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Abstract001

Interest in creating language models (LMs) ca-002
pable of solving challenging math and cod-003
ing questions has given rise to a host of new004
sampling strategies. One of the simplest ap-005
proaches for questions that are difficult to solve006
but easy to verify is to sample repeatedly un-007
til the LM derives a correct solution. Due008
to the high cost of these sampling methods,009
even small gains in reasoning efficiency mat-010
ter. Drawing inspiration from recent work that011
developed logit processors that improve cre-012
ative outputs from LMs, we develop the first013
logit processor, entro-p, that specifically tar-014
gets improved performance on pass@k reason-015
ing tasks for LMs. Designing a logit proces-016
sor for pass@k reasoning tasks is challenging017
because for small k, the optimal strategy is018
close to greedy sampling, but for large k, one019
might sample from the unprocessed logits to020
maximize the range of solutions in the search021
space. Our processor, entro-p, finds a happy022
medium between these two extremes that is023
able to improve both high and low-k perfor-024
mance relative to existing logit processors. Us-025
ing entro-p, we are able to achieve performance026
gains on pass@100 performance of up to 2%027
on the MATH, AIME24, and AIME25 bench-028
marks, and up to 3.1% on the MBPP bench-029
mark. These efficiency gains, which come at030
little extra cost during inference time, demon-031
strate that improvements in reasoning efficiency032
do not always require additional training re-033
sources. Moreover, they broaden understanding034
of how targeted logit processing can improve035
task performance beyond creative content gen-036
eration.037

1 Introduction038

Currently, there are many reasoning, math, and039

coding questions that language models (LMs) can-040

not solve consistently in a single attempt (Brown041

et al., 2024). To remedy this problem, some re-042

searchers have explored increasing inference-time043

compute to improve models’ capacity to excel at 044

reasoning tasks. There are many reasoning tasks 045

that are difficult to solve, but easy to verify (Ku- 046

lal et al., 2019; Chen et al., 2021). For such tasks 047

Brown et al. (2024) suggested a naive but effective 048

solution: one can prompt LMs thousands of times 049

in parallel to improve their probability of solving 050

difficult problems at least once. Language models 051

prompted using this method are known as “Large 052

Language Monkeys.” 053

In the Large Language Monkeys setting, prac- 054

titioners set a fixed per-question compute budget 055

that could allow for up to 10,000 independent sam- 056

ples. They then repeatedly ask a language model 057

the same question. Performance on the ith question 058

is measured by passi@k, given by 059

passi@k
def
=

E
k Attempts

[
I[Any attempt on i-th problem succeeds]

]
.

(1) 060

This per-question success rate is averaged over 061

the entire dataset, so that pass@k on the full dataset 062

D containing P problems is defined as 063

passD@k =
1

P

P∑
i=1

passi@k. 064

To estimate passi@k, we used the unbiased 065

and numerically stable estimator from Chen et al. 066

(2021) and followed the procedure from Anony- 067

mous (2025): for the i-th problem, sample n ≫ k 068

attempts per problem, count the number of suc- 069

cesses c, and then compute an estimate of passi@k 070

for different k values using the expression: 071

̂passi@k = 1−
(
n−c
k

)(
n
k

) (2) 072

Independently sampling to solve hard problems 073

is hugely expensive; any improvement in efficiency 074

can save large amounts of compute. Inspired by 075

1



recent improvements in creativity garnered by im-076

proved logit processors (Nguyen et al., 2024), we077

ask: is there a logit processor that can improve078

pass@k reasoning performance?079

In this paper, we demonstrate that the choice of080

logit processor has a significant impact on pass@k081

success rates: appropriate logit processors can im-082

prove pass@1 accuracy by over 10% relative to083

“base" sampling (i.e. sampling using un-truncated084

logits) on common math and coding benchmarks.085

We discover a surprising paradox: a logit processor086

that performs well using a pass@1 metric often087

performs poorly using a pass@k metric for large088

values of k. This is illustrated theoretically in Sec-089

tion 5.2. Ideally, one would like a logit processor090

that performs well on both pass@1 and pass@k091

metrics. Towards this goal, we propose the entro-092

p logit processor in Section 3 as a dynamic vari-093

ant of min-p. We compare entro-p to other token094

sampling methods including min-p (Nguyen et al.,095

2024), top-p (Holtzman et al., 2020), and base sam-096

pling in Section 4. The comparison is made across097

the benchmark datasets MATH (Hendrycks et al.,098

2021), MBPP (Austin et al., 2021), and AlpacaEval099

Creative Writing (Li et al., 2023). These compar-100

isons show that entro-p holds a slight edge over101

other token sampling methods using pass@k met-102

rics for both large and small values of k, demon-103

strating that it improves factuality overall, while104

contributing little additional latency to generation.105

To summarize our contributions:106

1. We show that the choice of logit processor107

has a strong impact on model performance on108

reasoning tasks: a good processor can garner109

performance gains up to 10% over base sam-110

pling for both pass@1 and pass@k, k ≈ 500.111

2. We highlight an interesting paradox: strong112

performance under a pass@1 metric often113

translates into poor performance under a114

pass@k metric for large k.115

3. We introduce entro-p, a logit processor that is116

able to perform well under pass@k for both117

large and small k on reasoning tasks. In addi-118

tion to showing good performance on reason-119

ing benchmarks, entro-p achieves SOTA per-120

formance on Alpaca Creative Eval (Li et al.,121

2023), showing that reasoning performance122

does not need to compromise creativity.123

2 Background 124

To better contextualize this paper, we explain the 125

notion of truncation sampling, which gave rise to 126

several modern logit processors. Language models 127

are often miscalibrated on low-probability tokens, 128

assigning non-zero probabilities to tokens that do 129

not make sense. Hewitt et al. (2022) showed that 130

pure sampling is deficient because language mod- 131

els typically predict a non-zero probability for all 132

possible tokens at each generation step, which is a 133

byproduct of using cross-entropy loss during pre- 134

training and not a feature of the empirical distribu- 135

tion of language (Meister and Cotterell, 2021). In- 136

deed, Holtzman et al. (2020) showed that pure sam- 137

pling (sampling directly from a language model’s 138

predicted probability distribution) can lead to inco- 139

herent text. To address this problem, practitioners 140

introduced truncation sampling, which removes 141

low-probability tokens and recalculates the sam- 142

pling distribution over the tokens that are left. 143

Before describing past methods of truncation 144

sampling, or logit processing, we establish some 145

common notation. Let V denote the vocabulary of 146

a language model, and let Pθ(xt|x1:t−1) represent 147

the conditional probability distribution for the next 148

token xt. Here x1:t−1 denotes the sequence of the 149

first t− 1 generated tokens. In practice, next-token 150

probabilities are output as logits by the language 151

model. Formally, if |V| = n, then 152

xt ∈ {v1, ..., vn} 153

where the language model assigns a logit score ℓi 154

to vi. One can recover the probability distribution 155

over (v1, ..., vn) via the softmax function: 156

Pθ(vi|x1:t−1) =
eℓi∑n
j=1 e

ℓj
. 157

During truncation sampling, one selects a subset 158

S ⊂ V , resetting the probability 159

P̃θ(vi|x1:t−1) =


eℓi∑

j:vj∈S eℓj
vi ∈ S

0 else.
160

We denote the reverse order statistics of the log- 161

its by ℓ(1) > ℓ(2) > · · · > ℓ(n), and we use the 162

same convention for the corresponding probabili- 163

ties and the vocabulary: v(1) is the token with the 164

highest predicted probability, which is p(1). 165

Having established this notation, we can now 166

describe the leading existing logit processors. 167
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2.1 Top-p168

Holtzman et al. (2020) introduced the first trunca-169

tion method: top-p sampling. Top-p sets170

c = min

i :
i∑

j=1

p(i) ≥ p

 .171

Then, it selects the set S ⊂ V to be172

S = {v(1), ..., v(c)}.173

In words, top-p selects the most probable tokens174

that contain at least p of the total probability mass175

in the sampling distribution for the next token.176

2.2 Top-k177

Top-k sampling selects S = {v(1), ..., v(k)}. Typ-178

ically, k is chosen betwen 15 and 100 tokens.179

Setting k = 1, one recovers greedy decoding.180

Although simple, this method helped Fan et al.181

(2018a) achieve significant gains for neural story182

generation in 2018.183

2.3 Min-p184

Recently, Nguyen et al. (2024) discovered that set-185

ting a hard cutoff, as top-p and top-k do, can inhibit186

creativity. They achieved increases in creativity187

through the min-p logit processor, which sets188

S = {vi : pi ≥ p(1) · p}.189

In other words, min-p considers all tokens that190

have a probability at least p times the probability191

of the most-likely next token. Although simple,192

this method significantly improves creativity as193

measured by both human evaluations and Alpaca194

(Li et al., 2023).195

With these past logit processing methods for con-196

text, we now proceed to describe our new logit197

processor for reasoning tasks: entro-p.198

3 entro-p199

3.1 Motivation200

Nguyen et al. (2024) noted that using an adaptive201

threshold can improve creativity in LMs. However,202

the threshold set by Nguyen et al. (2024) depends203

only on the most probable token; thus, it does not204

account for other information in the predicted prob-205

ability distribution. Intuitively, truncation sampling206

should filter logits more aggressively when the LM207

exhibits higher certainty about the “correct" next208

token, and less aggressively when there is more 209

uncertainty. We measure the LM’s uncertainty us- 210

ing entropy, allowing us to produce a more flexible 211

cutoff that yields better results than min-p. Since 212

the calculation of the cutoff in entro-p involves 213

the whole probability distribution (via the entropy), 214

entro-p has better sensitivity to the whole probabil- 215

ity distribution in comparison to min-p. 216

A second motivation for entro-p comes from 217

our observations of pass@k performance across 218

different samplers. As we demonstrate in Section 5, 219

superior performance in pass@1 sampling typically 220

translates into degraded performance in pass@k 221

sampling. Through entro-p, we aim to build a logit 222

processor that can perform well on both pass@1 223

and pass@k, catering to multiple different compute 224

budgets. 225

3.2 Method Description 226

In this section, we describe entro-p sampling, 227

which uses entropy-based adaptive thresholds to 228

improve upon min-p sampling. Before proceeding 229

to the method, we briefly review the definition of 230

entropy, which is central to our method. Recall 231

that for a discrete probability distribution that takes 232

values x1, ..., xn with probabilities p1, ..., pn, the 233

entropy is defined as 234

h = −
n∑

i=1

pi log(pi). 235

Entropy is maximized by a uniform probability 236

distribution, and minimized by a distribution that 237

puts all probability mass on a single point. Entro-p 238

truncates aggressively when measured entropy is 239

low, and less aggressively when measured entropy 240

is high. Recall that in our notation from Section 2, 241

an LM selects xt ∈ V from the distribution given 242

by 243

xt ∼ Pθ(xt|x1:t−1). 244

The reverse order statistics of the logits are denoted 245

by ℓ(1) > ... > ℓ(n). In our notation, a logit pro- 246

cessor selects a subset S ⊂ V of tokens to consider 247

during sampling. 248

Let U and L be hyperparameters used to clamp 249

the measured entropy, and d be an additional hy- 250

perparameter used in Step 5. When selecting the 251

next token, the entro-p logit processor proceeds in 252

the following steps: 253

1. Find the maximum logit ℓ(1). 254
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2. Reduce the tokens under consideration from255

V to S̃ = {vi : pi ≥ p(1) · e−7} and let256

P̃θ(xt|x1:t−1) denote the resulting (renormal-257

ized) distribution.258

3. Recalculate p̃i =
exp(ℓi)∑

vi∈S̃ exp(ℓi)
.259

4. Compute the entropy h = ht of260

P̃θ(xt|x1:t−1):261

ht = −
∑
vi∈S̃

p̃i log p̃i.262

5. Refine the set S̃ further by setting S = {vi ∈263

S̃ : p̃i ≥ (p̃(1) − (d+ h))}.264

6. Replace h by the clamped value h∗ =265

max(min(hi, U), L).266

7. Scale the logits corresponding to tokens in the267

set S by ℓscale
i = ℓi/h

∗ for vi ∈ S. Finally,268

sample the next token using the logits ℓscale
i .269

The number of tokens in the vocabulary is fixed.270

Since the only operations needed to implement271

entro-p are sorting and calculation of entropy, entro-272

p has a run-time of O(|V| log(|V|)), which is in-273

significant compared to the forward method of a274

modern LM for |V| ≈ 128,000.275

3.3 entro-p Case Study276

We now provide a case study illustrating how entro-277

p can reduce the occurrence of errors in contexts278

requiring technical reasoning. Recall that in such a279

context, the logit distributions are very often highly280

concentrated on only a few tokens. It is thus gen-281

erally beneficial to truncate more conservatively,282

such as by using a lower p value in top-p sampling,283

or by employing a lower temperature for scaling.284

These methods are relatively static, and in some285

cases, insufficient.286

In Figure 1, we show an interaction in which287

the language model initially makes a mistake in288

the penultimate step of its evaluation of a mathe-289

matical expression. Towards the end of its second290

response, the model is tempted again to make the291

same mistake, as can be seen in the relatively high292

logit score for the token ‘3.’ Entro-p utilizes the293

entropy of the distribution at this step of generation294

to determine the truncation level, indicated by the295

dotted blue line, discarding the incorrect token. On296

the other hand, we see that even under a restrictive297

choice of p, the min-p processor fails to filter out298

this token.299

User: Evaluate i5 + i−25 + i45.
Assistant: To evaluate i5+ i−25+ i45, we use the fact

that i4 = 1 . . . , i−25 = . . . = −i.
. . . Therefore, i5+i−25+i45 = i−(−i)+
i = 3i,

User: Why is there a subtraction in the last step?
Assistant: The subtraction is not necessary. . . . The

correct step is simply adding i and −i to
get 0, and then adding i to get

i 3 2 1
Tokens

21

22

23

24

25

26

27

Lo
gi

t v
al

ue

Entropy: 0.5844
U: 2.0
L: 0.5
d: 0.0
max logit: 27.51

Logits within 7 nats of max logit
Entropy cutoff
Min-p w/ p=0.2 cutoff

Figure 1: An instance in which entro-p filters out flawed
tokens more selectively than min-p. This graph shows
the logit scores of top tokens at a generation step in a
conversation initiated by a math reasoning problem from
the MATH dataset. The dotted grey line indicates the
truncation level of min-p set to p = 0.2, and the dashed
blue line indicates the truncation level of entro-p. The
correct token is ‘i’ and is retained by both processors,
but min-p also retains the incorrect token ‘3.’

4 Experimental Setup 300

4.1 Datasets 301

We evaluate the effectiveness of entro-p against 302

min-p sampling and base sampling (using only tem- 303

perature scaling) on three widely used benchmarks 304

focused on reasoning: MATH (Hendrycks et al., 305

2021), MBPP (Austin et al., 2021), and AlpacaEval 306

for creativity (Li et al., 2023). These benchmarks 307

allow for easily verifiable solutions, either by com- 308

paring numerical outputs with provided answers or 309

by executing simple Python scripts and checking 310

for successful system exits. 311

Our experimental datasets for evaluations are as 312

follows: 313

• The MATH dataset consists of 12,500 chal- 314

lenging math word problems with solutions 315

written in LATEXcontaining boxed final numer- 316

ical answers (Hendrycks et al., 2021). We 317

employ 4-shot prompting, following Gao et al. 318

(2024)’s Minerva MATH task, without the use 319
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of chat-templating.320

• The MBPP (Mostly Basic Programming Prob-321

lems) dataset consists of 974 problem state-322

ments requesting Python code to perform sim-323

ple tasks, and test cases for each problem to324

check if a purported solution indeed solves325

the task at hand. We use 3-shot prompting326

without the use of chat-templating in order327

for the model to produce functioning Python328

code without the extraneous outputs typically329

produced by instruction-tuned models.330

• The AIME24 dataset (Jia, 2024) consists of331

problem statements and solutions to the 2024332

American Invitational Mathematics Examina-333

tion (AIME). This is a small dataset contain-334

ing 30 questions and answers. The final an-335

swers for these problems are numerical and336

reported separately from the problem solution337

for easy verification.338

• The AlpacaEval Creative Writing uses LLM-339

as-a-judge to measure the efficacy of an LM340

on creative prompts (Li et al., 2023). The341

win rate is computed for all sampling methods342

against base sampling with temperature 1. We343

use GPT-4o as our LLM judge.344

From MATH and MBPP, which are large bench-345

mark datasets, we select 300 questions at ran-346

dom, filtering out problems and solutions from347

the MATH dataset that were beyond 600 tokens348

in combined length in order to avoid cases where349

the model’s outputs are truncated before it reaches350

a final answer. We are unable to do pass@k evalu-351

ations on more than 300 questions, since we have352

to sample 500 questions per problem for a total of353

150,000 runs per dataset. We carry out our eval-354

uations on MATH and MBPP using EleutherAI’s355

language model evaluation harness lm-eval (Gao356

et al., 2024) and using vLLM (Kwon et al., 2023)357

with roughly 2,400 Nvidia a4000 GPU hours. We358

evaluate pass@k on all problems in the AIME2024359

dataset.360

4.2 Evaluation Details361

We test three logit processors: pure sampling with362

temperature scaling (base), min-p, and entro-p. On363

MBPP we tested these processors on the mod-364

els Gemma-2-2b-it (Rivière et al., 2024), Mistral-365

7B-Instruct-v0.3 (Jiang et al., 2023), Llama-3.2-366

3B-Instruct, and Llama-3.1-8B-Instruct (Touvron367

et al., 2023). On the MATH and AIME24 datasets 368

we tested the processors on Llama-3.2-3B-Instruct 369

and Llama-3.1-8B-Instruct. We report the average 370

pass@k score for each processor for a selection 371

of values of k between 1 and 500. We compute 372

pass@k as described in (2). In each case, we tested 373

each logit processor with a grid of hyperparameters. 374

The two hyperparameters which resulted in the best 375

pass@100 scores were selected for each processor. 376

The pass@k scores between 1 and 500 were then 377

reported for each processor with its two possible 378

best hyperparameter settings. See Figures 2 and 3. 379

We note that although we show smaller gains 380

over past methods than Nguyen et al. (2024), we 381

do far more extensive hyperparameter sweeps over 382

competing methods to allow for a more fair and 383

realistic comparison. 384

5 High pass@1 Performance Often 385

Corresponds to Low pass@k 386

Performance 387

A natural goal in reasoning tasks where the answer 388

is easy to verify is to maximize the chance that 389

a single generated solution is correct. However, 390

repeated sampling for sufficiently high k can ex- 391

pose a hidden trade-off: methods that aim to boost 392

pass@1 performance often reduce the coverage of 393

the model, significantly reducing pass@k perfor- 394

mance. 395

In the following subsections, we provide empiri- 396

cal evidence and a toy model to illustrate how this 397

phenomenon can arise. 398

5.1 Empirical Evidence 399

We observe a general trend that persists through- 400

out many of the evaluations, but is especially pro- 401

nounced for MBPP: the logit processors that per- 402

form best for pass@1 perform among the worst for 403

pass@100. For instance, in Figure 2a, we see that 404

base sampling achieves an accuracy 7% lower than 405

min-p evaluated by pass@1. However, when evalu- 406

ated by pass@500, it outperforms min-p by 7%. In 407

a complete reversal, the worst logit processor for 408

pass@1 becomes the best for pass@500. The same 409

trend emerges for base sampling in Figures 3a, b. 410

This paradox is not restricted to the MBPP dataset: 411

in Figures 3c, e we observe the same phenomemon 412

on the MATH and AIME24 datasets. 413

The reason for this trend is likely that more con- 414

servative logit processors are more likely to suc- 415

ceed in pass@1 because they sample the most prob- 416
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base (g: 0.7)
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Figure 2: Pass@k scores for gemma-2-2b-it and Mistral-
7B-Instruct-v0.3 on MBPP and MATH, respectively.
Pure sampling, min-p, and entro-p are considered, with
different values for their hyperparameters. Note that the
logit processors that perform the best for pass@1 often
underperform for pass@500 and vice versa.

able tokens at each step. However, over multiple417

attempts, they are unable to exhaustively explore418

the space of solutions, so they fail to find low-419

probability solutions that are necessary to solve420

hard problems. We offer a toy example to illustrate421

mathematically how this phenomenon can emerge422

in practice.423

5.2 A Toy Example424

In practice, it is analytically intractable to analyze425

token-by-token performance of language models at426

scale. Therefore, to motivate the existence of the427

paradox whereby high pass@1 performance can428

imply poor pass@k performance, we provide a toy429

example. This example provides one mechanism430

by which such a paradox can arise, though it is by431

no means the only mechanism.432

Consider testing two language models A and B,433

which are trying to solve a problem with a single434

correct answer that is one token in length. Sup- 435

pose that these two models employ different token 436

selection methods. 437

Given an input sequence x1:i of tokens, model 438

A considers a set of possible tokens SA with size 439

|SA| = m. From the set SA, model A will select 440

a single token, chosen uniformly with probability 441
1
m . The set SA will be chosen deterministically 442

based on x1:i, i.e. SA will always be the same 443

set when A receives the same input sequence. Let 444

the probability that SA contains the correct token 445

be p. This strategy represents a simplification of 446

sampling methods such as top-p. On the other hand, 447

assume that model B selects a token ranging across 448

the entire vocabulary V : this token has a probability 449

q of being correct on each attempt. Suppose that 450

q ≪ p/m. We can now analyze the performance 451

of each of these sampling strategies for different 452

pass@k. 453

If SA contains the correct answer, then Model 454

A will solve the problem with probability 1/m 455

on each attempt. The set SA contains the correct 456

answer with probability p, so model A succeeds on 457

pass@k with probability 458

p(1− (1− 1/m)k). 459

On the other hand, model B succeeds on pass@k 460

with probability 461

1− (1− q)k. 462

For pass@1, model A succeeds with probability 463

p/m and model B succeeds with probability q. 464

Thus, model A has better performance on pass@1. 465

On the other hand, as k → ∞, model A can never 466

succeed with probability exceeding p, whereas the 467

success probability for model B asymptotically ap- 468

proaches 1. Thus, it is possible for B to greatly 469

outperform A for pass@k with k large while still 470

vastly underperforming relative to A when k is 471

small. See Figure 4. 472

This toy example illustrates that superior results 473

on pass@1 may not translate to pass@k for higher 474

k. Although this example may seem naive, it 475

closely reflects the scaling behavior that we ob- 476

serve in practice. We may view model B as “more 477

confident” in its outputs, despite often being wrong, 478

whereas model A is less confident in its outputs. 479

6 Empirical performance of entro-p 480

6.1 Math and Coding Benchmarks 481

In Table 1, we report the pass@100 performances 482

of entro-p and min-p processors used with various 483
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Figure 3: Pass@k scores for Llama-3.2-3B-Instruct and Llama-3.1-8B-Instruct on MBPP, MATH, and AIME24.
Pure sampling, min-p, and entro-p are considered, with different values for their hyperparameters. Again we see
entro-p overperforming on pass@k for large k and processors which overperform on pass@1 underperforming on
pass@500 and vice versa.

models on the AIME24 and MBPP benchmarks484

as well as a dataset crafted from the AIME 2025485

exam parts I and II (AOPS, 2025), formatted in 486

the same manner as the AIME24 dataset. Entro-p 487
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Figure 4: Toy models A and B scored on pass@k using
different parameters. Notice that for small k, Model A
is more effective than model B, but this trend reverses
for large k.

outperforms min-p on 7 out of 11 model-dataset488

combinations. On 3 of the 4 other datasets entro-p489

underperformed min-p by just 0.1%.490

Model Dataset min-p entro-p (ours)

Llama-3.1-8B-Instruct MATH 94.0% 93.9%
Llama-3.1-8B-Instruct MBPP 85.5% 85.7%
Llama-3.1-8B-Instruct AIME24 42.7% 44.6%
Llama-3.1-8B-Instruct AIME25 21.3% 22.8%
Gemma-2-2b-it MATH 78.4% 78.5%
Gemma-2-2b-it MBPP 69.2% 72.3%
Llama-3.2-3B-Instruct MATH 91.2% 91.4%
Llama-3.2-3B-Instruct MBPP 84.1% 84.5%
Llama-3.2-3B-Instruct AIME24 41.3% 40.8%
Mistral-7B-Instruct-v0.3 MATH 75.1% 75.0%
Mistral-7B-Instruct-v0.3 MBPP 81.1% 81.0%

Table 1: Highest pass@100 score comparison for min-p
and entro-p across multiple (Model, Dataset) pairs. Hyper-
parameters for all pairs except for the AIME25 benchmark
can be found in the legends of the graphs in Figure 3 and
Figure 2. The hyperparameters for entro-p on AIME25 are
U = 1.0, L = 0.8, d = 0.0 with temperature 0.7, and for
min-p are p = 0.2 with temperature 0.5.

6.2 AlpacaEval Creative Writing491

We report the results of evaluating min-p and entro-492

p in Table 2. A hyperparameter sweep, as exempli-493

fied in the table, shows that entro-p beats min-p, the494

previous SOTA, using length-controlled win rate.495

Thus, entro-p is effective for both logical reasoning496

and creative tasks.497

7 Conclusion498

The results of this paper show clearly that the499

choice of logit processor can have a significant500

effect on pass@k performance for large k. Fur-501

thermore, superior pass@1 performance does not502

Table 2: We compare top five configurations for each of
min-p and entro-p on a Alpaca-Eval Creative Writing
benchmark, reporting Length-Controlled Win Rate.

min-p Configurations

Parameters LC Win Rate (%)

(τ = 1.5, p = 0.1) 58.12
(τ = 1.5, p = 0.15) 56.73
(τ = 1.5, p = 0.2) 55.45
(τ = 1.0, p = 0.05) 55.07
(τ = 2.0, p = 0.2) 54.82

entro-p Configurations

Parameters LC Win Rate (%)

(τ = 1.2, d = 1.0, l = 1.0, u = 2.0) 58.39
(τ = 1.0, d = 0.75, l = 1.0, u = 2.0) 56.96
(τ = 1.0, d = 0.5, l = 1.2, u = 2.0) 56.31
(τ = 1.5, d = 1.5, l = 1.0, u = 1.5) 56.30
(τ = 1.0, d = 0.5, l = 1.0, u = 2.5) 56.17

translate to superior pass@k performance for large 503

k. In fact, the reverse is sometimes true, with a 504

worst-performing logit processor on pass@1 be- 505

coming best-performing on pass@k for large k. 506

Owing to its dynamic output, the entro-p processor 507

is a promising new option that can outperform min- 508

p. It performs well with respect to pass@k for large 509

values of k on reasoning tasks. At the same time, 510

this doesn’t cause a sacrifice on creativity tasks, as 511

shown using AlpacaEval. More work is warranted 512

to investigate the underlying mechanism for an in- 513

verse relationship between pass@1 performance 514

and pass@k performance. 515

Limitations 516

We outline some limitations of entro-p and the 517

search for a “best” logit processor below: 518

1. The paradox of logit processors performing 519

well on pass@1 and poorly on pass@k un- 520

derlines the difficulty of choosing a logit pro- 521

cessor that performs well on pass@k inde- 522

pendently of the value of k. This limitation 523

applies to entro-p too, despite its promising 524

performance. 525

2. Moreover, our results on e.g. AIME24 indi- 526

cate that the performance of different logit pro- 527

cessors on the same task is model-dependent. 528

This indicates further difficulties in choosing 529

a single logit processor which will perform 530

well on a given task using a given model. 531

3. So far, we lack a good statistical theory of 532

the probability distributions predicted by lan- 533
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guage models. Such a theory would be quite534

useful in designing a good logit processor. In535

particular, what statistics should be computed536

to choose an ideal cutoff for truncation sam-537

pling?538

4. Consequently, logit processors such as min-p539

and entro-p rely on heuristics (e.g. on when to540

make a language model “more confident” or541

“less confident”).542

5. We compare models on creativity tasks using543

the AlpacaEval evaluator, which uses LLM-544

querying to decide on better or worse out-545

put. This has the advantage of being fast and546

cheap. However, LLM evaluations may not547

fully align with human evaluations of creativ-548

ity. It would be useful to have human evalu-549

ators to compare entro-p and other logit pro-550

cessors on creativity.551
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A Related work707

A language model generates text one token at a708

time according to a probability distribution pre-709

dicted by the language model for the next token.710

Several intuitive methods for choosing the next to-711

ken include choosing the highest-probability token712

(greedy sampling), choosing the token that begins713

a highest probability sequence of tokens (beam714

search), or simply sampling from the predicted715

probability distribution (pure sampling). However,716

these methods lead to text that is either repetitive717

and predictable (greedy sampling and beam search)718

or incoherent (pure sampling) (Holtzman et al.,719

2020).720

In order to improve on the factuality and creativ-721

ity of these sampling methods, researchers have in-722

vestigated the family of truncation sampling meth-723

ods (Hewitt et al., 2022). Such methods include724

top-k sampling (Fan et al., 2018b), top-p sampling725

(Holtzman et al., 2020), min-p sampling (Nguyen726

et al., 2024), and η-sampling (Hewitt et al., 2022).727

Heuristics for choosing truncation sampling over728

other sampling methods are given in (Pillutla et al.,729

2021) and (Holtzman et al., 2020).730

Another simple and commonly used technique731

to increase or decrease the creativity of a language732

model is temperature scaling, introduced in (Ack-733

ley et al., 1985) and (Guo et al., 2017). Temperature734

scaling is frequently used in combination with trun-735

cation sampling methods. Recently, adaptive tem-736

perature scaling has been introduced as a dynamic737

temperature scaling method improving calibration738

of models (Xie et al., 2024).739

Specific truncation sampling methods sometimes740

lack rigorous statistical justification. On the other741

hand, (Hewitt et al., 2022) develops a justification742

for truncation sampling methods as “desmoothing”743

by modeling a language model’s token predicted744

probability distribution as a convex combination745

of the true distribution and a noisy nearly uniform746

distribution. They use this to derive several prin-747

ciples that an ideal truncation sampling method748

should abide by. Finally, min-p scaling has shown749

improvements over top-p, top-k, and η-sampling750

across several benchmarks (Cobbe et al., 2021;751

Rein et al., 2023).752
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