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Abstract

In this paper, we investigate the convergence properties of a wide class of Adam-family meth-
ods for minimizing quadratically regularized nonsmooth nonconvex optimization problems,
especially in the context of training nonsmooth neural networks with weight decay. Moti-
vated by AdamW, we propose a novel framework for Adam-family methods with decoupled
weight decay. Within our framework, the estimators for the first-order and second-order
moments of stochastic subgradients are updated independently of the weight decay term.
Under mild assumptions and with non-diminishing stepsizes for updating the primary op-
timization variables, we establish the convergence properties of our proposed framework.
In addition, we show that our proposed framework encompasses a wide variety of well-
known Adam-family methods, hence offering convergence guarantees for these methods in
the training of nonsmooth neural networks. More importantly, compared to the existing
results on the choices of the parameters for the moment terms in Adam, we show that our
proposed framework provides more flexibility for these parameters. As a practical appli-
cation of our proposed framework, we propose a novel Adam-family method named Adam
with Decoupled Weight Decay (AdamD), and establish its convergence properties under
mild conditions. Numerical experiments demonstrate that AdamD outperforms Adam and
is comparable to AdamW, in the aspects of both generalization performance and efficiency.

1 Introduction
We consider the following unconstrained stochastic optimization problem:

. L a 2
min - g(z) = f(z) + 5 2], (UOP)
where the function f : R™ — R is assumed to be locally Lipschitz continuous and possibly nonsmooth over
R™. Moreover, the constant ¢ > 0 is the penalty parameter for the quadratic regularization term. Such
a regularization term is also known as the weight decay term, which is widely employed to enhance the
generalization performance in training neural networks (Bos & Chug} |1996; [ Krogh & Hertz, [1991)).

Stochastic Gradient Descent (SGD) is one of the most fundamental methods for solving (UOP). In SGD, all
coordinates of the variable x are updated using the same stepsize (i.e., learning rate). To accelerate SGD,
Kingma and Ba (Kingma & Ba, [2015]) developed the widely used Adam method, which adjusts coordinate-
wise stepsizes based on first-order and second-order moments of the stochastic gradients. Due to its high
efficiency in training neural networks, Adam has become one of the most popular choices for various neural
network optimization tasks.

Motivated by Adam, numerous efficient Adam-family methods have been developed, such as AdaBelief
(Zhuang et al., 2020), AMSGrad (Reddi et al.| 2018)), Yogi (Zaheer et al. |2018), etc. From a theoretical
perspective, the majority of existing works (Barakat & Bianchil 2021; |Guo et al.l 2021; |[Shi et al.] |2021;
Wang et all 2022 [Zaheer et al., |2018; |Zhang et al., |2022; Zou et al., |2019) establish convergence properties
for these Adam-family methods, based on the assumption that f is continuously differentiable over R™.
However, as emphasized in (Bolte et al., 2021; [Bolte & Pauwels, 2021} [Bolte et al. 2022b), nonsmooth
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activation functions, including ReLLU and leaky ReLU, are popular choices in building neural networks. For
any neural network built from these nonsmooth activation functions, its loss function is usually nonsmooth
and lacks Clarke regularity (e.g., differentiability, weak convexity, etc.). Consequently, these existing works
are unable to provide convergence guarantees for their analyzed methods in the training of nonsmooth neural
networks.

1.1 Existing works on training nonsmooth neural networks

In nonsmooth optimization, it has been demonstrated in (Daniilidis & Drusvyatskiy}, 2020) that a general Lip-
schitz continuous function f can exhibit highly pathological properties, leading to the failure of subgradient
descent method to find a critical point of f. Moreover, the chain rule may fail for the Clarke subdifferential
(Clarke, [1990) of the loss function of a nonsmooth neural network. Specifically, when we differentiate the
loss function of a nonsmooth neural network using automatic differentiation (AD) algorithms, the outputs
may not be contained in the Clarke subdifferential of f (Bolte & Pauwels, [2020)).

Consequently, most of the existing works restrict their analysis to the class of path-differentiable functions
(Bolte & Pauwels| [2021, Definition 3). For any path-differentiable function f, there exists a graph-closed
set-valued mapping Dy, called conservative field for f, such that for any absolutely continuous mapping
v :[0,00) — R™, it holds that f(y(¢)) — f(7(0)) = fg maXgep; (v(s)) (¥(5),d) ds for any ¢t > 0. It is worth
mentioning that the most important choice of the conservative field Dy is the Clarke subdifferential of
f. Moreover, as discussed in (Bolte & Pauwels, 2021} |Castera et all |2021; [Davis et al., 2020), the class
of path-differentiable functions are general enough to cover a wide range of objective functions in neural
network training tasks, especially when the neural networks employ nonsmooth building blocks, such as
the ReLU activation function. In addition, Bolte & Pauwels| (2020} 2021) show that the outputs of AD
algorithms in differentiating nonsmooth neural networks are contained in a conservative field of the loss
function. Therefore, the concept of the conservative field is capable of characterizing the outputs of AD
algorithms, which are implemented in training nonsmooth neural networks in practice.

Based on the stochastic approximation frameworks (Benaim, 2006; Benaim et al., [2005; Borkar}, |2009; |Davis
et al., [2020)), several existing works have investigated the convergence properties of stochastic subgradient
methods in training nonsmooth neural networks. In particular, Bolte & Pauwels| (2021)); [Davis et al.| (2020)
study the convergence properties of SGD and proximal SGD for minimizing nonsmooth path-differentiable
functions. Moreover, (Castera et al., 2021) proposes the inertial Newton algorithm (INNA), which can be
regarded as a variant of momentum-accelerated SGD method. Additionally, Le| (2023)); Ruszczynski| (2020);
Xiao et al.| (2023b)) establish the convergence properties of SGD with heavy-ball momentum. Furthermore,
Hu et al.| (2022a;b) apply these methods to solve manifold optimization problems based on the constraint
dissolving approach (Xiao et al.,|2023c|). In addition, |Gurbiizbalaban et al.|(2022)); Ruszczynski| (2021)) design
stochastic subgradient methods for solving multi-level nested optimization problems.

1.1.1 Challenges from non-diminishing stepsizes in Adam

With the concept of conservative field, Adam utilizes the following framework when applied to solve (UOP)):

gk = di + kt1,

mer1 = (1 — Ox)mg + Ok (g + ozk),
Vkt1 = (1= Br)vk + Br(gr + oxi)?,
i1 = Tk — N/ V1 + 5)*1 © Mpy1-

(1)

Here, gj is a stochastic subgradient of f at xj, in the sense that dj represents a possibly inexact evaluation
of Dy(xy) and €1 is a random vector characterizing the evaluation noise. The operators ® and ()P denote
element-wise multiplication and element-wise p-th power of a given vector, respectively. The sequences {my}
and {vy}, referred to as momentum terms and estimators respectively, are updated to track the first-order
and second-order moments of {gx +cxy}. The sequences {ny}, {0r}, and {8} represent the stepsizes for the
primal variables {z}, the parameters for the momentum terms {my,}, and the parameters for the estimators
{vi}, respectively.
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In the framework , the weight decay term is integrated with the function f throughout the iterations.
As a result, we can directly apply the existing convergence results on Adam to analyze the convergence
properties of the framework . In particular, when f is a nonsmooth path-differentiable function,
investigates the convergence of a class of Adam-family methods based on the frameworks
proposed by (Benaim et al., 2005; Bianchi et al., 2022; Davis et al.,|2020]). However, in the analysis of
, the stepsizes and parameters sequences are assumed to be diminishing and single-timescale,
in the sense that {n;}, {0r} and {B;} converge to 0 at the same rate as k goes to infinity.

Beyond the single-timescale scheme, some existing works (Reddi et al.,|2018} Zhang et al.,[2022)) establish the
convergence of Adam for continuously differentiable f with {0} and {8} fixed as constants. In particular,
(]Zhang et a1.|, |2022|) proves that for any # € (0,1) and 1, = O(1/vk), there exists a sufficiently small j3
that forces {z;} to stabilize within a neighborhood of the critical points of g. However, their analyses are
restricted to continuously differentiable objectives. Therefore, these results are not capable of explaining
the convergence of Adam in a wide range of practical settings, where the neural networks are built from
nonsmooth blocks.

Furthermore, in establishing the convergence properties for stochastic subgradient methods, the diminishing
stepsizes is a common assumption, as it leads to the almost sure convergence of the iterates {xy} to critical
points under various assumptions (Benaim et al., 2005; Bolte et al., 2022a; Bolte & Pauwels, |2021; |Castera)
let al.,[2021; Davis et al., 2020} [Lel 2023} Ruszczynski, 2020; Xiao et al., 2023agb)). However, for the convergence
of Adam, the results in (Reddi et al [2018; Zhang et al., 2022) illustrate that, even if the sequence {n;} is
diminishing, the sequence {z} is only guaranteed to converge to a prefixed neighborhood of critical points.
Furthermore, Bianchi et al.| (2022); |Josz et al.|(2023) show that with nonsmooth path-differentiable objective
functions and a fixed stepsize, the iterates of SGD only converges to a neighborhood of the D;-stationary
points of f almost surely. However, their analysis is restricted to SGD and SGD with heavy-ball momentum,
and cannot be extended to Adam. Given the fact that non-diminishing stepsizes (i.e., liminfy_, ,,nr > 0) are
widely employed in most computational frameworks, it is thus important for us to investigate the convergence
properties of the Adam-family methods in cases where the sequence of stepsizes {1} is non-diminishing.

1.1.2 Challenges from decoupling the weight decay term in Adam

Another challenge in solving by Adam is related to the incorporation of the weight decay term.
The conventional approach is to directly minimize g by Adam, as is implemented in various computational
frameworks. That is, the weight decay is coupled with the stochastic subgradients of f, in the sense that f
and the weight decay term § |#||* are treated as an integrated function to be minimized. As demonstrated
in (Loshchilov & Hutter} 2017), Adam with coupled weight decay usually exhibits worse generalization
performance than SGD. To address this issue, [Loshchilov & Hutter] (2017) suggests a novel method named
AdamW, which decouples the weight decay term from the stochastic subgradients of f. The update schemes
of AdamW can be summarized by the following framework:

gk = di + Ekt1,

mp41 = (1 — Ok)my + Okgr,

Upg1 = (1= Br)vr + Bi(ge)?,

Th1 = Tk — Ne(V/Vkr1 +€) 70 O Myt — NLOTE.

(AdamW)

Here, Loshchilov & Hutter| (2017)) demonstrates that the weight decay is decoupled from the momentum terms
{my} and the estimators {vy}, in the sense that the update schemes for {my;} and {v;} are independent of
the weight decay parameter o. Moreover, unlike Adam in , the weight decay term oxj is not scaled by
the preconditioner (\/Up+1 + €)' in AdamW.

The AdamW, recognized for its superior generalization performance over Adam with coupled weight decay
(i.e., the method in ), has become a popular choice in the training of neural networks (Loshchilov & Hutter]
, particularly in tasks such as image classification and language modeling. However, compared with
Adam, the convergence properties of AdamW remain relatively unexplored. As suggested in
[Hutter} 2017} |Zhou et al. [2024), AdamW iterates by taking a descent step towards a dynamically adjusted
surrogate function f(z) + § (, (/U1 +¢€) @) in the k-th iteration, thereby lacking a clearly defined
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objective function to minimize. As a result, only the paper by (Zhou et al. |2024) has established the
convergence properties of AdamW for continuously differentiable f. In (Zhou et al.l 2024]), the stationarity
of AdamW is measured by HVf(J;) +o(\Ukt1+€)©® xH As the estimators {v;} evolves over iterations and
may not converge, the proposed stationarity measure is at best an approximation of the standard notion of
stationarity. More importantly, the analysis in (Zhou et al., 2024) relies on the differentiability of f, and
cannot be extended to analyze the convergence of AdamW for nonsmooth cases. Consequently, the results
presented in (Zhou et al.l [2024) do not sufficiently explain the convergence of AdamW in real-world training
tasks, where the neural networks are typically nonsmooth.

Given that Adam-family methods with coupled weight decay usually perform less effectively than AdamW,
and considering that AdamW lacks convergence guarantees in training nonsmooth neural networks, we are
driven to raise the following question:

Can we design Adam-family methods with decoupled weight decay that have convergence
guarantees with non-diminishing stepsizes, in the context of training nonsmooth neural
networks?

1.2 Contributions

The contributions of our paper are summarized as follows.

e A novel framework with decoupled weight decay

In this paper, motivated by AdamW, we propose a novel framework for Adam-family methods with
decoupled weight decay (AFMDW),

gk = di + Ekt1,
myi1 = (1= O0x)ms + Orgr,
Choose the estimator vg1,

Tl = Tp — MeH (Vp11) © (Mpy1 + oTk)-

(AFMDW)

Here, d, is an approximated evaluation of Dy (xy), while €41 is the corresponding evaluation noise
of di. Therefore, g represents the stochastic subgradients of f at xx. Moreover, the sequences
{nr} and {0y} are stepsizes for the variables {x}} and parameters for the momentum terms {my},
respectively. Furthermore, H : R™ — R"™ is the mapping that determines how we construct the
preconditioner based on vi41. As the framework is designed to minimize (UOP)), both
the momentum term my; and the weight decay term oxy are scaled by H(viy1) in7
distinguishing it from AdamW.

e« Convergence analysis

We establish the global convergence of the framework under mild conditions with non-
diminishing stepsizes. When the noises {¢;} correspond to random reshuffling (RR), and the es-
timator {vy} is updated as in with non-diminishing {7} and {8;}, we prove that with
sufficiently small but non-diminishing {6y}, the sequence {zy} could stabilize within a neighborhood
of the critical points of . In addition, when we further assume {6} — 0, we prove that the
sequence {xy} converges to the critical points of almost surely. Moreover, by employing
single-timescale scheme in (AFMDW]), we prove that with sufficiently small {r;.}, the sequence {z)}
stabilizes within a neighborhood of the critical points of .

Furthermore, we extend the convergence analysis of the framework with diminishing
stepsizes and with replacement sampling (WRS), and establish the almost sure convergence to
critical points of . Table 1| presents a brief comparison of our results with existing works
on the convergence of stochastic subgradient methods.

e Advantages in incorporating weight decay into Adam
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Table 1: A brief comparison of our results and existing works on the convergence of stochastic subgradient
methods.

Result Sampling method  Update scheme Stepsizes Convergence Guaranteed stability
Theorem [3.10| & [3.22 WRS Adam Diminishing Almost sure Y
Theorem [3.13 RR Adam Constant Almost sure Y
(Josz et all [2023) RR SGD Constant Almost sure Y
(Bianchi et al., 2022) WRS SGD Constant High probability Y
(Xiao et al., |2023al) WRS Adam Diminishing Almost sure N

We demonstrate that the framework encompasses (see Table 2| for details) a wide range
of Adam-family methods, including SGD, Adam, AMSGrad, AdaBelief, AdaBound, Yogi. Therefore,
our analysis provides convergence guarantees for these Adam-family methods in training nonsmooth
neural networks.

Moreover, compared with the non-convergence analysis of Adam in (Reddi et al., 2018} [Zhang et al.|
2022)), our analysis illustrates that the incorporation of a weight decay term grants more flexibility on
the choices of the parameters {0} and {8} for the framework (AFMDW]). These results illustrate
the great theoretical advantages of a weight decay term in the framework (AFMDW)).

e Numerical experiments

Based on our proposed framework , we develop a novel method named Adam with Decou-
pled Weight Decay (AdamD) and establish its convergence guarantees in training nonsmooth neural
networks. We conduct numerical experiments in both image classification and language modeling
tasks to assess the performance of our proposed AdamD. The results show that in image classification
tasks, AdamD outperforms Adam and performs comparably to AdamW in both generalization and
efficiency. In language modeling tasks, it demonstrates similar effectiveness to Adam and outper-
forms AdamW, highlighting its versatility and effectiveness across different tasks. Additionally, our
numerical experiments illustrate that the sequence {|lyx — x|/} tends to 0, where y;, is an auxiliary
variable that approximates the dynamics of SGD. This validates our theoretical analysis that the
proposed AdamD asymptotically approximates the SGD method. These results further demonstrate

the promising potential of our proposed framework (AFMDW)).

1.3 Organization

The rest of this paper is organized as follows. In Section 2, we define the notations used throughout the
paper and present some basic concepts related to nonsmooth analysis and stochastic approximation. Section
3 presents the convergence properties of our proposed framework (AFMDW]) with non-diminishing stepsizes
{nr}. Moreover, we extend these convergence properties to the framework (AFMDW) with single-timescale
stepsizes. As an application of our theoretical analysis, we propose a new Adam-family method named Adam
with Decoupled Weight Decay (AdamD) and establish its convergence properties in Section 4. In Section
5, we present the results of our numerical experiments that investigate the performance of the proposed
AdamD in training nonsmooth neural networks. Some further discussions on AdamD are also presented in
Section 5. Finally, we conclude the paper in the last section.

2 Preliminaries

2.1 Notations

For any vectors x and y in R” and § € R, we denote = ® y, 2°, z/y, |z|, x + J, / as the vectors whose i-th
entries are given by x;y;, ¥0, ;/yi, |vi|, ¥; + J, and V/Zi, respectively. We denote R% := {z € R" : z; >
0 for any 1 < i < n}. Moreover, for any subsets X, C R", we denote X ©Y :={z0y:z € X,y € V},
|X| == {]z| : z € X} and || X|| = sup{||w]| : w € X'}. In addition, for any z € R™, we denote z+ X := {z} + X

and z O X = {z} O X.
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Furthermore, for any positive sequence {6}, we define \g := 0, \; := 22;10 Oy for i > 1, and A(t) := sup{k >
0:t> Ag}. More explicitly, A(t) = p if A\p <t < Ap4q for any p > 0. In particular, A(A\,) = p.

2.2 Probability theory

In this subsection, we present some essential concepts from probability theory, which are necessary for the
proofs in this paper.

Definition 2.1. Let (Q,F,P) be a probability space. We say that {Fi}ren is a filtration if {Fx} is a
collection of o-algebras that satisfies Fo C F1 C -+ C Foo C F.

Definition 2.2. We say that a stochastic series {&x} is a martingale difference sequence if the following
conditions hold,

o The sequence of random vectors {&x} is adapted to the filtration {Fy},
o For each k > 0, almost surely, it holds that E[|x|] < oo and E [x]|Fr—1] = 0.

Moreover, we say that a martingale difference sequence {&x} is uniformly bounded if there exists a constant
M¢ > 0 such that supy>q [|§e ]| < Me.

In the following, we present the results in (Benaim), [2006, Proposition 4.4), which controls the weighted
summation of any uniformly bounded martingale difference sequence, and plays a crucial role in establishing

the convergence properties for our proposed framework (AFMDW]|).

Proposition 2.3 (Proposition 4.4 in (Benaiml 2006))). Suppose {0} is a diminishing positive sequence of
real numbers that satisfy limy_, o O log(k) = 0. Then for any T > 0, and any uniformly bounded martingale
difference sequence {&x}, almost surely it holds that

lim sup

=0. (2)
ST G <Gi<AA+T)

> Okl

k=s

2.3 Nonsmooth analysis

In this subsection, we introduce some basic concepts in nonsmooth optimization, especially those related to
the concept of conservative field (Bolte & Pauwels| [2021). Interested readers could refer to (Bolte & Pauwels,
2021; [Davis et al., |2020]) for more details.

We begin our introduction on the concept of Clarke subdifferential (Clarkel |1990)), which plays an essential
role in characterizing stationarity and the development of algorithms for nonsmooth optimization problems.

Definition 2.4 ((Clarke, [1990))). For any given locally Lipschitz continuous function f : R™ — R and any
x € R™, the Clarke subdifferential Of is defined as

Of(z) :==conv ({d € R" : ), —» z,Vf(xp) = d}). (3)

Next we present a brief introduction on the concept of conservative field, which can be applied to characterize
how nonsmooth neural networks are differentiated by automatic differentiation (AD) algorithms.

Definition 2.5. A set-valued mapping D : R™ = R*® is a mapping from R™ to a collection of subsets of R*.
D is said to have a closed graph, or is graph-closed if the graph of D, defined by

graph(D) := {(w,2) e R" xR’ : w € R", z € D(w)},

s a closed subset of R™ x R®.

Definition 2.6. A set-valued mapping D : R™ = R? is said to be locally bounded if, for any x € R™, there
is a neighborhood V, of x such that Uyev, D(y) is bounded.

Next, we present the definition of conservative field and its corresponding potential function.
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Definition 2.7. An absolutely continuous curve is a continuous mapping v : Ry — R"™ whose derivative
v exists almost everywhere in Ry and v(t) — v(0) equals the Lebesgue integral of ' between 0 and t for all
te R+, i.e.,

~(t) = v(0) + /t v (u)du, forallt e Ry.
0

Definition 2.8 (Definition 1 in (Bolte & Pauwels, 2021)). Let D be a graph-closed set-valued mapping from
R™ to subsets of R™. We call D a conservative field whenever it has nonempty compact values, and for any
absolutely continuous curve 7 : [0,1] — R™ satisfying v(0) = (1), it holds that

1
max "(t),v)dt = 0. 4
/0 max (7(0),0) (4)

Here the integral is understood in the Lebesgue sense.

It is important to note that any conservative field is locally bounded (Bolte & Pauwels| 2021, Remark 3).
We now introduce the definition of potential function corresponding to a conservative field.

Definition 2.9 (Definition 2 in (Bolte & Pauwels, [2021)). Let D be a conservative field in R™. Then with
any given xo € R™, we can define a function f : R™ — R through the path integral

Y (t),d)dt = f(zo) + /0 min  (y/(¢),d)dt (5)

deD(v(t))

@) =fleo) + [ "

X
deD(v(t))

for any absolutely continuous curve vy that satisfies v(0) = zo and v(1) = x. The function f is called a
potential function for D. We also say that D admits f as its potential function, or that D is a conservative

field for f.

The following two lemmas characterize the relationship between conservative field and Clarke subdifferential.

Lemma 2.10 (Theorem 1 in (Bolte & Pauwels, [2021)). Let f : R™ — R be a potential function that admits
Dy as its conservative field. Then Dy(x) = {V f(x)} almost everywhere.

Lemma 2.11 (Corollary 1 in (Bolte & Pauwels| [2021))). Let f : R™ — R be a potential function that admits
D¢ as its conservative field. Then Of is a conservative field for f, and for all x € R™, it holds that

9f(x) € conv (Dj(a)). (6)

From the above two lemmas, we can conclude that the concept of conservative field can be regarded as a gen-
eralization of Clarke subdifferential. Therefore, conservative field can be applied to characterize stationarity,
as illustrated in the following definition.

Definition 2.12. Let f : R™ — R be a potential function that admits Dy as its conservative field. We say
that x is a Dy-stationary point of f if 0 € conv (Dy(x)). In particular, we say x is a Of-stationary point of

fif0 € of(x).

As demonstrated in (Bolte & Pauwels| [2021)), a conservative field can be regarded as a generalization of
Clarke subdifferential. Therefore, a function is differentiable in the sense of conservative field if it admits a
conservative field for which Definition [2.9) holds true. Such functions are called path-differentiable (Bolte &

2021}, Definition 3), which is given below.

Definition 2.13. Given a locally Lipschitz continuous function f : R™ — R, we say that f is path-
differentiable if f is the potential function of a conservative field on R™.

It is worth mentioning that the class of path-differentiable functions is general enough to cover the objectives
in a wide range of real-world problems. As shown in (Davis et al., 2020} Section 5.1), any Clarke regular func-
tion is path-differentiable. Beyond Clarke regular functions, another important class of path-differentiable
functions are functions whose graphs are definable in an o-minimal structure (Davis et al., 2020, Definition
5.10). Usually, the o-minimal structure is fixed, and we simply call these functions definable. As demon-
strated in (Van den Dries & Miller, [1996)), any definable function admits a Whitney C*® stratification

| 7 |
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ct all Definition 5.6) for any s > 1, hence is path-differentiable (Bolte & Pauwels, 2021; Davis et al.,
2020). To characterize the class of definable functions, (Davis et all, 2020; Bolte & Pauwels| 2021} Bolte|
et al, shows that numerous common activation functions and dissimilarity functions are all definable.
Furthermore, since definability is preserved under finite summation and composition (Bolte & Pauwels, [2021}
Davis et al., [2020), for any neural network built from definable blocks, its loss function is definable and thus
belongs to the class of path-differentiable functions.

Moreover, (Bolte et al. 2007) shows that any Clarke subdifferential of definable functions is definable.
Consequently, for any neural network constructed from definable blocks, the conservative field corresponding
to the AD algorithms can be chosen as a definable set-valued mapping formulated by compositing the Clarke
subdifferentials of all its building blocks (Bolte & Pauwels, 2021). The following proposition shows that the
definability of f and Dy leads to the nonsmooth Morse-Sard property (Bolte et al., 2007) for (UOP).

Proposition 2.14 (Theorem 5 in (Bolte & Pauwels, |2021))). Let f be a potential function that admits Dy as
its conservative field. Suppose both f and Dy are definable over R™, then the set {f(x) : 0 € conv (Dy(z))}
is finite.

2.4 Differential inclusion and stochastic subgradient methods

In this subsection, we introduce some fundamental concepts related to the stochastic approximation technique
that are essential for the proofs presented in this paper. The concepts discussed in this subsection are mainly
from (Benaim et alJ, [2005). Interested readers could refer to (Benaiml 2006; Benaim et al., 2005} [Borkarl,
[2009; [Davis et al) [2020) for more details on the stochastic approximation technique.

Definition 2.15. For any locally bounded set-valued mapping D : R™ = R™ that is nonempty compact
convex valued and has closed graph, we say that an absolutely continuous path x(t) in R™ is a solution for

the differential inclusion
dzx

dt
with initial point xq if x(0) = xo, and z(t) € D(x(t)) holds for almost every t > 0.

€ D(x), (7)

Definition 2.16. For any given set-valued mapping D : R™ = R"™ and any constant § > 0, the set-valued
mapping D° is defined as

D’(x) := {w € R" : 3z € Bs(x), dist(w, D(2)) < d}. (8)

Definition 2.17. Let B C R™ be a closed set. A continuous function ¢ : R™ — R is referred to as a Lyapunov
function for the differential inclusion (@ with the stable set B, if it satisfies the following conditions:

1. For any v that is a solution for (7) with v(0) € B, it holds that ¢(y(t)) < ¢(v(0)) for any t > 0.
2. For any v that is a solution for (7) with (0) ¢ B, it holds that ¢(v(t)) < ¢(v(0)) for any t > 0.
The following proposition illustrates that f is a Lyapunov function for the differential inclusion % € —Dy(z).

The proof of the following proposition directly follows from (Bolte & Pauwels| 2021)), hence is omitted for
simplicity.

Proposition 2.18. Suppose f is a path-differentiable function f that admits Dy as its conservative field.
Then f is a Lyapunov function for the differential inclusion ?T“Z € —Dy(x) with the stable set {x € R™ : 0 €

Dy(x)}-
Definition 2.19. We say that an absolutely continuous function v is a perturbed solution to @ if there
exists a locally integrable function u : Ry — R™, such that

e For any T > 0, it holds that lim sup Hf:“ u(s) dsH =0.
t—o0 0<I<T

o There exists § : Ry — R such that tlim 5(t) =0 and 4(t) — u(t) € DD ((1)).
—00
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Now consider the sequence {x} generated by the following updating scheme,
Trr1 = Tk + Mk (di + &k), 9)
where {n;} is a diminishing positive sequence of real numbers. We define the (continuous-time) interpolated

process of {xy} generated by @D as follows.

Definition 2.20. The (continuous-time) interpolated process of {xy} generated by @D is the mapping w :
Ry — R™ such that

w(Xi+s) =x; + ﬁi (Tig1 —x5), s€[0,m). (10)

(3

Here \g :== 0, and \; := 22;10 n, fori > 1.

The following lemma is an extension of (Benaim et al. 2005, Proposition 1.3), which allows for inexact
evaluations of the set-valued mapping D. It shows that the interpolated process of {xy} from @ is a
perturbed solution of the differential inclusion @

Lemma 2.21. Let D : R™ = R"” be a locally bounded set-valued mapping that is nonempty compact convex
valued with closed graph. Suppose the following conditions hold in @[)

1. For any T > 0, it holds that lim sup HZ;:‘} nkka =0.
5700 s<i<AAs+T) )

2. There exist a positive sequence {dx} such that limy_, o 0 =0 and dj;, € Dox ().

3. supyso |2kl < 00, supysg [|di || < oco.

Then the interpolated process of {xy} defined in s a perturbed solution for ,

The following theorem summarizes the results in (Benaim et al. |2005]), which illustrates the convergence of
{1} generated by (9). It is worth mentioning that Theorem [2.22]is directly derived from putting
Proposition 3.27) and (Benaim et all 2005, Theorem 3.6) together. Therefore, we omit the
proof of Theorem [2:22] for simplicity.

Theorem 2.22. Let D : R™ = R"™ be a locally bounded set-valued mapping that is nonempty compact convex
valued with closed graph. For any sequence {xy}, suppose there exist a continuous function ¢ : R™ — R and
a closed subset B of R™ such that

1. ¢ is bounded from below, and the set {¢(x) : x € B} has empty interior in R.
2. ¢ is a Lyapunov function for the differential inclusion that admits B as its stable set.

3. The interpolated process of {xy} is a perturbed solution of ,

Then any cluster point of {xy} lies in B, and the sequence {¢(xy)} converges.

Similar results under slightly different conditions can be found in (Borkar], [2009; [Davis et al. 2020} [Duchi &]
. Moreover, towards the convergence properties of @ with potentially non-diminishing stepsizes,
several recent works (Bianchi et al., 2022;|Josz et al.,2023; Xiao et al.,|2023b) provide convergence guarantees
under more relaxed conditions. Interested readers could refer to those works for details.

3 Global Convergence

In this section, we prove the convergence properties of the framework (AFMDW]|) even though the sequence
of stepsizes {n;} is assumed to be non-diminishing. The proofs are provided in the Appendix.
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3.1 Basic assumptions

We first make the following assumptions on the quadratically regularized optimization problem (UOP].

Assumption 3.1. 1. f is a path-differentiable function that admits a convex valued set-valued mapping
Dy as its conservative field.

2. There exists a constant L > 0 and v € [0,1), such that for any x € R", it holds that | Dy¢(z)| <
L+ [l]”).-

3. The set {g(x) : 0 € D¢(x) + ox} has empty interior in R.

As discussed in Section 2.3, the class of path-differentiable functions covers a wide variety of objective
functions in real-world applications. In particular, for a wide range of common neural networks, their loss
functions are definable and thus path-differentiable, as demonstrated in (Bolte & Pauwels, 2021} [Castera)
et al) 2021} Davis et al.| [2020). As a result, Assumption 1) is mild in practice. Moreover, Assumption
imposes a growth condition on the conservative field. Furthermore, Assumption 3) is referred to
as the nonsmooth weak Sard’s property, which is commonly observed in various existing works (Bianchi &
Rios-Zertuche] 2021} Bolte et all [2022a} Bolte & Pauwels| [2021} [Castera et al., 2021} Davis et al., [2020} [Lel
2023) and is demonstrated to be mild in (Bolte & Pauwels, 2021} |Castera et al.,[2021; Davis et al., [2020).

Notice that the chain rule holds for conservative fields (Bolte & Pauwels| 2021, Lemma 5), and it is easy to
verify that ¢ is a path-differentiable function that admits Ds(x) + oz as its conservative field. Therefore, in
the rest of the paper, we fix the conservative field Dy : R = R"™ for the objective function g in (UOP) as:

Dy(z) :=Dy(x) + ox. (11)

In the following lemma, we present some basic properties of D,. The proof of Lemma follows straight-
forwardly from (Bolte & Pauwels| 2021, Corollary 4), hence it is omitted for simplicity.

Lemma 3.2. Suppose Assumptz'on holds. Then g is a path-differentiable function, and Dy is a convez-
valued graph-closed conservative field that admits g as its potential function.

We also need the following assumptions on the framework (AFMDW]) to establish its convergence properties.

Assumption 3.3. 1. There exist constants €, and M, with 0 < &, < M, such that &, < H(vi) < M,
holds for any k > 0.

2. There exists a non-negative sequence {0} such that limg_,o 6 = 0 and djy, € D?’“ (zk)-

3. The sequence of noises {&} is a uniformly bounded martingale difference sequence. That is, there
exists a constant Mg such that almost surely, supy~g [|§kl| < Mg, and E[§g41|Fy] = 0 for any k > 0.

Here, we make some comments on the assumptions in Assumption Assumption 1) assumes the
uniform boundedness of {H (vy)}, which is satisfied in various existing works as shown in Table[2] In addition,
later in Section 3.2, we provide some sufficient conditions that guarantee the uniform boundedness of {zy}.
Assumption 2) characterizes how dj, approximates Dy(zy). Furthermore, Assumption 3) assumes
that the evaluation noises {£;} is a uniformly bounded martingale difference sequence. As demonstrated
in (Bolte & Pauwels| 2021} |Castera et al.l 2021), Assumption 3) holds when f follows a finite-sum
formulation, hence it is mild in practical applications of .

3.2 Uniform boundedness of {z}} and {v;}

In this subsection, we present some sufficient and easy-to-verify conditions that guarantee the validity of
uniform boundedness of {zy}. The following proposition illustrates that under some mild global growth
conditions for f and the uniform boundedness of {H (vy)}, the sequence {x}} is uniformly bounded.

Proposition 3.4. Suppose Assumption and Assumption (3.5 hold, and supy~qnk < ﬁ Then for any
ingtial point (xo,mo,v0), there exists a constant QQ > 0 such thal supys, [|zx| < Q.

10
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Next, we discuss the uniform boundedness of the sequence {H(vg)}. Apart from Assumption and
Assumption we make the assumption on the global Lipschitz continuity of f, in the sense that

sup || Df(x)|| < My, for some constant My > 0. (12)
TER™

Such an assumption is standard in various existing works. Table [2] lists some Adam-family methods, where
the sequence {H(v;)} remains uniformly bounded under Assumption Assumption and equation

(1L2).

Table 2: Different update schemes for {v;} in the framework (AFMDW)) under Assumption Assumption
and . Here ¢, ¢;, ¢, > 0 are hyper-parameters for these Adam-family methods.

Method Update scheme for {vy} Formulation for H(v) Choice of (gy, M)
SGDW (ILoshchilov & Hutter) |2017D Vg1 = (1 — B1)vg + ,Blgi 1 (1,1)
Adam (Kingma & Bal [2015) vpg1 = (1= B1)vg + Big; Vv+e)t (Gr 707
AMSGrad (Reddi et al.| 2018 V41 = max{vg, (1 — B1)vk + ﬁlgz} (Vo+e) ! (W’ é)
Adamax (Kingma & Bal 2015 V41 = max{Biv, |gk| + €} (v)~! (m’ )
RAdam (Liu et al| [2019) vpt1 = (1 = B1)vk + f19} (Vo+e)™t (Gr 707 £
AdaBelief qZhuang et al.I, |2020P vpa1 = (1 — B1)vg + B1(ge — mar1)? (Vv+e)™t (mv %)
AdaBound (ILuo et al.l, |2019|} Vg1 = (1= B1)vg + Bug? min{c;, max{cu,vf%}} (c15¢u)
Yogi anheer et al.l, |2018l) Vg1 = vk — PBisign(vg — g2) © g2 (Vo+e)™t (W? é)

3.3 Convergence with non-diminishing stepsizes{}

Assumption 3.5. The sequences of stepsizes {ni} and momentum parameters {0} satisfy

2 1 -
max ‘= i a0 (> min := inf ) d O = . 1
n ig}g e < mln{an O'EU} n inf >0, an kz_% k= 00 (13)

We begin our theoretical analysis with Lemma which shows that the sequence {m} and {gx} are
uniformly bounded. Lemma directly follows from the uniform boundedness of {z;} in Proposition
and {&;} in Assumption 3) and the fact that Dy is locally bounded, hence we omit its proof for simplicity.

Lemma 3.6. Suppose Assumption[3.] and Assumption[5.3 hold. Then there exists a constant My > 0 such
that supyso{llgr |l + [Imel|} < My holds almost surely.

Lemma [3.7| illustrates that ||oxzy + mg| — 0 as the momentum parameter {6)} diminishes.

Lemma 3.7. Suppose Assumption Assumption and Assumption hold. Then for any {6}
satisfying limyg_, 4 o0 O, = 0, we have that img_, 4 |[ozk + M| = 0 holds almost surely.

From the proof of Lemma it follows that the asymptotic behavior of ||ocxy + myg| can be controlled
by {0y} as k — oo. Specifically, from equation , we have limy_, oo 3k+1 = 0 when limj;_, 0, = 0.
Consequently, for any € > 0, there exists a threshold 6,4, > 0 such that, if limsup,,_, .. Ok < Omaz, it follows
that lim sup,,_, . ||ozx + mg|| < e. Moreover, the convergence of ||oxzy, + my|| is faster as {6y} decreases more
rapidly.

Based on the Lemma let the auxiliary sequence {yx} be defined as

1
Y = ——my, for any k> 0. (14)
o

Then we can conclude that limg_, o ||y — k]| = 0. More importantly, substituting into the update
scheme for {my} in (AFMDW)), we arrive at the following relation

0
Ykt1 = Yk — Fk (di + oyr + Ergr) - (15)

In the following lemma, we prove that di + oy can be regarded as an approximated evaluation for Dg(yy).

11



Under review as submission to TMLR

Lemma 3.8. Suppose Assumption Assumption and Assumption hold. Then let 65 = (1 +
0)0y + O, it holds that
di. + oyi € Dy (), (16)

where by, is defined in equation .

We can conclude from Lemma that the auxiliary sequence {y;} follows the differential inclusion,

0 5*
Ye+1 € Yk — ;k (ng (yx) + fk+1) . (17)

This fact illustrates that the sequence {yx} can be viewed as a sequence generated by the SGD method for
minimizing g. Therefore, in the following proposition, we prove that the interpolated process of the sequence
{yr} is a perturbed solution of the following differential inclusion:

dy
— e -D . 18
We first present the results for the case where the noise is induced by with-replacement sampling.

Proposition 3.9. Suppose Assumption Assumption and Assumption hold, and
limg s 4o O log(k) = 0. Then the interpolated process of the sequence {yi} is a perturbed solution for
the differential inclusion ,

In the following theorem, we prove the convergence properties of the framework (AFMDW]|).

Theorem 3.10. Suppose Assumption Assumption and Assumption hold, and
limy s 4 oo 0 log(k) = 0. Then almost surely, any cluster point of the sequence {x} is a D,-stationary point
of g, and {g(xk)} converges.

In the rest of this subsection, we aim to establish the global stability of the framework (AFMDW]|), where
the noises {&} correspond to random reshuffling. Therefore, we make the following assumptions on the
momentum parameters {0} and noises {{}.

Assumption 3.11. There exists an integer N > 0 such that

1. For any nonnegative integers i,j < N, it holds that Oyny; = Oxn4; for any k € N4

2. For any j € Ny, almost surely, it holds that Zgj:';}\;]v_l k41 =0.

Lemma 3.12. Suppose Assumption (3) and Assumption hold for the sequence of noises {&} and
momentum parameters {0}. Then for any ¢ > 0 and T > 0, there exists 0. > 0 such that for any {0y}
satisfying limsupy,_,, o O < 0, almost surely, it holds that

> Okl

k=s

lim sup sup <e. (19)

s—+00 s<i<A(A(s)+T)

Then we have the following theorem illustrating the global stability of the framework with
non-diminishing {0}.
Theorem 3.13. Suppose Assumption Assumption Assumption and Assumption hold.
Then for any € > 0, there exists Onmax > 0 such that for any {0k} satisfying limsup,_, | o Ok < Omax, almost
surely, it holds that

limsup dist (zg, {z € R" : 0 € Dy(x)}) <e. (20)

k—+oo

Theorem [3.13] implies that as long as the momentum parameters 0 are sufficiently small, the sequence xy,
maintains stability, regardless of how the estimator vy is updated. When the estimator vy is updated in the
manner of Adam, i.e., as a second-moment estimator, AdamD consistently works as long as the momentum

12
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parameter 0} is kept small, irrespective of the choice of parameters for updating the second-moment estimator
vg. Therefore, our proposed AdamD offers greater flexibility in selecting momentum parameters and those
associated with updating vy. For a numerical illustration, refer to Figure [7] in Section [5.1.3

Moreover, from the results in Theorem we can prove that with diminishing {0y}, the sequence {xy}
can asymptotically finds the stationary points of (UOP)). The result is presented in the following corollary
and is omitted for simplicity.

Corollary 3.14. Suppose Assumption[5.1, Assumption[3.3, Assumption and Assumption hold, and
limy_, 400 0 = 0. Then almost surely, any cluster point of the sequence {xy} is a Dy-stationary point of g,
and {g(zx)} converges.

3.4 Convergence with a single-timescale in {n;} and {0;}

In this subsection, we investigate the convergence of the framework (AFMDW)|) when the sequences of
stepsizes {7} and momentum parameters {6} are single-timescale in the sense that they diminish at the
same rate.

The convergence properties presented in Section 3 suggest that the sequence {y;} asymptotically approx-
imates the trajectory of the differential inclusion . One may conjecture that this phenomenon is at-
tributable to the involvement of non-diminishing stepsizes {n;} in the framework (AFMDW].

However, in this section, we aim to show that when single-timescale stepsizes and momentum parameters are
employed in the framework 7 the interpolated process of {yi} is still a perturbed solution of the
differential inclusion . These theoretical results suggest that it is the decoupled weight decay that leads
to the asymptotic approximation of the differential inclusion in the framework , regardless
of the timescale of the employed sequences {n} and {0;}.

The proof techniques in this section are motivated by the techniques in (Xiao et al., [2023a, Section 3). To
prove the convergence of (AFMDW]) with single-timescale sequences {n;} and {6}, we make the following

assumptions.

Assumption 3.15. 1. There exists a locally bounded mapping W : R® x R" — R" and a prefived
constant T2 > 0 such that the sequence of estimators {vy} follows the update scheme vii1 = vy, —

ok (Ve — W gk, Mi+1))-
2. The mapping H : Rt — R} is fived as H(v) = (max{v,0} + )2 for a prefized constant & > 0.
3. The sequences {nx} and {0y} are positive and satisfies

oo oo ek
E = E 0, = lim — = 21
Nk o0, k o0, kgnc}o e T1, ( )
k=0 k=0

for a prefized positive constant Ty € [, 00).

4. There exists a non-negative sequence {0} such that limy_, o dx = 0 and dy, € D?’“ (zk)-

5. The sequence of noises {&} is a uniformly bounded martingale difference sequence.

Here we make some comments on Assumption Assumption 4)(5) are identical to Assumption
[3.3(2)(3), respectively. Assumption [3.15(1) characterizes how the estimators {v;} are updated. As discussed
in (Barakat & Bianchi, [2021} [Xiao et al.,[2023a)), Assumption [3.15{1) is general enough to include the update
schemes for Adam, AdaBelief, AMSGrad, and Yogi. Moreover, Assumption 2) fixes the formulation of
the mapping H, and Assumption [3.15]3) assumes that the stepsizes {n;} and momentum parameters {6y}

in the framework (AFMDW]|) are single-timescale.

We begin our analysis with the following lemma, which shows the uniform boundedness of {m} and {gx}
directly from the uniform boundedness of {z} in Proposition As a result, we omit its proof for simplicity.

Lemma 3.16. Suppose Assumption and Assumption hold. Then there exists a constant Mg > 0
such that supyq [|gr|| + |m|l < Mgy holds almost surely.

13
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Next we present the following auxiliary lemma, which follows directly from the uniform boundedness of {z},
{my} and {g;} in Lemma together with the local boundedness of the mappings Dy and W.

Lemma 3.17. Suppose Assumption [3.1] and Assumption [3.15 hold. Then there exists a constant My > 0
such that supy>g [|W(gk, me+1)|| < Mw holds almost surely.

Let Py (v) := max{v,0}, and U(xz,m) := {d € R} : ||d]| £ Mw}. Consider the set-valued mapping
G:R" x R" x R* = R" x R™ x R™ defined by

(P+(v) +€)"2 O (m+ox)
G(x,m,v) := im — 11Dy (x) , (22)
Tov — Tol (2, m)

and the following differential inclusion:

dz dm dv
(dt, E, dt) c —g(fE,m,'U). (23)

In the following lemma, we prove that the set-valued mapping G is capable of characterizing the update
direction of {(zx, mk,vk)} in the framework (AFMDW]. The proof straightforwardly follows from Lemma
[3:17] hence we omit it for simplicity.

Lemma 3.18. Suppose Assumption [3.1] and Assumption[3.15 hold. Then the inclusion
V41 € v — Tonk (U — U (T8, M) (24)
holds for any k > 0. Furthermore, supys |[vk+1]| < oo holds almost surely.

Let 0P, be the generalized Jacobian of the mapping P4, and define the function h : R® x R™ x R™ — R as
1 1
hla,m,v) = f(2) + 2 llo]* + 5= (m+ 0w, (P4 (v) + )% © (m+02)). (25)
1

The next Lemma [3.19] presents the formulation of the conservative field of h.

Lemma 3.19. Suppose Assumption and Assumption hold. Then h is a potential function that
admits

Dy(z) + oz + Z(Ps vl) +e) 20(m+ox)
Dy(z,m,v) = %(’P+(v) +e)72 0 (m+ox) (26)

as its conservative field.

Proposition 3.20. Suppose Assumption[3.1] and Assumption[3.15 hold. Then h is a Lyapunov function for
the differential inclusion with the stable set {(x,m,v) € R" x R" x R" : 0 € Dy(x), m + ox = 0}.

In the next proposition, we show that the interpolated process of the sequence {(x, mg,vg)} is a perturbed
solution to the differential inclusion .
Proposition 3.21. Suppose Assumptz’on and Assumption hold, and limy_, o ni log(k) = 0. Then

almost surely, the interpolated process of {(xy, my,vr)} is a perturbed solution for the differential inclusion

3).

In the following theorem, we present the convergence properties of the sequence {(x, mg, vx)}, and prove
that limy_, oo || + ox|| = 0 almost surely.

Theorem 3.22. Suppose Assumption and Assumption hold, and limy_, o ny log(k) = 0. Then for
AFMD

the sequence {(xr, mg,vi)} generated by the framework (| W), almost surely, it holds that

1. any cluster point of the sequence {xy} is a D,-stationary point of g;

14
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2. limg_ ||mk + O'{EkH =0

3. the sequence of function values {g(xy)} converges.

Theorem illustrates that limg_,o ||2x — yk|| = 0. Therefore, substituting the formulation of {y} in
(14) into the update scheme of {my} in the framework (AFMDW)]), we conclude that {y;} follows the same
scheme as ((15)). Together with the fact that limy_ ||2x — yk|| = 0, based on the same proof techniques as
in Lemma We can conclude that there exists a sequence of non-negative random variables {73} such that
limg_.o0o 7 = 0 holds almost surely, and

0
Yk+1 € Yk — ;k(D;’“ (Yk) + Ekt1)-

Then we have the following corollary showing that the interpolated process of the sequence {yy, } is a perturbed
solution of the differential inclusion . The proof of Corollary is the same as Proposition hence
is omitted for simplicity.

Corollary 3.23. Suppose Assumption [3.1] and Assumption hold. Then the interpolated path of the
sequence {yr} is a perturbed solution of the differential inclusion .

4 Application: Adam with Decoupled Weight Decay

In this section, we propose a novel variant of Adam, which is named as Adam with decoupled weight decay
(AdamD). As an application of our theoretical analysis in Section 3, we show the convergence properties of
AdamD directly from the results in Theorem [3.10] and Theorem [3.22]

Throughout this section, we focus on the settings where f in (UOP]|) takes the following finite-sum formula-
tion:

1 N
f@) =5 2_ fila). (27)

Here we make the following assumptions on the functions {f; : i € [N]} in (27).

Assumption 4.1. 1. For each i € [N], f; is a definable function that admits a definable set-valued
mapping Dy, as its conservative field.

2. SUP;¢([N], zeR™ ”sz(x)” < 0.

)

3. f is bounded from below.

As demonstrated in (Bolte & Pauwels| 2021)), for any neural network that is built from definable blocks, the
conservative field corresponds the AD algorithms is a definable set-valued mapping. Hence, we can conclude
that Assumption [£.I[1) can be satisfied in a wide range of training tasks. Assumption 2) assumes the
Lipschitz continuity of the function f, which is common in various existing works (Barakat & Bianchi, [2021
Guo et all 2021} [Shi et al., [2021}; |[Zhang et al., [2022).

Moreover, (Bolte et al.l [2021, Corollary 4) illustrates that f is a path-differentiable function and admits
+ Zf\il Dy, as its conservative field. Therefore, in the rest of this section, we choose the conservative field
Dy as

1 N
Dy (x) = conv <NZD,¢.($)> : (28)
i=1

The detailed AdamD method is presented in Algorithm [II In our proposed AdamD method, the weight
decay term oxy, is decoupled from the update schemes for {my} and {vy}. In particular, the estimators {vy}
are updated as an exponential moving average over {g%} with parameter 8 € (0,1).

Then based on the convergence properties of the framework (AFMDW)]) presented in Theorem the

following theorem establishes the convergence properties of Algorithm [1] with non-diminishing {7 }.
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Algorithm 1 Adam with decoupled weight decay (AdamD) for nonsmooth optimization problem (UOP].
Require: Initial point 2o € R", my € R” and vy € R”}, weight decay parameter o > 0, safeguard parameter
£ >0, stepsize n < £ and 3 € (0,1);

1: Set k = 0;

2: while not terminated do

3: Independently sample 45 from [N], and compute gy € Dy,, (zk);
4: Update the momentum term by my41 = (1 — 0x)my + Orgr;

5: Update the estimator vg41 by vii1 = (1 — B)vk + Bgi;

6: Update x by zx1 = xx — n(\/Uks1 + )1 © (mig1 + ox);

7 k=k+1,

8: end while

9: Return xy.

Theorem 4.2. Suppose Assumption[3.5 and Assumption[{.1] hold. Moreover, we assume that the momentum
parameters {0y} is a positive sequence that satisfies limg_,o 0x log(k) = 0. Then almost surely, any cluster
point of {xy} in Algom'thm is a Dy-stationary point of g, and the sequence {g(zx)} converges.

In the following theorem, we establish the convergence properties for Algorithm [I] when it is equipped with
single-timescale stepsizes. The results in Theorem are direct consequences of Theorem Hence, we
omit its proof for simplicity.

Theorem 4.3. Suppose Assumption [{.1] holds. Moreover, we assume that

1. The stepsizes n and 3 are replaced by i, and By respectively in Algorithm [1;

2. There exists constants o > 411 > 0 such that 0, = Tym, and Bx = Ton hold for any k > 0. Moreover,
the sequence {ng} satisfies > poo M = 00 and limy_, o i, log(k) = 0.

3. In Step 6 of Algorz'thm the sequence {xy} follows the update scheme
1
Thy1 = Tk — Nk (Vg1 +€) 72 © (Mpy1 + oxp).

Then almost surely, any cluster point of {xx} in Algorz'thm is a Dy-stationary point of g, and the sequence
{g(zk)} converges.

5 Numerical Experiments

In this section, we conduct numerical experiments to demonstrate the effectiveness of AdamD in the context
of image classification and language modeling tasks. We compare AdamD with the most popular adaptive
algorithms used for training neural networks, i.e. Adam and AdamW. All experiments are conducted using
an NVIDIA RTX 3090 GPU and were implemented in Python 3.9 with PyTorch 1.12.0.

5.1 Implementations of AdamD

In our numerical experiments, we focus on two key tasks: image classification employing Convolutional Neural
Networks (CNNs) and language modeling using Long Short-Term Memory (LSTM) networks (Hochreiter
& Schmidhuber} 1997)). Specifically, our image classification experiments include the deployment of well-
established architectures, namely Resnet34 (He et al., |2016|) and Densenet121 (Huang et al., [2018), to train
the CIFAR-10 and CIFAR-100 datasets (Krizhevsky et al.;[2009). Our language modeling experiments focus
on LSTM networks applied to the Penn Treebank dataset (Marcus et all [1993). It is worth noting that
AdamW typically demonstrates superior generalization performance when used to train CNNs for image
classification tasks. For training LSTMs, prior studies such as (Ding et al.l [2023; [Loshchilov & Hutter, [2017}
Zhuang et al.l |2020) have observed that Adam exhibits better generalization capacity than AdamW.
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5.1.1 CNNs on image classification

In all our experiments on image classification, we train the models consistently for 200 epochs, employing a
batch size of 128. At the 150th epoch, we reduce the step size by a factor of 0.1. This step size reduction
schedule is a prevalent practice in contemporary deep neural network training. It is helpful to accelerate the
convergence of the optimization algorithm, and to enhance generalization capacity. Similar strategies can be
observed in previous works, such as (He et al., [2016; [Zhuang et al.| |2020). The weight decay parameter o is
fixed to be 5 x 1073, We use the following hyperparameters setting for tested algorithms:

o Adam/AdamW: We search the stepszie 1 within the range of {5 x 107%,1073,5 x 1073,1072,5 x
1072,1071,5 x 1071, 1}. Additionally, we set € = 1078, 6, = 107! and 8 = 1073 as the default
setting in Pytorch.

o AdamD: We adopt the searching scheme for stepsize as 0.1 x {5 x 107%,1073,5 x 1073,1072,5 x
1072,1071,5x 1071, 1}. We set 0, = (log((’#))%, with s representing the epoch number. Within the
S
s-th epoch, 0 takes the constant value 6,. Under this setting, we can easily verify that 0, = 0(@).
Here, we set the initial momentum parameter to 6y = 107!, the second moment parameter to
B = 1072 and the regularization parameter to ¢ = 10~8, which are the same as the default settings
in PyTorch for Adam/AdamW.

Train accuracy ~ Training epoch Test accuracy ~ Training epoch Train loss ~ Training epoch Test loss ~ Training epoch
8 —— AdamD —— AdamD —— AdamD
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Figure 1: ResNet34 on CIFAR10 dataset. Stepsize is reduced to 0.1 times of the original value at the 150th
epoch.
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Figure 2: DenseNet121 on CIFAR10 dataset. Stepsize is reduced to 0.1 times of the original value at the
150th epoch.

In Step 6 of Algorithm [1} the coefficient associated with xj is expressed as 1 — no(\/vk11 + e)~l. It is
worth noting that as training progresses, the value of | /v y1 + ¢ tends to become small. To ensure that the
coefficient does not become excessively small, in practice, AdamD employs a smaller stepsize compared to
Adam and AdamW. This practice of selecting a smaller scale stepsize also occurs in other optimizers, such
as Lion (Chen et al., [2023). The numerical results, as illustrated in Figure |4l reveal compelling insights.
Both AdamD and AdamW consistently achieve 100% training accuracy, whereas Adam falls short in this
regard. From the training loss plots, we observe that the convergence speed of AdamD falls between that of
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Figure 3: ResNet34 on CIFAR100 dataset. Stepsize is reduced to 0.1 times of the original value at the 150th
epoch.
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Figure 4: DenseNet121 on CIFAR100 dataset. Stepsize is reduced to 0.1 times of the original value at the
150th epoch.

AdamW and Adam. In most instances, AdamD achieves nearly the same level of generalization as AdamW.
Moreover, the generalization capacity of Adam is noticessly inferior to that of the other two algorithms.
This observation underscores the necessity of weight decoupling when solving the quadratically regularized

problem defined in (UOP).

To verify the results in Lemma we also present a plot of ||z 4+ omy|| as shown in Figure [5, When 6,
adheres to a decay schedule described by O (k~7), and basic calculus imply that ||oxzy + my|| exhibits
an asymptotic behavior of O (k~7). The results in Figure |5 are consistent with our theoretical analysis
that {||mg + oxg||} converges to 0, or equivalently {||xr — yr||} converges to 0. Notably, larger values of
correspond to a more rapid decline in ||oxg + myg]|.

5.1.2 LSTMs on language modeling

In all our language modeling experiments, we train our models for 200 epochs while employing a batch
size of 128. Additionally, we adopt a stepsize reduction strategy that decreases the stepsize to 0.1 times
its original value twice during training, specifically at the 75th and 150th epochs. These settings adhere
to the commonly used experimental setup for training LSTMs, as demonstrated in previous works (Chen
et al.,|2021; |Zhuang et al.| [2020). This stepsize reduction strategy serves to accelerate the convergence of the
optimization algorithm, simultaneously enhancing its generalization capacity. The weight decay parameter
o is fixed at 1 x 10~® throughout these experiments. Other hyperparameter settings are the same as those
in Section [5.1.1] The numerical results are displayed in Figure [6]

From Figure [6] we can observe that both AdamD and Adam exhibit superior generalization capacity com-
pared to AdamW. For 1- and 2-layer LSTM, AdamD exhibits a similar generalization capacity as Adam. In
the case of larger 3-layer LSTM models, AdamD outperforms Adam, achieving a test perplexity that is at
least 2 units lower.
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reduced to 0.1 times of the original value at the 75th epoch and 150th epoch.

5.1.3 Performance with different choices of {0} and {3;}

Finally, we investigate the performance of AdamD method with different choices of its stepsizes {f;} and
{Br} for momentum terms {my} and {vy}, respectively. In our numerical experiments, the sequences of
stepsizes {0} and {0} are fixed as constants 6 € [0,1] and S € [0, 1], respectively. The weight decay
parameter is set to 5 x 10~%. The step size is n = 1073, the regularization parameter for the second moment

term is € = 1078 as the default settings in PyTorch for Adam.

From Figure[7] we can observe that the blue region corresponding to AdamD is larger than that of Adam. As
demonstrated by (Zhang et al.,[2022), Adam can fail when 6 is small and g is large, as shown by the red area
(indicating larger training loss) on the bottom right portion of Figure a). In contrast, the corresponding
region for AdamD in Figure b) remains blue (indicating lower training loss). Thus, we can conclude that
the incorporation of weight decay in AdamD enhances its robustness to the choices of 8 and § compared
to Adam with coupled weight decay. Moreover, these results verify the theoretical results in Theorem [3.13]
which implies that as long as the momentum parameters 65 remain sufficiently small, the sequence zj stays
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Figure 7: The performance of Adam and AdamD on training three-layer CNN on MNIST dataset, with {6y}
and {f} fixed as constants 6 and 3, respectively.

stable. This stability is preserved with significantly relaxed requirements on the updates of the estimator
vk, provided the preconditioner H(vg) remains bounded both below and above.

5.2 Further discussions on the AdamD
5.2.1 Asymptotic approximation to SGD sequence helps generalization

As demonstrated in Lemmal[3.7 the term ||z + my|| converges to 0 as k tends to infinity. Then as discussed
in Lemma the sequence {yx} (defined by yi := —o~1my) approximately follows the update scheme ((15)),
which asymptotically approximates a SGD method. Together with the fact that limy_,o ||zx — yi|| = 0, we
can conclude that the sequence {z} in AdamD is controlled by an SGD sequence {yx} as k goes to infinity.
Moreover, the interpolated process of {y;} is a perturbed solution of the differential inclusion , ie.,

dy
3 € ~(Dry) +oy). (29)
On the other hand, in the early stage of the iterations of AdamD, the term ||z + my]| is large, and the
ratio of  and 7, usually remains nearly unchanged. Then as illustrated in the discussion in Section 4, the
sequence {(xg, mg, vx)} jointly tracks the trajectories of the differential inclusion

dz dm dv (Py(v) +&)7% © (m + ox)
ToU — Told ()

Here U(z) := & Zi\il{d ©d:d e Dy (x)}. Similar results are also exhibited in (Bianchi et al., |2022; [Xiao
et al., 2023a). As the differential inclusion imposes preconditioners to the update directions of {zy}
based on the second-order moments of the stochastic subgradients, the sequence could quickly converge to a
neighborhood of the stationary points.

These theoretical properties explain the fast convergence of AdamD in the early stage of the training and its
lower generalization error than Adam with coupled weight decay. Based on the numerical experiments and
our theoretical analysis, we believe the ability to asymptotically track an SGD sequence in AdamD helps to
explain its superior generalization performance over Adam.

5.2.2 Decoupled weight decay is equivalent to quadratic regularization

It is conjectured in (Loshchilov & Hutter, 2017)) that the quadratic regularization term contributes to the
low generalization error in training neural networks. Moreover, the authors in (Loshchilov & Hutter] [2017)
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develop AdamW, showing that weight decay is not equivalent to quadratic regularization. As a result, the
term oxy in AdamW is not scaled by the preconditioner (\/vx11 + )~ !. Therefore, AdamW does not have
a clear objective function and lacks convergence guarantees in training nonsmooth neural networks.

In our AdamD method, the objective function is exactly the g(x) in (UOP]). Hence the weight decay
parameter ¢ is exactly the penalty parameter for the quadratic penalty term § |z||* in (UOP). More
importantly, we provide theoretical guarantees for AdamD in training nonsmooth neural networks. The

stationarity of the iterates {z}} is characterized by Dy(x)+ ok, hence has clearer meaning when compared
with AdamW.

Furthermore, our numerical experiments demonstrate the superior performance of AdamD, illustrating that
employing the quadratic regularization term in does not undermine the generalization error. Based
on these results, we can conclude that within our framework , the weight decay can be interpreted
as the quadratic regularization, which is different from the demonstrations in (Loshchilov & Hutter} [2017)
regarding AdamW.

6 Conclusion

In this paper, motivated by AdamW, we propose a novel framework for Adam-family methods
with decoupled weight decay. We prove that under mild assumptions with non-diminishing stepsizes {7}
and diminishing momentum parameters {6}, any cluster point of {x)} is a Dy-stationary point of .
When {6;} is also non-diminishing, the sequence {z\} eventually stabilizes around the critical points of
the Dy-stationary point of . Moreover, when employing a single-timescale scheme, any cluster point
of {zy} is a Dy-stationary point of . Compared with AdamW, our proposed framework
enjoys convergence guarantees in training nonsmooth neural networks and yields solutions that have clearer
meanings. More importantly, we prove that the decoupled weight decay grants more flexibility of the choices
of the parameters {0y} and {S;} in than Adam. This fact theoretically illustrates the advantages
of the employment of the decoupled weight decay.

As an application of our proposed framework , we develop a novel Adam-family method named
Adam with decoupled weight decay (AdamD), and prove its convergence properties under mild conditions.
Numerical experiments on image classification and language modeling demonstrate the effectiveness of our
proposed method. To conclude, we believe that our work has enriched the theoretical understanding of
weight decay and explained its practical utility in the field of deep learning applications.
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A Proofs

Proof of Proposition . As illustrated in Assumption di € ch’“ (zx) and {&} is uniformly bounded.

Then it is easy to verify that there exists a constant L such that ||gx|| = ||dx + Exsi]l < L(1 + ||zx]”) holds
for any k£ > 0.

Let the constant Q be defined as

1

oM, L\ '™ M,|m

Q > max (U) Mo W0l g 1% (31)
v v

In the following, for any sequence {z} generated from (AFMDW])), we aim to prove that the set {k > 0 :
lzx]] > Q} is an empty set by contradiction. Therefore, we assume that the set {k > 0 : ||zx|| > @} is non-
empty and set 7 = inf{k > 0: |lzx|| > Q} — 1. Then from the definition of 7, we have ||z 41| > Q > ||z

On the other hand, from the update scheme (AFMDW)), for any k& < 7, we have

&y
M,

||mk+1|§max{m07 sup gill}<max{llmo|,ﬁ(1+Q”)}S Q,
0<i<k+1

where the last inequality follows from the definition of @ and the fact that

oe, 2M,L v Oy 1y~ OEy
Q"< —QVTQV =

i(1+Q”)g2ﬁQV:M = 2 =

Q.

Then it holds that

|Zri1ll = |(1 = meo Hr (vr41)) © 27 — i Hr (Vr41) © mppa ||

oy
< (1= mroey) |z || + My |mr i1 || < (1 — mroey)Q + ni M, -

M,

Q=0Q.

But ||z-4+1|| < @ contradicts to the definition of 7. Thus, the set {k > 0 : ||| > Q} is empty. Therefore,
we have that sup,~g [|zx]| < @ holds almost surely. This completes the proof. O

Proof of Lemma[3.7 From Assumption 3.5] there exists a constant 7 € (0, 1) such that max{|1—nyoM,|,|1—
Nkoey|} < 1 —7 holds for any & > 0. Then from the update scheme of {x} in the framework (AFMDW]),
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almost surely, it holds that

loTks1 + Mg
(1 = nkoH(vkt1)) © (0xk +my) + Op(1 = nroH(ve11)) © (gr — ma)||

< max{|1 — o M,|, [1 — nroey|}(lows, + mill + Ok [lgr — mu)
k

- - ki 32

< (1= ) lowk + ml + 2Ma < (1= D) oo + moll +2Ma 3 (1 — 7)"6; (32)
i=0
k .
< (1= ) oMy + M) +2Mg Y (1= 7)F70; =: 4.
1=0

Since limy_, o 8 = 0, we have klim Zfzo(l—ﬁ)k*iﬁi = 0. Thus we get limg_, o 5 =0, and oz, +mg|| < Sk
—00
holds for any k& > 0. This completes the proof. O

Proof of Lemma [3.8 As illustrated in Assumption 2), there exists 7, € By, (vx) and dy € Dy(iy)
such that Hdk —di|| < 6 and limg_, o, 0 = 0. Combining with equation , it holds that |lyx — Zk|| <

lye — k|| + |2k — Zxl| < 2 + 65 As a result,

dist (dk + oyk, Dg(Er)) < Hdk + oy — (Jk + J:Ek)H
. . 5
< \di = di]| + o llyx — @]l < O -l—a(;k +61).
Since Ty, € Bs; (yx) and dist(dx + oyi, Dy(Tk)) < 65, we get (L6). O

Proof of Proposition[3.9 Based on Lemma by verifying its conditions, we can prove that the interpolated
process of {y;} is a perturbed solution for the differential inclusion (L8).

Condition (1) of Lemma directly follows from Assumption 3) and Proposition by choosing the
stepsizes in (9] as {%"} Moreover, Lemma guarantees the validity of the condition (2) in Lemma ﬁl by
noting that limjy_, d; = 0. Furthermore, condition (3) of Lemma follows from Assumption @ 2) and
Lemma As a result, directly from Lemma [2.21] we can conclude that almost surely, the interpolated
process of {yx} is a perturbed trajectory of the differential inclusion . O

Proof of Theorem [3.10} From Lemma [3.2] and Proposition [2.18] we can conclude that g is a Lyapunov
function for the differential inclusion with the stable set {x € R™ : 0 € Dy(x)}. Moreover, Proposition
illustrates that almost surely, the interpolated process of the sequence {y;} in is a perturbed
solution of the differential inclusion . As a result, it follows from Theorem that any cluster point of
{yr} lies in the set {z € R™ : 0 € Dy(x)} and the sequence {g(yx)} converges.

Since limy_,oo 0 = 0, Lemma implies that limg_, oo [|Zx — yx|| = 0 holds almost surely. Then from the
continuity of g and the convergence properties of {yx}, we can conclude that any cluster point of {xy} lies
in the set {x € R” : 0 € Dy(x)} and the sequence {g(zx)} converges. This completes the proof. O

Proof of Lemma[3.19 From Assumption it holds for all s > 0 and any ¢ satisfying s < i < A(A(s)+T)
that

i N-[#1-1 N[ &1 i
S 0lea|| < || DD Okbeia| + Ocliera||+| D Okrn
k=s k=s k=N-[£] k=N-| %] (33)
N-I#1-1 i
= Z OkSr1|| + Z Or&rt1
k=s k=NL4 )
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Therefore, for any any € > 0, choose . = ﬁ guarantees that
lim sup sup Z O] < 2NM; lim sup 0; <e.
s—=>+00 s<i<A(A(s)+T) s—+4o00, s<ISA(A(s)+T)
This completes the proof. O]

Proof of Theorem , For the update scheme .7 Lemma m and (Xiao et al., 2023b, Theorem 3.5)
illustrate that for any e > 0, there exists 6;,7 > 0 such that whenever lim SUPg>o Ok < 0, and {&} is
(e, T, {60k })-controlled, we have

limsup dist (yx, {x € R" : 0 € Dy(x)}) <

€
= 34
k—+o0 2 ( )

Then by equation in Lemma we have that there exists 05 such that whenever limsupy>q 04 < 02,
limsupy, _, o, [|zx — y&|l < 5. Therefore, whenever lim sup;~q 6y < min{f;, 5}, we have that

limsup dist (zg, {x € R" : 0 € Dy(z)}) < limsup dist (yx, {x € R" : 0 € Dy(z)}) + g <e. (35)

k—+o0 k—+4oco

This completes the proof. O

Proof of Lemma . Notice that f is a potential function that admits Dy as its conservative field, and the
function (z,m,v) — <m + oz, (Pe(v)+€)"2 O (m+ om)> is semi-algebraic and thus definable. Then by

the chain rule for conservative field (Bolte & Pauwels, [2021)), we can conclude that h is a potential function
that admits Dy, as its conservative field. Moreover, as Dy and 0P, are convex-valued over R", it holds that
Dy, is convex-valued over R™ x R™ x R™. This completes the proof. O

Proof ofof Proposition . For any trajectory of the differential inclusion , there exists Iy : Ry — R"
and [, : Ry — R” such that l;(s) € Dy(x(s)) and I, (s) € U(x(s), m(s)) for almost every s > 0, and

~(P4(v(s)) +2) 72 © (m(s) + 0x(s))

(@(s),m(s), 0(s)) = —mim(s) + 11l (s) ~ (36)
—1oPy(v(s)) + m2lu(s)

Then from the formulation of h, we have
(Da(a(s), m(s). v(s)), (@(s). 1a(s), 5(5))
— (s(5) + 02(s) + Z(P4(u(s) +)F © (m(s) + 00(3)), (Pe(u(s) +)F © (m(s) + 02(s)))
+{(Po () + )73 @ (m(s) + 0a(s), ~m(s) +15(5))
2 ((m(s) + 02(5)) © (Pe(o(s) + ) F © P (0(5)), v(s) = 1u(9))
= Z{(P+(v(s) +2) 7" © (m(s) + o2(s)), m(s) + o(s))
— ((P(w(s)) +2) 7 @ (m(s) + 0a(s)), m(s) + 0a(s) )
2 ((m(s) + ()" Pi (0(5)) © (P (v(s)) +)F )
= Z{(P+(w(s)) +2)7" © (m(s) + 0w(s)), m(s) + o(s))

T1

IA

T2

IN

T2

— (1= 12) (P we) +2)7 @ (m(s) + oa(s)). m(s) + oa(s) )

= 2P () + )7 © (mls) + 72(s)),m(s) + 0 (s) )

IN
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Here the first inequality follows from the fact that [,,(s) > 0 and 9P (v) ® v = P4 (v). The third inequality
follows from the fact that 1 — 47721 > 0 in Assumption 3). Therefore, we can conclude that for any initial
point (z(0),m(0),v(0)) € R™ x R™ x R™, it holds for any ¢ > 0 that

h(z(t), m(t),v(t)) — h(x(0), m(0),v(0))

B /0 D (o () o(syy (7 (B () (8), 0(s))) ds (37)
< = 2 [P+ © nls) + arals))mls) + oa(s) s

As a result, we can conclude that for any trajectory of the differential inclusion , it holds for any ¢ > 0
that h(z(t), m(t),v(t)) < h(z(0),m(0),v(0)).

Now consider the case when (z(0),m(0),v(0)) ¢ {(z,m,v) € R" x R" x R" : 0 € Dy(z),m + ox = 0}.
Suppose there exists some T > 0 such that

Wa(T), m(T), v(T)) = h(x(0), m(0), v(0)). (38)

Then implies that m(s) + ox(s) = 0 holds for almost every s € [0, T]. Therefore, m(s) + oz(s) = 0 and
(23) implies that @(s) = 0 hold for almost every s € [0,T]. As a result, we have

0=1i(s) € —mim(s) + mDy(x(s)) = mox(s) + 1Dy (z(s))

holds for almost every s € [0,T]. Together with the fact that (z(¢), m(t),v(t)) is absolutely continuous and
Dy is graph-closed and locally bounded, we have that

m(0) + ox(0) =0, 0€ Ds(z(0)) + ox(0) =D,y(z(0)).

But the above contradicts the condition that (z(0),m(0),v(0)) ¢ {(z,m
result, we can conclude that for any T > 0, whenever (z(0), m(0),v(0)) ¢
it holds that

,0) 1 0 € Dy(z),m+ox =0}. Asa
{(x,m,v) 0e Dg(a:),m+0x = 0}7

hz(T), m(T),v(T)) < h(z(0), m(0),v(0)).
This completes the proof. O

Proof of Proposition [3.21] From the uniform boundedness of {my}, {vi} and {gx} in Lemma and
Lemma and Assumption [3.15(4), we can conclude that limy oo [|myt1 — mi| + [Jvgs1 —vk] = 0.
Therefore, there exists a sequence of random variables {75} such that almost surely, limg_, . 7x = 0 holds
and |[me41 — mul| 4 v — vill < 7.

Then from the formulation of the framework (AFMDW)), the sequence {(x, mg, vx)} satisfies the following
inclusion
(Thg 1, Mit1, Vrg1) € (T, mp, vx) — MG (21, M, vr) — M1 (0, =71k 41, 0).

Then it directly follows from Assumption 4) and Proposition [2.3| that

%

lim sup =0.

5700 s<i<A(A+T)

(0, T1&k+1,0)
k=s

Therefore, we can conclude that the conditions (1) and (2) in Lemma hold. Moreover, condition (3)
in Lemma directly follows from Assumption [3.15)(1), Lemma and Lemma Therefore, from

Lemma [2.21} we can conclude that the interpolated process of {(xy,myg,vg)} is a perturbed solution for the
differential inclusion ([23). This completes the proof. O

Proof of Theorem [3.23 ~ From Proposition we can conclude that the interpolated process of
{(zk, mk,vi)} is a perturbed solution for the differential inclusion . Moreover, Proposition illustrates

27



Under review as submission to TMLR

that h is a Lyapunov function for the differential inclusion with stable set {(xz,m,v) € R" x R x R™ :
0 € Dy(x),m + ox = 0}. Then we can conclude that any cluster point of {(zy,my,vx)} lies in the set
{(x,m,v) e R" x R" x R" : 0 € Dy(z), m + ox = 0}, and the sequence {h(zj, my, vg)} converges.

Thus, we can conclude that any cluster point of {z} lies in the set {x € R : 0 € Dy(x)}, and any cluster
point of {(zx, my)} lies in {(z,m) € R" xR™ : oz +m = 0}. As a result, noting that {oxy +ms} is bounded
in R™, it holds that limg_, ||czx + mg| = 0. Furthermore, since

lim |A(xg, mg, v) — g(z)| < lim o, 4+ my|* =0,

k—o0 k—soco 2T11/€

we can deduce that the sequence {g(x)} converges. This completes the proof. O

Proof of Theorem . We first verify the validity of Assumption The definability of f; and Dy, implies
the definability of f and Dy, hence from (Bolte & Pauwels| 2021, Theorem 5), f is path-differentiable and
the set {f(z) : 0 € Dy(z)} is a finite subset of R. Additionally, Assumption 2) ensures the validity of
Assumption 2). This verifies the validity of Assumption

Moreover, let {Fi} be a sequence of o-algebras generated by {z;,d;,m; : j < k}, d = E[gx|Fi] and
&k+1 = gk — di. Then we can conclude that dj, € Dy(xy) and E[§41|Fi] = 0. Moreover, Assumption 2)
illustrates that there exists a constant My such that sup;cy), zern [|Pf(2)|| < My. Thus we can conclude
that supyg |lgxl] < My and supysg ||dk|| < M/ hold almost surely. Then supysq [|€x+1]] < 2M holds almost
surely. This verifies the validity of Assumption 3). -

Furthermore, from the update scheme in Step 5 of Algorithm (I, we can conclude that supysg [lvk| <
SUpPy>( Hg,%” < Mf2 This illustrates that Assumption 1) holds with ¢, = ﬁ and M, = % Therefore,

from Theorem we can conclude that any cluster point of the sequence {x}} is a Dy-stationary point of
g, and the sequence {g(xy)} converges. This completes the proof. O
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