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Abstract

End-to-end sign language generation models
do not accurately represent the prosody of the
languages. This lack of temporal and spatial
variation in generated signs leads to poor qual-
ity and lower human perception. In this pa-
per, we seek to improve prosody in generated
sign languages by modeling intensification in
a data-driven manner with strategies grounded
in the linguistics of sign language by enhanc-
ing the representation of intensity modifiers in
gloss annotations. To employ our strategies,
we first annotate a subset of the benchmark
PHOENIX14T dataset with different levels of
intensification. We then use a supervised inten-
sity tagger to extend the tagging to the whole
dataset. This enhanced dataset is then used
to train state-of-the-art transformer models for
sign language generation. We find that our ef-
forts in intensification modeling yield better
results when evaluated with automated met-
rics. Human evaluation also indicates a sig-
nificantly higher preference of the videos gen-
erated using our strategies in the presence of
intensity modifiers.'

1 Introduction

Similar to spoken languages, signed languages
have rich grammar rules and unique linguistic struc-
tures (Emmorey, 2001). Elements of prosody, such
as rhythm, tempo, stress or lengthening play an im-
portant role in both spoken and signed languages
(Brentari et al., 2018). Thus, it is important for sign
language generation (SLG) systems to be able to
model prosody. However, much of current study on
prosodic markers such as intensification (Bolinger,
1972; Rett, 2008; Ghesquiere and Davidse, 2011)
are based on linguistic theories of spoken languages
and cannot be adapted because prosody in sign lan-
guage is represented in the visual modality (Wen-

"We will make our annotated dataset and code publicly
available upon paper acceptance.
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Figure 1: In sign languages, modifiers are represented
spatially and temporally and they change the seman-
tics of the sign. Here, two signers from PHOENIX-
14T manually sign German "less clouds", and "very
cloudy". Both of these signs have the same gloss rep-
resentation: WOLKE (cloud in German). They are figu-
ratively the same sign, yet the duration, repetition, tem-
poral pauses, and continuations determine the meaning.
This information is lost during sign language transla-
tion and evaluation.

nerstrom, 2001). Spatial and temporal presenta-
tions such as iconicity, gesture duration, space uti-
lization, as well as temporal pauses are used to
stress on semantic differences (Wilbur et al., 2012).
Due to such distinctive nature of sign language, the
challenges of modeling prosody in SLG systems
need to be addressed specifically.

Evidently, sign language generation (SLG) sys-
tems have been developing rapidly in recent years
due to their potential importance to the Deaf and
Hard of Hearing (DHH) communities (Stoll et al.,
2018; Zelinka and Kanis, 2020; Stoll et al., 2020;
Saunders et al., 2021). Transformer models (Saun-
ders et al., 2020b) have been shown to outperform
other neural models (Stoll et al., 2020) in gener-
ating sign language from gloss annotations —a
shortened approximation of spoken language that



has mapping to signs. One of the key limitations
of state-of-the-art models is that the prosody of the
sign videos generated by state-of-the-art models
does not change with the semantics of the signs
(Duarte et al., 2021). Given the recency of interest
in the field, the problem of modeling prosody in
sign language is yet to be tackled.

In this paper, we take a step toward the goal
of modeling prosody in sign language generation
by modeling intensification. We refer to intensifi-
cation as the presence of intensity modifiers that
quantify nouns, adjectives or adverbs in a sentence.
The intensity modifiers can either be an amplifier
(e.g., lot of rain) or a diminisher (e.g., little rain).
Studies in the linguistics of sign languages show
that intensity modifiers change the duration and
tactile emphasis of the produced sign (Wilbur et al.,
2012). Thus, intensification modeling can impact
prosody of generated signs. However, this poten-
tial of intensification is not realized within current
models because they depend on gloss representa-
tion. Intensity modifiers are often excluded in gloss
representation because they are a sparse approxi-
mation of spoken language. As shown in Figure 1,
the spatial and temporal properties of signs differ
dramatically even when they map to the same gloss.
State-of-the-art models cannot be aware of this tem-
poral and spatial manipulation by modifiers if they
are not represented in the gloss training data.

Our initial analysis of the PHOENIX-14T (Cam-
goz et al., 2018), a German Sign Language dataset,
reveals that 23% of the data has at least one adjec-
tive or adverb in the text transcript but none in the
gloss representation. Since adjectives and adverbs
(e.g., little) often act as intensity modifiers, inten-
sity modifiers are likely to be under-represented in
the gloss as well. This observation motivates the
need of explicit modeling of intensification in the
gloss representation and modifying state-of-the-art
models to incorporate this additional information.
We hypothesize this to have an overall improve-
ment in the models’ performance both quantita-
tively in terms of automated metrics and qualita-
tively in terms of human evaluation. To this end,
drawing on linguistics and cognitive science studies
of sign languages, we make the following contribu-
tions in a data-driven way:

1. Introduction of gloss enhancement strategies
grounded in linguistics that respect the differ-
ing information goals of modifiers with vari-
ous levels of intensity.

2. Presenting a supervised tagging model to en-
hance a given gloss dataset with modifier in-
tensity levels using strategies we identified.

3. Making available an enhanced version of the
PHOENIX14T dataset where the glosses are
tagged with intensity levels of modifiers.

4. Incorporating modifier information into the
Progressive Transformer (PT) model. We also
propose a novel model that can dynamically
select the generated poses with different gloss
enhancement as input. We make our code and
data publicly available.?

2 Related Work

Prosody of Signed Languages Prosodic infor-
mation in sign languages has been studied through
the lenses of cognitive sciences and linguistics. Us-
ing brain images, Newman et al. (2010) show that
prosodic signed information is processed in much
the same way as it is in hearing speakers. In (San-
dler, 1999), the intertwined nature of prosody is
observed in a multifaceted manner for semantics,
neurological basis and syntactic understanding of
sign languages. Nicodemus et al., (2009) note that
prosodic markers play an important role as delimit-
ing units during the generation and perception of
the signs.

In linguistics research, studies have focused on
the relationship between prosody and syntax in sign
language (Sandler, 2010), role of prosody in iden-
tifying break points in discourse and detection of
salient events (Ormel and Crasborn, 2012). Sandler
et al. (2020) suggest that pragmatic notions related
to information structure are parts of prosody in sign
languages. Although there has been limited work
that highlight the importance of intensity modifiers
in signed languages’ prosody (Wilbur et al., 2012),
our work is the first data-driven empirical study that
studies a large dataset, then annotates, quantifies
and characterizes data-driven strategies for mod-
eling intensification. Moreover, none of the work
cited in this subsection is computational. Our work
is the first that presents a computational model for
intensification as a step toward modeling prosody.

Sign Language Generation In contrast to the
fields of cognitive sciences and linguistics, prosody
is still unaddressed in the field of sign language
generation (SLG). The primary aim of SLG is gen-
erating sign poses from texts. Earlier work has

"Data and model details are provided in the Appendix.



explored methods to generate animated avatars
(Cox et al., 2002; Glauert et al., 2006; McDon-
ald et al., 2015) from speech or text inputs, but
were restricted by the rule-based systems and
the modest size of sign pose libraries. More
recently, with the introduction of large corpora
such as PHOENIX14T (Camgoz et al., 2018) and
How2sign (Duarte et al., 2021) and advanced deep
learning model architectures, generating more ac-
curate and expressive human skeletal sequences
from spoken language transcripts or annotated
glosses has become possible (Stoll et al., 2018,
2020; Zelinka and Kanis, 2020; Saunders et al.,
2020a,b, 2021). Yet, none of these works attempt
at modeling intensification or any other indicator
of prosody. Our work is the first that combines lin-
guistic and cognitive findings with computational
models for the task of modeling intensification.

3 Intensification in Signed Languages

Gloss annotations in the German Sign Language
weather forecast corpus, PHOENIX14T, are simple
German words that often do not capture subtleties
of sign language. For example, "very cloudy" and
"slightly cloudy" are both represented by a single
gloss "WOLKE" (CLOUD). Our analysis shows
that in 23 percent of the data, the gloss represen-
tation does not contain any adjectives or adverbs
present in the text transcript. Since intensity mod-
ifiers are usually adjectives/adverbs that quantify
intensity of other words, we expect them to be miss-
ing from the gloss representation as well. Hence, in
order for the model to represent intensity modifiers
in its latent space, it is necessary to make them
present in the training data.

3.1 Gloss Enhancement Strategies

We analyzed in a data-driven manner the best ways
of representing intensity modifiers in gloss anno-
tations based on the linguistic theories, cognitive
science and neuroscience perspectives of intensi-
ties in signed languages. We discovered that the
choice of order for the additional gloss modifier
tokens matters. Linguistic analysis of American
Sign Language also shows the importance of this.

Wilbur et al. (2012) explain that depending on
the degree of the adjective, there is a "sharp move-
ment to a stop” in the final timing of the sign, which
is coined end-marking. They also show that the ini-
tial time interval of a sign also gets modified with
a slight pause in the beginning and a faster contin-

Approach | Example

Text very cloudy
Original Gloss | WOLKE (cloud)
Suffi. WOLKE-INT2
End-mark. WOLKE <INT2>
Delay.-rel. <INT2> WOLKE

Suffix.-reiter. WOLKE-INT2 WOLKE-INT2

Table 1: Gloss Enhancement examples.

uation of the sign, which is termed as a delayed-
release. Also, there exists other datasets with dif-
ferent annotation schemes, one of which —Public
DGS Corpus— uses a gloss annotation convention
where the phonemes and synonyms that have dif-
ferent signs contain a number that is added as a
suffix to the end of the gloss (Konrad et al., 2020).
Finally, as described by (Nicodemus et al., 2014)
during the end-marking and elongation phase, a
sign might be reiterated to mark the intensification.

Inspired by these previous work in linguistics of
sign languages and in analyzing the dataset with
sign language researchers, we came up with four
strategies to better represent intensity modifiers in
glosses. We use these strategies in four alternative
ways, as shown in table 1 and are introduced below:

* End-Marking, where an additional token of
<HIGH-INT> or <LOW-INT> is added after
the intensity-modified gloss to represent the
change in the final timing of the sign as shown
in (Wilbur et al., 2012).

* Delayed Release, where the additional in-
tensity modifier token of <HIGH-INT> or
<LOW-INT> is added before the original
gloss, as described in (Wilbur et al., 2012)
to represent the delayed release in the initial
timing of the sign.

* Suffixation, where an INT suffix is added at
the end of the gloss with an additional numer-
ical value (1 or 2) corresponding to the degree
of intensification. This is analogous to the
Public DGS Corpus annotation (Konrad et al.,
2020).

* Reiteration, where we repeat the intensity-
modified gloss token twice to capture this
in the gloss representation as described by
(Nicodemus et al., 2014).

3.2 Data Annotation

We start by selecting a subset of the publicly avail-
able PHOENIX14T dataset (Camgoz et al., 2018)



in the alps it is very cloudy, and a few raindrops fall here and there

an den alpen ist es stark bewélkt hier und da : llen
H A A
A A A

BERG IX MEISTENS WOLKE MANCHMAL REGEN

MOUNTAIN IX USUALLY CLOUD SOMETIMES RAIN
0 0 0 2 0 1

Figure 2: This figure shows an example annotation.
German transcript text and gloss are provided as con-
text along with their English translations. Each English
gloss in the sentence are tagged with 0, 1, 2, corre-
sponding to the degree of intensification.

for the annotations of intensity modification.

Data Sampling. Initial analysis demonstrated
that gloss annotations tend to ignore the adjec-
tives/adverbs, which are signals of intensity mod-
ification. We hypothesize that for samples where
the number of adjectives/adverbs is zero in gloss
annotations but more than zero in texts, the inten-
sity information is more likely to be missed. We
used Spacy (Honnibal and Montani, 2017) part-of-
speech (POS) tagger to tag the text and gloss pairs,
then utilize the hypothesis mentioned above to fil-
ter the data. In the end, we acquired 1557 samples
in the train set, 132 samples in the development
set, and 157 samples in the test set. Afterwards,
the gloss sequences are split into individual gloss
tokens. These gloss tokens are paired with the full
text transcripts, which yields a total of 12.8K gloss
token to sentence pairs — 10.8K from the 1557 in-
stances in train, 1K from the 132 instances in dev
and 1K from the 157 instances test set.

Annotation Protocol. For each of the gloss to-
ken to sentence pair, we ask at least one annotator
to assign labels to the gloss token from the follow-
ing categories: (i) 2 as “high intensity” if there is
an intensity modifier such as “high” in the text sur-
rounding the gloss; (ii) 1 as “low intensity” if the
intensifier in the text marks a low degree intensity;
or (iii) O if there is no corresponding modifiers in
the text transcripts.® Figure 2 shows an example of
the annotation.

Annotator Agreement. Three expert annotators
were recruited according to the rules and regula-
tions of our institution’s human-subject board. An-
notators were paid $15 per hour. To assess the
inter-annotator agreement, we randomly sampled

3We translated the German transcriptions and glosses into

English using the Google Translate APl https://cloud.

google.com/translate

Model | Features | Prec. | Recall | F1
SVM W[2-5] 70.0 45.6 50.4
SVM C[2-5] 63.8 54.0 57.2
FastText embed 60.5 62.0 61.0
BiLSTM embed 62.1 66.6 64.1
G-BERT — 74.3 74.2 74.2
M-BERT - 74.2 76.4 75.3

Table 2: GLOSS intensifier classification results. W
stands for word, C stands for character. Embeddings
for FastText and BiLSTM are learned during training.

700 token-sentence pairs and asked all three an-
notators to annotate. The resulting Fleiss’ Kappa
(Fleiss, 1974) coefficient is of 69.2, which suggests
a substantial agreement among the annotators.

3.3 Full Corpus Intensity Enhancement

Utilizing the annotated pairs, we train a battery of
classifiers to automatically predict the gloss labels
for the remaining data points. Having an automated
classifier saves us resources that would otherwise
be needed to tag the whole dataset.

We frame the task as a text pair classification
problem. Given the original text transcript and a
gloss token, the goal is to predict a label from: “0”
(no intensity modification), “1” (low degree inten-
sity) and “2” (high degree intensity). We experi-
mented with multiple classification baselines, in-
cluding SVM with n-gram features, fastText (Joulin
et al., 2017), Bidirectional LSTM and two versions
of fine-tuned BERT (Devlin et al., 2019) models —
German BERT (G-BERT) and multilingual BERT
(M-BERT). All models are trained on the manu-
ally annotated 10.8K training pairs and results are
reported on the 1K test subset.

Table 2 shows the experiments with different
classifiers. Fine-tuned transformers G-BERT and
M-BERT outperform others by a large margin. The
performance improvement of M-BERT compared
to G-BERT is statistically significant according to
a permutation test.

We tag all the remaining glosses with the best-
performing classifier, M-BERT, in the original
PHOENIX-14T dataset. We end up with four ver-
sion of enhanced gloss sequences by incorporating
the aforementioned strategies in section §3, namely
Suffixation, End-marking, Delayed Release and Suf-
fixation Reiterate.
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Figure 3: This figure shows the architecture of the Dynamic Selection model. The overall architecture is similar to
the Progressive Transformer, except having two Encoders to select between two different types of strategies. MLP
layer is the decisive step on selecting the strategy from the encoders. Dynamic model uses a weighted mixture of
the decoder outputs (represented with a gradient of blue and red). Dynamicy,,,-¢ uses an argmax to pick a source.

4 Model

In this section, we first introduce a baseline model
that has been widely adopted for the sign language
generation task (section §4.1). To better model
the signer’s dynamic intensification choices during
sign generation, we further propose a dynamic se-
lection model (Figure 3) that makes use of inputs
with different intensity modification strategies.

4.1 Progressive Transformer Baseline

The main goal of the sign language generation
model is to transform a gloss or text sequence
into skeletal pose coordinates per each frame of
the signing video. Formally, given a gloss se-
quence X = [z1,...xN], a sign language genera-
tion model aims to learn the conditional probability
p = (Y| X) where Y represents the corresponding
skeletal pose coordinate sequence Y = [y1,...y7]-
We use the Progressive Transformer (PT) (Saunders
et al., 2020b) model as our baseline. The model em-
ploys an encoder-decoder architecture to produce
a sign language sequence Y = [U1, ..., yr] in an
auto-regressive manner. The encoder is composed
of L transformer layers, each with one Multi-Head
Attention (MHA) and a feed-forward layer. The
computed representation of the source sequence
is fed into a modified transformer decoder, which
employs a counter-based decoding mechanism to
guide the generation of continuous joint sequences
y1.7 and deciding the end of the generated se-
quence. This decoding strategy can be formulated
as below:

[Ut+1, Cer1] = PT(9e|91:4—1, T1.N) (N

where 9,41 and ¢;y1 are the produced joint se-
quence and the counter value for the generated

frame t+1. The model is trained using the mean
square error (MSE) loss between the generated se-

quence y1.7 and the ground truth y;.7:
T

1 N
Lyse = X;(y —3i)? )
It is worth noting that, as stated by (Huang et al.,
2021), the proposed decoding mechanism provides
weak supervisions with the initial ground-truth
frame and guided counter sequences during the

inference time.

4.2 Dynamic Selection Generator

The PT baselines can generate sign poses from a
single source of gloss end-to-end. However, in dif-
ferent scenarios, the signers may employ diverse
intensification strategies to present meanings for
the same gloss word (i.e. they may use a ges-
ture with a delayed-release to represent “heavy
thunderstorm” and later employ an end-marking
to strengthen the intensity of another sign). To
model this, we propose a new structure on top of
the PT baselines. Given a text sequence, we mix k
sources of glosses with different information goals
and generate sign languages that dynamically pick
the source gloss. In general, we can have multi-
ple encoders, Encoder;...k, to encode the glosses
separately and obtain the representations src;...k.
We utilize a single decoder to decode the output
representation k times from k sources of encoders,
each with a different encoded input representation:

srep = Encoder(zF. ) 3)
Jri1 = Decoder (|1, 1, sree) ()

We employ a multi-layer perceptron (MLP) fol-
lowed by a softmax activation function to produce



selection probability distributions of each source
for individual frames, which we call as importance
coefficients /C}, 1, that are conditioned on the de-
coded representations {J/ , }:

101 = {afy, b} = IC{Gra ) )

This strategy is different from (Saunders et al.,
2021) where our decoded representation y \ 1 aims
at generating source-dependent sequences, while
(Saunders et al., 2021) applies the self-attention on
the decoded sequences only. We have two variants
while generating the weighted output: Dynamic
and Dynamicg,,q. The final dynamic output is a
weighted mixture of the two candidate sequences:

K
Y1 = Z af it (6)
i—1

In this specific model we set the k at 2. For the
dynamicy,-q variant of the model which picks the
most plausible view at each frame as ;11 = QfH
where k = argmax{aj_ }.

1

5 Evaluations and Results

Evaluation of sign language generation is challeng-
ing due to the lack of an automated metric to assess
the quality of generated signs. The standard prac-
tice (Saunders et al., 2020b) is to translate the poses
back to text domain and compare with ground truth
text. This is called back-translation. Such auto-
matic evaluation however, cannot accurately cap-
ture the quality of the produced signs (Yin et al.,
2021). Thus, to complement our automated evalua-
tion, we ask sign language experts to evaluate the
generated signs. Lastly, we perform a qualitative
analysis of the back translated text to i) confirm
increased presence of intensity modifiers, ii) iden-
tify limitations of our models, and iii) pitfalls of
existing metrics.

5.1 Automatic Evaluation

Splits and Metrics. Prior analysis on a subset
of the PHOENIX-14T’s dev set unveils the im-
balanced distribution of data regarding the inten-
sity modification phenomena. Thus, results on
the original data split could not faithfully evaluate
the model’s capability to generate intensification-
specific sentences. To this end, we develop a new
data split — we collect data points which have at
least one gloss labeled as either low or high inten-
sity to construct the "with intensification" subset,

and leave the remaining in a "without intensifi-
cation" group. We report the BLEU-1, BLEU-4
(Papineni et al., 2002), ROUGE (Lin, 2004) on
the back translated texts. We retrain the Sign Lan-
guage Transformer (Camgoz et al., 2020) (SLT)
to translate the sign skeletal sequences back into
German texts. For the more fine-grained settings
of “intensification”-focused evaluation, we addi-
tionally report the BertScore (Zhang* et al., 2020),
an automatic metric for text generation that corre-
lates better with human judgements, to measure the
semantic similarities. We report statistical signifi-
cance with bootstrap resampling on both 90% and
95% confidence levels (Efron and Tibshirani, 1993;
Koehn, 2004).

Result. We observe that, as shown in full
columns of Table 3, the enhanced glosses improve
the quality of skeleton generation on the original
split of dataset. We can see that our proposed in-
tensification enhancement techniques obtain an av-
erage of 0.6 improvement on BLEU-4 score over
the dev set, with significant improvement of more
than 1.6 on ROUGE. We do not observe significant
difference on the test set evaluations. Our proposed
models obtain the highest ROUGE score, with neg-
ligible drop of BLEU scores comparing to models
based on single source of gloss on dev set.
Regarding the new “with” and “without intensi-
fication” splits, we first observe that there exists a
considerable score difference across all three met-
rics between the two groups. We hypothesized
that current sign language generation models are
biased towards reconstructing sentences without
any intensification modifiers and lack the capabil-
ity to represent the intensity modification. Over the
“with intensification’ subset, most enhanced data
obtain significant improvements on BLEU-1 and
ROGUE score, which confirms that the intensity
modifying strategies help preserve the semantic
meanings. Meanwhile, Suffixation results in stable
performance gain over the “without intensification’
subset. This demonstrates the model’s capability to
distinguish between different intensified texts, such
that the difference between rain and shower signs
can be obtained while the provided glosses remain
the same. The harnessing of repetitions on top of
Suffixation glosses bring in minor improvements on
“with intensification” dev cases, and major gains
are attributed to the “without intensification” test
cases. In the end, our proposed Dynamic model
obtains the highest test set performance, where the

2



DEV SET

| with intensification (248) |  without intensification (271) | full
| BB B+ RG BS| B B, RG BS| B, B:s RG
Baseline | 25.07 624 2261 7220 3546 17.98 36.84 77.46| 29.92 11.90 30.05
Suffix. 2572 6.71 24.03** 72.61|37.73%* 19.35%* 38.92** 77.88| 31.32* 12.81 31.81%*
Delay.-rel. |27.03%* 6.67 24.31** 72.97|37.75%* 18.39 38.55%* 77.84|32.03** 12.35 31.74**
End-mark. [27.32%% 7.29 24.46** 72.52| 3648 18.08 37.26 77.42|31.59* 1251 31.15
Suff.-reiter. | 26.23*% 6.74 24.78%* 72.78| 3598 17.97 37.92 77.74| 30.77 1220 31.64*
Dynamic | 25.88 6.52 23.82% 72.54| 35.65 17.80 37.59 77.86| 3044 1199 31.01
Dynamichaa| 26.01 6.36 24.98** 73.06| 36.35 18.25 38.75%* 77.87| 30.83 12.20 32.17**

TEST SET

with intensification (314) without intensification (328) full
B Bs; RG BS| B B, RG BS| Bi Bs RG
Baseline | 2528 592 21.98 72.02[ 3517 1740 3597 76.85| 29.86 1151 29.13
Suffix. 2631 6.54 2456 73.10| 3370 17.14 3460 76.87| 29.73 11.71 29.69
Delay.-rel. | 19.33 343 1629 69.56| 36.07 17.53 3649 77.31| 27.08 1027 26.61
End-mark. | 23.98 6.67 2238 72.09| 3494 1728 3527 76.60| 29.05 11.73 28.96
Suff.-reiter. | 25.04 6.24 23.41* 73.13| 3485 17.63 3643 77.65| 29.58 11.74 30.06
Dynamic | 26.06 6.79 23.89** 72.76| 3542 1721 36.53 77.42| 3039 11.79 30.34
Dynamicnya | 26.51% 6.95 24.68** 73.11| 33.63 1697 34.87 77.17| 29.81 1181 29.90

Table 3: Gloss to pose (G2P) model performances with different enhanced gloss as input. The original dev/test
instances are split based on whether it contains tagged gloss produced by our best tagger in section §3.3. By, By,
RG and BS refer to BLEU-1, BLEU-4, ROUGE and BERTScore respectively. The marks * and ** denote that the

results are significant comparing to baseline with the significance level p < 0.1 and p < 0.05 respectively.
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in the north and later also in the south-east there are sometimes heavy showers
and thunderstorms

Figure 4: This figure illustrates the comparison be-
tween baseline and the intensification-enhanced model.
Gloss annotations are linked to their corresponding
frames. Here, ground truth skeleton uses wider
movements due to the "heavy" modifier, and the
intensification-enhanced outputs replicate the phenom-
ena better than baseline.

gains are mainly attributed to the improvements
over the “with intensification” subgroup.

5.2 Human Evaluation

We carried out a comparative human evaluation
over 50 skeleton videos generated by both the base-
line and our best performing model for human an-

26%

24%

@ Augmented Preffered Baseline Preffered No Preference

Figure 5: Human evaluation results for the generated
skeletons.

notations. For each paired video, we asked deaf
sign language users to identify the video that they
found to be better than the other. They were specif-
ically instructed to observe the following qualities
and make their decisions: naturalness of the hand
movements, alignment of the hand movements (ex-
cluding finger movements) with the ground truth,
representation of intensity by the hand movements,
and overall understandability.

As shown in Figure 5, outputs generated by our
model trained on the enhanced glosses were pre-
ferred by signers (50% for our model vs. 26% for
baseline). This difference is statistically different
from chance as shown from a chi-squared test with
p = .00017. This further suggests that a qualita-
tive improvement using our enhancement strate-



[ Examples (Translated from German)

| Bi | B« | RG | BS

Better capture of intensity modifiers

G. Truth The wind usually blows weakly from different directions. - - -
Baseline The wind blows weak to moderate 47.8 0 55.7 | 81.9
Enhanced | The wind usually blows weakly from different directions. 100 | 100 | 100 | 100
Model hallucinations
G. Truth The wind blows weak to moderate at the sea also fresh - - -
Baseline On the Alps and in the south, the wind blows weak to moderate 50 0 46.2 | 81.7
Enhanced | The wind blows in the south weak otherwise weak to moderately 36.8 0 50.1 | 81.9
sometimes fresh to strong gusty from south to West
Metrics failure
G. Truth Tonight there are still a few thunderstorms possible in the south, otherwise - { - {
rain only falls here and there, in places fog forms
Baseline Tonight, especially in the south and east there are rain or snow or freezing rain | 37.9 | 154 | 39.6 | 754
Enhanced | Tonight, especially in the south and east here and there afew drops or flakes | 32 0 369 | 75.6

Table 4: Examples of qualitative analysis over 100 back translated texts from the videos generated by baseline
and our intensification enhanced model. Bold texts refer to the intensity modifiers that are missing in the gloss,
blue highlight marks good generations and red highlight marks the errors. Our model can better retain the
intensity information than the baseline. Meanwhile, as shown in the third example, n-grams based metrics may fail

to reward the better intensity modifier representation.

gies is evident. Aspects that are not fully captured
by the metric-based evaluations are more clear in
the human evaluations which show that incorporat-
ing intensity into the model is crucial. Enhanced
glosses can generate more natural videos that de-
pict the intensity of the signs. It should be noted
that the solution to the problem at hand needs fur-
ther improvement as suggested by the considerable
number of "no preference" votes.

5.3 Qualitative Analysis

We hypothesize that due to the inclusion of in-
tensity modifiers in the gloss, there should be a
higher presence of intensity modifiers in the back
translated text. To verify this hypothesis, we com-
pare the numbers of adjectives/adverbs in sentences
back translated text from the baseline and the best
model as an approximation of counting intensity
modifiers. We observe more adjectives/adverbs
(average of 3.42 comparing to baseline’s 3.28) are
being generated with the enhanced glosses.

To better understand our model’s behavior, we
manually inspect 100 instances randomly drawn
from the “with intensification” cases for a quali-
tative analysis. We compare the back translated
texts produced by the baseline and Dynamicgy,.
The goal is not to evaluate overall quality of the
back translated text but the presence and correct-
ness of modifiers. The key observations are: i) in
30% of the cases, back translated text produced
by our model has better representation of intensity
modifiers compared to baseline, ii) in 3% of the
cases, our model hallucinates and overproduces in-

tensity modifiers, and iii) in 23% of the cases, at
least two of the four automated metrics did not re-
ward Dynamicy,.4 for having better intensification.
Table 4 shows examples of these observations.

6 Discussion and Conclusion

One limitation of our study is the lack of spatial and
temporal context in the automated back-translation
evaluation. The lack of a proper evaluation metric
is a problem that needs to be addressed by an or-
chestrated effort from different fields surrounding
the sign language research community. Another
limitation is the cumulative error propagation that
dissipates through the intensity classifier. then to
the progressive transformer and then afterwards to
the back-translation, amplifying total error.

Despite these limitations, we show that the strate-
gies of intensification, grounded in the linguistics
of sign languages, contribute to the improvement
of end-to-end sign language generation systems.
This modeling effort is supported by our metric-
based and human evaluation results. We will make
all data and code publicly available. For future
work, we plan to further analyze the effects of these
strategies on the perception of sign language under-
standing. We also plan to expand on the intensity
modifier paradigm to further research in modeling
prosody in sign language.



7 Ethical Considerations

Our work advocates for the need for more thought-
fulness of linguistic phenomena during the gener-
ation of sign videos. All models and analyses are
built on a publicly available benchmarking dataset.
We acknowledge that some modules of our model
depend on pre-trained models such as word embed-
dings. These models are known to reproduce and
even magnify societal bias present in their original
training data (Li et al., 2021).

References

Dwight Bolinger. 1972. Degree Words. De Gruyter
Mouton.

Diane Brentari, Joshua Falk, Anastasia Giannakidou,
Annika Herrmann, Elisabeth Volk, and Markus
Steinbach. 2018. Production and comprehension
of prosodic markers in sign language imperatives.
Frontiers in Psychology, 9:770.

Necati Cihan Camgoz, Simon Hadfield, Oscar Koller,
Hermann Ney, and Richard Bowden. 2018. Neu-
ral sign language translation. In 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recog-
nition, pages 7784-7793.

Necati Cihan Camgoz, Oscar Koller, Simon Hadfield,
and Richard Bowden. 2020. Sign language trans-
formers: Joint end-to-end sign language recognition
and translation. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recogni-
tion, pages 10023-10033.

Stephen Cox, Michael Lincoln, Judy Tryggvason,
Melanie Nakisa, Mark Wells, Marcus Tutt, and
Sanja Abbott. 2002. Tessa, a system to aid com-
munication with deaf people. Assets ’02, page
205212, New York, NY, USA. Association for
Computing Machinery.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171-4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Amanda Duarte, Shruti Palaskar, Lucas Ventura,
Deepti Ghadiyaram, Kenneth DeHaan, Florian
Metze, Jordi Torres, and Xavier Giro i Nieto. 2021.
How2sign: A large-scale multimodal dataset for con-
tinuous american sign language.

Bradley Efron and Robert J. Tibshirani. 1993. An Intro-
duction to the Bootstrap. Number 57 in Monographs
on Statistics and Applied Probability. Chapman &
Hall/CRC, Boca Raton, Florida, USA.

Karen Emmorey. 2001. Language, Cognition, and the
Brain Insights From Sign Language Research. Psy-
cology Press.

Joseph L. Fleiss. 1974. Statistical methods for rates
and proportions.

Lobke Ghesquiere and Kristin Davidse. 2011. The
development of intensification scales in noun-
intensifying uses of adjectives: sources, paths and
mechanisms of change. English Language and Lin-
guistics, 15(2):251-277.

John R. W. Glauert, Ralph Elliott, Stephen J. Cox,
Judy Tryggvason, and Mary Christine Anne Sheard.
2006. Vanessa - a system for communication be-
tween deaf and hearing people. Technology and Dis-

ability, 18:207-216.

Xavier Glorot and Yoshua Bengio. 2010. Understand-
ing the difficulty of training deep feedforward neu-
ral networks. In Proceedings of the Thirteenth
International Conference on Artificial Intelligence
and Statistics, volume 9 of Proceedings of Machine
Learning Research, pages 249-256. PMLR.

Matthew Honnibal and Ines Montani. 2017. spaCy 2:
Natural language understanding with Bloom embed-
dings, convolutional neural networks and incremen-
tal parsing. To appear.

Wencan Huang, Wenwen Pan, Zhou Zhao, and Qi Tian.
2021. Towards Fast and High-Quality Sign Lan-
guage Production, page 3172-3181. Association for
Computing Machinery.

Armand Joulin, Edouard Grave, Piotr Bojanowski, and
Tomas Mikolov. 2017. Bag of tricks for efficient
text classification. In Proceedings of the 15th Con-
ference of the European Chapter of the Association
for Computational Linguistics: Volume 2, Short Pa-
pers, pages 427-431. Association for Computational
Linguistics.

Diederik P Kingma and Jimmy Ba. 2015. Adam: a
method for stochastic optimization. In 3rd Interna-
tional Conference on Learning Representations.

Philipp Koehn. 2004. Statistical significance tests for
machine translation evaluation. In Proceedings of
the 2004 Conference on Empirical Methods in Nat-
ural Language Processing, pages 388—395. Associa-
tion for Computational Linguistics.

Reiner Konrad, Thomas Hanke, Gabriele Langer, Su-
sanne Konig, Lutz Konig, Rie Nishio, and Anja Re-
gen. 2020. Public DGS Corpus: Annotation Conven-
tions / Offentliches DGS-Korpus: Annotationskon-
ventionen.

Luogqiu Li, Xiang Chen, Hongbin Ye, Zhen Bi, Shumin
Deng, Ningyu Zhang, and Huajun Chen. 2021. On
robustness and bias analysis of bert-based relation
extraction. In Knowledge Graph and Semantic Com-
puting: Knowledge Graph Empowers New Infras-
tructure Construction, pages 43-59. Springer Singa-
pore.


https://doi.org/doi:10.1515/9783110877786
https://doi.org/10.3389/fpsyg.2018.00770
https://doi.org/10.3389/fpsyg.2018.00770
https://doi.org/10.3389/fpsyg.2018.00770
https://doi.org/10.1109/CVPR.2018.00812
https://doi.org/10.1109/CVPR.2018.00812
https://doi.org/10.1109/CVPR.2018.00812
https://doi.org/10.1145/638249.638287
https://doi.org/10.1145/638249.638287
https://doi.org/10.1145/638249.638287
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
http://arxiv.org/abs/2008.08143
http://arxiv.org/abs/2008.08143
http://arxiv.org/abs/2008.08143
https://doi.org/10.1017/S1360674311000037
https://doi.org/10.1017/S1360674311000037
https://doi.org/10.1017/S1360674311000037
https://doi.org/10.1017/S1360674311000037
https://doi.org/10.1017/S1360674311000037
https://doi.org/10.1017/S1360674311000037
https://doi.org/10.1017/S1360674311000037
https://proceedings.mlr.press/v9/glorot10a.html
https://proceedings.mlr.press/v9/glorot10a.html
https://proceedings.mlr.press/v9/glorot10a.html
https://proceedings.mlr.press/v9/glorot10a.html
https://proceedings.mlr.press/v9/glorot10a.html
https://doi.org/10.1145/3474085.3475463
https://doi.org/10.1145/3474085.3475463
https://doi.org/10.1145/3474085.3475463
https://aclanthology.org/W04-3250
https://aclanthology.org/W04-3250
https://aclanthology.org/W04-3250
https://doi.org/10.25592/uhhfdm.1860
https://doi.org/10.25592/uhhfdm.1860
https://doi.org/10.25592/uhhfdm.1860
https://doi.org/10.25592/uhhfdm.1860
https://doi.org/10.25592/uhhfdm.1860

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74-81. Association for
Computational Linguistics.

John C. McDonald, Rosalee J. Wolfe, Jerry Schnepp,
Julie A. Hochgesang, Diana Gorman Jamrozik,
Marie Stumbo, Larwan Berke, Melissa Bialek, and
Farah Thomas. 2015. An automated technique for
real-time production of lifelike animations of ameri-
can sign language. Universal Access in the Informa-
tion Society, 15:551-566.

Aaron J. Newman, Ted Supalla, Peter C. Hauser,
Elissa L. Newport, and Daphne Bavelier. 2010.
Prosodic and narrative processing in american sign
language: An fmri study. Neurolmage, 52(2):669—
676.

Brenda Nicodemus. 2009. Prosodic markers and utter-
ance boundaries in American sign language inter-
pretation. Gallaudet University Press.

Brenda Nicodemus, Laurie Swabey, and Christopher
Moreland. 2014. The Translation amp; Interpreting,
6(1):1-22.

Ellen Onno Ormel and Ellen Onno Crasborn. 2012.
Prosodic correlates of sentences in signed languages:
A literature review and suggestions for new types of
studies. Sign Language Studies, 12:279 — 315.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: A method for automatic eval-
uation of machine translation. In Proceedings of the
40th Annual Meeting on Association for Computa-
tional Linguistics, ACL 02, page 311-318, USA.
Association for Computational Linguistics.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, et al. 2019. Pytorch: An imperative style,
high-performance deep learning library. In Ad-
vances in Neural Information Processing Systems,
pages 8024-8035.

J. Rett. 2008. Degree modification in natural language.

Wendy Sandler. 1999. Prosody in two natural language
modalities *. Language and Speech, 42(2-3):127-
142.

Wendy Sandler. 2010. Prosody and syntax in sign lan-
guages. Transactions of the Philological Society.
Philological Society, 108 3:298-328.

Wendy Sandler, Diane C. Lillo-Martin, Svetlana
Dachkovsky, and Ronice Miiller de Quadros. 2020.
Sign language prosody. The Oxford Handbook of
Language Prosody.

Ben Saunders, Necati Cihan Camg6z, and R. Bowden.
2020a. Adversarial training for multi-channel sign
language production. ArXiv, abs/2008.12405.

10

Ben Saunders, Necati Cihan Camgoz, and Richard
Bowden. 2020b. Progressive transformers for end-
to-end sign language production. In European
Conference on Computer Vision, pages 687-705.
Springer.

Ben Saunders, Necati Cihan Camgoz, and Richard
Bowden. 2021. Mixed signals: Sign language pro-
duction via a mixture of motion primitives. In Pro-
ceedings of the IEEE/CVF International Conference
on Computer Vision (ICCV), pages 1919-1929.

Stephanie Stoll, Necati Camgoz, Simon Hadfield, and
Richard Bowden. 2020. Text2sign: Towards sign
language production using neural machine transla-
tion and generative adversarial networks. Interna-
tional Journal of Computer Vision.

Stephanie Stoll, Necati Cihan Camgoz, Simon Had-
field, and Richard Bowden. 2018. Sign language
production using neural machine translation and gen-
erative adversarial networks. In 29th British Ma-
chine Vision Conference (BMVC 2018).

Ann Wennerstrom. 2001. The music of everyday
speech: Prosody and discourse analysis. Oxford
University Press.

Ronnie B. Wilbur, Evie Malaia, and Robin A. Shay.
2012. Degree modification and intensification in
american sign language adjectives. In Logic, Lan-
guage and Meaning, pages 92-101, Berlin, Heidel-
berg. Springer Berlin Heidelberg.

Kayo Yin, Amit Moryossef, Julie Hochgesang, Yoav
Goldberg, and Malihe Alikhani. 2021. Including
signed languages in natural language processing.
In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the
11th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
7347-7360, Online. Association for Computational
Linguistics.

Jan Zelinka and Jakub Kanis. 2020. Neural sign lan-
guage synthesis: Words are our glosses. In 2020
IEEE Winter Conference on Applications of Com-
puter Vision (WACV), pages 3384-3392.

Tianyi Zhang*, Varsha Kishore*, Felix Wu*, Kilian Q.
Weinberger, and Yoav Artzi. 2020. Bertscore: Eval-
uating text generation with bert. In International
Conference on Learning Representations.


https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
https://doi.org/https://doi.org/10.1016/j.neuroimage.2010.03.055
https://doi.org/https://doi.org/10.1016/j.neuroimage.2010.03.055
https://doi.org/https://doi.org/10.1016/j.neuroimage.2010.03.055
https://search.informit.org/doi/10.3316/informit.209984769714521
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.1177/00238309990420020101
https://doi.org/10.1177/00238309990420020101
https://doi.org/10.1177/00238309990420020101
https://doi.org/10.1007/s11263-019-01281-2
https://doi.org/10.1007/s11263-019-01281-2
https://doi.org/10.1007/s11263-019-01281-2
https://doi.org/10.1007/s11263-019-01281-2
https://doi.org/10.1007/s11263-019-01281-2
http://epubs.surrey.ac.uk/848809/
http://epubs.surrey.ac.uk/848809/
http://epubs.surrey.ac.uk/848809/
http://epubs.surrey.ac.uk/848809/
http://epubs.surrey.ac.uk/848809/
https://doi.org/10.18653/v1/2021.acl-long.570
https://doi.org/10.18653/v1/2021.acl-long.570
https://doi.org/10.18653/v1/2021.acl-long.570
https://doi.org/10.1109/WACV45572.2020.9093516
https://doi.org/10.1109/WACV45572.2020.9093516
https://doi.org/10.1109/WACV45572.2020.9093516
https://openreview.net/forum?id=SkeHuCVFDr
https://openreview.net/forum?id=SkeHuCVFDr
https://openreview.net/forum?id=SkeHuCVFDr

A Gloss Classifier Implementation

SVM Baselines To construct the features for our
text pair classification, we first concatenate the
gloss token with the german text. Then we use
term frequency-inverse document frequency (tf-idf)
vectorizer to produce word and character n-gram
vectors. These vectors are then used to train linear
SVM classifiers. We use scikit-learn 4 implementa-
tion with default parameters for training. The SVM
models primarily serve as baselines.

FastText In our implementation, we use two sep-
arate embedding layers. One for the text and one
for the gloss token. The embeddings for the text is
averaged using pooling and then concatenated with
the embedding of gloss token. This concatenated
vector is then passed through a linear layer and
sigmoid function to produce the predictions. We
use embedding size of 100 and train for 10 epochs.
We cross-entropy loss and ADAM optimizer with
default learning rate. We use PyTorch > for our
implementation.

Bidirectional LSTM Similar to FastText, we
have two separate embedding layers of size 100
for the text and the gloss token. the difference is
that the output of text embedding layers are passed
through a 2-layer bidirectional LSTM with hidden
size of 300, dropout of 0.3. The output of the
LSTM layers are then concatenated with the output
of gloss embedding layer. The concatenated output
is then passed through ReL.U activation function
and then passed through a linear layer. Similar to
FastText, we train for 10 epochs, use cross-entropy
loss and ADAM optimizer with default learning
rate. PyTorch is used for implementation.

Fine-Tuned Transformers For our task. we
fine-tune bert-base-multilingual (M-BERT) and
german-bert-base-uncased (G-BERT) ¢. M-BERT
is pretrained on Wikipedia text from 104 languages
(including German). G-BERT is pretrained on
Wikipedia dump, EU Bookshop corpus, Open Sub-
titles, CommonCrawl, ParaCrawl and News Crawl.
The architecture of both models consists of 12
transformer blocks, hidden size of 768 and 12 self-
attention heads. Since our task is classifying a pairs

*nttps://scikit-learn.org/stable/
modules/generated/sklearn.svm.LinearSVC.
html

Shttps://pytorch.org/

®https://huggingface.co/dbmdz/
bert-base-german—uncased
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of texts, we fine-tune the models for sentence-pair
classification. We use PyTorch implementation by
HuggingFace 7 for the fine-tuning. We fine-tune
for 5 epochs with learning rate of 5e-05.

Computational resources and running time
Given our training data is small, the SVM base-
lines are very fast to train. They take less than 5
minutes to train. With an NVIDIA 2070 RTX GPU,
the fastText and BiLSTM models take less than 10
minutes each. Fine-tuning each pre-trained BERT
model with the same GPU but fewer epochs (5)
take less than 10 minutes.

B Dataset Statistics

We use the publicly available benchmark,
PHOENIX14T (Camgoz et al., 2018) dataset. This
dataset comprises a collection of weather fore-
cast videos in German Sign Language (DGS), seg-
mented into sentences and accompanied by Ger-
man transcripts from the news anchor and sign-
gloss annotations. It contains videos of 9 different
signers with 1066 different sign glosses and 2887
different German words. The video resolution is
210 by 260 pixels per frame and 30 frames per
second. The dataset is partitioned into training,
validation, and test set with 7,096, 519, and 642
sentences, respectively.

C Transformer (Re-)Implementation

We implemented Progressive Transformers mod-
els for sign language generation task (§4.1) based
on the code 8 released by (Saunders et al., 2020b).
Both encoder and decoder are built with 2 layers, 4
heads and embedding size of 256. We apply Gaus-
sian noise with a noise rate of 5, as proposed by
Saunders et al. (2020b). All parts of the network
are trained with Xavier initialisation (Glorot and
Bengio, 2010), Adam optimization (Kingma and
Ba, 2015) with default parameters and a learning
rate of 1e-3. The model takes 5 hours to train on 1
NVIDIA GeForce 1080Ti GPU. For our proposed
Dynamic Selection model, both encoders and the
decoder share the same settings as above. The
Multi-Layer Percetron (MLP) model is composed
of two linear layers with dimension of 1024 and
a ReLU activation. The model takes 8 hours to
train on 1 NVIDIA GeForce 1080Ti GPU. We im-
plemented the back-translation model on top of
"https://github.com/huggingface/transformers

Shttps://github.com/BenSaunders27/
ProgressiveTransformersSLP
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the original SLT code (Camgoz et al., 2020). The
transformer models are built with 1 layer, 2 head
and embedding size of 128. The feature size is
changed to 150, which is the sequence length of
generated skeleton joints sequence. The recogni-
tion loss weight and translation loss weight are set
to 5 and 1 respectively. The model takes around 1
hour for training and evaluation. All models intro-
duced above are implemented with Pytorch (Paszke
etal., 2019).

D Retrained SLT model

Given the different versions of degree enhanced
dataset (§3.3, we retrain the SLT models on the
original text, skeleton joints sequence and the new
gloss triples. This can serve as an estimation of the
model’s back translation quality given the oracle
sign sequence. Table 5 shows the results.
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| DEV SET | TEST SET
Gloss Type | BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE|BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE
Baseline | 3050 2078 1553 1233 3031 | 30.60 2059 1519 1203  29.52

Suffix. 29.02 19.88 14.66 11.66 29.58 29.30 19.88 14.66 11.59 29.28
Delay.-rel. 28.72 19.71 14.79 11.77 29.63 29.31 19.93 14.70 11.62 28.98
End-mark. 29.28 19.99 14.99 12.01 29.88 29.32 20.01 15.01 11.93 29.04

Suffix. reiter. | 31.15 21.80 16.50 13.14 31.11 29.76 20.77 15.70 12.60 29.15

Table 5: Translation results of the SLT model (Camgoz et al., 2020) used for back-translation. All models are
trained and evaluated with ground truth hand and body skeleton joints (manual) and different choices of augmented
gloss.
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