
Modeling Intensification for Signed Language Generation: A
Computational Approach

Anonymous ACL submission

Abstract

End-to-end sign language generation models001
do not accurately represent the prosody of the002
languages. This lack of temporal and spatial003
variation in generated signs leads to poor qual-004
ity and lower human perception. In this pa-005
per, we seek to improve prosody in generated006
sign languages by modeling intensification in007
a data-driven manner with strategies grounded008
in the linguistics of sign language by enhanc-009
ing the representation of intensity modifiers in010
gloss annotations. To employ our strategies,011
we first annotate a subset of the benchmark012
PHOENIX14T dataset with different levels of013
intensification. We then use a supervised inten-014
sity tagger to extend the tagging to the whole015
dataset. This enhanced dataset is then used016
to train state-of-the-art transformer models for017
sign language generation. We find that our ef-018
forts in intensification modeling yield better019
results when evaluated with automated met-020
rics. Human evaluation also indicates a sig-021
nificantly higher preference of the videos gen-022
erated using our strategies in the presence of023
intensity modifiers.1024

1 Introduction025

Similar to spoken languages, signed languages026

have rich grammar rules and unique linguistic struc-027

tures (Emmorey, 2001). Elements of prosody, such028

as rhythm, tempo, stress or lengthening play an im-029

portant role in both spoken and signed languages030

(Brentari et al., 2018). Thus, it is important for sign031

language generation (SLG) systems to be able to032

model prosody. However, much of current study on033

prosodic markers such as intensification (Bolinger,034

1972; Rett, 2008; Ghesquière and Davidse, 2011)035

are based on linguistic theories of spoken languages036

and cannot be adapted because prosody in sign lan-037

guage is represented in the visual modality (Wen-038

1We will make our annotated dataset and code publicly
available upon paper acceptance.
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Figure 1: In sign languages, modifiers are represented
spatially and temporally and they change the seman-
tics of the sign. Here, two signers from PHOENIX-
14T manually sign German "less clouds", and "very
cloudy". Both of these signs have the same gloss rep-
resentation: WOLKE (cloud in German). They are figu-
ratively the same sign, yet the duration, repetition, tem-
poral pauses, and continuations determine the meaning.
This information is lost during sign language transla-
tion and evaluation.

nerstrom, 2001). Spatial and temporal presenta- 039

tions such as iconicity, gesture duration, space uti- 040

lization, as well as temporal pauses are used to 041

stress on semantic differences (Wilbur et al., 2012). 042

Due to such distinctive nature of sign language, the 043

challenges of modeling prosody in SLG systems 044

need to be addressed specifically. 045

Evidently, sign language generation (SLG) sys- 046

tems have been developing rapidly in recent years 047

due to their potential importance to the Deaf and 048

Hard of Hearing (DHH) communities (Stoll et al., 049

2018; Zelinka and Kanis, 2020; Stoll et al., 2020; 050

Saunders et al., 2021). Transformer models (Saun- 051

ders et al., 2020b) have been shown to outperform 052

other neural models (Stoll et al., 2020) in gener- 053

ating sign language from gloss annotations —a 054

shortened approximation of spoken language that 055
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has mapping to signs. One of the key limitations056

of state-of-the-art models is that the prosody of the057

sign videos generated by state-of-the-art models058

does not change with the semantics of the signs059

(Duarte et al., 2021). Given the recency of interest060

in the field, the problem of modeling prosody in061

sign language is yet to be tackled.062

In this paper, we take a step toward the goal063

of modeling prosody in sign language generation064

by modeling intensification. We refer to intensifi-065

cation as the presence of intensity modifiers that066

quantify nouns, adjectives or adverbs in a sentence.067

The intensity modifiers can either be an amplifier068

(e.g., lot of rain) or a diminisher (e.g., little rain).069

Studies in the linguistics of sign languages show070

that intensity modifiers change the duration and071

tactile emphasis of the produced sign (Wilbur et al.,072

2012). Thus, intensification modeling can impact073

prosody of generated signs. However, this poten-074

tial of intensification is not realized within current075

models because they depend on gloss representa-076

tion. Intensity modifiers are often excluded in gloss077

representation because they are a sparse approxi-078

mation of spoken language. As shown in Figure 1,079

the spatial and temporal properties of signs differ080

dramatically even when they map to the same gloss.081

State-of-the-art models cannot be aware of this tem-082

poral and spatial manipulation by modifiers if they083

are not represented in the gloss training data.084

Our initial analysis of the PHOENIX-14T (Cam-085

goz et al., 2018), a German Sign Language dataset,086

reveals that 23% of the data has at least one adjec-087

tive or adverb in the text transcript but none in the088

gloss representation. Since adjectives and adverbs089

(e.g., little) often act as intensity modifiers, inten-090

sity modifiers are likely to be under-represented in091

the gloss as well. This observation motivates the092

need of explicit modeling of intensification in the093

gloss representation and modifying state-of-the-art094

models to incorporate this additional information.095

We hypothesize this to have an overall improve-096

ment in the models’ performance both quantita-097

tively in terms of automated metrics and qualita-098

tively in terms of human evaluation. To this end,099

drawing on linguistics and cognitive science studies100

of sign languages, we make the following contribu-101

tions in a data-driven way:102

1. Introduction of gloss enhancement strategies103

grounded in linguistics that respect the differ-104

ing information goals of modifiers with vari-105

ous levels of intensity.106

2. Presenting a supervised tagging model to en- 107

hance a given gloss dataset with modifier in- 108

tensity levels using strategies we identified. 109

3. Making available an enhanced version of the 110

PHOENIX14T dataset where the glosses are 111

tagged with intensity levels of modifiers. 112

4. Incorporating modifier information into the 113

Progressive Transformer (PT) model. We also 114

propose a novel model that can dynamically 115

select the generated poses with different gloss 116

enhancement as input. We make our code and 117

data publicly available.2 118

2 Related Work 119

Prosody of Signed Languages Prosodic infor- 120

mation in sign languages has been studied through 121

the lenses of cognitive sciences and linguistics. Us- 122

ing brain images, Newman et al. (2010) show that 123

prosodic signed information is processed in much 124

the same way as it is in hearing speakers. In (San- 125

dler, 1999), the intertwined nature of prosody is 126

observed in a multifaceted manner for semantics, 127

neurological basis and syntactic understanding of 128

sign languages. Nicodemus et al., (2009) note that 129

prosodic markers play an important role as delimit- 130

ing units during the generation and perception of 131

the signs. 132

In linguistics research, studies have focused on 133

the relationship between prosody and syntax in sign 134

language (Sandler, 2010), role of prosody in iden- 135

tifying break points in discourse and detection of 136

salient events (Ormel and Crasborn, 2012). Sandler 137

et al. (2020) suggest that pragmatic notions related 138

to information structure are parts of prosody in sign 139

languages. Although there has been limited work 140

that highlight the importance of intensity modifiers 141

in signed languages’ prosody (Wilbur et al., 2012), 142

our work is the first data-driven empirical study that 143

studies a large dataset, then annotates, quantifies 144

and characterizes data-driven strategies for mod- 145

eling intensification. Moreover, none of the work 146

cited in this subsection is computational. Our work 147

is the first that presents a computational model for 148

intensification as a step toward modeling prosody. 149

Sign Language Generation In contrast to the 150

fields of cognitive sciences and linguistics, prosody 151

is still unaddressed in the field of sign language 152

generation (SLG). The primary aim of SLG is gen- 153

erating sign poses from texts. Earlier work has 154

2Data and model details are provided in the Appendix.
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explored methods to generate animated avatars155

(Cox et al., 2002; Glauert et al., 2006; McDon-156

ald et al., 2015) from speech or text inputs, but157

were restricted by the rule-based systems and158

the modest size of sign pose libraries. More159

recently, with the introduction of large corpora160

such as PHOENIX14T (Camgoz et al., 2018) and161

How2sign (Duarte et al., 2021) and advanced deep162

learning model architectures, generating more ac-163

curate and expressive human skeletal sequences164

from spoken language transcripts or annotated165

glosses has become possible (Stoll et al., 2018,166

2020; Zelinka and Kanis, 2020; Saunders et al.,167

2020a,b, 2021). Yet, none of these works attempt168

at modeling intensification or any other indicator169

of prosody. Our work is the first that combines lin-170

guistic and cognitive findings with computational171

models for the task of modeling intensification.172

3 Intensification in Signed Languages173

Gloss annotations in the German Sign Language174

weather forecast corpus, PHOENIX14T, are simple175

German words that often do not capture subtleties176

of sign language. For example, "very cloudy" and177

"slightly cloudy" are both represented by a single178

gloss "WOLKE" (CLOUD). Our analysis shows179

that in 23 percent of the data, the gloss represen-180

tation does not contain any adjectives or adverbs181

present in the text transcript. Since intensity mod-182

ifiers are usually adjectives/adverbs that quantify183

intensity of other words, we expect them to be miss-184

ing from the gloss representation as well. Hence, in185

order for the model to represent intensity modifiers186

in its latent space, it is necessary to make them187

present in the training data.188

3.1 Gloss Enhancement Strategies189

We analyzed in a data-driven manner the best ways190

of representing intensity modifiers in gloss anno-191

tations based on the linguistic theories, cognitive192

science and neuroscience perspectives of intensi-193

ties in signed languages. We discovered that the194

choice of order for the additional gloss modifier195

tokens matters. Linguistic analysis of American196

Sign Language also shows the importance of this.197

Wilbur et al. (2012) explain that depending on198

the degree of the adjective, there is a "sharp move-199

ment to a stop" in the final timing of the sign, which200

is coined end-marking. They also show that the ini-201

tial time interval of a sign also gets modified with202

a slight pause in the beginning and a faster contin-203

Approach Example

Text very cloudy
Original Gloss WOLKE (cloud)

Suffi. WOLKE-INT2
End-mark. WOLKE <INT2>
Delay.-rel. <INT2> WOLKE
Suffix.-reiter. WOLKE-INT2 WOLKE-INT2

Table 1: Gloss Enhancement examples.

uation of the sign, which is termed as a delayed- 204

release. Also, there exists other datasets with dif- 205

ferent annotation schemes, one of which –Public 206

DGS Corpus– uses a gloss annotation convention 207

where the phonemes and synonyms that have dif- 208

ferent signs contain a number that is added as a 209

suffix to the end of the gloss (Konrad et al., 2020). 210

Finally, as described by (Nicodemus et al., 2014) 211

during the end-marking and elongation phase, a 212

sign might be reiterated to mark the intensification. 213

Inspired by these previous work in linguistics of 214

sign languages and in analyzing the dataset with 215

sign language researchers, we came up with four 216

strategies to better represent intensity modifiers in 217

glosses. We use these strategies in four alternative 218

ways, as shown in table 1 and are introduced below: 219

• End-Marking, where an additional token of 220

<HIGH-INT> or <LOW-INT> is added after 221

the intensity-modified gloss to represent the 222

change in the final timing of the sign as shown 223

in (Wilbur et al., 2012). 224

• Delayed Release, where the additional in- 225

tensity modifier token of <HIGH-INT> or 226

<LOW-INT> is added before the original 227

gloss, as described in (Wilbur et al., 2012) 228

to represent the delayed release in the initial 229

timing of the sign. 230

• Suffixation, where an INT suffix is added at 231

the end of the gloss with an additional numer- 232

ical value (1 or 2) corresponding to the degree 233

of intensification. This is analogous to the 234

Public DGS Corpus annotation (Konrad et al., 235

2020). 236

• Reiteration, where we repeat the intensity- 237

modified gloss token twice to capture this 238

in the gloss representation as described by 239

(Nicodemus et al., 2014). 240

3.2 Data Annotation 241

We start by selecting a subset of the publicly avail- 242

able PHOENIX14T dataset (Camgoz et al., 2018) 243
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Figure 2: This figure shows an example annotation.
German transcript text and gloss are provided as con-
text along with their English translations. Each English
gloss in the sentence are tagged with 0, 1, 2, corre-
sponding to the degree of intensification.

for the annotations of intensity modification.244

Data Sampling. Initial analysis demonstrated245

that gloss annotations tend to ignore the adjec-246

tives/adverbs, which are signals of intensity mod-247

ification. We hypothesize that for samples where248

the number of adjectives/adverbs is zero in gloss249

annotations but more than zero in texts, the inten-250

sity information is more likely to be missed. We251

used Spacy (Honnibal and Montani, 2017) part-of-252

speech (POS) tagger to tag the text and gloss pairs,253

then utilize the hypothesis mentioned above to fil-254

ter the data. In the end, we acquired 1557 samples255

in the train set, 132 samples in the development256

set, and 157 samples in the test set. Afterwards,257

the gloss sequences are split into individual gloss258

tokens. These gloss tokens are paired with the full259

text transcripts, which yields a total of 12.8K gloss260

token to sentence pairs – 10.8K from the 1557 in-261

stances in train, 1K from the 132 instances in dev262

and 1K from the 157 instances test set.263

Annotation Protocol. For each of the gloss to-264

ken to sentence pair, we ask at least one annotator265

to assign labels to the gloss token from the follow-266

ing categories: (i) 2 as “high intensity” if there is267

an intensity modifier such as “high” in the text sur-268

rounding the gloss; (ii) 1 as “low intensity” if the269

intensifier in the text marks a low degree intensity;270

or (iii) 0 if there is no corresponding modifiers in271

the text transcripts.3 Figure 2 shows an example of272

the annotation.273

Annotator Agreement. Three expert annotators274

were recruited according to the rules and regula-275

tions of our institution’s human-subject board. An-276

notators were paid $15 per hour. To assess the277

inter-annotator agreement, we randomly sampled278

3We translated the German transcriptions and glosses into
English using the Google Translate API https://cloud.
google.com/translate

Model Features Prec. Recall F1

SVM W[2-5] 70.0 45.6 50.4
SVM C[2-5] 63.8 54.0 57.2

FastText embed 60.5 62.0 61.0
BiLSTM embed 62.1 66.6 64.1
G-BERT – 74.3 74.2 74.2
M-BERT – 74.2 76.4 75.3

Table 2: GLOSS intensifier classification results. W
stands for word, C stands for character. Embeddings
for FastText and BiLSTM are learned during training.

700 token-sentence pairs and asked all three an- 279

notators to annotate. The resulting Fleiss’ Kappa 280

(Fleiss, 1974) coefficient is of 69.2, which suggests 281

a substantial agreement among the annotators. 282

3.3 Full Corpus Intensity Enhancement 283

Utilizing the annotated pairs, we train a battery of 284

classifiers to automatically predict the gloss labels 285

for the remaining data points. Having an automated 286

classifier saves us resources that would otherwise 287

be needed to tag the whole dataset. 288

We frame the task as a text pair classification 289

problem. Given the original text transcript and a 290

gloss token, the goal is to predict a label from: “0” 291

(no intensity modification), “1” (low degree inten- 292

sity) and “2” (high degree intensity). We experi- 293

mented with multiple classification baselines, in- 294

cluding SVM with n-gram features, fastText (Joulin 295

et al., 2017), Bidirectional LSTM and two versions 296

of fine-tuned BERT (Devlin et al., 2019) models – 297

German BERT (G-BERT) and multilingual BERT 298

(M-BERT). All models are trained on the manu- 299

ally annotated 10.8K training pairs and results are 300

reported on the 1K test subset. 301

Table 2 shows the experiments with different 302

classifiers. Fine-tuned transformers G-BERT and 303

M-BERT outperform others by a large margin. The 304

performance improvement of M-BERT compared 305

to G-BERT is statistically significant according to 306

a permutation test. 307

We tag all the remaining glosses with the best- 308

performing classifier, M-BERT, in the original 309

PHOENIX-14T dataset. We end up with four ver- 310

sion of enhanced gloss sequences by incorporating 311

the aforementioned strategies in section §3, namely 312

Suffixation, End-marking, Delayed Release and Suf- 313

fixation Reiterate. 314
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Figure 3: This figure shows the architecture of the Dynamic Selection model. The overall architecture is similar to
the Progressive Transformer, except having two Encoders to select between two different types of strategies. MLP
layer is the decisive step on selecting the strategy from the encoders. Dynamic model uses a weighted mixture of
the decoder outputs (represented with a gradient of blue and red). Dynamichard uses an argmax to pick a source.

4 Model315

In this section, we first introduce a baseline model316

that has been widely adopted for the sign language317

generation task (section §4.1). To better model318

the signer’s dynamic intensification choices during319

sign generation, we further propose a dynamic se-320

lection model (Figure 3) that makes use of inputs321

with different intensity modification strategies.322

4.1 Progressive Transformer Baseline323

The main goal of the sign language generation324

model is to transform a gloss or text sequence325

into skeletal pose coordinates per each frame of326

the signing video. Formally, given a gloss se-327

quence X = [x1, ...xN ], a sign language genera-328

tion model aims to learn the conditional probability329

p = (Y |X) where Y represents the corresponding330

skeletal pose coordinate sequence Y = [y1, ...yT ].331

We use the Progressive Transformer (PT) (Saunders332

et al., 2020b) model as our baseline. The model em-333

ploys an encoder-decoder architecture to produce334

a sign language sequence Ŷ = [ŷ1, ..., ŷT ] in an335

auto-regressive manner. The encoder is composed336

of L transformer layers, each with one Multi-Head337

Attention (MHA) and a feed-forward layer. The338

computed representation of the source sequence339

is fed into a modified transformer decoder, which340

employs a counter-based decoding mechanism to341

guide the generation of continuous joint sequences342

ŷ1:T and deciding the end of the generated se-343

quence. This decoding strategy can be formulated344

as below:345

[ŷt+1, ĉt+1] = PT (ŷt|ŷ1:t−1, x1:N ) (1)346

where ŷt+1 and ĉt+1 are the produced joint se-347

quence and the counter value for the generated348

frame t+1. The model is trained using the mean 349

square error (MSE) loss between the generated se- 350

quence ŷ1:T and the ground truth y1:T : 351

LMSE =
1

T

T∑
i=1

(yi − ŷi)2 (2) 352

It is worth noting that, as stated by (Huang et al., 353

2021), the proposed decoding mechanism provides 354

weak supervisions with the initial ground-truth 355

frame and guided counter sequences during the 356

inference time. 357

4.2 Dynamic Selection Generator 358

The PT baselines can generate sign poses from a 359

single source of gloss end-to-end. However, in dif- 360

ferent scenarios, the signers may employ diverse 361

intensification strategies to present meanings for 362

the same gloss word (i.e. they may use a ges- 363

ture with a delayed-release to represent “heavy 364

thunderstorm” and later employ an end-marking 365

to strengthen the intensity of another sign). To 366

model this, we propose a new structure on top of 367

the PT baselines. Given a text sequence, we mix k 368

sources of glosses with different information goals 369

and generate sign languages that dynamically pick 370

the source gloss. In general, we can have multi- 371

ple encoders, Encoder1···k, to encode the glosses 372

separately and obtain the representations src1···k. 373

We utilize a single decoder to decode the output 374

representation k times from k sources of encoders, 375

each with a different encoded input representation: 376

377
srck = Encoder(xk1:N ) (3) 378

379ŷkt+1 = Decoder(ŷkt |ŷk1:t−1, srck) (4) 380

We employ a multi-layer perceptron (MLP) fol- 381

lowed by a softmax activation function to produce 382
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selection probability distributions of each source383

for individual frames, which we call as importance384

coefficients ICt+1, that are conditioned on the de-385

coded representations {ŷkt+1}:386

ICt+1 = {α1
t+1, ..., α

k
t+1} = IC({ŷkt+1}) (5)387

This strategy is different from (Saunders et al.,388

2021) where our decoded representation ykt+1 aims389

at generating source-dependent sequences, while390

(Saunders et al., 2021) applies the self-attention on391

the decoded sequences only. We have two variants392

while generating the weighted output: Dynamic393

and DynamicHard. The final dynamic output is a394

weighted mixture of the two candidate sequences:395

ŷt+1 =

K∑
i=1

αk
t+1ŷ

k
t+1 (6)396

In this specific model we set the k at 2. For the397

dynamichard variant of the model which picks the398

most plausible view at each frame as ŷt+1 = ŷkt+1399

where k = argmax
i
{αi

t+1}.400

5 Evaluations and Results401

Evaluation of sign language generation is challeng-402

ing due to the lack of an automated metric to assess403

the quality of generated signs. The standard prac-404

tice (Saunders et al., 2020b) is to translate the poses405

back to text domain and compare with ground truth406

text. This is called back-translation. Such auto-407

matic evaluation however, cannot accurately cap-408

ture the quality of the produced signs (Yin et al.,409

2021). Thus, to complement our automated evalua-410

tion, we ask sign language experts to evaluate the411

generated signs. Lastly, we perform a qualitative412

analysis of the back translated text to i) confirm413

increased presence of intensity modifiers, ii) iden-414

tify limitations of our models, and iii) pitfalls of415

existing metrics.416

5.1 Automatic Evaluation417

Splits and Metrics. Prior analysis on a subset418

of the PHOENIX-14T’s dev set unveils the im-419

balanced distribution of data regarding the inten-420

sity modification phenomena. Thus, results on421

the original data split could not faithfully evaluate422

the model’s capability to generate intensification-423

specific sentences. To this end, we develop a new424

data split – we collect data points which have at425

least one gloss labeled as either low or high inten-426

sity to construct the "with intensification" subset,427

and leave the remaining in a "without intensifi- 428

cation" group. We report the BLEU-1, BLEU-4 429

(Papineni et al., 2002), ROUGE (Lin, 2004) on 430

the back translated texts. We retrain the Sign Lan- 431

guage Transformer (Camgoz et al., 2020) (SLT) 432

to translate the sign skeletal sequences back into 433

German texts. For the more fine-grained settings 434

of “intensification”-focused evaluation, we addi- 435

tionally report the BertScore (Zhang* et al., 2020), 436

an automatic metric for text generation that corre- 437

lates better with human judgements, to measure the 438

semantic similarities. We report statistical signifi- 439

cance with bootstrap resampling on both 90% and 440

95% confidence levels (Efron and Tibshirani, 1993; 441

Koehn, 2004). 442

Result. We observe that, as shown in full 443

columns of Table 3, the enhanced glosses improve 444

the quality of skeleton generation on the original 445

split of dataset. We can see that our proposed in- 446

tensification enhancement techniques obtain an av- 447

erage of 0.6 improvement on BLEU-4 score over 448

the dev set, with significant improvement of more 449

than 1.6 on ROUGE. We do not observe significant 450

difference on the test set evaluations. Our proposed 451

models obtain the highest ROUGE score, with neg- 452

ligible drop of BLEU scores comparing to models 453

based on single source of gloss on dev set. 454

Regarding the new “with” and “without intensi- 455

fication” splits, we first observe that there exists a 456

considerable score difference across all three met- 457

rics between the two groups. We hypothesized 458

that current sign language generation models are 459

biased towards reconstructing sentences without 460

any intensification modifiers and lack the capabil- 461

ity to represent the intensity modification. Over the 462

“with intensification” subset, most enhanced data 463

obtain significant improvements on BLEU-1 and 464

ROGUE score, which confirms that the intensity 465

modifying strategies help preserve the semantic 466

meanings. Meanwhile, Suffixation results in stable 467

performance gain over the “without intensification” 468

subset. This demonstrates the model’s capability to 469

distinguish between different intensified texts, such 470

that the difference between rain and shower signs 471

can be obtained while the provided glosses remain 472

the same. The harnessing of repetitions on top of 473

Suffixation glosses bring in minor improvements on 474

“with intensification” dev cases, and major gains 475

are attributed to the “without intensification” test 476

cases. In the end, our proposed Dynamic model 477

obtains the highest test set performance, where the 478
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DEV SET
with intensification (248) without intensification (271) full

B1 B4 RG BS B1 B4 RG BS B1 B4 RG

Baseline 25.07 6.24 22.61 72.20 35.46 17.98 36.84 77.46 29.92 11.90 30.05

Suffix. 25.72 6.71 24.03** 72.61 37.73** 19.35** 38.92** 77.88 31.32* 12.81 31.81**
Delay.-rel. 27.03** 6.67 24.31** 72.97 37.75** 18.39 38.55** 77.84 32.03** 12.35 31.74**
End-mark. 27.32** 7.29 24.46** 72.52 36.48 18.08 37.26 77.42 31.59* 12.51 31.15
Suff.-reiter. 26.23* 6.74 24.78** 72.78 35.98 17.97 37.92 77.74 30.77 12.20 31.64*
Dynamic 25.88 6.52 23.82* 72.54 35.65 17.80 37.59 77.86 30.44 11.99 31.01
Dynamichard 26.01 6.36 24.98** 73.06 36.35 18.25 38.75** 77.87 30.83 12.20 32.17**

TEST SET
with intensification (314) without intensification (328) full
B1 B4 RG BS B1 B4 RG BS B1 B4 RG

Baseline 25.28 5.92 21.98 72.02 35.17 17.40 35.97 76.85 29.86 11.51 29.13
Suffix. 26.31 6.54 24.56** 73.10 33.70 17.14 34.60 76.87 29.73 11.71 29.69
Delay.-rel. 19.33 3.43 16.29 69.56 36.07 17.53 36.49 77.31 27.08 10.27 26.61
End-mark. 23.98 6.67 22.38 72.09 34.94 17.28 35.27 76.60 29.05 11.73 28.96
Suff.-reiter. 25.04 6.24 23.41* 73.13 34.85 17.63 36.43 77.65 29.58 11.74 30.06
Dynamic 26.06 6.79 23.89** 72.76 35.42 17.21 36.53 77.42 30.39 11.79 30.34
Dynamichard 26.51* 6.95 24.68** 73.11 33.63 16.97 34.87 77.17 29.81 11.81 29.90

Table 3: Gloss to pose (G2P) model performances with different enhanced gloss as input. The original dev/test
instances are split based on whether it contains tagged gloss produced by our best tagger in section §3.3. B1, B4,
RG and BS refer to BLEU-1, BLEU-4, ROUGE and BERTScore respectively. The marks * and ** denote that the
results are significant comparing to baseline with the significance level p < 0.1 and p < 0.05 respectively.

Figure 4: This figure illustrates the comparison be-
tween baseline and the intensification-enhanced model.
Gloss annotations are linked to their corresponding
frames. Here, ground truth skeleton uses wider
movements due to the "heavy" modifier, and the
intensification-enhanced outputs replicate the phenom-
ena better than baseline.

gains are mainly attributed to the improvements479

over the “with intensification” subgroup.480

5.2 Human Evaluation481

We carried out a comparative human evaluation482

over 50 skeleton videos generated by both the base-483

line and our best performing model for human an-484

Figure 5: Human evaluation results for the generated
skeletons.

notations. For each paired video, we asked deaf 485

sign language users to identify the video that they 486

found to be better than the other. They were specif- 487

ically instructed to observe the following qualities 488

and make their decisions: naturalness of the hand 489

movements, alignment of the hand movements (ex- 490

cluding finger movements) with the ground truth, 491

representation of intensity by the hand movements, 492

and overall understandability. 493

As shown in Figure 5, outputs generated by our 494

model trained on the enhanced glosses were pre- 495

ferred by signers (50% for our model vs. 26% for 496

baseline). This difference is statistically different 497

from chance as shown from a chi-squared test with 498

p = .00017. This further suggests that a qualita- 499

tive improvement using our enhancement strate- 500
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Examples (Translated from German) B1 B4 RG BS
Better capture of intensity modifiers
G. Truth The wind usually blows weakly from different directions. - - -
Baseline The wind blows weak to moderate 47.8 0 55.7 81.9
Enhanced The wind usually blows weakly from different directions. 100 100 100 100
Model hallucinations
G. Truth The wind blows weak to moderate at the sea also fresh - - -
Baseline On the Alps and in the south, the wind blows weak to moderate 50 0 46.2 81.7
Enhanced The wind blows in the south weak otherwise weak to moderately 36.8 0 50.1 81.9

sometimes fresh to strong gusty from south to West
Metrics failure
G. Truth Tonight there are still a few thunderstorms possible in the south, otherwise - -

rain only falls here and there, in places fog forms
Baseline Tonight, especially in the south and east there are rain or snow or freezing rain 37.9 15.4 39.6 75.4
Enhanced Tonight, especially in the south and east here and there a few drops or flakes 32 0 36.9 75.6

Table 4: Examples of qualitative analysis over 100 back translated texts from the videos generated by baseline
and our intensification enhanced model. Bold texts refer to the intensity modifiers that are missing in the gloss,
blue highlight marks good generations and red highlight marks the errors. Our model can better retain the

intensity information than the baseline. Meanwhile, as shown in the third example, n-grams based metrics may fail
to reward the better intensity modifier representation.

gies is evident. Aspects that are not fully captured501

by the metric-based evaluations are more clear in502

the human evaluations which show that incorporat-503

ing intensity into the model is crucial. Enhanced504

glosses can generate more natural videos that de-505

pict the intensity of the signs. It should be noted506

that the solution to the problem at hand needs fur-507

ther improvement as suggested by the considerable508

number of "no preference" votes.509

5.3 Qualitative Analysis510

We hypothesize that due to the inclusion of in-511

tensity modifiers in the gloss, there should be a512

higher presence of intensity modifiers in the back513

translated text. To verify this hypothesis, we com-514

pare the numbers of adjectives/adverbs in sentences515

back translated text from the baseline and the best516

model as an approximation of counting intensity517

modifiers. We observe more adjectives/adverbs518

(average of 3.42 comparing to baseline’s 3.28) are519

being generated with the enhanced glosses.520

To better understand our model’s behavior, we521

manually inspect 100 instances randomly drawn522

from the “with intensification” cases for a quali-523

tative analysis. We compare the back translated524

texts produced by the baseline and Dynamichard.525

The goal is not to evaluate overall quality of the526

back translated text but the presence and correct-527

ness of modifiers. The key observations are: i) in528

30% of the cases, back translated text produced529

by our model has better representation of intensity530

modifiers compared to baseline, ii) in 3% of the531

cases, our model hallucinates and overproduces in-532

tensity modifiers, and iii) in 23% of the cases, at 533

least two of the four automated metrics did not re- 534

ward Dynamichard for having better intensification. 535

Table 4 shows examples of these observations. 536

6 Discussion and Conclusion 537

One limitation of our study is the lack of spatial and 538

temporal context in the automated back-translation 539

evaluation. The lack of a proper evaluation metric 540

is a problem that needs to be addressed by an or- 541

chestrated effort from different fields surrounding 542

the sign language research community. Another 543

limitation is the cumulative error propagation that 544

dissipates through the intensity classifier. then to 545

the progressive transformer and then afterwards to 546

the back-translation, amplifying total error. 547

Despite these limitations, we show that the strate- 548

gies of intensification, grounded in the linguistics 549

of sign languages, contribute to the improvement 550

of end-to-end sign language generation systems. 551

This modeling effort is supported by our metric- 552

based and human evaluation results. We will make 553

all data and code publicly available. For future 554

work, we plan to further analyze the effects of these 555

strategies on the perception of sign language under- 556

standing. We also plan to expand on the intensity 557

modifier paradigm to further research in modeling 558

prosody in sign language. 559
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7 Ethical Considerations560

Our work advocates for the need for more thought-561

fulness of linguistic phenomena during the gener-562

ation of sign videos. All models and analyses are563

built on a publicly available benchmarking dataset.564

We acknowledge that some modules of our model565

depend on pre-trained models such as word embed-566

dings. These models are known to reproduce and567

even magnify societal bias present in their original568

training data (Li et al., 2021).569
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A Gloss Classifier Implementation767

SVM Baselines To construct the features for our768

text pair classification, we first concatenate the769

gloss token with the german text. Then we use770

term frequency-inverse document frequency (tf-idf)771

vectorizer to produce word and character n-gram772

vectors. These vectors are then used to train linear773

SVM classifiers. We use scikit-learn 4 implementa-774

tion with default parameters for training. The SVM775

models primarily serve as baselines.776

FastText In our implementation, we use two sep-777

arate embedding layers. One for the text and one778

for the gloss token. The embeddings for the text is779

averaged using pooling and then concatenated with780

the embedding of gloss token. This concatenated781

vector is then passed through a linear layer and782

sigmoid function to produce the predictions. We783

use embedding size of 100 and train for 10 epochs.784

We cross-entropy loss and ADAM optimizer with785

default learning rate. We use PyTorch 5 for our786

implementation.787

Bidirectional LSTM Similar to FastText, we788

have two separate embedding layers of size 100789

for the text and the gloss token. the difference is790

that the output of text embedding layers are passed791

through a 2-layer bidirectional LSTM with hidden792

size of 300, dropout of 0.3. The output of the793

LSTM layers are then concatenated with the output794

of gloss embedding layer. The concatenated output795

is then passed through ReLU activation function796

and then passed through a linear layer. Similar to797

FastText, we train for 10 epochs, use cross-entropy798

loss and ADAM optimizer with default learning799

rate. PyTorch is used for implementation.800

Fine-Tuned Transformers For our task. we801

fine-tune bert-base-multilingual (M-BERT) and802

german-bert-base-uncased (G-BERT) 6. M-BERT803

is pretrained on Wikipedia text from 104 languages804

(including German). G-BERT is pretrained on805

Wikipedia dump, EU Bookshop corpus, Open Sub-806

titles, CommonCrawl, ParaCrawl and News Crawl.807

The architecture of both models consists of 12808

transformer blocks, hidden size of 768 and 12 self-809

attention heads. Since our task is classifying a pairs810

4https://scikit-learn.org/stable/
modules/generated/sklearn.svm.LinearSVC.
html

5https://pytorch.org/
6https://huggingface.co/dbmdz/

bert-base-german-uncased

of texts, we fine-tune the models for sentence-pair 811

classification. We use PyTorch implementation by 812

HuggingFace 7 for the fine-tuning. We fine-tune 813

for 5 epochs with learning rate of 5e-05. 814

Computational resources and running time 815

Given our training data is small, the SVM base- 816

lines are very fast to train. They take less than 5 817

minutes to train. With an NVIDIA 2070 RTX GPU, 818

the fastText and BiLSTM models take less than 10 819

minutes each. Fine-tuning each pre-trained BERT 820

model with the same GPU but fewer epochs (5) 821

take less than 10 minutes. 822

B Dataset Statistics 823

We use the publicly available benchmark, 824

PHOENIX14T (Camgoz et al., 2018) dataset. This 825

dataset comprises a collection of weather fore- 826

cast videos in German Sign Language (DGS), seg- 827

mented into sentences and accompanied by Ger- 828

man transcripts from the news anchor and sign- 829

gloss annotations. It contains videos of 9 different 830

signers with 1066 different sign glosses and 2887 831

different German words. The video resolution is 832

210 by 260 pixels per frame and 30 frames per 833

second. The dataset is partitioned into training, 834

validation, and test set with 7,096, 519, and 642 835

sentences, respectively. 836

C Transformer (Re-)Implementation 837

We implemented Progressive Transformers mod- 838

els for sign language generation task (§4.1) based 839

on the code 8 released by (Saunders et al., 2020b). 840

Both encoder and decoder are built with 2 layers, 4 841

heads and embedding size of 256. We apply Gaus- 842

sian noise with a noise rate of 5, as proposed by 843

Saunders et al. (2020b). All parts of the network 844

are trained with Xavier initialisation (Glorot and 845

Bengio, 2010), Adam optimization (Kingma and 846

Ba, 2015) with default parameters and a learning 847

rate of 1e-3. The model takes 5 hours to train on 1 848

NVIDIA GeForce 1080Ti GPU. For our proposed 849

Dynamic Selection model, both encoders and the 850

decoder share the same settings as above. The 851

Multi-Layer Percetron (MLP) model is composed 852

of two linear layers with dimension of 1024 and 853

a ReLU activation. The model takes 8 hours to 854

train on 1 NVIDIA GeForce 1080Ti GPU. We im- 855

plemented the back-translation model on top of 856

7https://github.com/huggingface/transformers
8https://github.com/BenSaunders27/

ProgressiveTransformersSLP
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the original SLT code (Camgoz et al., 2020). The857

transformer models are built with 1 layer, 2 head858

and embedding size of 128. The feature size is859

changed to 150, which is the sequence length of860

generated skeleton joints sequence. The recogni-861

tion loss weight and translation loss weight are set862

to 5 and 1 respectively. The model takes around 1863

hour for training and evaluation. All models intro-864

duced above are implemented with Pytorch (Paszke865

et al., 2019).866

D Retrained SLT model867

Given the different versions of degree enhanced868

dataset (§3.3, we retrain the SLT models on the869

original text, skeleton joints sequence and the new870

gloss triples. This can serve as an estimation of the871

model’s back translation quality given the oracle872

sign sequence. Table 5 shows the results.873
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DEV SET TEST SET

Gloss Type BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE

Baseline 30.50 20.78 15.53 12.33 30.31 30.60 20.59 15.19 12.03 29.52

Suffix. 29.02 19.88 14.66 11.66 29.58 29.30 19.88 14.66 11.59 29.28
Delay.-rel. 28.72 19.71 14.79 11.77 29.63 29.31 19.93 14.70 11.62 28.98
End-mark. 29.28 19.99 14.99 12.01 29.88 29.32 20.01 15.01 11.93 29.04

Suffix. reiter. 31.15 21.80 16.50 13.14 31.11 29.76 20.77 15.70 12.60 29.15

Table 5: Translation results of the SLT model (Camgoz et al., 2020) used for back-translation. All models are
trained and evaluated with ground truth hand and body skeleton joints (manual) and different choices of augmented
gloss.
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