entro-p: An Entropy-Based Logit Processor for Improved Pass @k
Reasoning

Anonymous ACL submission

Abstract

Interest in creating language models (LMs) ca-
pable of solving challenging math and cod-
ing questions has given rise to a host of new
sampling strategies. One of the simplest ap-
proaches for questions that are difficult to solve
but easy to verify is to sample repeatedly un-
til the LM derives a correct solution. Due
to the high cost of these sampling methods,
even small gains in reasoning efficiency mat-
ter. Drawing inspiration from recent work that
developed logit processors that improve cre-
ative outputs from LMs, we develop the first
logit processor, entro-p, that specifically tar-
gets improved performance on pass@k reason-
ing tasks for LMs. Designing a logit proces-
sor for pass @k reasoning tasks is challenging
because for small £, the optimal strategy is
close to greedy sampling, but for large &, one
might sample from the unprocessed logits to
maximize the range of solutions in the search
space. Our processor, entro-p, finds a happy
medium between these two extremes that is
able to improve both high and low-k perfor-
mance relative to existing logit processors. Us-
ing entro-p, we are able to achieve performance
gains on pass@ 100 performance of up to 2%
on the MATH, AIME?24, and AIME25 bench-
marks, and up to 3.1% on the MBPP bench-
mark. These efficiency gains, which come at
little extra cost during inference time, demon-
strate that improvements in reasoning efficiency
do not always require additional training re-
sources. Moreover, they broaden understanding
of how targeted logit processing can improve
task performance beyond creative content gen-
eration.

1 Introduction

Currently, there are many reasoning, math, and
coding questions that language models (LMs) can-
not solve consistently in a single attempt (Brown
et al., 2024). To remedy this problem, some re-
searchers have explored increasing inference-time

compute to improve models’ capacity to excel at
reasoning tasks. There are many reasoning tasks
that are difficult to solve, but easy to verify (Ku-
lal et al., 2019; Chen et al., 2021). For such tasks
Brown et al. (2024) suggested a naive but effective
solution: one can prompt LMs thousands of times
in parallel to improve their probability of solving
difficult problems at least once. Language models
prompted using this method are known as “Large
Language Monkeys.”

In the Large Language Monkeys setting, prac-
titioners set a fixed per-question compute budget
that could allow for up to 10,000 independent sam-
ples. They then repeatedly ask a language model
the same question. Performance on the ¢th question
is measured by pass; @k, given by

pass,Qk =

E [H [Any attempt on i-th problem succeeds] | .
k Attempts
ey

This per-question success rate is averaged over
the entire dataset, so that pass@F on the full dataset
D containing P problems is defined as

P
1
passpQk = 2 Z; pass;Qk.

To estimate pass;@Qk, we used the unbiased
and numerically stable estimator from Chen et al.
(2021) and followed the procedure from Anony-
mous (2025): for the ¢-th problem, sample n > k
attempts per problem, count the number of suc-
cesses ¢, and then compute an estimate of pass; @k
for different k& values using the expression:

)
(%)

Independently sampling to solve hard problems

is hugely expensive; any improvement in efficiency

can save large amounts of compute. Inspired by

pa/ssi\@kzl—

2)

recent improvements in creativity garnered by im-
proved logit processors (Nguyen et al., 2024), we
ask: is there a logit processor that can improve
pass @k reasoning performance?

In this paper, we demonstrate that the choice of
logit processor has a significant impact on pass@k
success rates: appropriate logit processors can im-
prove pass@1 accuracy by over 10% relative to
“base" sampling (i.e. sampling using un-truncated
logits) on common math and coding benchmarks.
We discover a surprising paradox: a logit processor
that performs well using a pass@1 metric often
performs poorly using a pass @k metric for large
values of k. This is illustrated theoretically in Sec-
tion 5.2. Ideally, one would like a logit processor
that performs well on both pass@1 and pass@Fk
metrics. Towards this goal, we propose the entro-
p logit processor in Section 3 as a dynamic vari-
ant of min-p. We compare entro-p to other token
sampling methods including min-p (Nguyen et al.,
2024), top-p (Holtzman et al., 2020), and base sam-
pling in Section 4. The comparison is made across
the benchmark datasets MATH (Hendrycks et al.,
2021), MBPP (Austin et al., 2021), and AlpacaEval
Creative Writing (Li et al., 2023). These compar-
isons show that entro-p holds a slight edge over
other token sampling methods using pass @k met-
rics for both large and small values of &k, demon-
strating that it improves factuality overall, while
contributing little additional latency to generation.

To summarize our contributions:

1. We show that the choice of logit processor
has a strong impact on model performance on
reasoning tasks: a good processor can garner
performance gains up to 10% over base sam-
pling for both pass@1 and pass@Fk, k ~ 500.

2. We highlight an interesting paradox: strong
performance under a pass@1 metric often
translates into poor performance under a
pass @k metric for large k.

3. We introduce entro-p, a logit processor that is
able to perform well under pass@k for both
large and small k on reasoning tasks. In addi-
tion to showing good performance on reason-
ing benchmarks, entro-p achieves SOTA per-
formance on Alpaca Creative Eval (Li et al.,
2023), showing that reasoning performance
does not need to compromise creativity.

2 Background

To better contextualize this paper, we explain the
notion of truncation sampling, which gave rise to
several modern logit processors. Language models
are often miscalibrated on low-probability tokens,
assigning non-zero probabilities to tokens that do
not make sense. Hewitt et al. (2022) showed that
pure sampling is deficient because language mod-
els typically predict a non-zero probability for all
possible tokens at each generation step, which is a
byproduct of using cross-entropy loss during pre-
training and not a feature of the empirical distribu-
tion of language (Meister and Cotterell, 2021). In-
deed, Holtzman et al. (2020) showed that pure sam-
pling (sampling directly from a language model’s
predicted probability distribution) can lead to inco-
herent text. To address this problem, practitioners
introduced truncation sampling, which removes
low-probability tokens and recalculates the sam-
pling distribution over the tokens that are left.

Before describing past methods of truncation
sampling, or logit processing, we establish some
common notation. Let V denote the vocabulary of
a language model, and let Py(z¢|z1.4—1) represent
the conditional probability distribution for the next
token x;. Here x1.+—1 denotes the sequence of the
first ¢ — 1 generated tokens. In practice, next-token
probabilities are output as logits by the language
model. Formally, if [V| = n, then

Ty € {Ul’ "'avn}

where the language model assigns a logit score ¢;
to v;. One can recover the probability distribution
over (v1, ..., v,) via the softmax function:

eli

D€l

During truncation sampling, one selects a subset
S C V, resetting the probability

Py (vi|z1:4-1) =

eli

——— U; 6 S
0 (2
ijjESE J

0 else.

Py(vi|T1:4-1) =

We denote the reverse order statistics of the log-
its by £(1y > {3y > -+ > L), and we use the
same convention for the corresponding probabili-
ties and the vocabulary: v(y) is the token with the
highest predicted probability, which is p).

Having established this notation, we can now
describe the leading existing logit processors.

2.1 Top-p

Holtzman et al. (2020) introduced the first trunca-
tion method: top-p sampling. Top-p sets

7
¢ = min i:Zp(i) >p
j=1

Then, it selects the set S C V to be

S = {1)(1), ...,U(C)}.

In words, top-p selects the most probable tokens
that contain at least p of the total probability mass
in the sampling distribution for the next token.

2.2 Top-k

Top-k sampling selects S = {v(y), ..., () }. Typ-
ically, k is chosen betwen 15 and 100 tokens.
Setting £ = 1, one recovers greedy decoding.
Although simple, this method helped Fan et al.
(2018a) achieve significant gains for neural story
generation in 2018.

2.3 Min-p

Recently, Nguyen et al. (2024) discovered that set-
ting a hard cutoff, as top-p and top-£ do, can inhibit
creativity. They achieved increases in creativity
through the min-p logit processor, which sets

S ={vi :pi > pay-p}

In other words, min-p considers all tokens that
have a probability at least p times the probability
of the most-likely next token. Although simple,
this method significantly improves creativity as
measured by both human evaluations and Alpaca
(Li et al., 2023).

With these past logit processing methods for con-
text, we now proceed to describe our new logit
processor for reasoning tasks: entro-p.

3 entro-p

3.1 Motivation

Nguyen et al. (2024) noted that using an adaptive
threshold can improve creativity in LMs. However,
the threshold set by Nguyen et al. (2024) depends
only on the most probable token; thus, it does not
account for other information in the predicted prob-
ability distribution. Intuitively, truncation sampling
should filter logits more aggressively when the LM
exhibits higher certainty about the “correct" next

token, and less aggressively when there is more
uncertainty. We measure the LM’s uncertainty us-
ing entropy, allowing us to produce a more flexible
cutoff that yields better results than min-p. Since
the calculation of the cutoff in entro-p involves
the whole probability distribution (via the entropy),
entro-p has better sensitivity to the whole probabil-
ity distribution in comparison to min-p.

A second motivation for entro-p comes from
our observations of pass@Fk performance across
different samplers. As we demonstrate in Section 5,
superior performance in pass@ 1 sampling typically
translates into degraded performance in pass@k
sampling. Through entro-p, we aim to build a logit
processor that can perform well on both pass@1
and pass @£k, catering to multiple different compute
budgets.

3.2 Method Description

In this section, we describe entro-p sampling,
which uses entropy-based adaptive thresholds to
improve upon min-p sampling. Before proceeding
to the method, we briefly review the definition of
entropy, which is central to our method. Recall
that for a discrete probability distribution that takes
values 1, ..., x,, with probabilities p1, ..., p,, the
entropy is defined as

h=— Zpi log(p;).
i1

Entropy is maximized by a uniform probability
distribution, and minimized by a distribution that
puts all probability mass on a single point. Entro-p
truncates aggressively when measured entropy is
low, and less aggressively when measured entropy
is high. Recall that in our notation from Section 2,
an LM selects x; € V from the distribution given
by
zp ~ Po(we|T1:4-1)-

The reverse order statistics of the logits are denoted
by £(1) > ... > {(5). In our notation, a logit pro-
cessor selects a subset S C V of tokens to consider
during sampling.

Let U and L be hyperparameters used to clamp
the measured entropy, and d be an additional hy-
perparameter used in Step 5. When selecting the
next token, the entro-p logit processor proceeds in
the following steps:

1. Find the maximum logit £ (1.

2. Reduce the tokens under consideration from
Vi S = {Ui PP 2 260 677} and let
Py (z¢|z1.1—1) denote the resulting (renormal-
ized) distribution.

= exp(4;)

3. Recalculate p; = S s exp@)’

4. Compute the entropy h = Ry of
Py(xi|z1:4-1):

he ==Y pilog .
vieé‘

5. Refine the set S further by setting S = {v; €
S pi = (pay — (d+h))}

6. Replace h by the clamped value h* =
max(min(h,, U), L).

7. Scale the logits corresponding to tokens in the
set S by Ezcale = {;/h* for v; € S. Finally,
sample the next token using the logits £5°.

The number of tokens in the vocabulary is fixed.
Since the only operations needed to implement
entro-p are sorting and calculation of entropy, entro-
p has a run-time of O(|V|log(|V|)), which is in-
significant compared to the forward method of a
modern LM for |V| ~ 128,000.

3.3 entro-p Case Study

We now provide a case study illustrating how entro-
p can reduce the occurrence of errors in contexts
requiring technical reasoning. Recall that in such a
context, the logit distributions are very often highly
concentrated on only a few tokens. It is thus gen-
erally beneficial to truncate more conservatively,
such as by using a lower p value in top-p sampling,
or by employing a lower temperature for scaling.
These methods are relatively static, and in some
cases, insufficient.

In Figure 1, we show an interaction in which
the language model initially makes a mistake in
the penultimate step of its evaluation of a mathe-
matical expression. Towards the end of its second
response, the model is tempted again to make the
same mistake, as can be seen in the relatively high
logit score for the token ‘3. Entro-p utilizes the
entropy of the distribution at this step of generation
to determine the truncation level, indicated by the
dotted blue line, discarding the incorrect token. On
the other hand, we see that even under a restrictive
choice of p, the min-p processor fails to filter out
this token.

User: Evaluate 4° + i~ 2% + %5,
Assistant: To evaluate 3° + 2% + i*®, we use the fact
thati* =1..., i = ... = —i.
... Therefore, i® 43725 +i% = j — (—i) +
1= 3,
User: Why is there a subtraction in the last step?
Assistant: The subtraction is not necessary. ... The
correct step is simply adding ¢ and —: to
get 0, and then adding 7 to get _____

Logit value

22 —e— Logits within 7 nats of max logit
---- Entropy cutoff
=+ Min-p w/ p=0.2 cutoff

\\.

3 2 1
Tokens

Figure 1: An instance in which entro-p filters out flawed
tokens more selectively than min-p. This graph shows
the logit scores of top tokens at a generation step in a
conversation initiated by a math reasoning problem from
the MATH dataset. The dotted grey line indicates the
truncation level of min-p set to p = 0.2, and the dashed
blue line indicates the truncation level of entro-p. The
correct token is ‘¢’ and is retained by both processors,
but min-p also retains the incorrect token ‘3.’

4 Experimental Setup
4.1 Datasets

We evaluate the effectiveness of entro-p against
min-p sampling and base sampling (using only tem-
perature scaling) on three widely used benchmarks
focused on reasoning: MATH (Hendrycks et al.,
2021), MBPP (Austin et al., 2021), and AlpacaEval
for creativity (Li et al., 2023). These benchmarks
allow for easily verifiable solutions, either by com-
paring numerical outputs with provided answers or
by executing simple Python scripts and checking
for successful system exits.

Our experimental datasets for evaluations are as
follows:

e The MATH dataset consists of 12,500 chal-
lenging math word problems with solutions
written in I£[[EXcontaining boxed final numer-
ical answers (Hendrycks et al., 2021). We
employ 4-shot prompting, following Gao et al.
(2024)’s Minerva MATH task, without the use

of chat-templating.

* The MBPP (Mostly Basic Programming Prob-
lems) dataset consists of 974 problem state-
ments requesting Python code to perform sim-
ple tasks, and test cases for each problem to
check if a purported solution indeed solves
the task at hand. We use 3-shot prompting
without the use of chat-templating in order
for the model to produce functioning Python
code without the extraneous outputs typically
produced by instruction-tuned models.

¢ The AIME24 dataset (Jia, 2024) consists of
problem statements and solutions to the 2024
American Invitational Mathematics Examina-
tion (AIME). This is a small dataset contain-
ing 30 questions and answers. The final an-
swers for these problems are numerical and
reported separately from the problem solution
for easy verification.

* The AlpacaEval Creative Writing uses LLM-
as-a-judge to measure the efficacy of an LM
on creative prompts (Li et al., 2023). The
win rate is computed for all sampling methods
against base sampling with temperature 1. We
use GPT-40 as our LLM judge.

From MATH and MBPP, which are large bench-
mark datasets, we select 300 questions at ran-
dom, filtering out problems and solutions from
the MATH dataset that were beyond 600 tokens
in combined length in order to avoid cases where
the model’s outputs are truncated before it reaches
a final answer. We are unable to do pass@F evalu-
ations on more than 300 questions, since we have
to sample 500 questions per problem for a total of
150,000 runs per dataset. We carry out our eval-
uations on MATH and MBPP using EleutherAI’s
language model evaluation harness Im-eval (Gao
et al., 2024) and using vLLM (Kwon et al., 2023)
with roughly 2,400 Nvidia a4000 GPU hours. We
evaluate pass@Fk on all problems in the AIME2024
dataset.

4.2 Evaluation Details

We test three logit processors: pure sampling with
temperature scaling (base), min-p, and entro-p. On
MBPP we tested these processors on the mod-
els Gemma-2-2b-it (Riviere et al., 2024), Mistral-
7B-Instruct-v0.3 (Jiang et al., 2023), Llama-3.2-
3B-Instruct, and Llama-3.1-8B-Instruct (Touvron

et al., 2023). On the MATH and AIME24 datasets
we tested the processors on Llama-3.2-3B-Instruct
and Llama-3.1-8B-Instruct. We report the average
pass@Fk score for each processor for a selection
of values of k£ between 1 and 500. We compute
pass@F as described in (2). In each case, we tested
each logit processor with a grid of hyperparameters.
The two hyperparameters which resulted in the best
pass@100 scores were selected for each processor.
The pass @£ scores between 1 and 500 were then
reported for each processor with its two possible
best hyperparameter settings. See Figures 2 and 3.

We note that although we show smaller gains
over past methods than Nguyen et al. (2024), we
do far more extensive hyperparameter sweeps over
competing methods to allow for a more fair and
realistic comparison.

5 High pass@1 Performance Often
Corresponds to Low pass@F
Performance

A natural goal in reasoning tasks where the answer
is easy to verify is to maximize the chance that
a single generated solution is correct. However,
repeated sampling for sufficiently high & can ex-
pose a hidden trade-off: methods that aim to boost
pass@]1 performance often reduce the coverage of
the model, significantly reducing pass@¥k perfor-
mance.

In the following subsections, we provide empiri-
cal evidence and a toy model to illustrate how this
phenomenon can arise.

5.1 Empirical Evidence

We observe a general trend that persists through-
out many of the evaluations, but is especially pro-
nounced for MBPP: the logit processors that per-
form best for pass@1 perform among the worst for
pass@100. For instance, in Figure 2a, we see that
base sampling achieves an accuracy 7% lower than
min-p evaluated by pass@ 1. However, when evalu-
ated by pass @500, it outperforms min-p by 7%. In
a complete reversal, the worst logit processor for
pass@1 becomes the best for pass@500. The same
trend emerges for base sampling in Figures 3a, b.
This paradox is not restricted to the MBPP dataset:
in Figures 3c, e we observe the same phenomemon
on the MATH and AIME?24 datasets.

The reason for this trend is likely that more con-
servative logit processors are more likely to suc-
ceed in pass@1 because they sample the most prob-

Pass@k Curves for gemma-2-2b-it on MBPP
Top 2 Configurations per Processor

08

base (t: 1.0)

entro-p (t: 1.0, U=2.0, L=1.0, d=2.0)
===+ entro-p (7: 1.0, U=1.5, L=1.0, d=2.0)
—==- base (r: 0.7)

min-p (7: 1.0, p=0.1)

min-p (7: 0.7, p=0.1)

04

1 H 1015 20 2530 40 50 100 200 500

(@)
Pass@k Curves for Mistral-7B-Instruct-v0.3 on MATH
Top 2 Configurations per Processor

0.9

pass@k

min-p (7: 0.5, p=0.05)

—— base (7: 0.7)

entro-p (7: 0.7, U=2.0, L=0.5, d=0.5)

===+ entro-p (1: 0.7, U=2.0, L=0.7, d=0.5)
min-p (7: 0.7, p=0.05)

—==- base (7: 0.5)

01
1015 20 2530 40 50 100 200 500

(b)

Figure 2: Pass@F£ scores for gemma-2-2b-it and Mistral-
7B-Instruct-v0.3 on MBPP and MATH, respectively.
Pure sampling, min-p, and entro-p are considered, with
different values for their hyperparameters. Note that the
logit processors that perform the best for pass@1 often
underperform for pass@500 and vice versa.

able tokens at each step. However, over multiple
attempts, they are unable to exhaustively explore
the space of solutions, so they fail to find low-
probability solutions that are necessary to solve
hard problems. We offer a toy example to illustrate
mathematically how this phenomenon can emerge
in practice.

5.2 A Toy Example

In practice, it is analytically intractable to analyze
token-by-token performance of language models at
scale. Therefore, to motivate the existence of the
paradox whereby high pass@1 performance can
imply poor pass @k performance, we provide a toy
example. This example provides one mechanism
by which such a paradox can arise, though it is by
no means the only mechanism.

Consider testing two language models A and B,
which are trying to solve a problem with a single

correct answer that is one token in length. Sup-
pose that these two models employ different token
selection methods.

Given an input sequence x1.; of tokens, model
A considers a set of possible tokens S 4 with size
|S4| = m. From the set S 4, model A will select
a single token, chosen uniformly with probability
%. The set S4 will be chosen deterministically
based on x1., i.e. S4 will always be the same
set when A receives the same input sequence. Let
the probability that S4 contains the correct token
be p. This strategy represents a simplification of
sampling methods such as top-p. On the other hand,
assume that model B selects a token ranging across
the entire vocabulary V: this token has a probability
q of being correct on each attempt. Suppose that
g < p/m. We can now analyze the performance
of each of these sampling strategies for different
pass@k.

If S4 contains the correct answer, then Model
A will solve the problem with probability 1/m
on each attempt. The set S4 contains the correct
answer with probability p, so model A succeeds on
pass @k with probability

p(1—(1—1/m)").
On the other hand, model B succeeds on pass@k
with probability
1—(1-q)*

For pass@1, model A succeeds with probability
p/m and model B succeeds with probability g.
Thus, model A has better performance on pass@1.
On the other hand, as £ — oo, model A can never
succeed with probability exceeding p, whereas the
success probability for model B asymptotically ap-
proaches 1. Thus, it is possible for B to greatly
outperform A for pass@Fk with k large while still
vastly underperforming relative to A when k is
small. See Figure 4.

This toy example illustrates that superior results
on pass@1 may not translate to pass@¥k for higher
k. Although this example may seem naive, it
closely reflects the scaling behavior that we ob-
serve in practice. We may view model B as “more
confident” in its outputs, despite often being wrong,
whereas model A is less confident in its outputs.

6 Empirical performance of entro-p

6.1 Math and Coding Benchmarks

In Table 1, we report the pass@ 100 performances
of entro-p and min-p processors used with various

Pass@k Curves for Llama-3.2-3B-Instruct on MBPP

Top 2 Configurations per Processor

0.9

08

entro-p (t: 1.0, U=2.0, L=0.8, d=1.5)
- entro-p (1: 1.0, U=1.5, L=0.5, d=1.5)
min-p (7: 1.0, p=0.05)

base (7: 1.0)

min-p (7: 1.0, p=0.1)

- base (7: 0.7)

03

1 5 10 15 20 2530 40 50 100 200 500
(a)

Pass@k Curves for Llama-3.2-3B-Instruct on MATH
Top 2 Configurations per Processor

0.9

entro-p (7: 0.7, U=1.0, L=0.5, d=1.5)
min-p (r: 1.0, p=0.05)
min-p (r: 0.7, p=0.1)
—— base (7: 0.5)
» ===+ entro-p (7: 0.7, U=1.0, L=0.5, d=1.0)
0s -==- base (7: 0.7)

1 s 1015 20 2530 40 50 100 200 500

k

©)

Pass@k Curves for Llama-3.2-3B-Instruct on AIME24
Top 2 Configurations per Processor

min-p (7: 0.5, p=0.05) ,
—— entro-p (7: 0.5, U=1.0, L=1.0, d=1.5) s
===- entro-p (1: 1.5, U=1.6, L=0.3, d=0.5) /

min-p (r: 0.7, p=0.2) /
05 —— base (1: 0.7)
- base (1: 0.5)

0.6

R ——

1 5 10 15 20 2530 40 50 100 200 500

©)]

Pass@k Curves for Llama-3.1-8B-Instruct on MBPP
Top 2 Configurations per Processor

e
@ 07
3
=%
base (7: 1.0)
0 —-==- base (7: 0.7)
— entro-p (1: 0.7, U=2.0, L=0.5, d=0.5)
05 min-p (7: 0.7, p=0.1)
—-==- entro-p (7: 0.7, U=1.5, L=0.5, d=0.5)
min-p (7: 0.7, p=0.2)
1 5 10 15 20 2530 40 50 100 200 500
(b)
Pass@k Curves for Llama-3.1-8B-Instruct on MATH
Top 2 Configurations per Processor
1.0
0.9
0.8
-
® 07
P
]
=%

min-p (r: 0.7, p=0.05)

— entro-p (7: 0.7, U=1.5, L=0.7, d=0.5)
min-p (7: 0.5, p=0.1)

=== entro-p (7: 0.7, U=1.5, L=0.7, d=1.0)

—— base (1: 0.5)

===- base (r: 0.7)

0.4

1 5 1015 20 2530 40 50 100 200 500

Pass@k Curves for Llama-3.1-8B-Instruct on AIME24
Top 2 Configurations per Processor

06 —— entro-p (1: 0.5, U=1.5, L=1.0, d=0.5)

—— base (7: 0.5)

===+ entro-p (7: 0.7, U=2.0, L=0.7, d=0.5)
min-p (7: 0.7, p=0.1)
min-p (t: 1.0, p=0.05)

- base (7: 0.7)

0.1

1 5 10

15 20 2530 40 50 100 200 500

®

Figure 3: Pass@Fk scores for Llama-3.2-3B-Instruct and Llama-3.1-8B-Instruct on MBPP, MATH, and AIME24.
Pure sampling, min-p, and entro-p are considered, with different values for their hyperparameters. Again we see

entro-p overperforming on pass @k for large k and processors which overperform on pass@ 1 underperforming on
pass@500 and vice versa.

models on the AIME24 and MBPP benchmarks

exam parts [and II (AOPS, 2025), formatted in
as well as a dataset crafted from the AIME 2025

the same manner as the AIME24 dataset. Entro-p

0.8

4
>

=

Model A, p=0.6, m=100
Model A, p=0.5, m=50
—— Model A, p=0.4, m=20
Model B, g=0.003
Model B, g=0.002
—— Model B, g=0.001

pass@k success rate

I
o

0.0

0 200 400 600 800 1000
k

Figure 4: Toy models A and B scored on pass@k using
different parameters. Notice that for small k&, Model A
is more effective than model B, but this trend reverses
for large k.

outperforms min-p on 7 out of 11 model-dataset
combinations. On 3 of the 4 other datasets entro-p
underperformed min-p by just 0.1%.

Model Dataset min-p entro-p (ours)
Llama-3.1-8B-Instruct MATH 94.0 % 93.9%
Llama-3.1-8B-Instruct MBPP 85.5% 85.7 %
Llama-3.1-8B-Instruct AIME24 42.7% 44.6%
Llama-3.1-8B-Instruct AIME25 21.3% 22.8%
Gemma-2-2b-it MATH 78.4% 78.5%
Gemma-2-2b-it MBPP 69.2% 72.3%
Llama-3.2-3B-Instruct MATH 91.2% 91.4%
Llama-3.2-3B-Instruct MBPP 84.1% 84.5%
Llama-3.2-3B-Instruct AIME24 41.3% 40.8%
Mistral-7B-Instruct-v0.3 MATH 75.1% 75.0%
Mistral-7B-Instruct-v0.3 MBPP 81.1% 81.0%

Table 1: Highest pass@100 score comparison for min-p
and entro-p across multiple (Model, Dataset) pairs. Hyper-
parameters for all pairs except for the AIME25 benchmark
can be found in the legends of the graphs in Figure 3 and
Figure 2. The hyperparameters for entro-p on AIME2S5 are
U =1.0,L = 0.8, d = 0.0 with temperature 0.7, and for
min-p are p = 0.2 with temperature 0.5.

6.2 AlpacaEval Creative Writing

We report the results of evaluating min-p and entro-
p in Table 2. A hyperparameter sweep, as exempli-
fied in the table, shows that entro-p beats min-p, the
previous SOTA, using length-controlled win rate.
Thus, entro-p is effective for both logical reasoning
and creative tasks.

7 Conclusion

The results of this paper show clearly that the
choice of logit processor can have a significant
effect on pass@¥k performance for large k. Fur-
thermore, superior pass@ 1 performance does not

Table 2: We compare top five configurations for each of
min-p and entro-p on a Alpaca-Eval Creative Writing
benchmark, reporting Length-Controlled Win Rate.

min-p Configurations

Parameters LC Win Rate (%)
(r=15 p=0.1) 58.12
(r=1.5, p=0.15) 56.73
(r=1.5, p=0.2) 55.45
(r=1.0, p=10.05) 55.07
(r=20, p=0.2) 54.82

entro-p Configurations

Parameters LC Win Rate (%)
(r=12,d=1.0,1=1.0, u=2.0) 58.39
(r=1.0,d=0.75,1=1.0, u=2.0) 56.96
(r=10,d=0.5,1=1.2 u=2.0) 56.31
(tr=15,d=151=1.0, u=1.5) 56.30
(r=10,d=051=1.0, u=25) 56.17

translate to superior pass@k performance for large
k. In fact, the reverse is sometimes true, with a
worst-performing logit processor on pass@1 be-
coming best-performing on pass@Fk for large k.
Owing to its dynamic output, the entro-p processor
is a promising new option that can outperform min-
p. It performs well with respect to pass @k for large
values of k£ on reasoning tasks. At the same time,
this doesn’t cause a sacrifice on creativity tasks, as
shown using AlpacaEval. More work is warranted
to investigate the underlying mechanism for an in-
verse relationship between pass@1 performance
and pass@Fk performance.

Limitations

We outline some limitations of entro-p and the
search for a “best” logit processor below:

1. The paradox of logit processors performing
well on pass@1 and poorly on pass@Fk un-
derlines the difficulty of choosing a logit pro-
cessor that performs well on pass@k inde-
pendently of the value of k. This limitation
applies to entro-p too, despite its promising
performance.

2. Moreover, our results on e.g. AIME24 indi-
cate that the performance of different logit pro-
cessors on the same task is model-dependent.
This indicates further difficulties in choosing
a single logit processor which will perform
well on a given task using a given model.

3. So far, we lack a good statistical theory of
the probability distributions predicted by lan-

guage models. Such a theory would be quite
useful in designing a good logit processor. In
particular, what statistics should be computed
to choose an ideal cutoff for truncation sam-
pling?

4. Consequently, logit processors such as min-p
and entro-p rely on heuristics (e.g. on when to
make a language model “more confident” or
“less confident”).

5. We compare models on creativity tasks using
the AlpacaEval evaluator, which uses LLM-
querying to decide on better or worse out-
put. This has the advantage of being fast and
cheap. However, LLM evaluations may not
fully align with human evaluations of creativ-
ity. It would be useful to have human evalu-
ators to compare entro-p and other logit pro-
Cessors on creativity.

References

David H. Ackley, Geoffrey E. Hinton, and Terrence J.
Sejnowski. 1985. A learning algorithm for boltz-
mann machines. Cogn. Sci., 9(1):147-169.

Anonymous. 2025. How do large language monkeys
get their power (laws). ICML 2025 Conference Sub-
mission, unpublished manuscript.

AOPS. 2025. 2025 AIME. https://
artofproblemsolving.com/wiki/index.php/
AIME_Problems_and_Solutions. Accessed: 14
Feb 2025.

Jacob Austin, Augustus Odena, Maxwell 1. Nye,
Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie J. Cai, Michael Terry, Quoc V. Le,
and Charles Sutton. 2021. Program synthesis with
large language models. CoRR, abs/2108.07732.

Bradley C. A. Brown, Jordan Juravsky, Ryan Saul
Ehrlich, Ronald Clark, Quoc V. Le, Christopher Ré,
and Azalia Mirhoseini. 2024. Large language mon-
keys: Scaling inference compute with repeated sam-
pling. CoRR, abs/2407.21787.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Pondé de Oliveira Pinto, Jared Kaplan,
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg
Brockman, Alex Ray, Raul Puri, Gretchen Krueger,
Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela
Mishkin, Brooke Chan, Scott Gray, and 39 others.
2021. Evaluating large language models trained on
code. CoRR, abs/2107.03374.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro

Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. CoRR, abs/2110.14168.

Angela Fan, Mike Lewis, and Yann Dauphin. 2018a.
Hierarchical neural story generation. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 889—-898, Melbourne, Australia. Association
for Computational Linguistics.

Angela Fan, Mike Lewis, and Yann Dauphin. 2018b.
Hierarchical neural story generation. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 889—-898, Melbourne, Australia. Association
for Computational Linguistics.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Bider-
man, Sid Black, Anthony DiPofi, Charles Foster,
Laurence Golding, Jeffrey Hsu, Alain Le Noac’h,
Haonan Li, Kyle McDonell, Niklas Muennighoff,
Chris Ociepa, Jason Phang, Laria Reynolds, Hailey
Schoelkopf, Aviya Skowron, Lintang Sutawika, and
5 others. 2024. A framework for few-shot language
model evaluation.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Wein-
berger. 2017. On calibration of modern neural net-
works. In Proceedings of the 34th International Con-
ference on Machine Learning, volume 70 of Pro-
ceedings of Machine Learning Research, pages 1321—
1330. PMLR.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and Ja-
cob Steinhardt. 2021. Measuring mathematical prob-
lem solving with the MATH dataset. In Proceedings
of the Neural Information Processing Systems Track
on Datasets and Benchmarks 1, NeurIPS Datasets
and Benchmarks 2021, December 2021, virtual.

John Hewitt, Christopher Manning, and Percy Liang.
2022. Truncation sampling as language model
desmoothing. In Findings of the Association for Com-
putational Linguistics: EMNLP 2022, pages 3414—
3427, Abu Dhabi, United Arab Emirates. Association
for Computational Linguistics.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and
Yejin Choi. 2020. The curious case of neural text de-
generation. In International Conference on Learning
Representations.

Maxwell Jia. 2024. Aime24. https://huggingface.
co/datasets/Maxwell-Jia/AIME_2024.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de Las Casas, Florian Bressand, Gianna Lengyel,
Guillaume Lample, Lucile Saulnier, Lélio Re-
nard Lavaud, Marie-Anne Lachaux, Pierre Stock,
Teven Le Scao, Thibaut Lavril, Thomas Wang, Timo-
thée Lacroix, and William El Sayed. 2023. Mistral
7b. CoRR, abs/2310.06825.

https://doi.org/10.1207/S15516709COG0901_7
https://doi.org/10.1207/S15516709COG0901_7
https://doi.org/10.1207/S15516709COG0901_7
https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions
https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions
https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions
https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions
https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
https://doi.org/10.48550/ARXIV.2407.21787
https://doi.org/10.48550/ARXIV.2407.21787
https://doi.org/10.48550/ARXIV.2407.21787
https://doi.org/10.48550/ARXIV.2407.21787
https://doi.org/10.48550/ARXIV.2407.21787
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://doi.org/10.18653/v1/P18-1082
https://doi.org/10.18653/v1/P18-1082
https://doi.org/10.5281/zenodo.12608602
https://doi.org/10.5281/zenodo.12608602
https://doi.org/10.5281/zenodo.12608602
https://proceedings.mlr.press/v70/guo17a.html
https://proceedings.mlr.press/v70/guo17a.html
https://proceedings.mlr.press/v70/guo17a.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/be83ab3ecd0db773eb2dc1b0a17836a1-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/be83ab3ecd0db773eb2dc1b0a17836a1-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/be83ab3ecd0db773eb2dc1b0a17836a1-Abstract-round2.html
https://doi.org/10.18653/v1/2022.findings-emnlp.249
https://doi.org/10.18653/v1/2022.findings-emnlp.249
https://doi.org/10.18653/v1/2022.findings-emnlp.249
https://openreview.net/forum?id=rygGQyrFvH
https://openreview.net/forum?id=rygGQyrFvH
https://openreview.net/forum?id=rygGQyrFvH
https://huggingface.co/datasets/Maxwell-Jia/AIME_2024
https://huggingface.co/datasets/Maxwell-Jia/AIME_2024
https://huggingface.co/datasets/Maxwell-Jia/AIME_2024
https://doi.org/10.48550/ARXIV.2310.06825
https://doi.org/10.48550/ARXIV.2310.06825
https://doi.org/10.48550/ARXIV.2310.06825

Sumith Kulal, Panupong Pasupat, Kartik Chandra, Mina
Lee, Oded Padon, Alex Aiken, and Percy S Liang.
2019. Spoc: Search-based pseudocode to code. Ad-
vances in Neural Information Processing Systems,

32.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. 2023. Effi-
cient memory management for large language model
serving with pagedattention. In Proceedings of the
ACM SIGOPS 29th Symposium on Operating Systems
Principles.

Xuechen Li, Tianyi Zhang, Yann Dubois, Rohan Taori,
Ishaan Gulrajani, Carlos Guestrin, Percy Liang, and
Tatsunori B. Hashimoto. 2023. Alpacaeval: An au-
tomatic evaluator of instruction-following models.
https://github.com/tatsu-lab/alpaca_eval.

Clara Meister and Ryan Cotterell. 2021. Language
model evaluation beyond perplexity. In Proceedings
of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing,
ACL/IJCNLP 2021, (Volume 1: Long Papers), Virtual
Event, August 1-6, 2021, pages 5328-5339. Associa-
tion for Computational Linguistics.

Minh Nguyen, Andrew Baker, Clement Neo, Allen
Roush, Andreas Kirsch, and Ravid Shwartz-Ziv.
2024. Turning up the heat: Min-p sampling
for creative and coherent llm outputs. Preprint,
arXiv:2407.01082.

Krishna Pillutla, Swabha Swayamdipta, Rowan Zellers,
John Thickstun, Sean Welleck, Yejin Choi, and Zaid
Harchaoui. 2021. MAUVE: measuring the gap be-
tween neural text and human text using divergence
frontiers. In Advances in Neural Information Pro-
cessing Systems 34: Annual Conference on Neural
Information Processing Systems 2021, NeurlPS 2021,
December 6-14, 2021, virtual, pages 4816-4828.

David Rein, Betty Li Hou, Asa Cooper Stickland,
Jackson Petty, Richard Yuanzhe Pang, Julien Di-
rani, Julian Michael, and Samuel R. Bowman. 2023.
GPQA: A graduate-level google-proof q&a bench-
mark. CoRR, abs/2311.12022.

Morgane Riviere, Shreya Pathak, Pier Giuseppe
Sessa, Cassidy Hardin, Surya Bhupatiraju, Léonard
Hussenot, Thomas Mesnard, Bobak Shahriari,
Alexandre Ramé, Johan Ferret, Peter Liu, Pouya
Tafti, Abe Friesen, Michelle Casbon, Sabela Ramos,
Ravin Kumar, Charline Le Lan, Sammy Jerome, An-
ton Tsitsulin, and 80 others. 2024. Gemma 2: Im-
proving open language models at a practical size.
CoRR, abs/2408.00118.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurélien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023. Llama: Open

10

and efficient foundation language models. CoRR,
abs/2302.13971.

Johnathan Xie, Annie S. Chen, Yoonho Lee, Eric
Mitchell, and Chelsea Finn. 2024. Calibrating lan-
guage models with adaptive temperature scaling. In
Proceedings of the 2024 Conference on Empirical
Methods in Natural Language Processing, EMNLP
2024, Miami, FL, USA, November 12-16, 2024, pages
18128-18138. Association for Computational Lin-
guistics.

https://github.com/tatsu-lab/alpaca_eval
https://doi.org/10.18653/V1/2021.ACL-LONG.414
https://doi.org/10.18653/V1/2021.ACL-LONG.414
https://doi.org/10.18653/V1/2021.ACL-LONG.414
https://arxiv.org/abs/2407.01082
https://arxiv.org/abs/2407.01082
https://arxiv.org/abs/2407.01082
https://proceedings.neurips.cc/paper/2021/hash/260c2432a0eecc28ce03c10dadc078a4-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/260c2432a0eecc28ce03c10dadc078a4-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/260c2432a0eecc28ce03c10dadc078a4-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/260c2432a0eecc28ce03c10dadc078a4-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/260c2432a0eecc28ce03c10dadc078a4-Abstract.html
https://doi.org/10.48550/ARXIV.2311.12022
https://doi.org/10.48550/ARXIV.2311.12022
https://doi.org/10.48550/ARXIV.2311.12022
https://doi.org/10.48550/ARXIV.2408.00118
https://doi.org/10.48550/ARXIV.2408.00118
https://doi.org/10.48550/ARXIV.2408.00118
https://doi.org/10.48550/ARXIV.2302.13971
https://doi.org/10.48550/ARXIV.2302.13971
https://doi.org/10.48550/ARXIV.2302.13971
https://aclanthology.org/2024.emnlp-main.1007
https://aclanthology.org/2024.emnlp-main.1007
https://aclanthology.org/2024.emnlp-main.1007

A Related work

A language model generates text one token at a
time according to a probability distribution pre-
dicted by the language model for the next token.
Several intuitive methods for choosing the next to-
ken include choosing the highest-probability token
(greedy sampling), choosing the token that begins
a highest probability sequence of tokens (beam
search), or simply sampling from the predicted
probability distribution (pure sampling). However,
these methods lead to text that is either repetitive
and predictable (greedy sampling and beam search)
or incoherent (pure sampling) (Holtzman et al.,
2020).

In order to improve on the factuality and creativ-
ity of these sampling methods, researchers have in-
vestigated the family of truncation sampling meth-
ods (Hewitt et al., 2022). Such methods include
top-k sampling (Fan et al., 2018b), fop-p sampling
(Holtzman et al., 2020), min-p sampling (Nguyen
et al., 2024), and n-sampling (Hewitt et al., 2022).
Heuristics for choosing truncation sampling over
other sampling methods are given in (Pillutla et al.,
2021) and (Holtzman et al., 2020).

Another simple and commonly used technique
to increase or decrease the creativity of a language
model is temperature scaling, introduced in (Ack-
ley et al., 1985) and (Guo et al., 2017). Temperature
scaling is frequently used in combination with trun-
cation sampling methods. Recently, adaptive tem-
perature scaling has been introduced as a dynamic
temperature scaling method improving calibration
of models (Xie et al., 2024).

Specific truncation sampling methods sometimes
lack rigorous statistical justification. On the other
hand, (Hewitt et al., 2022) develops a justification
for truncation sampling methods as “desmoothing’
by modeling a language model’s token predicted
probability distribution as a convex combination
of the true distribution and a noisy nearly uniform
distribution. They use this to derive several prin-
ciples that an ideal truncation sampling method
should abide by. Finally, min-p scaling has shown
improvements over top-p, top-k, and n-sampling
across several benchmarks (Cobbe et al., 2021;
Rein et al., 2023).

’

11

	Introduction
	Background
	Top-p
	Top-k
	Min-p

	entro-p
	Motivation
	Method Description
	entro-p Case Study

	Experimental Setup
	Datasets
	Evaluation Details

	High pass@1 Performance Often Corresponds to Low pass@k Performance
	Empirical Evidence
	A Toy Example

	Empirical performance of entro-p
	Math and Coding Benchmarks
	AlpacaEval Creative Writing

	Conclusion
	Related work

