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Abstract

Image classifiers often use spurious patterns, such as “relying on the presence of a person
to detect a tennis racket,” which do not generalize. In this work, we present an end-to-
end pipeline for identifying and mitigating spurious patterns for such models, under the
assumption that we have access to pixel-wise object-annotations. We start by identifying
patterns such as “the model’s prediction for tennis racket changes 63% of the time if we
hide the people.” Then, if a pattern is spurious, we mitigate it via a novel form of data
augmentation. We demonstrate that our method identifies a diverse set of spurious patterns
and that it mitigates them by producing a model that is both more accurate on a distribution
where the spurious pattern is not helpful and more robust to distribution shift.
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Figure 1: For the tennis racket example, SPIRE identifies
this pattern by observing that, when we remove the people
from images with both a tennis racket and a person, the
model’s prediction changes 63% of the time. Since we do
not remove the tennis racket itself, we label this pattern
as spurious. Then, SPIRE carefully adds/removes tennis
rackets/people from different images to create an augmented
training set where tennis rackets and people are independent
while minimizing any new correlations between the label
and artifacts in the counterfactual images (e.g., grey boxes).

With the growing adoption of machine learning mod-
els, there is a growing concern about Spurious Pat-
terns (SPs) – when models rely on patterns that do
not align with domain knowledge and do not gener-
alize (Ross et al., 2017; Shetty et al., 2019; Rieger
et al., 2020; Teney et al., 2020; Singh et al., 2020).
For example, a model trained to detect tennis rackets
on the COCO dataset (Lin et al., 2014) learns to rely
on the presence of a person, which leads to systemic
errors: it is significantly less accurate at detecting
tennis rackets for images without people than with
people (41.2% vs 86.6%) and only ever has false pos-
itives on images with people. Relying on this SP
works well on COCO, where the majority of images
with tennis rackets also have people, but would not
be as effective for other distributions. Further, rely-
ing on SPs may also lead to serious concerns when
they relate to protected attributes such as race or
gender (Buolamwini & Gebru, 2018).

We focus on SPs where an image classifier is relying
on a spurious object (e.g., using people to detect
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tennis rackets) and we propose Spurious Pattern Identification and REpair (SPIRE)1 as an end-to-end
solution for these SPs. As illustrated in Figure 1, SPIRE identifies which patterns the model is using by
measuring how often it makes different predictions on the original and counterfactual versions of an image.
Since it reduces a pattern to a single value that has a clear interpretation, it is easy for a user to, when
needed, label that pattern as spurious or valid. Then, it mitigates SPs by retraining the model using a novel
form of data augmentation that aims to shift the training distribution towards the balanced distribution, a
distribution where the SP is no longer helpful, while minimizing any new correlations between the label and
artifacts in the counterfactual images. Each of these steps is based on the assumption that we have access to
pixel-wise object-annotations to use to create counterfactual images by adding or removing objects.

To verify that the baseline model relies on a SP and quantify the impact of mitigation methods, we measure
gaps in accuracy between images with and without the spurious object (e.g., there is a 45.4% accuracy drop
between images of tennis rackets with and without people). Intuitively, the more a model relies on a SP, the
larger these gaps will be and the less robust the model is to distribution shift. Consequently, an effective
mitigation method will decrease these gap metrics and improve performance on the balanced distribution.
Empirically, we show SPIRE’s effectiveness with three sets of experiments:

• Benchmark Experiments. We induce SPs with varying strengths by sub-sampling COCO in order to
observe how mitigation methods work in a controlled setting. Overall, we find that SPIRE is more effective
than prior methods. Interestingly, we also find that most prior methods are ineffective at mitigating
negative SPs (e.g., when the model learns that the presence of a “cat” means that there is no “tie”).

• Full Experiment. We show that SPIRE is useful “in the wild” on the full COCO dataset. For identification,
it finds a diverse set of SPs and is the first method to identify negative SPs, and, for mitigation, it is
more effective than prior methods. Additionally, we show that it improves zero-shot generalization (i.e.,
evaluation without re-training) to two challenging datasets: UnRel (Peyre et al., 2017) and SpatialSense
(Yang et al., 2019). These results are notable because most methods produce no improvements in terms of
robustness to natural distribution shifts (Taori et al., 2020).

• Generalization Experiments. We illustrate how SPIRE generalizes beyond the setting from our prior
experiments, where we considered the object-classification task and assumed that the dataset has pixel-wise
object-annotations to use to create counterfactual images. Specifically, we explore three examples that
consider a different task and/or do not make this assumption.

2 Related Work

We discuss prior work as it pertains to identifying and mitigating SPs for image classification models.

Identification. The most common approach is to use explainable machine learning (Simonyan et al., 2013;
Ribeiro et al., 2016; Selvaraju et al., 2017; Ross et al., 2017; Singh et al., 2018; Dhurandhar et al., 2018; Goyal
et al., 2019; Koh et al., 2020; Joo & Kärkkäinen, 2020; Rieger et al., 2020). For image datasets, these methods
rely on local explanations, resulting in a slow process that requires the user to look at the explanation for
each image, infer what that explanation is telling them, and then aggregate those inferences to assess whether
or not they represent a consistent pattern (Figure 2). In addition to this procedural difficulty, there is
uncertainty about the usefulness of some of these methods for model debugging (Adebayo et al., 2020; 2022).

In contrast, SPIRE avoids these challenges by measuring the aggregated effect that a specific counterfactual
has on the model’s predictions (e.g., the model’s prediction changes 63% of the time when we remove
the people from images with both a tennis racket and a person). While prior work has defined similar
measurements, Shetty et al. (2019) and Singh et al. (2020) fail to identify negative SPs and Xiao et al. (2021)
fail to identify specific SPs (e.g., they find that the model is relying on “something” rather than “people”).

Mitigation. While prior work has explored data augmentation for mitigation (Hendricks et al., 2018; Shetty
et al., 2019; Teney et al., 2020; Chen et al., 2020a; Agarwal et al., 2020), it has done so with augmentation
strategies that are agnostic to the training distribution (e.g., Shetty et al. (2019) simply remove either the
tennis rackets or the people, as applicable, uniformly at random for each image). In contrast, SPIRE aims to
use counterfactual images to create a training distribution where the label is independent of the spurious

1Code is available at https://github.com/GDPlumb/SPIRE
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Figure 2: Based on the saliency map (Simonyan et al., 2013) (Left), one might mistakenly infer that the model is
not relying on the person. However, the model fails to detect the racket after the person is removed (Center) and
incorrectly detects a racket after it is removed (Right).

object, while minimizing any new correlations between the label and artifacts in the counterfactual images.
We hypothesize that this is why we find that SPIRE is more effective than these methods.

Another line of prior work adds regularization to the model training process (Ross et al., 2017; Hendricks
et al., 2018; Wang et al., 2019; Rieger et al., 2020; Teney et al., 2020; Liang et al., 2020; Singh et al., 2020).
Some of these methods specify which parts of the image should not be relevant to the model’s prediction
(Ross et al., 2017; Rieger et al., 2020). Other methods encourage the model’s predictions to be consistent
across counterfactual versions of the image (Hendricks et al., 2018; Teney et al., 2020; Liang et al., 2020). All
of these methods could be used in conjunction with SPIRE.

Finally, there are two additional lines of work that make different assumptions than SPIRE. Making weaker
assumptions, there are methods based on sub-sampling, re-weighting, or grouping the training set (Chawla
et al., 2002; Sagawa* et al., 2020; Creager et al., 2020). These methods have been found to be less effective
than methods that use data augmentation or regularization (Rieger et al., 2020; Neto, 2020; Singh et al.,
2020; Goel et al., 2021). Making stronger assumptions, there are methods which assume access to several
distinct training distributions (Wen et al., 2020; Chen et al., 2020b).

Consequently, the methods designed for image classification that use data augmentation or regularization
represent SPIRE’s most direct competition. As a result, we compare against “Right for the Right Reasons”
(RRR) (Ross et al., 2017), “Quantifying and Controlling the Effects of Context” (QCEC) (Shetty et al., 2019),
“Contextual Decomposition Explanation Penalization” (CDEP) (Rieger et al., 2020), “Gradient Supervision”
(GS) (Teney et al., 2020), and the “Feature Splitting” (FS) method from (Singh et al., 2020).

3 Spurious Pattern Identification and REpair

In this section, we explain SPIRE’s approach for addressing SPs. We use the object-classification task as a
running example, where Main is the object being detected and Spurious is the other object in a SP. The same
methodology applies to any binary classification problem with a binary “spurious feature;” see Appendix B.1
for a discussion on how to do this.

Preliminaries. We view a dataset as a probability distribution over a set of image splits, which we call Both,
Just Main, Just Spurious, and Neither, depending on which of Main and/or Spurious they contain (e.g., Just
Main is the set of images with tennis rackets, without people, and either with or without any other object).
Figure 3 (Left) shows these splits for the tennis racket example. Critically, we can take an image from one
split and create a counterfactual version of it in a different split by either adding or removing either Main or
Spurious (e.g., removing the people from an image in Both moves it to Just Main). To do this, we assume
access to pixel-wise object-annotations; note that this is a common assumption (i.e., RRR, QCEC, CDEP,
and GS also make it). See Appendix B.2 for more details on the counterfactual images.

To summarize, SPIRE makes two general assumptions:

• That we can determine which of these splits an image belongs to.
• That we can create a counterfactual version of an image from one split that belongs to a different split.
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Figure 3: Left. The training image splits and the original training distribution for the tennis racket example. Because
of the strong positive correlation between Main and Spurious, it is helpful for the model to rely on this SP. Right.
The balanced distribution for the tennis racket example. This SP is no longer helpful because Main and Spurious are
now independent and there are the same number of images in Both and Just Main.

Identification. SPIRE measures how much the model relies on Spurious to detect Main by measuring the
probability that, when we remove Spurious from an image from Both, the model’s prediction changes (e.g.,
the model’s prediction for tennis racket changes 63% of the time when we remove the people from an image
with both a tennis racket and a person). Intuitively, higher probabilities indicate stronger patterns.

To identify the full set of patterns that the model is using, SPIRE measures this probability for all (Main,
Spurious) pairs, where Main and Spurious are different, and then sorts this list to find the pairs that represent
the strongest patterns. Recall that not all patterns are necessarily spurious and that the user may label
patterns as spurious or valid as needed before moving to the mitigation step.

Mitigation. It is often, but not always, the case that there is a strong correlation between Main and Spurious
in the original training distribution, which incentivizes the model to rely on this SP. As a result, we want to
define a distribution, which we call the balanced distribution, where relying on this SP is neither inherently
helpful nor harmful. This is a distribution, exemplified in Figure 3 (Right), that:

• Preserves P(Main). This value strongly influences the model’s relative accuracy on {Both, Just Main}
versus {Just Spurious, Neither} but does not incentivize the SP. As a result, we preserve it in order to
maximize the similarity between the original and balanced distributions.

• Sets P(Spurious | Main) = P(Spurious | not Main) = 0.5. This makes Main and Spurious independent,
which removes the statistical benefit of relying on the SP, and assigns equal importance to images with
and without Spurious. However, this does not go so far as to invert the original correlation, which would
directly punish reliance on the SP.

As shown in Figure 3 (Right), SPIRE’s mitigation strategy uses counterfactual images to manipulate the
training distribution. The specifics are described in Section 3.1, but they implement two goals:

• Primary: Shift the training distribution towards the balanced distribution. While the original distribution
often incentivizes the model to rely on the SP, the balanced distribution does not. However, adding too
many counterfactual images may compromise the model’s accuracy on natural images. As a result, we want
to shift the training distribution towards, but not necessarily all the way to, the balanced distribution.

• Secondary: Minimize the potential for new SPs. While shifting towards the balanced distribution, we may
inadvertently introduce new potential SPs between Main and artifacts in the counterfactual images. For
example, augmenting the dataset with the same counterfactuals that SPIRE uses for identification (i.e.,
images from Both where Spurious has been covered with a grey box) introduces the potential for a new SP
because P(Main | “grey box”) = 1.0. Because the augmentation will be less effective if the model learns to
rely on new SPs, we minimize their potential by trying to set P(Main | Artifact) = 0.5.

3.1 Specific Mitigation Strategies

While SPIRE’s augmentation strategy follows the aforementioned goals, its specific details depend on the
problem setting, which we characterize using two factors:
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Table 1: Setting 1. For p = 0.9 and p = 0.1, we show the original size of each split for a dataset of size 200 as well as
the size of each split after SPIRE’s or QCEC’s augmentation. Note that SPIRE produces the balanced distribution,
while QCEC does not even make Main and Spurious independent.

p = 0.9 p = 0.1
Split Original SPIRE QCEC Original SPIRE QCEC
Both 90 90 90 10 90 10

Just Main 10 90 55 90 90 95
Just Spurious 10 90 55 90 90 95

Neither 90 90 110 10 90 190

• Can the counterfactuals change an image’s label? For tasks such as object-classification, counterfactuals
can change an image’s label by removing or adding Main. However, for tasks such as scene identification,
we may not have counterfactuals that can change an image’s label. For example, we cannot turn a runway
into a street or a street into a runway by manipulating a few objects. This fundamentally shapes how
counterfactuals can change the training distribution.

• Is the dataset class balanced? While working with class balanced datasets drastically simplifies the problem
and analysis, it is not an assumption that usually holds in practice.

These two factors define the three problem settings that we consider, which correspond to the experiments
in Sections 5.1, 5.2, and 5.3 respectively. For each setting, we summarize what makes it interesting, define
SPIRE’s specific augmentation strategy for it, and then discuss how that strategy meets SPIRE’s goals.

Setting 1: Counterfactuals can change an image’s label and the dataset is class-balanced. Here,
P(Main) = P(Spurious) = 0.5 and we can define the training distribution by specifying p = P(Main | Spurious).
If p > 0.5, SPIRE moves images from {Both, Neither} to {Just Main, Just Spurious} with probability 2p−1

2p

for each of those four combinations. If p < 0.5, SPIRE moves images from {Just Main, Just Spurious} to
{Both, Neither} with probability p−0.5

p−1 .

Table 1 shows how SPIRE changes the training distributions for p = 0.9 and p = 0.1. For p = 0.9, it succeeds
at both of its goals. For p = 0.1, it produces the balanced distribution, but does add the potential for new
SPs because P(Main | Removed an object) = 0 and P(Main | Added an object) = 1. We contrast SPIRE
to the most closely related method, QCEC (Shetty et al., 2019), which removes either Main or Spurious
uniformly at random, as applicable, from each image. For both values of p, QCEC does not make Main and
Spurious independent and adds the potential for new SPs. This example highlights the fact that, while prior
work has used counterfactuals for data augmentation, SPIRE uses them in a fundamentally different way by
considering the training distribution.

Setting 2: Counterfactuals can change an image’s label, but the dataset has class imbalance.
Class imbalance makes two parts of the definition of the balanced distribution problematic for augmentation:

• Preserves P(Main). When P(Main) is small, this means that we generate many more counterfactual
images without Main than with it, which can introduce new potential SPs.

• Sets P(Spurious | not Main) = 0.5. When P(Spurious) is also small, this constraint requires that most of
the counterfactual images we generate belong to Just Spurious, which can lead to the counterfactual data
outnumbering the original data by a factor of 100 or more for this split.

Consequently, we relax these constraints. If P(Spurious |Main) > P(Spurious), SPIRE creates an equal number
of images to add to Just Main/Spurious by removing the appropriate object from an image from Both. Specif-
ically, this number is the smallest positive solution for δ to: |Both|

|Both|+|Just Spurious|+δ = |Just Main|+δ
|Just Main|+|Neither|+δ .

Otherwise, SPIRE creates an equal number of images to add to Both/Just Spurious by adding Spurious
to Just Main/Neither. Specifically, this number solves: |Both|+δ

|Both|+|Just Spurious|+2δ = |Just Main|
|Just Main|+|Neither| . SPIRE

achieves its primary goal by making P(Main | Spurious) = P(Main | not Spurious) (i.e., Main and Spurious
are now independent) and it achieves its secondary goal by adding an equal number of counterfactual images
with and without Main (i.e., P(Main | Artifact) = 0.5).
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Setting 3: Counterfactuals cannot change an image’s label. This constraint prevents the previous
strategies from being applied. Therefore, SPIRE removes Spurious from every image with Spurious and adds
Spurious to every image without Spurious. While this process does achieve SPIRE’s primary goal, it does not
achieve SPIRE’s secondary goal (i.e., the original correlation between the label and Spurious is the same as
the correlation between the label and grey boxes from removing Spurious).

4 Evaluation

Because relying on the SP is usually helpful on the original distribution, we cannot measure the effectiveness
of a mitigation method using that distribution. Instead, we measure the model’s performance on the balanced
distribution, using metrics such as accuracy and average precision. Intuitively, using the balanced distribution
provides a fairer comparison because the SP is neither helpful nor harmful on it. However, like any performance
metric that is aggregated over a distribution, these metrics hide potentially useful details.

We address this limitation by measuring the model’s accuracy on each of the image splits. These per split
accuracies yield a more detailed analysis, allow us to estimate the model’s performance on any distribution
(e.g., the balanced distribution) by re-weighting the model’s accuracy on them, and allow us to calculate two
“gap metrics”. The Recall Gap is the difference in accuracy between Both and Just Main; the Hallucination
Gap is the difference in accuracy between Neither and Just Spurious. Intuitively, a smaller recall gap means
that the model is more robust to distribution shifts that move weight between Both and Just Main. The same
is true for the hallucination gap and shifts between Neither and Just Spurious. As a concrete example of these
metrics, consider the tennis racket example (Figure 3 Left), where we observe that the recall gap is 45.4% (i.e.,
the model is much more likely to detect a tennis racket when a person is present) and a hallucination gap of
0.5% (i.e., the model is more likely to hallucinate a tennis racket when a person is present; see Appendix C.2).

Note that these per split accuracies are measured using only natural (i.e., not counterfactual) images, in
order to prevent the model from “cheating” by learning to use artifacts in the counterfactual images. As a
result, the gap metrics and the performance on the balanced distribution also only use natural images.

Class Balanced vs Imbalanced Evaluation. When there is class balance, we use the standard prediction
threshold of 0.5 to measure a model’s performance using accuracy on the balanced distribution (i.e., balanced
accuracy) and its gap metrics. When there is class imbalance, Average Precision (AP), which is the area
under the precision vs recall curve, is the standard performance metric. Analogous to AP, we can calculate
the Average Recall Gap by finding the area under the “absolute value of the recall gap” vs recall curve; the
Average Hallucination Gap is defined similarly. As a result, we measure a model’s performance using AP
on the balanced distribution (i.e., balanced AP) and the Average Recall/Hallucination Gaps. Appendix D
provides more details for these metrics by showing how they are calculated using the tennis racket example.

5 Experiments

We divide our experiments into three groups:

• In Section 5.1, we induce SPs with varying strengths by sub-sampling COCO in order to understand how
mitigation methods work in a controlled setting. We show that SPIRE is more effective at mitigating
these SPs than prior methods. We also use these results to identify the best prior method, which we use
for comparison for the remaining experiments.

• In Section 5.2, we find and fix SPs “in the wild” using all of COCO; this means finding multiple naturally
occurring SPs and fixing them simultaneously. We show that SPIRE identifies a wider range of SPs than
prior methods and that it is more effective at mitigating them. Additionally, we show that it improves
zero-shot generalization to two challenging datasets (UnRel and SpatialSense).

• In Section 5.3, we demonstrate that SPIRE is effective for problems other than COCO. To do so, we
consider tasks other than object-classification and/or explore techniques for constructing counterfactuals
for datasets without pixel-wise object-annotations.

For the baseline models (i.e., the normally trained models that contain the SPs that we are going to identify
and mitigate), we fine-tune a pre-trained version of ResNet18 (He et al., 2016) (see Appendix E). We compare
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Figure 4: A comparison of the baseline model to various mitigation methods. The results shown are averaged across
both the pairs accepted for our benchmark and across eight trials. Left - Balanced Accuracy. For p ≤ 0.2 and
p ≥ 0.8, SPIRE produces the most accurate models. None of the methods have much of an impact for p = 0.4 or
p = 0.6, likely because those create weak SPs. Center/Right - Recall/Hallucination Gaps. SPIRE generally
shrinks the absolute value of both of the gap metrics by more than prior methods.

SPIRE to RRR (Ross et al., 2017), QCEC (Shetty et al., 2019), CDEP (Rieger et al., 2020), GS (Teney et al.,
2020), and FS (Singh et al., 2020). We use the evaluation described in Section 4 and, for any split that is too
small to produce a reliable accuracy estimate, we acquire additional images (using Google Images) such that
each split has at least 30 images to use for evaluation.

Measuring variance across trials. Because we are applying these mitigation methods to the baseline
model, the results of some metric (e.g., Balanced AP) for the mitigated model and the baseline model are
not independent. As a result, we do not directly report the variance of this metric across trials and, instead,
report the variance its difference between the mitigated and baseline models. Subsequently, the “[σ=]” entries
in our tables will denote the standard deviation of a particular metric’s difference across trials.

5.1 Benchmark Experiments

We construct a set of benchmark tasks from COCO consisting of different SPs with varying strengths, by
manipulating the model’s training distribution, in order to better understand how mitigation methods work
in a controlled setting. Appendix F has additional details.

Creating the benchmark. We start by finding each pair of objects that has at least 100 images in each
split of the testing set (13 pairs). For each of those pairs, we create a series of controlled training sets of size
2000 by sampling images from the full training set such that P(Main) = P(Spurious) = 0.5 and p = P(Main |
Spurious) ranges between 0.025 and 0.975. Each controlled training set represents a binary task, where the
goal is to predict the presence of Main.

While varying p allows us to control the strength of the correlation between Main and Spurious (i.e., p near
0 indicates a strong negative correlation while p near 1 indicates a strong positive correlation), it does not
guarantee that the model actually relies on the intended SP. Indeed, when we measure the models’ balanced
accuracy as p varies, we observe that 5 out of the 13 pairs show little to no loss in balanced accuracy as p
approaches 1. Consequently, subsequent evaluation considers the other 8 pairs. For these pairs, the model’s
reliance on the SP increases as p approaches 0 or 1 as evidenced by the increasing loss of balanced accuracy.

Results. Figure 4 (Left) presents the balanced accuracy results. We find that SPIRE consistently improves
balanced accuracy and that it does so by more than prior methods. Interestingly, while most prior methods
are beneficial for strong positive SPs (p ≥ 0.9), only FS is also (mildly) beneficial for negative SPs (p < 0.5).

Figure 4 (Center/Right) presents the gap metric results. We find that SPIRE is the most effective method at
shrinking these metrics, which indicates that it produces a model that is more robust to distribution shift.

7
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Table 2: A few examples of the SPs identified by
SPIRE for the Full Experiment. For each pair, we
report several basic dataset statistics including bias,
P(Spurious | Main) - P(Spurious)

P(Spurious) , which captures how far
Main and Spurious are away from being independent
as well as the sign of their correlation.
Main Spurious P(M) P(S) P(S | M) bias
tie cat 0.03 0.04 0.01 -0.66
toothbrush person 0.01 0.54 0.54 -0.01
bird sheep 0.03 0.01 0.01 0.00
frisbee person 0.02 0.54 0.83 0.54
tie person 0.03 0.54 0.95 0.76
tennis racket person 0.03 0.54 0.99 0.83
dog sheep 0.04 0.01 0.03 1.05
frisbee dog 0.02 0.04 0.24 5.44
fork dining table 0.03 0.10 0.76 6.56

Table 3: Mitigation results for the Full Experiment. Bal-
anced AP is averaged across the SPs identified by SPIRE.
Similarly, the gap metrics are reported as the “mean
(median)” change from the baseline model, aggregated
across those SPs.

Original MAP Balanced AP %∆ Avg.
Recall Gap

%∆ Avg.
Hallucination Gap

Baseline 64.1 46.2 — —
SPIRE 63.7 [σ=0.1] 47.3 [σ=0.5] -14.2 (-14.5) -28.1 (-27.3)
FS 62.5 [σ=1.0] 44.7 [σ=1.9] 9.7 (-5.9) 25.7 (-6.9)

Table 4: The MAP results of a zero-shot evaluation on
the classes that are in the UnRel/SpatialSense datasets
that SPIRE also identified as being Main in a SP.

UnRel SpatialSense
Baseline 38.9 20.3
SPIRE 41.3 [σ=1.3] 20.7 [σ=0.5]
FS 39.6 [σ=2.1] 18.6 [σ=0.3]

Interestingly, QCEC and GS, which are the two prior methods that include data augmentation, are the only
prior methods that substantially shrink the gap metrics (at the cost of balanced accuracy for p < 0.9).

Overall, this experiment shows that SPIRE is an effective mitigation method and that our evaluation
framework enables us to easily understand how methods affect the behavior of a model. We use FS as the
baseline for comparison for the remaining experiments because, of the prior methods, it had the best average
balanced accuracy across p’s range.

5.2 Full Experiment

We evaluate SPIRE “in the wild” by identifying and mitigating SPs learned by a multi-label binary object-
classification model trained on the full COCO dataset. Appendices D and G have additional details.

Identification. Out of all possible (Main, Spurious) pairs, we consider those which have at least 25 training
images in Both (≈ 2700). From these, SPIRE identifies 29 where the model’s prediction changes at least
40% of the time when we remove Spurious. Table 2 shows a few of the identified SPs; overall, they are quite
diverse: the spurious object ranges from common (e.g., person) to rare (e.g., sheep); the SPs range from
objects that are commonly co-located (e.g., tie-person) to usually separate (e.g., dog-sheep); and a few Main
objects (e.g., tie and frisbee) have more than one associated SP. Notably, SPIRE identifies negative SPs (e.g.,
tie-cat) while prior work (Shetty et al., 2019; Singh et al., 2020; Teney et al., 2020) only found positive SPs.
Appendix G includes a discussion of how we verified the veracity of these identified SPs.

Mitigation. Unlike the Benchmark Experiments, this experiment requires mitigating many SPs simultane-
ously. Because we found that SPIRE was more effective if we only re-train the final layer of the model in
the Benchmark Experiments (see Appendix E), we do this by re-training the slice of the model’s final layer
that corresponds to Main’s class on an augmented dataset that combines SPIRE’s augmentation for each SP
associated with Main. All results shown (Tables 3 and 4) are averaged across eight trials.

We conclude that SPIRE significantly reduces the model’s reliance on these SPs based on two main observations.
First, it increases balanced AP by 1.1% and shrinks the average recall/hallucination gaps by a factor of
14.2/28.1%, relative to the baseline model, on COCO. As expected, this does slightly decrease Mean Average
Precision (MAP) by 0.4% on the original (biased) distribution. Second, it increases MAP on the UnRel
(Peyre et al., 2017) and SpatialSense (Yang et al., 2019) datasets. Because this evaluation was done in a
zero-shot manner and these datasets are designed to have objects in unusual contexts, this is further evidence
that SPIRE improves distributional robustness. In contrast, FS decreases the model’s performance, has
inconsistent effects on the gap metrics, and has mixed results on the zero-shot evaluation.
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SPIRE and Distributional Robustness. Noting that robustness to specific distribution shifts is one of
the consequences of mitigating SPs, we can contextualize the impact of SPIRE by considering an extensive
meta-analysis of methods that aim to provide general robustness (Taori et al., 2020). This analysis finds
that the only methods that consistently work are those that re-train the baseline model on several orders of
magnitude more data. It also describes two necessary conditions for a method to work. Notably, SPIRE
satisfies both of those conditions: first, it improves performance on the shifted distributions (i.e., the balanced
distributions, UnRel, and SpatialSense) and, second, this improvement cannot be explained by increased
performance on the original distribution. Consequently, SPIRE ’s results are significant because they show
improved robustness without using orders of magnitude more training data. We hypothesize that SPIRE is
successful because it targets specific SPs rather than using a less targeted approach.

5.3 Generalization Experiments

Table 5: Results for the Scene Identification Experiment
(averaged across sixteen trials).

Original AP Balanced AP %∆ Avg.
Recall Gap

%∆ Avg.
Hallucination Gap

Baseline 95.0 48.9 — —
SPIRE 92.8 [σ=1.6] 83.2 [σ=7.3] -82.1 -75.5
FS 93.7 [σ=1.3] 47.8 [σ=8.6] -11.5 3.7

Table 6: Results for the No Object Annotation Experiment
for the tennis racket example (averaged across eight trials).

Original AP Balanced AP %∆ Avg.
Recall Gap

%∆ Avg.
Hallucination Gap

Baseline 93.9 79.9 — —
SPIRE 92.9 [σ=0.4] 80.5 [σ=1.3] -31.3 -27.3
SPIRE-R 94.0 [σ=0.6] 81.0 [σ=1.7] -9.1 -44.9
FS 92.9 [σ=1.0] 80.7 [σ=2.2] -10.4 -22.3

Table 7: Results for the ISIC Experiment (averaged across
eight trials).

Original AP Balanced AP %∆ Avg.
Recall Gap

%∆ Avg.
Hallucination Gap

Baseline 78.3 71.0 — —
SPIRE-EM 78.8 [σ=4.9] 76.4 [σ=2.4] -20.5 -39.0
FS 70.7 [σ=6.8] 68.0 [σ=3.8] -31.3 -61.0

We illustrate how SPIRE generalizes beyond the
setting from COCO, where we considered the object-
classification task and assumed that the dataset has
pixel-wise object-annotations. Specifically, we ex-
plore three examples that consider a different task
(Generalization 1 ) or do not assume this (General-
ization 2 ).

Scene Identification Experiment (Generaliza-
tion 1). In this experiment, we construct a scene
identification task using the image captions from
COCO and show that SPIRE can identify and mit-
igate a naturally occurring SP. To do this, we de-
fine two classes: one where the word “runway” (the
part of an airport where airplanes land) appears
in the caption (1,134 training images) and another
where “street” appears (12,543 training images); im-
ages with both or without either are discarded. For
identification, we observe that removing all of the
airplanes from an image of a runway changes the
model’s prediction 50.7% of the time.

Table 5 shows the results. SPIRE reduces the model’s
reliance on this SP because it substantially increases balanced AP and it reduces the average recall and
hallucination gaps by factors of 82.1% and 75.5%. In contrast, FS is not effective at mitigating this SP.

No Object Annotation Experiment (Generalization 2). In this experiment, we mitigate the SP from
the tennis racket example without assuming that we have pixel-wise object-annotations; instead, we make the
weaker assumption that we have binary labels for the presence of Spurious. To do this, we train a linear (in
the model’s representation space) classifier to predict whether or not an image contains a person (similar to
Kim et al. (2018)). Then, we project across this linear classifier to essentially add or remove a person from
an image’s representation (so we call this method SPIRE-R) (see Appendix H.1).

Table 6 shows the results. First, note that SPIRE provides a small increase in Balanced AP while providing
the largest average decrease in the gap metrics. Second, note that SPIRE-R is preferable to FS because it
produces a larger reduction in the hallucination gap while being otherwise comparable.

ISIC Experiment (Generalizations 1 & 2). In this experiment, we imitate the setup from (Rieger et al.,
2020) for the ISIC dataset (Codella et al., 2019). Specifically: the task is to predict whether an image of
a skin lesion is malignant or benign; the model learns to use a SP where it relies on a “brightly colored
sticker” that is spuriously correlated with the label; and the dataset does not have annotations for those
stickers to use create counterfactual images. For this experiment, we illustrate another approach for working
with datasets that do not have pixel-wise object-annotations: using external models (so we call this method
SPIRE-EM) to produce potentially noisy annotations with less effort than actually annotating the entire
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dataset. The external model could be an off-the-shelf model (e.g., a model that locates text in an image) or a
simple pipeline such as the super-pixel clustering one we use (see Appendix H.2).

Table 7 shows the results. We can see that SPIRE-EM is effective at mitigating this SP because it generally
improves performance while also shrinking the gap metrics.2 In contrast, FS does not seem to be beneficial
because it substantially reduces performance on both the original and balanced distributions (which outweighs
shrinking the gap metrics).

6 Conclusion

In this work, we introduced SPIRE as an end-to-end solution for addressing Spurious Patterns for image
classifiers that are relying on spurious objects to make predictions. SPIRE identifies potential SPs by
measuring how often the model’s prediction changes when we remove the Spurious object from an image with
a positive label and mitigates SPs by shifting the training distribution towards the balanced distribution while
minimizing any correlations between the label and artifacts in the counterfactual images. We demonstrated
that SPIRE is able identify and, at least partially, mitigate a diverse set of SPs by improving the model’s
performance on the balanced distribution and by making it more robust to specific distribution shifts. We
found that these improvements lead to improved zero-shot generalization to challenging datasets. Then, we
showed that SPIRE can be applied to tasks other than object-classification and we illustrated two potential
ways to apply SPIRE to datasets without pixel-wise object-annotations to use to create counterfactuals
(creating counterfactual representations and using external models). More generally, in terms of identifying
SPs, our findings provide additional evidence for the claim that a correlation is neither sufficient nor necessary
for a model to learn a SP.
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A Discussion

In this section, we elaborate on SPIRE’s strengths, its weaknesses, and suggested directions for future work.
While there are many ways to improve SPIRE, we have demonstrated that it is a clear step forwards for the
problem of addressing SPs.

Generating Counterfactual Images. SPIRE relies on the ability to produce counterfactual images. As a
result, finding ways to produce similar counterfactuals with fewer assumptions (e.g., being able to add/remove
objects without relying on having an annotated dataset) or to produce different types of counterfactuals
(e.g., changing attributes such as “color”) are both directions for future work. The former would improve the
general applicability of SPIRE while the later would increase the scope of the types of SPs SPIRE could
address.

Identification. SPIRE’s strategy for identification can be summarized as “measure the probability that the
model’s prediction changes when we take an image from Group X and apply Counterfactual Transformation
Y .” Intuitively, this strategy is effective because the original and counterfactual versions of an image differ
only in terms of the effect of the counterfactual transformation while, if we were to compare natural images
in one group to another group, there are probably going to be additional differences. Because SPIRE uses X
= Both, it may not be as effective as possible for identifying negative SPs because this split is likely to be
very small for negatively correlated objects. As a result, future work could increase the scope of the types of
SPs SPIRE could identify by considering different definitions of X (e.g., X is the set of images that have
objects 1, . . . , m and do not have objects m + 1, . . . , n; X is the set of images where objects 1 and 2 appear
near to/far from each other) or Y (e.g., Y removes objects 1 and 2; Y changes the location of object 1).

Interestingly, we find that a strong correlation is neither sufficient (Figure 7 shows that the model can
ignore a strong correlation) nor necessary (Table 2 shows that some SPs are between objects that are almost
uncorrelated) for a model to learn to use a SP, which is consistent with prior findings (Shah et al., 2020;
Nagarajan et al., 2021). These result demonstrates SPIRE’s advantage over identification methods that only
consider the training distribution (e.g., Wang et al., 2020).

Mitigation. To begin with, it is worth noting that mitigating a SP may not always be worthwhile (e.g.,
when one is certain that the distribution will not shift).

At a high level, SPIRE’s strategy for mitigation works by removing the statistical incentive for the model to
rely on the SP, while trying not to add new SPs; this strategy may be less effective for SPs that do not arise
from correlations in the training distribution. Previous augmentation-based mitigation methods might be less
effective because they are intuitive rather than statistical (e.g., it makes intuitive sense that removing people
should lessen the model’s reliance on people to detect tennis rackets, but this intuition does not carry over to
the dataset statistics). Previous regularization-based mitigation methods might be less effective because they
may interfere with the learning process (e.g., cause the model to become stuck in a local minimum) or they
may have effects that are too local to matter (e.g., changing the model’s gradient at a point may not change
its predictions very far away from that point). In particular, the Feature Splitting (FS) method from (Singh
et al., 2020) assumes that one half of the features learned by the model are relevant for detecting objects “in
context” and that the other half are relevant for objects “out of context;” while plausible for a single SP, this
assumption becomes more tenuous as the number of SPs being mitigated increases.

While SPIRE’s mitigation strategy is defined by two high-level goals, it is not always successful at realizing
those goals (e.g., for p < 0.5 in Section 5.1, SPIRE introduces the potential for new SPs) and the way
those goals are realized depends on the problem setting. As a result, future work could improve the general
applicability of SPIRE by finding a unified strategy that does not depend on the problem setting, generalizing
that strategy to work for more general SPs, and extending that strategy to problems other than image
classification. Additionally, future work could develop a theoretical framework to help understand the effects
of augmentation-based mitigation strategies.
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B Method Details

B.1 When can SPIRE be applied to a problem?

In this section, we walk through the assumptions needed to apply SPIRE to a model that has been trained to
perform some task using some data.

• SPIRE is model-agnostic and, as a result, can be applied to any type of model.
• SPIRE assumes that task is binary-classification and, consequently, that each image has a binary label.
• SPIRE assumes that each image has a different binary label for the “spurious feature” that we are interested

in studying. For example, this could be variable indicating whether or not the image contains some high
frequency signal.

• SPIRE assumes we can manipulate the images in such a way that we can create a counterfactual version
of an image in one split that belongs to a different split. This entails being able to change an image’s label
and/or the value of the “spurious feature.”

Collectively, these assumptions allow us to define the image splits (Table 8) and produce the counterfactual
images that SPIRE uses to identify and mitigate spurious patterns.

B.2 Generating Counterfactual Images

Similar to prior work, SPIRE generates counterfactual images by adding objects to or removing objects from
the original image (Shetty et al., 2019; Teney et al., 2020; Xiao et al., 2021; Chen et al., 2020a; Liang et al.,
2020; Agarwal et al., 2020). In this work, use the pixel-wise object-annotations that are part of various
datasets such as COCO to generate the counterfactual images. Figure 5 shows examples. Orthogonally, there
is prior work that generates fundamentally different types of counterfactual images (Neto, 2020; Zhang &
Sang, 2020; Goel et al., 2021; Sauer & Geiger, 2021).

Removing an Object. We consider two different ways to define which region of the image we are going to
replace (pixel-wise or bounding-box) and two different ways to in-fill that region (using constant grey color or
in-painting with the model from (Nazeri et al., 2019)). When we say that we “remove” an object, we mean
that we found its bounding-box region and in-filled it with grey. When we say that we “in-paint” an object,
we mean that we found its pixel-wise region and in-painted it. In order to minimize label noise, we make sure
we do not include Main in the region that is going to be removed when we are removing Spurious.

Adding an Object. To add an object to an image, we find the pixel-wise region for that object in a different
image and then replace that region’s counterpart in the original image with it. In order to minimize label
noise, we make sure that we do not cover Main when we add Spurious.

Table 8: A more general definition of the image splits defined in Section 3.

Binary Image Label Binary “Spurious Feature” Image Split
1 1 Both
1 0 Just Main
0 1 Just Spurious
0 0 Neither
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Figure 5: Example counterfactual images for the tennis racket example. (Left) An example of moving an
image from Just Spurious to Neither by Removing Spurious. (Center) An example of moving an image from
Both to Just Spurious by In-Painting Main. (Right) An example of moving an image from Neither to Just
Main by Adding Main.

B.3 What does it mean to introduce new potential SPs?

We try to minimize the potential for new SPs by ensuring that P(Main | Artifact) = 0.5, where the Artifact
could be “Grey Box” from removing objects from an image or objects with “Unusual Placement” from adding
objects to an image. However, it is not clear whether 0.5 or P(Main) is the “correct” choice for this value.
One one hand, using P(Main | Artifact) = 0.5 maximizes the loss that the model will receive if it relies
on Artifact. On the other hand, setting P(Main | Artifact) = P(Main) means that Main is independent
of Artifact and that there is no statistical incentive for the model to rely on Artifact. Because we will not
be evaluating the model (in terms of accuracy) on images with Artifact, we chose 0.5 because it actively
discourages using Artifact rather than simply not encouraging it.

B.4 Setting 1: Working through SPIRE’s augmentation strategy

In this setting, {Both, Neither} each have size 0.5p while {Just Main, Just Spurious} have size 0.5(1− p).

For p > 0.5, SPIRE removes {Main, Spurious} from Both with probability 2p−1
2p and, as a result, P(Main |

Grey Box) = 0.5. Similarly, SPIRE adds {Main, Spurious} to Neither with the same probability and, as a
result, P(Main | Unusual Placement) = 0.5. As a result, {Just Main, Just Spurious} each receive 0.25(2p− 1)
images from each of {Both, Neither} and have an augmented size of 0.5p. So SPIRE produces the balanced
distribution without creating the potential for new SPs.

For p < 0.5, SPIRE adds Main to Just Spurious and adds Spurious to Just Main with probability p−0.5
p−1 and,

as a result, P(Main | Unusual Placement) = 1. Similarly, SPIRE removes Spurious from Just Spurious and
removes Main from Just Main with the same probability and, as a result, P(Main | Grey Box) = 0. As a
result, {Both, Neither} each receive 0.5(0.5− p) images from each of {Just Main, Just Spurious} and have an
augmented size of 0.5(1− p). So SPIRE produces the balanced distribution while creating the potential for
new SPs.

16



Published in Transactions on Machine Learning Research (08/2022)

C Evaluation Details

C.1 Why not set P(Spurious | Main) = P(Spurious | not Main) = P(Spurious) for the Balanced
Distribution?

Using P(Spurious) instead of 0.5 may be an intuitive choice because it would mean that the main statistical
difference between the original and balanced distributions is that Main and Spurious are now independent.
However, doing so can have dramatic and unexpected effects on which splits are more important for evaluation.
To see this, consider Main = “fork” and Spurious = “dining table”. For the original distribution, we have
P(Spurious | Main) = 0.76 which means we have, roughly, a 3:1 ratio of images in Both to Just Main. For
the balanced distribution, using λ = P(Spurious) = 0.1 would change this ratio to 1:9. Not only would this
choice change which split is more important for evaluation (from Both to Just Main) but it would also would
increase the degree to which that split is more important (from a factor of 3 to a factor of 9). Without
domain knowledge telling us that such a dramatic shift is warranted, using 0.5 is the more conservative option
because assigning equal importance to images with and without Spurious never flips which splits are more
important for evaluation.

C.2 Why do small, in absolute terms, Hallucination gaps matter?

To understand this, consider the per split accuracies for the tennis racket example (Figure 3 Left) where we
observe that the Hallucination gap is “only” 0.5% and may be tempted to conclude that it is not significant.
However, when we look at where the model’s errors come from on the original distribution, we find that
roughly 40% of them come from Just Spurious, despite the model’s 99.5% accuracy on this split. This means
that the model’s performance is sensitive to both small changes to its accuracy on Just Spurious and Neither
and distribution shifts that move weight between Just Spurious and Neither.

As a result, small, in absolute terms, changes to the Hallucination gap can have large impacts on the model’s
robustness to distribution shift. In general, we adjust for this by measuring changes in the gap metrics
relative to their original value (e.g., if the new model had a hallucination gap of 0.25% we would say that it
“reduced the hallucination gap by a factor of 50%”).

C.3 Why can the Gap Metrics change much more than performance on the Balanced Distribution?

In general, mitigation methods shrink the gap metrics by sacrificing accuracy on the splits where relying
on the SP is helpful in order to gain accuracy on the other splits; whether or not this trade-off improves
performance on the balanced distribution depends on how much accuracy is sacrificed and gained. As a
result, the size of the gap metrics and performance on the balanced distribution are not necessarily closely
connected. As an extreme example of this, consider a hypothetical mitigation method that works by reducing
the model’s accuracy on the higher performing splits to match its accuracy on the lower performing splits:
this will improve the gap metrics by setting them to zero, but it will harm performance on the balanced
distribution.

C.4 Counterfactual Evaluation

While the evaluations described in Section 4 are all based on the natural images, we also run a counterfactual
evaluation. Unlike in SPIRE’s identification step, where we only measure the probability that “removing
Spurious from an image from Both” changes the model’s prediction, this evaluation measures the probability
that the model’s prediction changes when we move an image from one split to another for each pairs of
splits that differs by one object. This acts as an additional sanity check that a mitigation strategy has
reduced the model’s reliance on a SP, but we consider it to be less important than the model’s performance
on the balanced distribution and the gap metrics because its results depend on the specific definition of the
counterfactuals used (e.g., it is easy to do well on this evaluation for a specific type of counterfactual by
training the model on that same type of counterfactual).
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D Tennis Racket Example: Metrics and Mitigation Results.

Here, we walk through the evaluation described in Section 4 for class imbalanced problems using the tennis
racket example. Figure 6 shows the results. The numbers in the legends are “mean (standard deviation)”
across 8 trials for the metric measured in that plot.

Top Left: Average Precision. This panel shows the model’s Precision vs Recall curve, for the balanced
distribution, which we use to calculate Average Precision by finding its Area Under the Curve (AUC). SPIRE
improves Average Precision on the balanced distribution for this SP by 0.6%.

Top Middle: Average Recall Gap. This panel shows the model’s recall gap (the absolute value of the difference
of the model’s accuracy on Both and Just Main) vs its Recall on the balanced distribution. We calculate this
metric by finding the AUC. SPIRE decreases this metric by 31.4% which means that it produces a model
that is more robust to distribution shifts that move probability between Both and Just Main.

Top Right: Average Hallucination Gap. This panel shows the model’s hallucination gap (the absolute value of
the difference of the model’s accuracy on Just Spurious and Neither) vs its Recall on the balanced distribution.
We calculate this metric by finding the AUC. SPIRE decreases this metric by 25.0% which means that it
produces a model that is more robust to distribution shifts that move probability between Just Spurious and
Neither.

Center Row: Accuracy on Both and Just Main. These panels plot the model’s accuracy on Both/Just Main
vs its Recall on the balanced distribution. The value shown is the AUC of this curve. Because the baseline
model uses the presence of a person to help detect a tennis racket, we expect a model that does not rely on
this SP to lose accuracy on Both and gain it on Just Main. SPIRE does this.

Bottom Row: Accuracy on Just Spurious and Neither. These panels plot the log of the model’s accuracy
on Just Spurious/Neither vs its Recall on the balanced distribution. The value shown is the AUC of this
curve (before taking the log). Because the baseline model uses the presence of a person to help detect tennis
rackets, we expect a model that does not rely on this SP to lose accuracy on Neither and gain it on Just
Spurious. Because SPIRE improved AP, we do not see this because it’s accuracy on these splits is higher for
most levels of recall.
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Figure 6: The results of our evaluation for the tennis racket example. The numbers in the legends are “mean
(standard deviation)” across 8 trials. SPIRE improved Average Precision on the balanced distribution by
0.6%, decreased the average recall gap by 31.4%, and decreased the average hallucination gap by 25.0%.
Further, it had the expected effect of decreasing accuracy on Both and increasing it on Just Main. As a
result, we conclude that it reduced the model’s reliance on this SP.
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E Model Training Details

Many of our experiments are based on the COCO dataset (Lin et al., 2014). Because the test set for this
dataset is not publicly available, we used its validation set as our test set and divided its training set into
90-10 training and validation splits.

All of our experiments started with the pretrained ResNet18 (He et al., 2016) that is available from PyTorch
(Paszke et al., 2019). For each task, the classification layer was replaced with one of the appropriate dimension
and then trained via transfer learning (i.e., only the classification layer had its weights updated). The resulting
model was then fine-tuned (i.e., all of its weights were updated) to produce what we call the Baseline Model
throughout this work.

Optimization. We minimized the binary cross entropy loss using Adam (Kingma & Ba, 2014) with a batch
size of 64. For transfer-learning, we used a learning rate of 0.001 and, for fine-tuning, we used a learning rate
of 0.0001; we explored other options during early experiments, but found there was no benefit to doing so. If
the training loss failed to decrease sufficiently after some number of epochs, we lowered the learning rate.

Model selection. During the training process, we selected the best model weights using their performance
on the validation set. For the Benchmark Experiments, we measured performance using Accuracy and, for the
Full Experiment, No Object Annotation Experiment, Scene Identification Experiment, and ISIC Experiment,
we used F1. If the validation performance failed to increase sufficiently after some number of epochs, we
stopped training.

Benchmark Experiments: Hyper-parameter selection. For this experiment, we tuned the hyper-
parameters using balanced accuracy on the bottle-person pair with p = 0.95. For all methods, we considered
both transfer-learning and fine-tuning, as applicable. For SPIRE, we considered both removing objects by
covering them with a grey box and by in-painting them; we found that transfer-learning while covering objects
with a grey box was the most effective (see Table 9). RRR, CDEP, and GS all have regularization weights
that can be tuned. FS has a minimum weight for images of objects “out of context” that can be tuned. For
these methods, we considered values that are powers of 10 ranging from 0.1 to 10,000; no method chose one
of the extreme values.

Full Experiment: Hyper-parameter selection. For this experiment, we tuned the hyper-parameters
using the mean, across SPs, Average Precision on the balanced distribution for a model trained on 50% of the
training dataset and then evaluated on the remaining 50% of the training dataset; we used such large chunk
of the dataset for evaluation in order to be able to estimate the per split accuracies, which are required to
calculate Average Precision on the balanced distribution.

For SPIRE, we use transfer-learning while covering objects with a grey box because this is what we found
worked best in the Benchmark Experiments. However, we tune the weight of the augmentation by scaling
δ from Setting 2 in Section 3.1 by a factor of {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}; intuitively, this is
to prevent us from adding too many counterfactual images. Note that the weight for each SP is tuned
independently and each weight is tuned by training a linear classifier.

For FS, the configuration chosen by this procedure yielded poor results and, consequently, we used the default
value of 3 for our results (Singh et al., 2020).

Table 9: The results of the Hyper-parameter Selection for SPIRE on the Benchmark Experiments. We see
that SPIRE is consistently more effective when it retrains the model using transfer-learning and when it
removes objects by covering them with grey boxes. Results shown are averaged across eight trials.

Removal Strategy Parameters Adjusted Mean (Standard Deviation)
Grey Box Transfer-Learning 70.4 (1.7)

Fine-Tuning 69.4 (1.3)
In-Painting Transfer-Learning 70.2 (1.3)

Fine-Tuning 68.2 (1.4)

20



Published in Transactions on Machine Learning Research (08/2022)

F Additional Results: Benchmark Experiments - Section 5.1

Creating the benchmark. While varying p allows us to control the strength of the correlation between
Main and Spurious (i.e., p near 0 indicates a strong negative correlation while p near 1 indicates a strong
positive correlation), it does not guarantee that the model actually relies on the intended SP. Indeed, when we
plot the models’ balanced accuracy as p varies (Figure 7), we observe that 5 out of the 13 pairs show little to
no loss in balanced accuracy as p approaches 1 (dashed lines). Consequently, subsequent evaluation considers
the other 8 pairs (solid lines). For these pairs, the model’s reliance on the SP increases as p approaches 0 or 1
as evidenced by the increasing loss of balanced accuracy and confirmed via counterfactuals (Figure 8).

Counterfactual Evaluation. For models that are trained on a dataset augmented with a specific type
of counterfactual images, the results of this evaluation for that type of counterfactual are often skewed
and, consequently, we exclude those results. Specifically, this means that: SPIRE is only evaluated on
In-Painting counterfactuals, QCEC is not evaluated on In-Painting counterfactuals, and GS is not evaluated
on counterfactuals that In-Paint Main.

Figure 9 shows the results (averaged across the chosen object pairs and eight trials per pair). The first
thing to note is that all of the counterfactual evaluations show that the Baseline model is relying on the
intended SP because their results get worse as P(Main | Spurious) approaches 0 or 1 (i.e., there is a strong
negative or positive correlation between Main and Spurious in the training dataset). Observe that SPIRE
improves all of evaluations based on In-Painting with the exception of “Just Spurious and In-Paint Spurious”
for 0.05 < p < 0.5. In contrast, the other mitigation methods have clear and consistent failures (e.g., RRR,
CDEP, GS, and FS all make the evaluation worse for “Both and Remove Main”, QCEC makes the evaluation
worse for “Neither and Add Main”).

Per split analysis. By looking at the models’ accuracy on each split (Figure 10, averaged across the chosen
object pairs and eight trials per pair), we see that SPIRE exhibits all of the expected signs of a method that
is reducing a model’s reliance on a SP:

• It sacrifices accuracy on splits where relying on the SP is helpful (e.g., Both for p > 0.5 and Just Main for
p < 0.5) in order to gain accuracy on the splits where the SP is not helpful (e.g., Just Main for p > 0.5
and Both for p < 0.5).

• It substantially flattens the per split accuracy curves for images with Spurious and, to a lesser extent,
flattens them for images without Spurious. This indicates that it produces a model that is less sensitive to
the original training distribution.

Comparing Augmentation Strategies. In this experiment, we want to explore the specific effect of SPIRE’s
augmentation strategy. We do this by comparing SPIRE to modified versions of the two augmentation-based
methods that we consider:

• QCEC-Aug, which augments the dataset with images where either Main or Spurious has been removed
(uniformly at random, as applicable). Compared to QCEC, it differs in that it removes objects by covering
them with a grey box (as SPIRE does) instead of in-painting them.

• GS-Aug, which augments the dataset with images where Main has been removed (if possible). Compared
to GS, it differs in that it it removes objects by covering them with a grey box (as SPIRE does) instead of
in-painting them and in that it does not include GS’s regularization term.

In Figure 11 shows the results:

• SPIRE is the most effective method for increasing Balanced Accuracy and decreasing the Recall Gap.
• While QCEC-Aug and GS-Aug are somewhat better at reducing the Hallucination Gap, this usually is not

worth the loss in Balanced Accuracy.
• Note that the results for the baseline model and for SPIRE are slightly different than they are in Figure 4

because these results are based on re-running this experiment from scratch.
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Figure 7: For each pair of objects, we plot the
models’ balanced accuracy as we vary p for the
training set. The y-axis is normalized so that we
can easily compare the curvature of the plots. We
either accept (solid line) or reject (dashed line)
pairs based on whether or not we see a significant
drop in balanced accuracy both as p approaches
0 and as it approaches 1. The rejected pairs show
an insufficient drop as p approached 1.

Figure 8: For each pair of objects, we plot the metric
SPIRE uses to identify SPs as we vary p for the training
set. The y-axis is normalized so that we can easily
compare the curvature of the plots. We see that SPIRE
generally agrees with the decision to accept (solid line)
or (dashed line) pairs from the benchmark because the
accepted pairs generally show more curvature.
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Figure 9: The columns correspond to Removing, In-Painting, and Adding an object. The first two rows
do that to Spurious and, as a result, a lower value is better. The last two rows do that to Main and, as a
result, a higher value is better. Methods that train on an augmented dataset that contains a certain type of
counterfactual are excluded from its evaluation because their results are usually skewed.
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Figure 10: The models’ accuracies on each split.

Figure 11: A summary of the comparison of various augmentation strategies for the Benchmark Experiments.
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G Additional Results: Full Experiment - Section 5.2

Validating the Identified SPs. In Figure 12, we verify that the model is generally robust to masking
objects. In Figure 13, we verify that the model has large recall and hallucination gaps for the identified SPs.
Both of these results indicate, in different ways, that the model is indeed relying on the SPs that SPIRE
identifies.

Figure 12: A histogram of the metric that SPIRE uses
to identify SPs. In general, the model’s predictions
are quite robust to masking objects: changing a mean
of 10.0% and a median of 7.7% of the time. As a
result, it is unlikely we can explain the fact that the
model’s prediction changes more than 40% of the time
for the identified SPs using the fact that these images
are out-of-distribution (they contain grey boxes).

Figure 13: When a model is relying on a SP, we
expect positive gap metrics, if it has positive bias,
and negative gap metrics, if it has negative bias. In
general, this is what we find. (Left) A comparison of
the Recall Gap to the bias of the dataset for the SP.
(Right) A comparison of the Hallucination Gap to
the bias.

SPIRE’s effect on each SP. Figures 14, 15, and 16 show SPIRE’s effect on the Balanced Average Precision,
the Average Recall Gap, and Average Hallucination Gap respectively. SPIRE improved Balanced Average
Precision by an average of 1.1% with a positive change for 21 of the SPs. SPIRE decreased the Average
Recall/Hallucination Gaps by an average factor of 14.2%/28.1% for 24/29 of the SPs. Overall, these results
indicate that SPIRE consistently reduces the model’s reliance the identified SPs.

Figure 14: The Average Precision
on the balanced distribution for
SPIRE compared to the baseline
for each SP.

Figure 15: The percent change
of the Average Recall Gap for
SPIRE compared to the baseline
model for each SP.

Figure 16: The percent change
of the Average Hallucination Gap
for SPIRE compared to the base-
line model for each SP.
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H Additional Results: Generalization Experiments - Section 5.3

H.1 SPIRE-R - Projection PseudoCode

Algorithm 1 details the process that we use for “adding” or “removing” Spurious from a model’s representation.
This process is guaranteed to change the initial linear model’s prediction for whether or not the representation
contains Spurious, which suites our goal of changing the most “obvious” signal for Spurious in the representation.
Future work could explore more ambitious goals (e.g., removing all of the information about Spurious from
the model’s representation).

Algorithm 1 Our algorithm for “adding” or “removing” Spurious from a model’s representation.
Require: {ri}n

i=1 ▷ The model’s penultimate layer’s representation of each image
Require: {yi}n

i=1 ▷ A binary label for whether or not each image contains Spurious
Require: c ▷ A confidence threshold, we used 0.0001
Require: s ▷ A step size, we used 0.1

w, b← LogisticRegression({ri}, {yi}) ▷ Train a linear model to predict if an image contains Spurious
for i = 1, . . . , n do

r′
i = ri ▷ Initialize the counterfactual representation

if yi == 1 then ▷ If the image contains Spurious, remove it
y′

i ← 0
while 1

1+e
−(wr′

i
+b) > c do

r′
i ← r′

i − s ∗ w ▷ Maximally decrease the linear model’s confidence that Spurious is present
end while

else ▷ If the image doesn’t contain Spurious, add it
y′

i ← 1
while 1

1+e
−(wr′

i
+b) < 1− c do

r′
i ← r′

i + s ∗ w ▷ Maximally increase the linear model’s confidence that Spurious is present
end while

end if
end for
return {r′

i}, {y′
i}

H.2 ISIC Experiment- Pipeline for creating counterfactuals

Our pipeline, which is based on clustering image segments (i.e., super-pixels), is constructed as follows:

• We use an image segmentation algorithm to extract segments from an image and represent each segment
using its mean RGB value.

• We run a hierarchical clustering on those RGB values to produce nine clusters. Then, we manually inspect
several randomly sampled images from each cluster and label those clusters based on whether or not they
represent stickers.

• Finally, we use a K-NearestNeighbor classifier to predict which of those nine clusters an image segment
belongs to.

Overall, this pipeline produces a per-image map of which pixels belong to a sticker and identifies stickers
with 86.7% recall and 99.0% precision. We use this map to produce counterfactual images.

Note that this pipeline significantly reduced the cost of producing these pixel-wise annotations because it
only required labeling a small number of image segments as “sticker or not.” However, the annotations are
noisier than manually collected annotations would be.
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