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Abstract

The lack of sufficient information, mainly in
short texts, is a major challenge to building
effective sentiment models. Short texts can be
enriched with more complex semantic relation-
ships that can better capture affective informa-
tion, with a potential undesired side effect of
noise introduced into the data. In this work, we
propose a new strategy for customized dataset-
oriented sentiment analysis — CluSent — that
exploits a powerful, recently proposed concept
for representing semantically related words
— CluWords. CluSent tackles the issues men-
tioned above of information shortage and noise
by: (i) exploiting the semantic neighborhood of
a given pre-trained word embedding to enrich
document representation, and (ii) introducing
dataset-oriented filtering and weighting mecha-
nisms to cope with noise, which take advantage
of the polarity and intensity information from
lexicons. In our experimental evaluation, con-
sidering 19 datasets, 5 state-of-the-art baselines
(including modern transformer architectures)
and two metrics, CluSent was the best method
in 30 out of 38 possibilities, with significant
gains over the strongest baselines (over 14%).

1 Introduction

Sentiment analysis has been one of the most active
fields in NLP due to the value of revealing how
people feel about a particular product, service or
topic. Strategies for classifying sentiments can be
roughly divided into supervised and unsupervised.
While supervised strategies train robust classifica-
tion models using manually labeled training data
from the specific domain of interest, unsupervised
strategies exploit sentiment lexicons, combined
with grammar rules (negation, intensifiers) to infer
the class (positive or negative) associated with
a document. In this domain, lexicon limitations
such as the coverage problem affect the number
of words covered by these lexicons considering
the dataset vocabulary. Strategies to expand the

lexicon vocabulary can ameliorate the coverage
problem, but it is not easy to define universally
effective sentiment lexicons to cover words from
many different domains (Wang et al., 2020; Viegas
et al., 2020a). Supervised strategies usually
outperform unsupervised ones. This paper focuses
on supervised strategies, but we take full advantage
of the information in unsupervised lexicons to
build our novel solutions.

A challenging scenario to build effective
(supervised or unsupervised) sentiment models
is related to short texts due to their present lack
of sufficient information to measure the overall
sentiment of a document (Hu et al., 2009). To deal
with this problem, document enrichment strategies,
such as n-grams (a.k.a. Bag-of-n-grams) have
been adopted (Huang et al., 2018). These simple
models based on positional information cannot
capture complex semantic relationships among
terms, which have a large potential to determine
class assignments.  Recent strategies adopt
techniques to enrich the data representation and
deal with information shortage by capturing more
complex semantic relationships based on word
co-occurrence and contextual information. Exam-
ples include c-features (Figueiredo et al., 2011),
the use of word embeddings (Viegas et al., 2019)
and deep learning models based on Transformer
architectures (e.g., BERT (Devlin et al., 2018)).

An undesired side effect of such expan-
sion/enrichment strategies is the possibility of
the introduction of noise into the data. Semantic
noise may happen when: (i) the application
domain is distinct from the domain in which
the embeddings were created (e.g., when using
pre-trained embeddings) or (ii) a small training set
is used to train the embedding vector space. The
absence of (enough) training information makes
the vector space inaccurate in capturing semantic
information among words. In both scenarios, the
learned embedding models may not capture the



correct information about a word, especially for
infrequent words (Nooralahzadeh et al., 2018).
These potential problems are exacerbated in the
context of sentiment analysis due to the already
mentioned issues of information shortage. Given
the small number of terms in a message, especially
those carrying polarity information (necessary for
sentiment inference), a single erroneous expansion
or enrichment may completely change the polarity
of a phrase or a whole message.

In this context, our main contribution is the pro-
posal of a new solution for sentiment analysis —
CluSent — that exploits a powerful, recently pro-
posed concept — CluWords (Viegas et al., 2019) —
to tackle the aforementioned issues of information
shortage and noise. The main idea is to exploit
the similarity relationships between words on pre-
trained embeddings by expanding terms with their
closely related neighbors to improve both the occur-
rence and discriminative power of words in short
texts. The CluSent representation exploits the near-
est words of a given pre-trained word embedding to
generate “meta-words” to expand and enhance the
document representation in terms of syntactic and
semantic information. CluSent “s main hypothesis
is that by exploiting word embeddings similarities,
and mainly, by filtering out potential noise (i.e., ir-
relevant words from the cluster for sentiment infer-
ence) and by properly weighting them (in the case
of sentiment analysis, with the appropriate polarity
and intensities), we should be able to construct rich
word representations for the sake of sentiment anal-
ysis. In other words, by exploiting customized
dataset-oriented filtering and weighting mecha-
nisms, CluSent can deal with semantic noise from
pre-trained embeddings, especially for short texts.

We rely on sentiment lexicons to build and adapt
the filtering and weighting mechanisms to the sen-
timent analysis problem. To do this, we propose a
new TFIDEF-like representation that exploits polar-
ity and intensity, what we call T'F- AL. We use this
TF-AL concept as a filtering/weighting mech-
anism in the CluSent representation. The idea here
is to build cluster of words (a.k.a CluWord) of simi-
lar polarity and intensity, keeping only words of the
same Part-of-Speech (PoS) tagging into a CluWord,
e.g., only adjectives or nouns with the same polar-
ity and similar intensity would belong to the same
CluWord for this task. In sum, we exploit infor-
mation in the sentiment lexicon, i.e., polarity and
the lexicons’ intensity, to filter out words from a

CluWord. The intensity is also used as a weighting
measure for each CluWord, collaboratively with
the semantic information. All these innovations
are encapsulated into CluSent, our novel solution
for sentiment analysis, which, besides all that, also
incorporates a dynamic instantiation pipeline to
build dataset-oriented document representations.
In our experimental evaluation, comparing
CluSent with five strong state-of-the-art sentiment
analysis baselines in a large benchmark with 19
datasets, our solution achieved the best results in
30 out 38 possibilities (19 datasets considering
MacroF1 and MicroF1), with gains up to 14.21%
(ss_bbc), 7.60% (ss_digg) and 7.17% (ss_rw) com-
pared to the best baseline in each dataset, in terms
of MacroF1. To guarantee the reproducibility of
our solution, all the code, the documentation of
how to run it and datasets are available on github'.
To summarize, our main contributions include:
(i) the proposal of the CluSent method to build doc-
ument representations for sentiment analysis that
use information from multiple word embeddings;
(ii) the exploration of the powerful concept of Clu-
Words combined with sentiment lexicon s polarity
and intensity to tackle the problems of information
shortage and noise, commonly found in sentiment
analysis applications; (iii) the demonstration of
how to build and dynamically instantiate the
CluSent’s filtering (aiming at de-noising) and
weighting mechanisms by exploring polarity and
intensity information from unsupervised lexicons.

2 Related Work

We review the CluWords concept and the state-
of-the-art (SOTA) strategies in sentiment analysis
directly comparable to CluSent.  CluWords
correspond to clusters of semantically related
word embeddings (Mikolov et al., 2018) built
by employing distance functions’. CluWords
have been successfully applied in the realm of
topic modeling and hierarchical topic modeling
scenarios (Viegas et al., 2020b, 2019). One of our
main contributions in this paper is a proposal of
how to extend the Cluwords concept with dataset-
oriented and task-oriented filtering and weighting
mechanisms for specific applications, illustrating
these extensions in the sentiment analysis task.

"https://github.com/link — It will be available in the camera
ready version

2CluWords are not limited by any particular type of word
embedding or distance function, being flexible enough to ac-
commodate many options.
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BERT (Devlin et al., 2018) 3, is an end-to-end
deep learning classifier. The model is pre-trained
with a 3.3 billion word corpus. BERT predicts
missing words from a sentence using a multi-
layer bidirectional Transformer encoder whose
self-attention layer acts forward and backward.
SentiBERT (Yin et al., 2020) is a variant of BERT
that captures compositional sentiment semantics.
During training, SentiBERT exploits BERT to cap-
ture contextual information by masked language
modeling. Then, the model learns the composition
of meaning by predicting sentiment labels of the
phrase nodes. In our experiments, due to documen-
tation limitations and the unavailability of code
description, we were unable to evaluate the SentiB-
ERT as provided by its authors*. Thus, we include
BERT as a baseline. Based on the experiments
available in (Yin et al., 2020), SentiBERT presents
gains of 4% on average compared to BERT. As
we shall see, in our experimental evaluation (Sec-
tion 4), our proposed method achieved much higher
gains over BERT when compared to SentiBERT.

(Thongtan and Phienthrakul, 2019) proposed
NB-weighted-BON>, a method that trains docu-
ment embeddings using cosine similarity. The
Cosine similarity helped to reduce overfitting in
the embedding generation task. The generated
embeddings are combined with Naive Bayes
weighted bag-of-n-grams. In their experiments,
NB-weighted-BON showed improved results when
compared to strong baselines, including BERT. In
some comparative analyses, NB-weighted-BON is
the current state-of-the-art (best-known algorithm)
in several sentiment analysis benchmarks, such as
in sentiment analysis reviews®. We include it as
a baseline in our experiments.

In Socher et al. (Socher et al., 2013) the authors
proposed the Recursive Neural Tensor Network
(RNTN). RNTN uses a tree where each node
contains a word, its sentiment and associated label
(positive, negative, neutral, very positive and very
negative). The solution represents a sentence using
word vectors and an analysis tree. Given a new test
document, the tree of this document is generated
and compared (by similarity) with existing trees
in training set for predicting the respective label of
the test document. RNTN is a classical and popular

3 Available in https://github.com/yaserkl/
“https://github.com/DeepakDhana/SentiALBERT 1
Shitps://github.com/tanthongtan/dv-cosine
®https://paperswithcode.com/sota/
sentiment-analysis-on-imdb

neural method that explores several paradigms as
trees and similarities for sentiment analysis. It is
still used by many recent methods (Alissa et al.,
2021; Jin et al., 2021) as a “de facto” baseline to
surpass, given its good average results in general.
That is why we also exploit RNTN as a baseline.

In (Sachan et al., 2019), the authors proposed
the L-MIXED/ strategies that exploit a BILSTM
model with pre-trained embeddings. The idea is to
propose a training strategy that achieves higher ac-
curacy than more complex models without an extra
pretraining step. To do that, the authors explored
the applicability of semi-supervised learning (SSL),
where there is no previous pretraining step. The
authors also proposed a mixed objective function
for SSL that utilizes both labeled and unlabeled
data to improve the classification. L-MIXED is
the current SOTA solution (best-known method)
in several of the datasets used in our experiments,
so we include it as one of the strongest baselines.

Finallyy, KNN Expanded Lexicon (Viegas
et al., 2020a) is a recently proposed lexicon-based
method that exploits semantic information from
word embedding models to expand lexicon dictio-
naries. The method exploits a lexicon dictionary
(VADER lexicons) and word embeddings to map
the sentiment value of new lexicons (new words
that will be added in the lexicon dictionary). The
method uses a nearest neighbors approach to
infer the sentiment value of the new lexicons
(words with polarity and intensity). To predict the
polarity in sentence-level, the method exploited
the VADER'’s shell (Hutto and Gilbert, 2014).
The VADER shell is a method that implements
four general rules incorporating grammatical and
syntactic conventions (for the English language) to
express and emphasize the intensity of sentiments.
The shell exploits these rules and the lexicon to
compute a sentiment value for a sentence. Besides
highly effective (Viegas et al., 2020a), this method,
similarly to CluSent, exploits word embeddings
and distance-based neighborhoods. Therefore we
include kKNN Expanded Lexicon as a close recent
SOTA baseline in our experiments.

3 The CluSent Method

Conceptually, CluSent is built by applying three
generic steps to a given source text representation:
clustering, filtering, and weighting to build a richer
(more informative) representation for a textual

7 github.com/DevSinghSachan/ss]_text_classification
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Figure 1: Diagram showing the steps for building the CluSent representation.

collection. Figure 1 illustrates how CluSent rep-
resentation are instantiated for a given collection.
Each dot in the Figure represents an instantiation
of a method applied to compose the CluSent rep-
resentation. In a nutshell, CluSent exploits clusters
of semantically related word embeddings (Mikolov
et al., 2018) built through the application of
distance functions (first blue dot in Figure 1) and
filtering mechanisms (second and third-half dot in
Figure 1). More than simple groups of (filtered)
related words, CluSent is coupled with specific
weighting schemes® used to capture their impor-
tance to sentiment analysis tasks (purple dots in
Figure 1). In Section 3.1 we present the clustering
solution. Next, we describe (Section 3.2) the
CluSent’s part-of-speech filtering method followed
by (Section 3.3) the filtering and weighting steps
that exploit sentiment information and are used to
build the document representation (Section 3.4).

3.1 Clustering

Let W be the set of vectors representing each word
t in the dataset vocabulary (represented as V). Each
word ¢t € V has a corresponding vector u € W.
The semantic matrix in the Figure 1 is defined as
C e RVIXIVI where each dimension has the size
of the vocabulary (|V|), ¢’ represents the rows of
C while t represents the columns. Finally, each
index Cy ; is computed according to Eq. 1.

ifw(ug,ut) >«
otherwise,

Cu s :{ g M

where w(uy, ut) is the cosine similarity defined

8These weighting schemes combine the raw document
representation with relevant information, such as semantic
and/or lexicon information.

in Eq. 2 and « is a similarity threshold that acts
as a regularizer for the representation. Larger
values of « lead to sparser representations. In this
notation, each column ¢ of the semantic matrix C
will form a CluWord ¢ and each value of the matrix
Cy ¢ will receive the cosine similarity between the
vectors uy and uy in the embedding space W, if
it is greater than or equal to o . Otherwise, Cy ¢
receives zero, according to the Eq. 1.

Zi Ui - Utq
1 1
\/ > uf,i Y. > U

The vector (7; represents the semantic informa-
tion of a cluster of words (aka CluWord) ¢, and the
« value filters potential noisy words (i.e., words
that do not have a significant relationship with ¢).
Since threshold « is a cosine similarity value, it is
contained within the interval [0, 1]. If & = 0, the
similarities of every term in Vr are included in the
CluWord ¢. If o = 1 only the similarity of ¢ to itself
(i.e. w(uy,uy)) is included in CluWord ¢. Thus, the
appropriate selection of a value for parameter « is
an important aspect of generating “good” CluWord
t. Moreover, « controls the sparsity of the resulting
document representation. With high « values, only
a few CluWord terms relate to a document. This
representation is similar to the traditional BoW rep-
resentation, where the occurrence of a word in a
document determines whether that word will be
used in the document representation. With low «
values, more CluWord terms tend to be related to
the document, which reduces the sparsity of the
document representation. Note that once we select
an appropriate value for a, each CluWord ¢ keeps
the values of similarities of the terms most simi-
lar to t according to the criteria (e.g., context, co-

(@)

W(Ut/yut) =



occurrence) established by the word embeddings.

3.2 Part-of-Speech Filtering

Here we describe the part-of-speech filtering
mechanism used to smooth noise in the semantic
matrix C' € RIVI*VI This filter is used to remove
pairs of words that do not belong to the same gram-
matical group. Thus, this filter keeps in a neighbor-
hood of a CluWord ¢ (@) only terms (t') that have
a semantic similarity and share the same grammat-
ical group. The intuition is that, for the sake of
sentiment analysis, we want to keep adjectives that
are semantically similar to other adjectives, verbs
that are semantically similar to other verbs, same
for adverbs, and so on. We will analyze the impact
of this very conservative filter in our experiments.

Formally, the Part-of-Speech (PoS) filtering
method uses a function pos(.) to filter each
term t' of C_>'t that does not belong to the same
part-of-speech category of term ¢ (Equation 3). We
exploit the Spacy” part-of-speech tagger available
for the English language to build function pos(.).

Cy
Ct’,t:{ Ot,t

3.3 Sentiment Filtering and Weighting

if pos(t) = pos(t')
otherwise,

3

Many sentiment analysis approaches of a sen-
tence or document make use of a lexicon dictionary.
A lexicon is formed by a set of words tagged with
their respective sentiment value, consisting of a
number (within a defined range) that expresses
both: the words’ polarity (given by the number’s
sign) and intensity (given by number’s absolute
value). The intuition for the CluSent is to use infor-
mation from a lexicon dictionary as another filter
to remove semantic noise that can affect the quality
of the representation, especially in the sentiment
analysis scenario. Words with opposite polarities
may be co-located in the same neighborhood
of a CluWord ¢ since the semantic similarity of
embeddings correlated with positional, contextual,
and co-occurrence information does not take into
account the polarity of a word. Thus, words of op-
posite polarities may belong to the same CluWord.
Indeed this phenomenon has been observed in the
literature (Viegas et al., 2020a). We use this filter
to keep polarity consistency within a CluWord.
We go further and also exploit the lexicon’s word

*https://spacy.io

intensity as a weighting scheme to enhance the
semantic information within a CluWord.

More formally, the lexicon dictionary is
represented as £ = {(w1,v1,), -+, (Wi, Vi) }s
where w; is a word and v; is the sentiment value
of word w;, 1 < i < |L£]. The sentiment value v;
of a word w; expresses both word’s polarity and
intensity . The sentiment absolute values may vary
according to the lexicon used. In CluSent, we use
an expanded version of the VADER (Hutto and
Gilbert, 2014) lexical dictionary proposed in (Vie-
gas et al., 2020a), where the sentiment absolute
values range between (—4, 4). Given the semantic
matrix, C, the method exploits Equation 4 to filter
terms ¢’ of (/T: that does not share the same polarity
as term t. In addition, the sentiment value of the
term ¢ is used to weight the semantic value Cy 4.

if sign(vt) = sign(vy)
otherwise,

Cl X ’
Ct’,t = { Ot s X Ve 4

3.4 Building the CluSent Representation

This step is responsible for building the CluSent
representation (the last purple dot in Figure 1) is
defined as the product between the term-frequency
matrix and semantic matrix C'. The term-frequency
matrix (TF) can be represented as a TF €
RIPXWVI where each position T'Fy; relates to the
frequency of a word ¢ in document d. Thus, given
a CluSent (CS) term t for a document d, its data
representation corresponds to

CSqr=TFyxC, )

= .

where T Fy has the term-frequencies of document
—", .

d, and C; is the semantic scores for the term ¢.

4 Experiments

4.1 Textual datasets

To evaluate the quality of the proposed methods,
we adopt nineteen real-world textual datasets
gathered from various sources, such as the highly
popular SEMEVAL (semeval_tw) (Rosenthal
et al.,, 2019), stanford_tw (Go et al., 2009)
and Stanford Sentiment Treebank v2 (SST-2)'°
datasets. Besides those, we exploit 16 other
datasets with various news, reviews, and social
media domains with different characteristics, such
as class distribution, density, etc. These datasets
have high relevance for sentiment analysis, used

https://www.kaggle.com/atulanandjha/
stanford-sentiment-treebank-v2-sst2
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for instance, in a very popular benchmark of
unsupervised methods (Ribeiro et al., 2016) as
well as in highly cited papers such as (Hutto and
Gilbert, 2014). that proposed the VADER lexicon

Table 1 shows some characteristics of these 19
datasets. Each column depicts, respectively, the
dataset’s name, number of messages, number of
words, the average number of words (density) in
each message, and the number of positive and neg-
ative messages. As we can see, most of the datasets
are highly imbalanced, i.e., have a skewed distri-
bution increasing the bias towards the largest class.

Dataset #msgs #feat density #pos #neg
aisopos_tw 278 1,586 83.60 159 119
debate 1,979 4,179 86.49 730 1,249
narr_tw 1,227 4,002 74.76 739 488
pappas_ted 727 1,886 92.16 318 409
sanders_tw 1,091 3,601 97.08 519 572
ss_bbc 752 7,674 396.82 99 653
ss_digg 782 5,164 188.49 210 572
ss_myspace 834 2914 104.26 702 132
SS_IW 705 5,643 345.02 484 221
ss_twitter 2,289 8,835 94.19 1,340 949
ss_youtube 2,432 7,534 90.04 1,665 767
stanford_tw 359 1,746 81.62 182 177
semeval_tw 3,060 10,507 115.99 2,223 837
vader_amzn 3,610 5,039 88.54 2,128 1,482
vader_movie 10,568 17,759 111.67 5,242 5,326
vader_nyt 4,946 12,932 105.42 2,204 2,742

vader_tw 4,196 9,046 79.69 2,897 1,299
yelp_review 5,000 25,494 681.46 2,500 2,500
SST-2 68,221 14,583 53.17 38,013 30,208

Table 1: Dataset characteristics

4.2 Evaluation, Algorithms and Procedures

The effectiveness of the experiments was evaluated
using two standard text categorization measures:
MicroF'1l and MacroF1 (Lewis et al., 2004).
While MicroF'1 measures the classification ef-
fectiveness overall decisions, M acroF'1 measures
the classification effectiveness for each class and
averages them. MacroF1 is very suitable for
datasets with high imbalance as all classes have
the same importance in the measure.

All experiments were executed using a 5-fold
cross-validation procedure. All tuning parameters
for the baselines and our methods were discovered
in the validation partitions while the reported
results correspond to the average on the 5 test sets
of the folded cross-validation procedure.

We use as baselines popular and SOTA methods
such as RNTN, NB-weighted-BON+dv-cosine,
kNN Regression Expansion and L-MIXED, based
on their performance on public benchmarks. In
one of these benchmarks (Mabrouk et al., 2020),
L-MIXED produced the best-known results in
the literature in some of the tested datasets, being
considered a SOTA baseline in the field. We also
consider BERT as a solid baseline since it was sur-

passed only marginally (without statistical signif-
icance) by another recent SOTA baseline (SentiB-
ERT) which could not be used in our experiments
due to lack of code and reproducibility information
in the original paper. Finally, we also adopted the
kNN Regression Expansion, a recent and effective
sentiment analysis SOTA baseline especially
designed for short-text datasets, as is the case most
experimented datasets (Viegas et al., 2020a).

For BERT, we configured hyperparameters as
suggested by the authors (Devlin et al., 2018). We
performed a search for the best hyperparameters
following a trial-and-error process and the best set
for the remaining ones was chosen with fine-tuning
using nested cross-validation within the training
sets (batch size: 32, initial learning rate: Se-5,
max sequence length: 150 tokens, max patience:
5 epochs). For other baselines, we performed fine-
tuning according to the appropriate author’s scripts
in the source-code. For RNTN, the hyperparameter
word vector size, learning and mini-batch size
are adjusted with the AdaGrad algorithm, while
the activation function is hyperbolic tangent. For
NB-weighted-BON+dv-cosine and L-MIXED,
we used grid search to optimize the number of
iterations, learning rate and the regularization force.
For kNN Regression Expansion, we exploit the
pre-trained FastText embedding, and we performed
fine-tuning of neighbors according to the author’s
script in the source-code.

For CluSent, we consider the pre-trained Fast-
Text embedding '! to build the semantic matrix,
described in Section 3. FastText is essentially an
extension of the Word2Vec model, which treats
each word as composed of character n-grams, al-
lowing to (i) generate better word embeddings for
rare words, and (ii) construct word-vectors for a
word that does not appear in the training corpus.
Both improvements are not implemented in GloVE.

The o parameter (in Eq. 1 Section 3.1) is strictly
sensitive to the embedding space, being responsible
for controlling the CluSent’s density. The smaller
the alpha value, the greater the CluSent represen-
tation s density. A small alpha may increase the
noise in the CluSent representation, while a large
alpha may impoverish it. We adopted a percentile-
based strategy to select the 5% of word pairs with
the highest cosine similarity scores in the embed-
ding space. This process was performed empiri-

"https://dl.fbaipublicfiles.com/fasttext/vectors-english/
wiki-news-300d- 1M.vec.zip
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cally over the FastText embeddings.

We run nested cross-validation over the training
set to select the best CluSent instantiation for
each dataset. In other words, the choice of
whether to use the PosTagging filtering and the
TF-AL weighting and filtering mechanisms are
determined per dataset with nested-cross validation
in the training set. We exploit the Linear SVM
classifier in the CluSent, a top-notch method for
text classification that is even superior to neural
architectures such as BERT when faced with
information shortage (Cunha et al., 2021). The
regularization parameter was chosen among eleven
values from 275 to 2'® by using 5-fold nested
cross-validation within the training set.

We assess the statistical significance of our
results by exploiting a Two-way ANOVA test
with 95% confidence. This test assures that the
best results, marked with a green triangle (A), are
statistically superior to all others. Statistical ties
are represented as a yellow dot (+), while losses
are represented as red downward triangles (V).

4.3 Experimental Results

NB-weighted-BON

Dataset BERT .
+ dv-cosine

RNTN  L-MIXED KN Regression ¢y g,

aisopos_tw 86.73 84.74 63.63 83.58 82.95 87.74
debate 73.79 66.42 62.4 77.41 61.53 75.13
narr_tw 79.71 63.42 74.12 82.48 83.46 86.50

pappas_ted  73.52 74.85 63.42 77.64 65.43 78.82
sanders 78.07 76.29 68.02 80.47 69.81 80.37
ss_bbc 55.99 46.48 55.55 51.28 60.36 68.944
ss_digg 65.68 43.20 66.05 55.87 65.55 71.07A

ss_myspace 61.02 45.67 62.47 49.88 75.35 73.35

SS_IW 70.56 42.12 62.90 57.72 67.53 75.62A

ss_twitter 7221 55.99 68.17 74.81 73.94 75.44

ss_youtube 76.55 54.40 71.31 79.69 77.09 79.02

stanford_tw  75.70 72.88 77.52 79.54 81.41 77.07v

semeval_tw 74.09 48.60 68.92 68.37 75.52 76.51

vader_amzn 7148 62.85 69.33 73.89 62.49 71.94

vader_movie  78.09 76.59 75.31 82.63 64.59 75.11v

vader_nyt 65.56 53.19 60.92 66.92 66.00 65.56

vader_tw 81.92 61.23 71.67 82.53 89.25 89.63

yelp_review  94.08 93.30 74.33 94.59 62.46 92.36

SST-2 94.39 86.87 82.75 93.13 55.11 89.02v

Table 2: MacroF1 results. CluSent is the best method
(winning or tying) in 16 out of 19 datasets.

Table 2 shows the MacroF1 effectiveness results.
Best results in all datasets (including ties) are
marked in bold. As we can see, CluSent is the best
overall method — it outperforms the baselines with
three overall wins (statistically superior results
over all others A) and 13 ties in first (best) place
(), considering the 19 datasets. In other words,
CluSent was the best method in 16 out of 19 cases.
L-MIXED was the strongest baseline, with 12
ties, five losses and only two wins when directly
compared with CluSent. Remind that L-MIXED is
considered a solid SOTA baseline in public bench-
marks. BERT and kNN Regression Expansion
lost to CluSent in most cases (9 and 10 losses),
with nine and eight ties, respectively. BERT only

surpassed Clusent in SS7-2, tying with L-MIXED,
while KNN Regression outperformed CluSent
only in stanford_tw. In cases in which CluSent
outperformed the best baseline in each dataset, it
did by large margins, such as in ss_bbc with gains
of 14.21% over KNN Regression, 7.60% in ss_digg
over RNTN, and 7.17% in ss_rw over BERT.
Among the three CluSent’s losses, one was only
against L-MIXED (in vader_movie), stanford_tw
against L-MIXED and kNN Regression Expansion
and SST-2 against BERT and L-MIXED.

Figure 2 shows the effectiveness of the results in
terms of MicroF1. In this scenario, CluSent tied in
first place in 14 out of 19 cases, twelve of them with
L-MIXED, the strongest baseline in terms of Mi-
croF1. This result puts CluSent as the best overall
method along with L_MIXED, as detailed in Table
3. The slightly better CluSent’s MacroF1 results
when compared to MicroF1 may be due to the high
skewness (class imbalance) of some datasets (e.g.,
debate, ss_bbc, ss_myspace). When faced with in-
formation shortage, there is a tendency to increase
the classifier’s natural bias towards the largest class.
The CluSent semantic expansion helps counterbal-
ance this natural bias, making the classification
fairer to the minority class. This fact is better re-
flected in the MacroF1 scores. However, further
investigation of this hypothesis is necessary to con-
firm it. There is a room from improvements and fur-
ther analysis that will be discussed in the Section 5
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Figure 2: MicroF1 results. CluSent is the runner-up
method (winning or tying) in 14 out of 19 datasets.

To summarize the results we perform an analysis
using Fractional rankings to determine the most ef-
fective overall method across the multiple datasets.
In Fractional rankings, items that perform equally
(i..e, statistical ties) receive the same ranking num-
ber, which is the mean of the ranking they would
receive under ordinal rankings considering the ties.



Dataset  BERT b Weighted-BON - pupg g virxpp NN Regression ¢y g
+ dv-cosine E
aisopos_tw 2.0 2.0 55 4.0 55 2.0
debate 2.0 50 6.0 2.0 4.0 2.0
narr_tw 4.0 6.0 5.0 3.0 1.5 1.5
pappas_ted 3.0 4.0 6.0 1.5 5.0 1.5
sanders 2.0 4.0 6.0 2.0 5.0 2.0
ss_bbc 3.0 6.0 4.0 5.0 2.0 1.0
ss_digg 3.0 6.0 2.0 5.0 4.0 1.0
ss_myspace 4.0 6.0 3.0 5.0 1.5 1.5
SS_TW 2.0 6.0 4.0 5.0 3.0 1.0
ss_twitter 4.0 6.0 5.0 2.0 2.0 2.0
ss_youtube 25 6.0 5.0 25 25 2.5
stanford_tw 3.0 6.0 4.0 1.5 1.5 5.0
semeval_tw 2.0 6.0 4.0 5.0 2.0 2.0
vader_amzn 2.0 50 4.0 2.0 6.0 2.0
vader_movie 2.0 3.0 4.0 1.0 6.0 50
vader_nyt 25 6.0 5.0 25 25 2.5
vader_tw 4.0 6.0 50 3.0 L5 L5
yelp_review 25 25 5.0 2.5 6.0 2.5
SST-2 L5 4.0 5.0 L5 6.0 3.0
Aggr. i 52.0 95.5 87.5 56.0 67.5 415

Table 3: Fractional Rank for MacroF1 results. CluSent
is the best overall method in the Aggregated Ranking.

In our scenario, we rank each method for each
dataset based on the MacroF1 score and the sta-
tistical tests. As mentioned, ties receive the same
rank position. Table 3 shows the fractional ranking
for the MacroF1 results, and, the last row, called
Aggregated (Aggr.) Ranking, is the ranking sum-
mation of all datasets’ rankings for each method.
For instance, in ss_bbc, ss _digg and ss_rw where
CluSent is the sole best method with no tie, it re-
ceives a ranking of 1 while in narr_tw, pappas_ted,
ss_myspace, and vader_tw, where Clusent ties as
the best method with another baseline, it receives a
ranking of 1.5 (Rank: 1.5, 1.5, 3, ....).

As it can be seen in the Aggregated Ranking,
CluSent is by far the best overall method (lowest
aggregated ranking: 41.5) considering the 19
datasets, with BERT coming in a distant second
place (Aggr. ranking: 52.0). This analysis empha-
sizes CluSent “s consistency across many different
domains, captured by the different datasets.

4.4 Difficult cases solved by CluSent

As an example of a problematic case that CluSent
can handle and other methods can not, in ss_bbc,
the raw negative document “that’s why the meeting
may well be just a joke” has been misclassified by
CluSent’s base classifier (Linear SVM). CluSent
expanded the original document representation
into a vector with 47 non-zero new dimensions
related to the semantic neighborhood, including
new words such as “silly” and “apology”. This
information combined with the weighting step
allowed it to correct the misclassification.
Another example in the same dataset is the
document “Science once again ignored by the main-
stream so they can continue to collect dollars with
marketing of the green business agenda.”. Compar-

ing the CluSent with Linear SVM, we observe that
CluSent added more negative information, such as
“abandoned”, “blinded”, and “blurred”. The filters
also removed positive words in the same neigh-
borhood, i.e., no positive words were added. Both
actions helped to correct SVM’s misclassification.

4.5 Complexity of CluSent

The complexity of building the clustering step (Sec-
tion 3.1) is basically the nearest neighbor search,
which can be exploited by using the fast approx-
imate nearest neighbor search (HNSW) (Malkov
and Yashunin, 2018) with complexity of O(logN).
The CluSent’s steps described in Sections 3.2
and 3.3 are search terms in a sparse matrix
(RIPIXIV]y representation, and the complexity of
those searches are O(N N Z), where NNZ repre-
sents the non-zero values. Finally, the complexity
of Section 3.4 is the matrix multiplication (1T Fy X
C_’;) in the Eq. 5). Since both matrices are sparse,
the complexity is O (NN Z(TE)NNZ(C,)/|V|)
in average, where || is the size of the vocabulary.

5 Conclusion

We proposed a new solution for sentiment analysis
— CluSent — that exploits semantic expansion and
tackles information shortage and noise issues.
CluSent representation is built by a dynamic
pipeline of instantiations to build dataset-oriented
document representations. It combines supervised
and unsupervised solutions, taking advantage
of external information from word embeddings
and unsupervised lexicons. CluSent generalizes
and expands the CluWords concept to sentiment
analysis in a dataset-oriented manner. Indeed,
our proposed novel framework can be adapted
to different NLP tasks/applications and the
idiosyncrasies of each dataset by turning on/off its
steps. In our experiments, CluSent outperformed
the evaluated baselines in 30 out of 38 possibilities,
excelling in a Fractional Ranking aggregated
analysis, with gains of more than 14% against
some of the strongest baselines. As future work,
we will exploit CluSent in other classification tasks,
perform a quantitative analysis of the impact of our
solution’s components, and combine CluSent with
attention models and contextual embeddings (e.g.,
BERT’s) that capture other contextual aspects of
words, also aiming at explainability.
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