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Abstract

The lack of sufficient information, mainly in001
short texts, is a major challenge to building002
effective sentiment models. Short texts can be003
enriched with more complex semantic relation-004
ships that can better capture affective informa-005
tion, with a potential undesired side effect of006
noise introduced into the data. In this work, we007
propose a new strategy for customized dataset-008
oriented sentiment analysis – CluSent – that009
exploits a powerful, recently proposed concept010
for representing semantically related words011
– CluWords. CluSent tackles the issues men-012
tioned above of information shortage and noise013
by: (i) exploiting the semantic neighborhood of014
a given pre-trained word embedding to enrich015
document representation, and (ii) introducing016
dataset-oriented filtering and weighting mecha-017
nisms to cope with noise, which take advantage018
of the polarity and intensity information from019
lexicons. In our experimental evaluation, con-020
sidering 19 datasets, 5 state-of-the-art baselines021
(including modern transformer architectures)022
and two metrics, CluSent was the best method023
in 30 out of 38 possibilities, with significant024
gains over the strongest baselines (over 14%).025

1 Introduction026

Sentiment analysis has been one of the most active027

fields in NLP due to the value of revealing how028

people feel about a particular product, service or029

topic. Strategies for classifying sentiments can be030

roughly divided into supervised and unsupervised.031

While supervised strategies train robust classifica-032

tion models using manually labeled training data033

from the specific domain of interest, unsupervised034

strategies exploit sentiment lexicons, combined035

with grammar rules (negation, intensifiers) to infer036

the class (positive or negative) associated with037

a document. In this domain, lexicon limitations038

such as the coverage problem affect the number039

of words covered by these lexicons considering040

the dataset vocabulary. Strategies to expand the041

lexicon vocabulary can ameliorate the coverage 042

problem, but it is not easy to define universally 043

effective sentiment lexicons to cover words from 044

many different domains (Wang et al., 2020; Viegas 045

et al., 2020a). Supervised strategies usually 046

outperform unsupervised ones. This paper focuses 047

on supervised strategies, but we take full advantage 048

of the information in unsupervised lexicons to 049

build our novel solutions. 050

A challenging scenario to build effective 051

(supervised or unsupervised) sentiment models 052

is related to short texts due to their present lack 053

of sufficient information to measure the overall 054

sentiment of a document (Hu et al., 2009). To deal 055

with this problem, document enrichment strategies, 056

such as n-grams (a.k.a. Bag-of-n-grams) have 057

been adopted (Huang et al., 2018). These simple 058

models based on positional information cannot 059

capture complex semantic relationships among 060

terms, which have a large potential to determine 061

class assignments. Recent strategies adopt 062

techniques to enrich the data representation and 063

deal with information shortage by capturing more 064

complex semantic relationships based on word 065

co-occurrence and contextual information. Exam- 066

ples include c-features (Figueiredo et al., 2011), 067

the use of word embeddings (Viegas et al., 2019) 068

and deep learning models based on Transformer 069

architectures (e.g., BERT (Devlin et al., 2018)). 070

An undesired side effect of such expan- 071

sion/enrichment strategies is the possibility of 072

the introduction of noise into the data. Semantic 073

noise may happen when: (i) the application 074

domain is distinct from the domain in which 075

the embeddings were created (e.g., when using 076

pre-trained embeddings) or (ii) a small training set 077

is used to train the embedding vector space. The 078

absence of (enough) training information makes 079

the vector space inaccurate in capturing semantic 080

information among words. In both scenarios, the 081

learned embedding models may not capture the 082
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correct information about a word, especially for083

infrequent words (Nooralahzadeh et al., 2018).084

These potential problems are exacerbated in the085

context of sentiment analysis due to the already086

mentioned issues of information shortage. Given087

the small number of terms in a message, especially088

those carrying polarity information (necessary for089

sentiment inference), a single erroneous expansion090

or enrichment may completely change the polarity091

of a phrase or a whole message.092

In this context, our main contribution is the pro-093

posal of a new solution for sentiment analysis –094

CluSent – that exploits a powerful, recently pro-095

posed concept – CluWords (Viegas et al., 2019) –096

to tackle the aforementioned issues of information097

shortage and noise. The main idea is to exploit098

the similarity relationships between words on pre-099

trained embeddings by expanding terms with their100

closely related neighbors to improve both the occur-101

rence and discriminative power of words in short102

texts. The CluSent representation exploits the near-103

est words of a given pre-trained word embedding to104

generate “meta-words” to expand and enhance the105

document representation in terms of syntactic and106

semantic information. CluSent´s main hypothesis107

is that by exploiting word embeddings similarities,108

and mainly, by filtering out potential noise (i.e., ir-109

relevant words from the cluster for sentiment infer-110

ence) and by properly weighting them (in the case111

of sentiment analysis, with the appropriate polarity112

and intensities), we should be able to construct rich113

word representations for the sake of sentiment anal-114

ysis. In other words, by exploiting customized115

dataset-oriented filtering and weighting mecha-116

nisms, CluSent can deal with semantic noise from117

pre-trained embeddings, especially for short texts.118

We rely on sentiment lexicons to build and adapt119

the filtering and weighting mechanisms to the sen-120

timent analysis problem. To do this, we propose a121

new TFIDF-like representation that exploits polar-122

ity and intensity, what we call TF -AL. We use this123

TF -AL concept as a filtering/weighting mech-124

anism in the CluSent representation. The idea here125

is to build cluster of words (a.k.a CluWord) of simi-126

lar polarity and intensity, keeping only words of the127

same Part-of-Speech (PoS) tagging into a CluWord,128

e.g., only adjectives or nouns with the same polar-129

ity and similar intensity would belong to the same130

CluWord for this task. In sum, we exploit infor-131

mation in the sentiment lexicon, i.e., polarity and132

the lexicons’ intensity, to filter out words from a133

CluWord. The intensity is also used as a weighting 134

measure for each CluWord, collaboratively with 135

the semantic information. All these innovations 136

are encapsulated into CluSent, our novel solution 137

for sentiment analysis, which, besides all that, also 138

incorporates a dynamic instantiation pipeline to 139

build dataset-oriented document representations. 140

In our experimental evaluation, comparing 141

CluSent with five strong state-of-the-art sentiment 142

analysis baselines in a large benchmark with 19 143

datasets, our solution achieved the best results in 144

30 out 38 possibilities (19 datasets considering 145

MacroF1 and MicroF1), with gains up to 14.21% 146

(ss_bbc), 7.60% (ss_digg) and 7.17% (ss_rw) com- 147

pared to the best baseline in each dataset, in terms 148

of MacroF1. To guarantee the reproducibility of 149

our solution, all the code, the documentation of 150

how to run it and datasets are available on github1. 151

To summarize, our main contributions include: 152

(i) the proposal of the CluSent method to build doc- 153

ument representations for sentiment analysis that 154

use information from multiple word embeddings; 155

(ii) the exploration of the powerful concept of Clu- 156

Words combined with sentiment lexicon´s polarity 157

and intensity to tackle the problems of information 158

shortage and noise, commonly found in sentiment 159

analysis applications; (iii) the demonstration of 160

how to build and dynamically instantiate the 161

CluSent’s filtering (aiming at de-noising) and 162

weighting mechanisms by exploring polarity and 163

intensity information from unsupervised lexicons. 164

2 Related Work 165

We review the CluWords concept and the state- 166

of-the-art (SOTA) strategies in sentiment analysis 167

directly comparable to CluSent. CluWords 168

correspond to clusters of semantically related 169

word embeddings (Mikolov et al., 2018) built 170

by employing distance functions2. CluWords 171

have been successfully applied in the realm of 172

topic modeling and hierarchical topic modeling 173

scenarios (Viegas et al., 2020b, 2019). One of our 174

main contributions in this paper is a proposal of 175

how to extend the Cluwords concept with dataset- 176

oriented and task-oriented filtering and weighting 177

mechanisms for specific applications, illustrating 178

these extensions in the sentiment analysis task. 179

1https://github.com/link – It will be available in the camera
ready version

2CluWords are not limited by any particular type of word
embedding or distance function, being flexible enough to ac-
commodate many options.
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BERT (Devlin et al., 2018) 3, is an end-to-end180

deep learning classifier. The model is pre-trained181

with a 3.3 billion word corpus. BERT predicts182

missing words from a sentence using a multi-183

layer bidirectional Transformer encoder whose184

self-attention layer acts forward and backward.185

SentiBERT (Yin et al., 2020) is a variant of BERT186

that captures compositional sentiment semantics.187

During training, SentiBERT exploits BERT to cap-188

ture contextual information by masked language189

modeling. Then, the model learns the composition190

of meaning by predicting sentiment labels of the191

phrase nodes. In our experiments, due to documen-192

tation limitations and the unavailability of code193

description, we were unable to evaluate the SentiB-194

ERT as provided by its authors4. Thus, we include195

BERT as a baseline. Based on the experiments196

available in (Yin et al., 2020), SentiBERT presents197

gains of 4% on average compared to BERT. As198

we shall see, in our experimental evaluation (Sec-199

tion 4), our proposed method achieved much higher200

gains over BERT when compared to SentiBERT.201

(Thongtan and Phienthrakul, 2019) proposed202

NB-weighted-BON5, a method that trains docu-203

ment embeddings using cosine similarity. The204

Cosine similarity helped to reduce overfitting in205

the embedding generation task. The generated206

embeddings are combined with Naive Bayes207

weighted bag-of-n-grams. In their experiments,208

NB-weighted-BON showed improved results when209

compared to strong baselines, including BERT. In210

some comparative analyses, NB-weighted-BON is211

the current state-of-the-art (best-known algorithm)212

in several sentiment analysis benchmarks, such as213

in sentiment analysis reviews6. We include it as214

a baseline in our experiments.215

In Socher et al. (Socher et al., 2013) the authors216

proposed the Recursive Neural Tensor Network217

(RNTN). RNTN uses a tree where each node218

contains a word, its sentiment and associated label219

(positive, negative, neutral, very positive and very220

negative). The solution represents a sentence using221

word vectors and an analysis tree. Given a new test222

document, the tree of this document is generated223

and compared (by similarity) with existing trees224

in training set for predicting the respective label of225

the test document. RNTN is a classical and popular226

3Available in https://github.com/yaserkl/
4https://github.com/DeepakDhana/SentiALBERT1
5https://github.com/tanthongtan/dv-cosine
6https://paperswithcode.com/sota/

sentiment-analysis-on-imdb

neural method that explores several paradigms as 227

trees and similarities for sentiment analysis. It is 228

still used by many recent methods (Alissa et al., 229

2021; Jin et al., 2021) as a “de facto” baseline to 230

surpass, given its good average results in general. 231

That is why we also exploit RNTN as a baseline. 232

In (Sachan et al., 2019), the authors proposed 233

the L-MIXED7 strategies that exploit a BiLSTM 234

model with pre-trained embeddings. The idea is to 235

propose a training strategy that achieves higher ac- 236

curacy than more complex models without an extra 237

pretraining step. To do that, the authors explored 238

the applicability of semi-supervised learning (SSL), 239

where there is no previous pretraining step. The 240

authors also proposed a mixed objective function 241

for SSL that utilizes both labeled and unlabeled 242

data to improve the classification. L-MIXED is 243

the current SOTA solution (best-known method) 244

in several of the datasets used in our experiments, 245

so we include it as one of the strongest baselines. 246

Finally, kNN Expanded Lexicon (Viegas 247

et al., 2020a) is a recently proposed lexicon-based 248

method that exploits semantic information from 249

word embedding models to expand lexicon dictio- 250

naries. The method exploits a lexicon dictionary 251

(VADER lexicons) and word embeddings to map 252

the sentiment value of new lexicons (new words 253

that will be added in the lexicon dictionary). The 254

method uses a nearest neighbors approach to 255

infer the sentiment value of the new lexicons 256

(words with polarity and intensity). To predict the 257

polarity in sentence-level, the method exploited 258

the VADER’s shell (Hutto and Gilbert, 2014). 259

The VADER shell is a method that implements 260

four general rules incorporating grammatical and 261

syntactic conventions (for the English language) to 262

express and emphasize the intensity of sentiments. 263

The shell exploits these rules and the lexicon to 264

compute a sentiment value for a sentence. Besides 265

highly effective (Viegas et al., 2020a), this method, 266

similarly to CluSent, exploits word embeddings 267

and distance-based neighborhoods. Therefore we 268

include kNN Expanded Lexicon as a close recent 269

SOTA baseline in our experiments. 270

3 The CluSent Method 271

Conceptually, CluSent is built by applying three 272

generic steps to a given source text representation: 273

clustering, filtering, and weighting to build a richer 274

(more informative) representation for a textual 275

7github.com/DevSinghSachan/ssl_text_classification
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Figure 1: Diagram showing the steps for building the CluSent representation.

collection. Figure 1 illustrates how CluSent rep-276

resentation are instantiated for a given collection.277

Each dot in the Figure represents an instantiation278

of a method applied to compose the CluSent rep-279

resentation. In a nutshell, CluSent exploits clusters280

of semantically related word embeddings (Mikolov281

et al., 2018) built through the application of282

distance functions (first blue dot in Figure 1) and283

filtering mechanisms (second and third-half dot in284

Figure 1). More than simple groups of (filtered)285

related words, CluSent is coupled with specific286

weighting schemes8 used to capture their impor-287

tance to sentiment analysis tasks (purple dots in288

Figure 1). In Section 3.1 we present the clustering289

solution. Next, we describe (Section 3.2) the290

CluSent’s part-of-speech filtering method followed291

by (Section 3.3) the filtering and weighting steps292

that exploit sentiment information and are used to293

build the document representation (Section 3.4).294

3.1 Clustering295

Let W be the set of vectors representing each word296

t in the dataset vocabulary (represented as V). Each297

word t ∈ V has a corresponding vector u ∈ W .298

The semantic matrix in the Figure 1 is defined as299

C ∈ R|V|×|V|, where each dimension has the size300

of the vocabulary (|V|), t′ represents the rows of301

C while t represents the columns. Finally, each302

index Ct′,t is computed according to Eq. 1.303

Ct′,t =

{
ω(ut′ , ut) if ω(ut′ , ut) ≥ α
0 otherwise, (1)304

where ω(ut′ , ut) is the cosine similarity defined305

8These weighting schemes combine the raw document
representation with relevant information, such as semantic
and/or lexicon information.

in Eq. 2 and α is a similarity threshold that acts 306

as a regularizer for the representation. Larger 307

values of α lead to sparser representations. In this 308

notation, each column t of the semantic matrix C 309

will form a CluWord t and each value of the matrix 310

Ct′,t will receive the cosine similarity between the 311

vectors ut′ and ut in the embedding space W , if 312

it is greater than or equal to α . Otherwise, Ct′,t 313

receives zero, according to the Eq. 1. 314

ω(ut′ , ut) =

∑l
i ut′i · uti√∑l

i u
2
t′i ·

√∑l
i u

2
ti

(2) 315

The vector −→C,t represents the semantic informa- 316

tion of a cluster of words (aka CluWord) t, and the 317

α value filters potential noisy words (i.e., words 318

that do not have a significant relationship with t). 319

Since threshold α is a cosine similarity value, it is 320

contained within the interval [0, 1]. If α = 0, the 321

similarities of every term in VT are included in the 322

CluWord t. If α = 1 only the similarity of t to itself 323

(i.e. ω(ut′ , ut)) is included in CluWord t. Thus, the 324

appropriate selection of a value for parameter α is 325

an important aspect of generating “good” CluWord 326

t. Moreover, α controls the sparsity of the resulting 327

document representation. With high α values, only 328

a few CluWord terms relate to a document. This 329

representation is similar to the traditional BoW rep- 330

resentation, where the occurrence of a word in a 331

document determines whether that word will be 332

used in the document representation. With low α 333

values, more CluWord terms tend to be related to 334

the document, which reduces the sparsity of the 335

document representation. Note that once we select 336

an appropriate value for α, each CluWord t keeps 337

the values of similarities of the terms most simi- 338

lar to t according to the criteria (e.g., context, co- 339
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occurrence) established by the word embeddings.340

3.2 Part-of-Speech Filtering341

342

Here we describe the part-of-speech filtering343

mechanism used to smooth noise in the semantic344

matrix C ∈ R|V|×|V|. This filter is used to remove345

pairs of words that do not belong to the same gram-346

matical group. Thus, this filter keeps in a neighbor-347

hood of a CluWord t (−→C,t) only terms (t′) that have348

a semantic similarity and share the same grammat-349

ical group. The intuition is that, for the sake of350

sentiment analysis, we want to keep adjectives that351

are semantically similar to other adjectives, verbs352

that are semantically similar to other verbs, same353

for adverbs, and so on. We will analyze the impact354

of this very conservative filter in our experiments.355

Formally, the Part-of-Speech (PoS) filtering356

method uses a function pos(.) to filter each357

term t′ of −→
C,t that does not belong to the same358

part-of-speech category of term t (Equation 3). We359

exploit the Spacy9 part-of-speech tagger available360

for the English language to build function pos(.).361

Ct′,t =

{
Ct′,t if pos(t) = pos(t′)
0 otherwise, (3)362

3.3 Sentiment Filtering and Weighting363

364

Many sentiment analysis approaches of a sen-365

tence or document make use of a lexicon dictionary.366

A lexicon is formed by a set of words tagged with367

their respective sentiment value, consisting of a368

number (within a defined range) that expresses369

both: the words’ polarity (given by the number’s370

sign) and intensity (given by number’s absolute371

value). The intuition for the CluSent is to use infor-372

mation from a lexicon dictionary as another filter373

to remove semantic noise that can affect the quality374

of the representation, especially in the sentiment375

analysis scenario. Words with opposite polarities376

may be co-located in the same neighborhood377

of a CluWord t since the semantic similarity of378

embeddings correlated with positional, contextual,379

and co-occurrence information does not take into380

account the polarity of a word. Thus, words of op-381

posite polarities may belong to the same CluWord.382

Indeed this phenomenon has been observed in the383

literature (Viegas et al., 2020a). We use this filter384

to keep polarity consistency within a CluWord.385

We go further and also exploit the lexicon’s word386

9https://spacy.io

intensity as a weighting scheme to enhance the 387

semantic information within a CluWord. 388

More formally, the lexicon dictionary is 389

represented as L = {⟨w1, v1, ⟩, · · · , ⟨w|L|, v|L|⟩}, 390

where wi is a word and vi is the sentiment value 391

of word wi, 1 ≤ i ≤ |L|. The sentiment value vi 392

of a word wi expresses both word’s polarity and 393

intensity . The sentiment absolute values may vary 394

according to the lexicon used. In CluSent, we use 395

an expanded version of the VADER (Hutto and 396

Gilbert, 2014) lexical dictionary proposed in (Vie- 397

gas et al., 2020a), where the sentiment absolute 398

values range between (−4, 4). Given the semantic 399

matrix, C, the method exploits Equation 4 to filter 400

terms t′ of −→C,t that does not share the same polarity 401

as term t. In addition, the sentiment value of the 402

term t′ is used to weight the semantic value Ct′,t. 403

Ct′,t =

{
Ct′,t × vt′ if sign(vt) = sign(vt′)
0 otherwise, (4) 404

3.4 Building the CluSent Representation 405

This step is responsible for building the CluSent 406

representation (the last purple dot in Figure 1) is 407

defined as the product between the term-frequency 408

matrix and semantic matrix C. The term-frequency 409

matrix (TF ) can be represented as a TF ∈ 410

R|D|×|V|, where each position TFd,t relates to the 411

frequency of a word t in document d. Thus, given 412

a CluSent (CS) term t for a document d, its data 413

representation corresponds to 414

CSd,t =
−−→
TFd ×−→

C,t (5) 415

where −−→
TFd has the term-frequencies of document 416

d, and −→
C,t is the semantic scores for the term t. 417

4 Experiments 418

4.1 Textual datasets 419

To evaluate the quality of the proposed methods, 420

we adopt nineteen real-world textual datasets 421

gathered from various sources, such as the highly 422

popular SEMEVAL (semeval_tw) (Rosenthal 423

et al., 2019), stanford_tw (Go et al., 2009) 424

and Stanford Sentiment Treebank v2 (SST-2)10 425

datasets. Besides those, we exploit 16 other 426

datasets with various news, reviews, and social 427

media domains with different characteristics, such 428

as class distribution, density, etc. These datasets 429

have high relevance for sentiment analysis, used 430

10https://www.kaggle.com/atulanandjha/
stanford-sentiment-treebank-v2-sst2
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for instance, in a very popular benchmark of431

unsupervised methods (Ribeiro et al., 2016) as432

well as in highly cited papers such as (Hutto and433

Gilbert, 2014). that proposed the VADER lexicon434

Table 1 shows some characteristics of these 19435

datasets. Each column depicts, respectively, the436

dataset’s name, number of messages, number of437

words, the average number of words (density) in438

each message, and the number of positive and neg-439

ative messages. As we can see, most of the datasets440

are highly imbalanced, i.e., have a skewed distri-441

bution increasing the bias towards the largest class.442

Dataset #msgs #feat density #pos #neg
aisopos_tw 278 1,586 83.60 159 119

debate 1,979 4,179 86.49 730 1,249
narr_tw 1,227 4,002 74.76 739 488

pappas_ted 727 1,886 92.16 318 409
sanders_tw 1,091 3,601 97.08 519 572

ss_bbc 752 7,674 396.82 99 653
ss_digg 782 5,164 188.49 210 572

ss_myspace 834 2,914 104.26 702 132
ss_rw 705 5,643 345.02 484 221

ss_twitter 2,289 8,835 94.19 1,340 949
ss_youtube 2,432 7,534 90.04 1,665 767
stanford_tw 359 1,746 81.62 182 177
semeval_tw 3,060 10,507 115.99 2,223 837
vader_amzn 3,610 5,039 88.54 2,128 1,482
vader_movie 10,568 17,759 111.67 5,242 5,326

vader_nyt 4,946 12,932 105.42 2,204 2,742
vader_tw 4,196 9,046 79.69 2,897 1,299

yelp_review 5,000 25,494 681.46 2,500 2,500
SST-2 68,221 14,583 53.17 38,013 30,208

Table 1: Dataset characteristics

4.2 Evaluation, Algorithms and Procedures443

The effectiveness of the experiments was evaluated444

using two standard text categorization measures:445

MicroF1 and MacroF1 (Lewis et al., 2004).446

While MicroF1 measures the classification ef-447

fectiveness overall decisions, MacroF1 measures448

the classification effectiveness for each class and449

averages them. MacroF1 is very suitable for450

datasets with high imbalance as all classes have451

the same importance in the measure.452

All experiments were executed using a 5-fold453

cross-validation procedure. All tuning parameters454

for the baselines and our methods were discovered455

in the validation partitions while the reported456

results correspond to the average on the 5 test sets457

of the folded cross-validation procedure.458

We use as baselines popular and SOTA methods459

such as RNTN, NB-weighted-BON+dv-cosine,460

kNN Regression Expansion and L-MIXED, based461

on their performance on public benchmarks. In462

one of these benchmarks (Mabrouk et al., 2020),463

L-MIXED produced the best-known results in464

the literature in some of the tested datasets, being465

considered a SOTA baseline in the field. We also466

consider BERT as a solid baseline since it was sur-467

passed only marginally (without statistical signif- 468

icance) by another recent SOTA baseline (SentiB- 469

ERT) which could not be used in our experiments 470

due to lack of code and reproducibility information 471

in the original paper. Finally, we also adopted the 472

kNN Regression Expansion, a recent and effective 473

sentiment analysis SOTA baseline especially 474

designed for short-text datasets, as is the case most 475

experimented datasets (Viegas et al., 2020a). 476

For BERT, we configured hyperparameters as 477

suggested by the authors (Devlin et al., 2018). We 478

performed a search for the best hyperparameters 479

following a trial-and-error process and the best set 480

for the remaining ones was chosen with fine-tuning 481

using nested cross-validation within the training 482

sets (batch size: 32, initial learning rate: 5e-5, 483

max sequence length: 150 tokens, max patience: 484

5 epochs). For other baselines, we performed fine- 485

tuning according to the appropriate author’s scripts 486

in the source-code. For RNTN, the hyperparameter 487

word vector size, learning and mini-batch size 488

are adjusted with the AdaGrad algorithm, while 489

the activation function is hyperbolic tangent. For 490

NB-weighted-BON+dv-cosine and L-MIXED, 491

we used grid search to optimize the number of 492

iterations, learning rate and the regularization force. 493

For kNN Regression Expansion, we exploit the 494

pre-trained FastText embedding, and we performed 495

fine-tuning of neighbors according to the author’s 496

script in the source-code. 497

For CluSent, we consider the pre-trained Fast- 498

Text embedding 11 to build the semantic matrix, 499

described in Section 3. FastText is essentially an 500

extension of the Word2Vec model, which treats 501

each word as composed of character n-grams, al- 502

lowing to (i) generate better word embeddings for 503

rare words, and (ii) construct word-vectors for a 504

word that does not appear in the training corpus. 505

Both improvements are not implemented in GloVE. 506

The α parameter (in Eq. 1 Section 3.1) is strictly 507

sensitive to the embedding space, being responsible 508

for controlling the CluSent’s density. The smaller 509

the alpha value, the greater the CluSent represen- 510

tation´s density. A small alpha may increase the 511

noise in the CluSent representation, while a large 512

alpha may impoverish it. We adopted a percentile- 513

based strategy to select the 5% of word pairs with 514

the highest cosine similarity scores in the embed- 515

ding space. This process was performed empiri- 516

11https://dl.fbaipublicfiles.com/fasttext/vectors-english/
wiki-news-300d-1M.vec.zip
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cally over the FastText embeddings.517

We run nested cross-validation over the training518

set to select the best CluSent instantiation for519

each dataset. In other words, the choice of520

whether to use the PosTagging filtering and the521

TF-AL weighting and filtering mechanisms are522

determined per dataset with nested-cross validation523

in the training set. We exploit the Linear SVM524

classifier in the CluSent, a top-notch method for525

text classification that is even superior to neural526

architectures such as BERT when faced with527

information shortage (Cunha et al., 2021). The528

regularization parameter was chosen among eleven529

values from 2−5 to 215 by using 5-fold nested530

cross-validation within the training set.531

We assess the statistical significance of our532

results by exploiting a Two-way ANOVA test533

with 95% confidence. This test assures that the534

best results, marked with a green triangle (▲), are535

statistically superior to all others. Statistical ties536

are represented as a yellow dot (•), while losses537

are represented as red downward triangles (▼).538

4.3 Experimental Results539

Dataset BERT NB-weighted-BON RNTN L-MIXED kNN Regression CluSent+ dv-cosine Expansion
aisopos_tw 86.73 84.74 63.63 83.58 82.95 87.74•

debate 73.79 66.42 62.4 77.41 61.53 75.13•
narr_tw 79.71 63.42 74.12 82.48 83.46 86.50•

pappas_ted 73.52 74.85 63.42 77.64 65.43 78.82•
sanders 78.07 76.29 68.02 80.47 69.81 80.37•
ss_bbc 55.99 46.48 55.55 51.28 60.36 68.94▲
ss_digg 65.68 43.20 66.05 55.87 65.55 71.07▲

ss_myspace 61.02 45.67 62.47 49.88 75.35 73.35•
ss_rw 70.56 42.12 62.90 57.72 67.53 75.62▲

ss_twitter 72.21 55.99 68.17 74.81 73.94 75.44•
ss_youtube 76.55 54.40 71.31 79.69 77.09 79.02•
stanford_tw 75.70 72.88 77.52 79.54 81.41 77.07▼
semeval_tw 74.09 48.60 68.92 68.37 75.52 76.51•
vader_amzn 71.48 62.85 69.33 73.89 62.49 71.94•
vader_movie 78.09 76.59 75.31 82.63 64.59 75.11▼

vader_nyt 65.56 53.19 60.92 66.92 66.00 65.56•
vader_tw 81.92 61.23 71.67 82.53 89.25 89.63•

yelp_review 94.08 93.30 74.33 94.59 62.46 92.36•
SST-2 94.39 86.87 82.75 93.13 55.11 89.02 ▼

Table 2: MacroF1 results. CluSent is the best method
(winning or tying) in 16 out of 19 datasets.

Table 2 shows the MacroF1 effectiveness results.540

Best results in all datasets (including ties) are541

marked in bold. As we can see, CluSent is the best542

overall method – it outperforms the baselines with543

three overall wins (statistically superior results544

over all others ▲) and 13 ties in first (best) place545

(•), considering the 19 datasets. In other words,546

CluSent was the best method in 16 out of 19 cases.547

L-MIXED was the strongest baseline, with 12548

ties, five losses and only two wins when directly549

compared with CluSent. Remind that L-MIXED is550

considered a solid SOTA baseline in public bench-551

marks. BERT and kNN Regression Expansion552

lost to CluSent in most cases (9 and 10 losses),553

with nine and eight ties, respectively. BERT only554

surpassed Clusent in SST-2, tying with L-MIXED, 555

while KNN Regression outperformed CluSent 556

only in stanford_tw. In cases in which CluSent 557

outperformed the best baseline in each dataset, it 558

did by large margins, such as in ss_bbc with gains 559

of 14.21% over KNN Regression, 7.60% in ss_digg 560

over RNTN, and 7.17% in ss_rw over BERT. 561

Among the three CluSent’s losses, one was only 562

against L-MIXED (in vader_movie), stanford_tw 563

against L-MIXED and kNN Regression Expansion 564

and SST-2 against BERT and L-MIXED. 565

Figure 2 shows the effectiveness of the results in 566

terms of MicroF1. In this scenario, CluSent tied in 567

first place in 14 out of 19 cases, twelve of them with 568

L-MIXED, the strongest baseline in terms of Mi- 569

croF1. This result puts CluSent as the best overall 570

method along with L_MIXED, as detailed in Table 571

3. The slightly better CluSent’s MacroF1 results 572

when compared to MicroF1 may be due to the high 573

skewness (class imbalance) of some datasets (e.g., 574

debate, ss_bbc, ss_myspace). When faced with in- 575

formation shortage, there is a tendency to increase 576

the classifier’s natural bias towards the largest class. 577

The CluSent semantic expansion helps counterbal- 578

ance this natural bias, making the classification 579

fairer to the minority class. This fact is better re- 580

flected in the MacroF1 scores. However, further 581

investigation of this hypothesis is necessary to con- 582

firm it. There is a room from improvements and fur- 583

ther analysis that will be discussed in the Section 5 584

Figure 2: MicroF1 results. CluSent is the runner-up
method (winning or tying) in 14 out of 19 datasets.

To summarize the results we perform an analysis 585

using Fractional rankings to determine the most ef- 586

fective overall method across the multiple datasets. 587

In Fractional rankings, items that perform equally 588

(i..e, statistical ties) receive the same ranking num- 589

ber, which is the mean of the ranking they would 590

receive under ordinal rankings considering the ties. 591
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Dataset BERT NB-weighted-BON RNTN L-MIXED kNN Regression CluSent+ dv-cosine Expansion
aisopos_tw 2.0 2.0 5.5 4.0 5.5 2.0

debate 2.0 5.0 6.0 2.0 4.0 2.0
narr_tw 4.0 6.0 5.0 3.0 1.5 1.5

pappas_ted 3.0 4.0 6.0 1.5 5.0 1.5
sanders 2.0 4.0 6.0 2.0 5.0 2.0
ss_bbc 3.0 6.0 4.0 5.0 2.0 1.0
ss_digg 3.0 6.0 2.0 5.0 4.0 1.0

ss_myspace 4.0 6.0 3.0 5.0 1.5 1.5
ss_rw 2.0 6.0 4.0 5.0 3.0 1.0

ss_twitter 4.0 6.0 5.0 2.0 2.0 2.0
ss_youtube 2.5 6.0 5.0 2.5 2.5 2.5
stanford_tw 3.0 6.0 4.0 1.5 1.5 5.0
semeval_tw 2.0 6.0 4.0 5.0 2.0 2.0
vader_amzn 2.0 5.0 4.0 2.0 6.0 2.0
vader_movie 2.0 3.0 4.0 1.0 6.0 5.0

vader_nyt 2.5 6.0 5.0 2.5 2.5 2.5
vader_tw 4.0 6.0 5.0 3.0 1.5 1.5

yelp_review 2.5 2.5 5.0 2.5 6.0 2.5
SST-2 1.5 4.0 5.0 1.5 6.0 3.0

Aggr. Ranking 52.0 95.5 87.5 56.0 67.5 41.5

Table 3: Fractional Rank for MacroF1 results. CluSent
is the best overall method in the Aggregated Ranking.

In our scenario, we rank each method for each592

dataset based on the MacroF1 score and the sta-593

tistical tests. As mentioned, ties receive the same594

rank position. Table 3 shows the fractional ranking595

for the MacroF1 results, and, the last row, called596

Aggregated (Aggr.) Ranking, is the ranking sum-597

mation of all datasets’ rankings for each method.598

For instance, in ss_bbc, ss _digg and ss_rw where599

CluSent is the sole best method with no tie, it re-600

ceives a ranking of 1 while in narr_tw, pappas_ted,601

ss_myspace, and vader_tw, where Clusent ties as602

the best method with another baseline, it receives a603

ranking of 1.5 (Rank: 1.5, 1.5, 3, ....).604

As it can be seen in the Aggregated Ranking,605

CluSent is by far the best overall method (lowest606

aggregated ranking: 41.5) considering the 19607

datasets, with BERT coming in a distant second608

place (Aggr. ranking: 52.0). This analysis empha-609

sizes CluSent´s consistency across many different610

domains, captured by the different datasets.611

4.4 Difficult cases solved by CluSent612

As an example of a problematic case that CluSent613

can handle and other methods can not, in ss_bbc,614

the raw negative document “that’s why the meeting615

may well be just a joke” has been misclassified by616

CluSent’s base classifier (Linear SVM). CluSent617

expanded the original document representation618

into a vector with 47 non-zero new dimensions619

related to the semantic neighborhood, including620

new words such as “silly” and “apology”. This621

information combined with the weighting step622

allowed it to correct the misclassification.623

Another example in the same dataset is the624

document “Science once again ignored by the main-625

stream so they can continue to collect dollars with626

marketing of the green business agenda.”. Compar-627

ing the CluSent with Linear SVM, we observe that 628

CluSent added more negative information, such as 629

“abandoned”, “blinded”, and “blurred”. The filters 630

also removed positive words in the same neigh- 631

borhood, i.e., no positive words were added. Both 632

actions helped to correct SVM’s misclassification. 633

4.5 Complexity of CluSent 634

The complexity of building the clustering step (Sec- 635

tion 3.1) is basically the nearest neighbor search, 636

which can be exploited by using the fast approx- 637

imate nearest neighbor search (HNSW) (Malkov 638

and Yashunin, 2018) with complexity of O(logN). 639

The CluSent’s steps described in Sections 3.2 640

and 3.3 are search terms in a sparse matrix 641

(R|D|×|V|) representation, and the complexity of 642

those searches are O(NNZ), where NNZ repre- 643

sents the non-zero values. Finally, the complexity 644

of Section 3.4 is the matrix multiplication (−−→TFd × 645−→
C,t) in the Eq. 5). Since both matrices are sparse, 646

the complexity is O(NNZ(
−−→
TFd)NNZ(

−→
C,t)/|V|) 647

in average, where |V| is the size of the vocabulary. 648

5 Conclusion 649

We proposed a new solution for sentiment analysis 650

– CluSent – that exploits semantic expansion and 651

tackles information shortage and noise issues. 652

CluSent representation is built by a dynamic 653

pipeline of instantiations to build dataset-oriented 654

document representations. It combines supervised 655

and unsupervised solutions, taking advantage 656

of external information from word embeddings 657

and unsupervised lexicons. CluSent generalizes 658

and expands the CluWords concept to sentiment 659

analysis in a dataset-oriented manner. Indeed, 660

our proposed novel framework can be adapted 661

to different NLP tasks/applications and the 662

idiosyncrasies of each dataset by turning on/off its 663

steps. In our experiments, CluSent outperformed 664

the evaluated baselines in 30 out of 38 possibilities, 665

excelling in a Fractional Ranking aggregated 666

analysis, with gains of more than 14% against 667

some of the strongest baselines. As future work, 668

we will exploit CluSent in other classification tasks, 669

perform a quantitative analysis of the impact of our 670

solution’s components, and combine CluSent with 671

attention models and contextual embeddings (e.g., 672

BERT’s) that capture other contextual aspects of 673

words, also aiming at explainability. 674
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