of sentences. We use the two versions which contains 1K and 10K training
examples per task respectively. Given our computing budget, we perform all experiments in the
single-task setting where models are trained on the 20 tasks independently. Every experiment is
repeated with 10 different seeds and we report mean/std over those runs.

The performance of MN, SMN, TPR and STPR is reported in Fig. 4 and Tab. 1. Fig. 4 depicts
the average error per task over time and shows that symbolic approaches significantly improves the
sample efficiency of both methods which achieve much faster convergence rate and also converges
to better values. In Tab. 1, we report the average error obtained at convergence for all methods.
Again, symbolic models SMN and STPR outperforms their non-symbolic counter-part.

7

Under review as a conference paper at ICLR 2021

original test-set zero-shot room test-set zero-shot object test-set zero-shot people test-set

John took the apple in the kitchen. John took the apple in the kitchenette. John took the key in the kitchen Sasha took the apple in the kitchen.
John went to the bedroom. John went to the guest-room. John went to the bedroom. Sasha went to the bedroom.

Where is the apple? (bedroom) Where is the apple? (guest-room) Where is the key? (bedroom) Where is the apple? (bedroom)

Figure 5: Illustration of zero-shot test-datasets

Table 2: Test error when training on original bAbi tasks and evaluating error on different test-dataset.
For zero-shot test-datasets, test entities (e.g. rooms, objects, people) are not seen during training.

task 2 5
dataset original room object people original room object people average

MN 21.8 ±0.4 99.5 ±0.6 38.2 ±1.3 67.1 ±2.8 14.8 ±2.7 14.9 ±1.3 48.7 ±1.4 24.6 ±0.8 41.2
SMN (ours) 3.4 ±0.6 100.0 ±0.0 62.7 ±2.3 62.1 ±1.1 6.9 ±2.3 7.6 ±1.4 42.8 ±1.5 22.9 ±1.3 38.5
TPR 0.2 ±0.2 98.0 ±3.4 65.1 ±30.3 65.4 ±18.9 0.5 ±0.2 0.6 ±0.5 40.3 ±3.4 26.3 ±7.6 37.0
STPR (ours) 0.0 ±0.1 0.1 ±0.2 22.8 ±2.3 18.9 ±24.1 4.3 ±2.9 2.3 ±0.0 14.4 ±2.8 7.9 ±5.0 8.8

Table 1: Aggregate error on bAbi.

examples 1K 10K

MN 27.3 ± 1.1 15.6 ± 0.3
SMN 25.9 ± 0.4 14.4 ± 1.8
TPR 21.7 ± 2.0 2.2 ± 0.9
STPR 20.3 ± 1.7 0.7 ± 0.6
TPR-sm 17.1 ± 1.0 13.0 ± 1.6
STPR-sm 5.6 ± 0.8 3.1 ± 0.4

TPR best 14.77 0.14
TPR-sm best 13.56 7.65
QRN-2r best 9.9 4.6
STPR best 11.65 0.06
STPR-sm best 1.79 1.82

Because the embeddings of entities learned by TPR are
orthogonal (Schlag & Schmidhuber, 2018), we argue
that most dimensions are used to represent this basis
(requiring at least as many dimensions as the number
of possible entities) while STPR require less dimen-
sions since orthogonal representation are available to the
model by construction. To see this effect, we run a
smaller model with d = 20 and dropout set to 0.5 for
both STPR and TPR that are called respectively STPR-
sm and TPR-sm. Results indicate that STPR-sm per-
forms almost as well in the 10K setting while reach-
ing an average test error of 5.6% when trained with 1K
examples as opposed to TPR-sm whose performance is
severely hurt by the dimension reduction as it cannot
represent orthogonal basis for the different entities any-
more. To the best of our knowledge, the best reported
result with 1K examples is 9.9% from QRN model (Seo

et al., 2017) who reported the best run over 10 seeds while we report average result over seeds. Using
the same procedure, we obtain a test-error of 1.8% and pass 19/20 tasks (passing means reaching an
error lower than 5%). This makes a significant improvement to the problem of passing all task with
only 1K examples but the problem still stands (in particular when reporting mean test-error instead
of best error over multiple seeds).

Zero-shot entities. In Tab. 2, we show the accuracy obtained on two bAbi tasks in a zero-shot
setting where we leave the training dataset unchanged but perturb the test dataset by introducing
unseen entities. Precisely, we replace the 6 rooms present in the task (kitchen, bedroom, office,
garden, hallway, bathroom) by kitchenette, guest-room, open-space, entry, terrace, toilet only in the
test set, see Fig. 5. We also measure test-accuracy when introducing unseen people and objects in the
test set with the same procedure (both tasks contain objects, rooms, and people). For all models, the
semantic embeddings of words unseen in the training are set to the zero vector. Symbolic models
outperform their semantic-only counter-part in this setting as they can perform abstraction over
symbols rather than relying only on specific embeddings for each name.

Experiment details. Hyperparameters in bAbi are kept identical across tasks, and we reused
hyperparameters of (Sukhbaatar et al., 2015) for Memory-Networks, and Schlag & Schmidhuber
(2018) for TPR (they are given in the appendix). For symbolic variants, we use the same hyper-
parameters as the semantic version. We used the public implementations (Junki, 2015) and (Alexan-
der, 2019) for MN and TPR based on Pytorch (Paszke et al., 2019) that we adapted to support
symbolic computation.

8

Under review as a conference paper at ICLR 2021

6 CONCLUSION

We introduced a novel hybrid semantic and symbolic representation able to handle internal trans-
formations and projections of the final representations back to the initial vocabulary in a way that is
symbol-shift equivariant. The main advantage of our approach is that we rely on differentiation to
detect whether words should behave as symbols and therefore sidestep the need to detect or specify
entities in advance.

Our experiments showed that having symbol-shift equivariant models can significantly decrease the
amount of training data required. In particular, we were able to solve 19/20 bAbi tasks using only
1K training examples. We also showed that our approach performs well in challenging zero-shot
settings or when the number of entities in a task becomes very large.

An interesting area for future work consists in extending other architectures such as Transformer
(Vaswani et al., 2017) models with the hope of diminishing the vast amount of data they currently
require. Finally, another interesting application will be to use this symbolic representation in order
to ensure fairness in question answering or other applications.

9

Under review as a conference paper at ICLR 2021

REFERENCES

Podolskiy Alexander. Tensor product representation recurrent neural network, pytorch implementa-
tion. https://github.com/APodolskiy/TPR-RNN-Torch, 2019.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer Normalization. 2015. URL
https://arxiv.org/pdf/1607.06450.pdf.

Jonathan Gordon, David Lopez-Paz, Marco Baroni, and Diane Bouchacourt. Permutation equivari-
ant models for compositional generalization in language. In International Conference on Learning
Representations, 2020. URL https://openreview.net/forum?id=SylVNerFvr.

Alex Graves, Greg Wayne, and Ivo Danihelka. Neural Turing Machines. Arxiv, pp. 1–26, 2014.
URL http://arxiv.org/abs/1410.5401.

Dieuwke Hupkes, Verna Dankers, Mathijs Mul, and Elia Bruni. Compositionality decomposed: how
do neural networks generalise?, 2019.

Ohmura Junki. Memory networks, pytorch implementation.
https://github.com/jojonki/MemoryNetworks/blob/master/memnn.py, 2015.

Brenden Lake and Marco Baroni. Generalization without systematicity: On the compositional skills
of sequence-to-sequence recurrent networks. 35th International Conference on Machine Learn-
ing, ICML 2018, 7:4487–4499, 2018.

Brenden M Lake. Compositional generalization through meta sequence-to-sequence learning.
(NeurIPS):1–12, 2019. URL http://arxiv.org/abs/1906.05381.

Rémi Lebret, David Grangier, and Michael Auli. Neural text generation from structured data with
application to the biography domain. In Jian Su, Xavier Carreras, and Kevin Duh (eds.), Proceed-
ings of the 2016 Conference on Empirical Methods in Natural Language Processing, EMNLP
2016, Austin, Texas, USA, November 1-4, 2016, pp. 1203–1213. The Association for Computa-
tional Linguistics, 2016. doi: 10.18653/v1/d16-1128. URL https://doi.org/10.18653/
v1/d16-1128.

Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. Gated Graph Sequence Neural
Networks. (1):1–20, 2015. URL http://arxiv.org/abs/1511.05493.

Thang Luong, Ilya Sutskever, Quoc Le, Oriol Vinyals, and Wojciech Zaremba. Addressing the
rare word problem in neural machine translation. In Proceedings of the 53rd Annual Meeting
of the Association for Computational Linguistics and the 7th International Joint Conference on
Natural Language Processing (Volume 1: Long Papers), pp. 11–19, Beijing, China, July 2015.
Association for Computational Linguistics. doi: 10.3115/v1/P15-1002. URL https://www.
aclweb.org/anthology/P15-1002.

Elaine Marsh and Dennis Perzanowski. MUC-7 evaluation of IE technology: Overview of re-
sults. In Seventh Message Understanding Conference (MUC-7): Proceedings of a Conference
Held in Fairfax, Virginia, April 29 - May 1, 1998, 1998. URL https://www.aclweb.org/
anthology/M98-1002.

Maxwell I. Nye, Armando Solar-Lezama, Joshua B. Tenenbaum, and Brenden M. Lake. Learning
compositional rules via neural program synthesis, 2020.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance
deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett (eds.), Advances in Neural Information Processing Systems 32, pp.
8024–8035. Curran Associates, Inc., 2019. URL http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.
pdf.

10

https://arxiv.org/pdf/1607.06450.pdf
https://openreview.net/forum?id=SylVNerFvr
http://arxiv.org/abs/1410.5401
http://arxiv.org/abs/1906.05381
https://doi.org/10.18653/v1/d16-1128
https://doi.org/10.18653/v1/d16-1128
http://arxiv.org/abs/1511.05493
https://www.aclweb.org/anthology/P15-1002
https://www.aclweb.org/anthology/P15-1002
https://www.aclweb.org/anthology/M98-1002
https://www.aclweb.org/anthology/M98-1002
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

Under review as a conference paper at ICLR 2021

Siamak Ravanbakhsh, Jeff Schneider, and Barnabas Poczos. Equivariance through parameter-
sharing. 34th International Conference on Machine Learning, ICML 2017, 6:4416–4428, 2017.

Jake Russin, Jason Jo, Randall C. O’Reilly, and Yoshua Bengio. Compositional generalization in a
deep seq2seq model by separating syntax and semantics. 2019. URL http://arxiv.org/
abs/1904.09708.

Akiyoshi Sannai and Masaaki Imaizumi. Improved Generalization Bound of Group Invariant /
Equivariant Deep Networks via Quotient Feature Space. pp. 1–18, 2019. URL http://arxiv.
org/abs/1910.06552.

Imanol Schlag and Jürgen Schmidhuber. Learning to reason with third order tensor prod-
ucts. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and
R. Garnett (eds.), Advances in Neural Information Processing Systems 31, pp. 9981–
9993. Curran Associates, Inc., 2018. URL http://papers.nips.cc/paper/
8203-learning-to-reason-with-third-order-tensor-products.pdf.

Minjoon Seo, Sewon Min, Ali Farhadi, and Hannaneh Hajishirzi. Query-reduction networks for
question answering. In ICLR, 2017.

Iulian Vlad Serban, Alberto Garcı́a-Durán, Çaglar Gülçehre, Sungjin Ahn, Sarath Chandar, Aaron C.
Courville, and Yoshua Bengio. Generating factoid questions with recurrent neural networks: The
30m factoid question-answer corpus. In Proceedings of the 54th Annual Meeting of the Asso-
ciation for Computational Linguistics, ACL 2016, August 7-12, 2016, Berlin, Germany, Volume
1: Long Papers. The Association for Computer Linguistics, 2016. doi: 10.18653/v1/p16-1056.
URL https://doi.org/10.18653/v1/p16-1056.

Koustuv Sinha, Shagun Sodhani, Jin Dong, Joelle Pineau, and William L. Hamilton. CLUTRR: A
Diagnostic Benchmark for Inductive Reasoning from Text. 2019. URL http://arxiv.org/
abs/1908.06177.

Paul Smolensky. Tensor product variable binding and the representation of symbolic structures in
connectionist systems. Artificial Intelligence, 46(1-2):159–216, 1990. ISSN 00043702. doi:
10.1016/0004-3702(90)90007-M.

Sainbayar Sukhbaatar, Arthur Szlam, Jason Weston, and Rob Fergus. End-to-end memory net-
works. Advances in Neural Information Processing Systems, 2015-Janua:2440–2448, 2015. ISSN
10495258.

Ivan I. Vankov and Jeffrey S. Bowers. Training neural networks to encode symbols enables combi-
natorial generalization. Philosophical Transactions of the Royal Society B: Biological Sciences,
375(1791):1–16, 2020. ISSN 14712970. doi: 10.1098/rstb.2019.0309.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention Is All You Need. (Nips), 2017. ISSN 1469-8714.
doi: 10.1017/S0952523813000308. URL http://arxiv.org/abs/1706.03762.

Jason Weston, Antoine Bordes, Sumit Chopra, Alexander M Rush, Bart van Merriënboer, Armand
Joulin, and Tomas Mikolov. Towards ai-complete question answering: A set of prerequisite toy
tasks. arXiv preprint arXiv:1502.05698, 2015.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbhakhsh, Barnabás Póczos, Ruslan Salakhutdinov, and
Alexander J. Smola. Deep sets. Advances in Neural Information Processing Systems, 2017-
Decem(ii):3392–3402, 2017. ISSN 10495258.

11

http://arxiv.org/abs/1904.09708
http://arxiv.org/abs/1904.09708
http://arxiv.org/abs/1910.06552
http://arxiv.org/abs/1910.06552
http://papers.nips.cc/paper/8203-learning-to-reason-with-third-order-tensor-products.pdf
http://papers.nips.cc/paper/8203-learning-to-reason-with-third-order-tensor-products.pdf
https://doi.org/10.18653/v1/p16-1056
http://arxiv.org/abs/1908.06177
http://arxiv.org/abs/1908.06177
http://arxiv.org/abs/1706.03762

Under review as a conference paper at ICLR 2021

John went out John

Sasha went out Sasha

1 2 3 1Γ Γ−1

ϕ

ϕ′ ϕ′

ϕ

ϕ ◦ Γ−1

Figure 6: Illustration of proof notations.

A PROOF OF SYMBOL-SHIFT EQUIVARIANCE

Theorem. SMN and STPR are symbol-shift equivariant.

Proof. Let us take Φ ∈ {SMN,STPR} and show that for any symbol-shift Γ and context X ∈ X ,
Φ(Γ(X)) = Γ(Φ(X)). Since the output of Φ is considered as a distribution on words, e.g. as a
vector Φ(X) ∈ Rn, we first define the action of Γ on a vector v ∈ Rn by defining v′ = Γ(v) as the
vector verifying v′Γ(i) = vi or equivalently v′i = vΓ−1(i) for all i ≤ n. We then have by definition
[Γ(Φ(X))]i = [Φ(X)]Γ−1(i).

Since Γ is a symbol-shift, all word parameters (which comprises A, B and α) are equivariant, e.g.
for each word i ≤ n:

AΓ(i) = Ai, BΓ(i) = Bi, αΓ(i) = αi (16)

Denote ϕ : CX → [1,m] and ϕ′ : CΓ(X) → [1,m] the two bijections mapping context words in
CX and CΓ(X) to their order of appearance, see Fig. 6. Using the fact that permuting words does
not change entity order of occurrence, we have:

ϕ′ = ϕ ◦ Γ−1. (17)

We first show that the embedding defined in Eq. 2 is invariant to symbol-shift, e.g. that E(x) =
E(Γ(x)) for all x ∈ X where E(x) = Aex ⊕ αxeϕX(x). Using Eq. 16, we get that Aex = AeΓ(x).
Then using Eq. 17 and 16, we get that αΓ(x)eϕ′(Γ(x)) = αΓ(x)eϕ(x) = αxeϕ(x).

Consequently, since embeddings are invariant by symbol-shift and since the model is deterministic,
the same latent representation is obtained for both X and Γ(X). If we denote the latent function as
h(X) = hsem(X)⊕ hsym(X) we then have:

h(X) = h(Γ(X)) (18)

Given that the output is defined as

Φ(X) = βsoftmax (Bhsem(X)) + (1− β)BϕXsoftmax (hsym(X)) ,

it is sufficient to show that the two functions f1(X) = Bhsem(X) and f2(X) =
BϕXsoftmax (hsym(X)) are equivariant as softmax and (constant) linear transformations are trivially
equivariant. The following sequence of equalities show that f1(X) is equivariant, it usesBi = BΓ(i)

and the fact that the latent function is invariant.

[Γ(f1(X))]i = [Γ(Bhsem(X))]i (19)
= [Bhsem(X)]Γ−1(i) (20)

=

d∑
k=1

BΓ−1(i)k[hsem(X)]k (21)

=

d∑
k=1

Bik[hsem(X)]k (22)

= [Bhsem(X)]i (23)
= [Bhsem(Γ(X))]i (24)
= [f1(Γ(X))]i (25)

12

Under review as a conference paper at ICLR 2021

It remains to show that f2(X) is equivariant. Denoting the probabilities over symbols p̃ =
softmax (hsym(X)) = softmax (hsym(Γ(X))) ∈ Rm and using Eq. 5, we obtain

[f2(X)]i =

{
p̃ϕ(i) if i ∈ CX
0 else

, [f2(Γ(X))]i =

{
p̃ϕ′(i) if i ∈ CΓ(X)

0 else

Then, for any i ≤ n,

[Γ(f2(X))]i = [f2(X)]Γ−1(i) (26)

=

{
p̃(ϕ(Γ−1(i)) if Γ−1(i) ∈ CX
0 else

(27)

=

{
p̃ϕ′(i) if i ∈ CΓ(X)

0 else
(28)

= [f2(Γ(X))]i (29)

B ARTIFICIAL DATASET EXPERIMENT

To investigate how models generalize with different number of entities, we generate artificial
datasets where questions have the form of:

x1 = v1. . . . xN = vN . xi =?

where we expect vi as an answer where vi is the last value assigned to xi and xj ∈ V1, vj ∈ V2

for all j. In Fig. 7, we study how well models perform when the number of variables and values
increase. Three datasets are generated with |V1| = |V2| = k for k ∈ {10, 100, 1000}, each dataset
has 10K training examples and 1K non-overlapping examples in the test set and each story has
N = 10 assignments. While the task is elementary, both MN and TPR struggle to generalize to
larger number of entities in contrast to their symbolic counterpart SMN and STPR that can solve the
task even when with thousands of entities.

0 5 10 15
Iteration

0

20

40

60

80

100

Te
st

 e
rro

r

|V_j| = 10

0 50 100
Iteration

0

20

40

60

80

100

Te
st

 e
rro

r

|V_j| = 100

0 50 100
Iteration

0

20

40

60

80

100

Te
st

 e
rro

r

|V_j| = 1000

STPR
TPR
memory-network
symbolic-memory-network

Figure 7: Artificial dataset error convergence when increasing the number of values and variables.

C EMBEDDINGS LEARNED BY MEMORY-NETWORKS

Fig. 8 shows the word embeddings of the first layer of a MN after learning the first bAbi task
generated with 10k names. The words on the upper-left are verbs, stop-words and locations while
the words on the bottom-right are names (the figure is zoomable). The model tries to diagonalize
entities embeddings given the available dimensions (e.g. finding orthogonal embeddings for names).
This means that attention models may also require a number of dimensions at least as large as the
number of entities and hence struggle to generalize to large number of entities or entities not seen at
training.

13

Under review as a conference paper at ICLR 2021

ba
ck

ba
th

ro
om

be
dr

oo
m

ga
rd

en
ha

llw
ay is

jo
ur

ne
ye

d
ki

tc
he

n
m

ov
ed

of
fic

e
th

e to
tra

ve
lle

d
we

nt
wh

er
e

aa
ro

n
ab

ig
ai

l
ad

am
ad

di
e

ad
ol

fo
ad

ria
n

ad
ria

ne
ad

rie
nn

e
ag

ne
s

ai
da

al
an

al
an

a
al

be
rt

al
be

rto
al

et
a

al
ex

al
ex

an
de

r
al

ex
is

al
fo

ns
o

al
fre

d
al

fre
do al

i
al

ice
al

ici
a

al
iso

n
al

la
n

al
le

n
al

le
ne al
lie

al
lis

on
al

m
a

al
ta

al
to

n
al

va
ro

al
vi

n

back
bathroom
bedroom

garden
hallway

is
journeyed

kitchen
moved

office
the

to
travelled

went
where
aaron

abigail
adam
addie

adolfo
adrian

adriane
adrienne

agnes
aida
alan

alana
albert

alberto
aleta
alex

alexander
alexis

alfonso
alfred

alfredo
ali

alice
alicia

alison
allan
allen

allene
allie

allison
alma
alta

alton
alvaro

alvin

Figure 8: Correlation matrix of word embeddings of the first layer of a MN when trained on
first bAbi task generated with 1K names. The learned embeddings of names are approximately
orthogonal.

Table 3: Per task error on bAbi with 1K training examples.
model MN SMN TPR TPR-sm STPR STPR-sm
task

1 0.4 ± 0.3 0.0 ± 0.1 0.0 ± 0.0 1.0 ± 2.2 0.0 ± 0.0 0.0 ± 0.0
2 71.0 ± 3.1 69.4 ± 5.9 27.4 ± 33.7 6.9 ± 18.3 15.6 ± 27.4 2.1 ± 1.3
3 76.5 ± 1.2 76.8 ± 1.0 73.6 ± 2.6 68.4 ± 4.3 71.1 ± 6.5 8.5 ± 3.8
4 21.6 ± 0.7 21.5 ± 0.4 0.0 ± 0.1 2.0 ± 4.2 0.1 ± 0.1 0.0 ± 0.0
5 22.3 ± 0.9 21.6 ± 0.8 2.1 ± 0.5 2.4 ± 0.6 4.6 ± 2.9 2.2 ± 1.9
6 23.8 ± 10.8 16.7 ± 3.3 19.9 ± 11.5 12.6 ± 1.9 24.0 ± 16.4 4.1 ± 2.8
7 23.4 ± 1.6 18.0 ± 1.0 16.5 ± 4.7 10.2 ± 2.8 17.9 ± 5.2 1.5 ± 1.8
8 17.6 ± 0.8 14.5 ± 1.3 10.4 ± 2.7 4.4 ± 1.7 4.5 ± 1.6 0.9 ± 0.6
9 19.6 ± 6.7 10.8 ± 1.3 31.7 ± 6.8 21.6 ± 3.6 35.9 ± 9.3 4.9 ± 1.2
10 23.7 ± 6.4 19.1 ± 1.9 39.1 ± 17.4 21.2 ± 6.9 30.3 ± 14.2 10.2 ± 3.3
11 10.5 ± 3.3 10.8 ± 0.9 2.0 ± 0.8 1.0 ± 1.4 7.6 ± 2.8 1.2 ± 1.2
12 0.6 ± 0.2 0.0 ± 0.0 0.4 ± 0.2 0.1 ± 0.1 3.2 ± 3.1 2.1 ± 0.8
13 6.5 ± 1.1 6.8 ± 1.3 8.1 ± 1.7 4.9 ± 0.6 7.5 ± 1.8 3.8 ± 1.6
14 3.8 ± 6.6 10.9 ± 8.7 14.4 ± 12.6 21.3 ± 3.8 6.5 ± 10.3 1.8 ± 4.3
15 0.0 ± 0.1 0.0 ± 0.0 0.0 ± 0.0 0.3 ± 0.3 0.0 ± 0.0 0.0 ± 0.1
16 52.1 ± 1.4 52.5 ± 1.4 53.0 ± 2.1 53.5 ± 1.0 39.1 ± 24.5 0.3 ± 0.4
17 47.0 ± 1.6 46.1 ± 2.2 42.5 ± 2.9 32.6 ± 2.2 45.1 ± 2.0 24.4 ± 13.0
18 48.9 ± 1.6 48.1 ± 1.9 3.8 ± 1.3 1.9 ± 1.1 5.5 ± 3.0 0.9 ± 1.2
19 76.8 ± 1.1 74.3 ± 2.8 88.6 ± 3.7 75.8 ± 6.8 86.7 ± 6.4 43.9 ± 14.2
20 0.0 ± 0.1 0.0 ± 0.0 0.0 ± 0.0 0.4 ± 0.4 0.0 ± 0.0 0.0 ± 0.0

14

Under review as a conference paper at ICLR 2021

Table 4: Per task error on bAbi with 10K training examples.
model MN SMN TPR TPR-sm STPR STPR-sm
task

1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.1 0.0 ± 0.0 0.0 ± 0.0
2 23.1 ± 1.7 25.1 ± 27.0 0.1 ± 0.1 0.3 ± 0.3 0.3 ± 0.2 0.6 ± 0.5
3 29.4 ± 2.0 23.4 ± 1.6 1.4 ± 0.3 25.7 ± 12.1 1.6 ± 0.5 6.6 ± 5.1
4 22.0 ± 0.6 21.7 ± 0.9 0.0 ± 0.0 6.8 ± 10.3 4.5 ± 14.1 0.0 ± 0.0
5 13.9 ± 3.8 6.6 ± 3.1 0.8 ± 0.3 0.7 ± 0.6 0.6 ± 0.3 1.0 ± 1.2
6 3.8 ± 0.8 7.6 ± 5.5 0.3 ± 0.2 15.1 ± 3.5 0.4 ± 0.6 1.2 ± 0.9
7 2.3 ± 0.5 6.1 ± 0.4 0.5 ± 0.2 6.0 ± 15.6 0.3 ± 0.5 0.6 ± 0.8
8 3.8 ± 0.4 2.2 ± 0.6 0.8 ± 0.6 3.3 ± 6.7 0.9 ± 1.0 0.3 ± 0.4
9 2.3 ± 0.3 2.1 ± 0.8 0.4 ± 0.3 10.5 ± 2.6 0.5 ± 0.6 1.0 ± 0.5
10 5.0 ± 1.0 3.1 ± 1.6 0.4 ± 0.4 19.2 ± 5.2 0.6 ± 0.8 3.9 ± 2.2
11 0.2 ± 0.1 0.7 ± 1.7 0.4 ± 0.1 0.3 ± 0.1 0.2 ± 0.1 0.2 ± 0.2
12 0.1 ± 0.1 0.0 ± 0.0 0.1 ± 0.2 6.5 ± 5.9 0.3 ± 0.3 1.2 ± 0.7
13 1.3 ± 1.8 5.7 ± 0.4 0.5 ± 0.3 4.0 ± 1.2 0.6 ± 0.5 0.2 ± 0.2
14 0.3 ± 0.3 0.1 ± 0.1 0.1 ± 0.3 37.1 ± 10.0 0.2 ± 0.2 1.3 ± 2.4
15 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.1 ± 0.1 0.0 ± 0.0 0.0 ± 0.0
16 51.9 ± 1.0 31.6 ± 27.1 0.3 ± 0.9 52.2 ± 1.2 0.2 ± 0.3 0.0 ± 0.1
17 42.8 ± 1.8 41.2 ± 2.4 1.9 ± 3.0 14.6 ± 6.9 0.3 ± 0.4 1.2 ± 1.9
18 45.0 ± 2.8 42.3 ± 1.4 0.4 ± 0.3 0.8 ± 0.5 0.3 ± 0.5 0.2 ± 0.3
19 65.3 ± 2.5 69.2 ± 1.3 35.8 ± 16.5 57.3 ± 11.0 1.3 ± 1.6 42.5 ± 7.4
20 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.3 ± 0.3 0.0 ± 0.0 0.0 ± 0.0

D EXPERIMENTS DETAILS

In all our experiments, we used a batch-size of 32 and ADAM with a learning-rate of 0.001. In
the case of TPR models, we follow Schlag & Schmidhuber (2018) and set β1 = 0.6, β2 = 0.4.
Gradients norm are clipped to 5.0. All models are trained with early-stopping using 10% of the
training set as validation, and we perform 80000 gradient updates 2 times decaying the learning rate
by 2 each time (which is a setup close to both Sukhbaatar et al. (2015) that decays the learning rate
4 times and Alexander (2019) that trains for significantly longer).

The main difference in the implementation we used for TPR are that RADAM optimizer was used
in Schlag & Schmidhuber (2018), we used ADAM instead to have the same setting with Memory-
Networks and also because this optimizer is not available in Pytorch. For Memory-Networks, we
reuse Junki (2015) implementation where temporal encoding regularization is not present.

Memory-Networks temporal encoding To allow models to preserve temporal information,
Sukhbaatar et al. (2015) proposes to have additional parameters TA ∈ RT×d and TC ∈ RT×d
where T denotes the maximum number of stories and add them to mi, ci as follows:

mi =

ni∑
j=1

A(k)exij
+ TA(i) (30)

ci =

ni∑
j=1

A(k+1)exij
+ TC(i) (31)

In the case of Symbolic Memory-Networks, we proceed similarly with an additional symbolic tem-
poral encoding parametrized with αA ∈ RT and αC ∈ RT and update mi, ci as follows:

15

Under review as a conference paper at ICLR 2021

mi =

ni∑
j=1

(A(k)exij
+ TA(i))⊕ (αA(i)α(k)

xij
eϕ(xij)) (32)

ci =

ni∑
j=1

(A(k+1)exij
+ TC(i))⊕ (αC(i)α(k+1)

xij
eϕ(xij)) (33)

In addition both Memory-Networks and Symbolic Memory-Networks use the positional embedding
used in TPR.

E TPR UPDATE EQUATIONS

After reading each story st, Ft is updated by adding the sum of three tensors ∆Ft = Wt +Mt +Bt
whose expression is given by:

ŵt = (Ft • 34 e
(1)
t) • 23 r

(1)
t (34)

Wt = −(e
(1)
t ⊗ r

(1)
t ⊗ ŵt) + (e

(1)
t ⊗ r

(1)
t ⊗ e

(2)
t) (35)

m̂t = (Ft • 34 e
(1)
t) • 23 r

(2)
t (36)

Mt = −(e
(1)
t ⊗ r

(2)
t ⊗ m̂t) + (e

(1)
t ⊗ r

(2)
t ⊗ ŵt) (37)

b̂t = (Ft • 34 e
(2)
t) • 23 r

(3)
t (38)

Bt = −(e
(2)
t ⊗ r

(3)
t ⊗ b̂t) + (e

(2)
t ⊗ r

(3)
t ⊗ e

(1)
t) (39)

Where ⊗ denotes the tensor outer-product and •ij denotes the tensor inner-product.

The term Wt is a write term that allows to encode the association (e
(1)
t , r

(1)
t , e

(2)
t) while retrieving

the previously assigned entity and removing its previous association. The term Mt allows to asso-
ciate this removed entity to a different relation r(2)

t (also removing the previously assigned to r(2)
t).

Finally the term Bt is called a backlink as it allows associative association, we refer to the original
paper Schlag & Schmidhuber (2018) for detailed intuitions on the three update terms.

16

	Introduction
	Related works
	Symbol-shift equivariance
	Symbolic question answering
	Symbolic models

	Experiments
	Conclusion
	Proof of symbol-shift equivariance
	Artificial dataset experiment
	Embeddings learned by Memory-Networks
	Experiments details
	TPR update equations

