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Abstract001

Recent advancements in educational platforms002
have emphasized the importance of personal-003
ized education. Accurately estimating question004
difficulty based on the group level of a stu-005
dent is essential for personalized question rec-006
ommendations. Several studies have focused007
on predicting question difficulty using student008
question-solving records or textual informa-009
tion about the questions. However, these ap-010
proaches require a large amount of student011
question-solving records and fail to account for012
the subjective difficulties perceived by differ-013
ent student groups. To address these limitations,014
we propose the LLaSA framework that utilizes015
large language models to represent students016
at various levels. LLaSA estimates question017
difficulty using student abilities derived from018
their question-solving records. Furthermore,019
the zero-shot LLaSA can estimate question dif-020
ficulty without any student question-solving021
records. In evaluations on the DBE-KT22 and022
ASSISTMents 2005–2006 benchmarks, the023
zero-shot LLaSA demonstrated a performance024
comparable to those of strong baseline mod-025
els even without any training. When evaluated026
using the classification method, LLaSA outper-027
formed the baseline models, achieving state-of-028
the-art performance. In addition, the zero-shot029
LLaSA achieved a high correlation compared030
with the question difficulty derived from the031
question-solving records of students, suggest-032
ing the potential of LLaSA for real world appli-033
cations.034

1 Introduction035

The advancement of online learning platforms such036

as Coursera1 and Udemy2 has recently emphasized037

the importance of personalized education. These038

platforms utilize extensive educational question039

data to recommend questions with suitable diffi-040

culty levels to students. This enables students to041

1https://www.coursera.org/
2https://www.udemy.com/

effectively learn by solving questions that match 042

their skill levels (Jafari et al., 2019). To provide 043

questions that match the skill level of students, ac- 044

curately estimating the difficulty of the questions 045

before presenting them to the students is important 046

(Boopathiraj and Chellamani, 2013). 047

The process of estimating question difficulty, 048

also known as question difficulty estimation (QDE), 049

was performed using manual estimation (Ning 050

et al., 2023) or the item response theory (IRT) 051

(Hambleton et al., 1991). Manual estimation was 052

performed by educational experts, such as teachers 053

and course instructors, who assigned difficulty la- 054

bels to each question (Abdelrahman et al., 2023). 055

However, manual estimation has the drawback of 056

varying results based on the subjective judgment 057

of experts (Huang et al., 2017). By contrast, QDE 058

using the IRT predicts difficulty based on student 059

question-solving records, thereby minimizing sub- 060

jective bias. This method offers the advantages of 061

explainability, and the ability to track changes in 062

the abilities of students and difficulties of questions 063

over time (Benedetto et al., 2020). However, a sig- 064

nificant limitation lies in the need to collect vast 065

amounts of student question-solving records. 066

To overcome these limitations, recent studies 067

have explored new approaches using natural lan- 068

guage processing (NLP) techniques to perform 069

QDE based on textual information. For instance, 070

the study (Huang et al., 2017) employed a TACNN, 071

a CNN-based sentence classifier, and attention 072

layers to estimate question difficulty from a text- 073

based perspective. Leveraging the powerful lan- 074

guage understanding capabilities of transformer- 075

based pre-trained language models (PLMs), stud- 076

ies (Benedetto et al., 2021; Fang et al., 2019; Tong 077

et al., 2020; Zhou and Tao, 2020) have utilized 078

PLMs to comprehend the textual information of 079

questions and answers in QDE. 080

NLP-based QDE methodologies have various 081

advantages; however, they solely focus on the in- 082
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formation of the questions themselves, not on the083

students solving them. The same question may have084

different difficulty levels depending on the profi-085

ciency level of the student group. Although it is pos-086

sible to address this aspect using the difficulty of087

each question measured through the IRT based on088

the question-solving records of students for train-089

ing, drawbacks are still present. These include the090

requirement for separate question-solving records091

and the need to train models for each student group.092

To address these limitations, we focus on the093

general question-solving capabilities of large lan-094

guage models (LLMs). Noting the achievement of095

LLMs of human-level performance across diverse096

domains (OpenAI, 2023; Street et al., 2024), we097

hypothesize that LLMs can substitute for students098

at various levels. Based on this hypothesis, we pro-099

pose a novel framework, LLMs are students at var-100

ious levels (LLaSA). In LLaSA, we targeted the101

abilities of student groups to form LLM clusters102

with question-solving abilities similar to those of103

students. Considering LLMs as representatives of104

students, LLaSA can effectively predict the ques-105

tion difficulty perceived by student groups using106

the question-solving records of LLMs. In contrast107

to traditional QDE methods, our approach can eas-108

ily adapt to changes in the perceived difficulty of109

questions among different student groups by modi-110

fying the composition of the LLMs.111

In particular, LLaSA utilizes individual student112

ability levels derived from the IRT to form an LLM113

cluster that represents the student group. Typically,114

LLaSA requires student question-solving records115

to estimate these abilities. However, if alternative116

information is available (e.g., grades and levels),117

LLaSA can perform QDE without any question-118

solving records. To demonstrate this, we propose a119

zero-shot LLaSA that performs QDE using alterna-120

tive information about student abilities without any121

question-solving records.122

To validate the effectiveness of our approach, we123

evaluated on two QDE benchmarks: DBE-KT22124

(Abdelrahman et al., 2023) and ASSISTMents125

2005–2006 (Heffernan and Heffernan, 2014). Re-126

garding the performance in regressing the question127

difficulty, LLaSA achieved a performance com-128

parable to those of state-of-the-art (SOTA) QDE129

models, despite not being trained itself. Remark-130

ably, in the classification setting, LLaSA achieved131

SOTA performance on both benchmarks. In corre-132

lation with question difficulty derived from student133

IRT results, the zero-shot LLaSA demonstrated134

over 74% relative performance compared with the 135

strongest baseline. This result provides strong ev- 136

idence of the ability of the method to substitute 137

students using only approximate distributions and 138

without any student question-solving records. 139

In summary, our contributions are three-fold: 140

• We propose a novel framework, LLaSA, in which 141

LLMs solve the question and use the IRT to es- 142

timate the difficulty of the question even though 143

students have not solved the question. 144

• We utilize various LLMs and prompting tech- 145

niques to represent students at various levels, suc- 146

cessfully simulating their distribution and demon- 147

strating effectiveness on benchmarks. 148

• We perform a comprehensive analysis of the ef- 149

fectiveness of LLaSA in the QDE task, present- 150

ing an in-depth analysis of the efficacy of both 151

LLaSA and zero-shot LLaSA compared to vari- 152

ous baselines. 153

2 Method 154

Our framework, LLaSA, estimates question diffi- 155

culty by performing the IRT on LLM-generated 156

question-solving records. In Section 2.1, we de- 157

scribe the methods used to answer the questions us- 158

ing LLMs within the LLaSA framework. In Section 159

2.2, we describe LLaSA, which performs the IRT 160

on the question-solving results of students to esti- 161

mate their abilities and select similar LLM clusters. 162

In Section 2.3, we describe the zero-shot LLaSA, 163

which assigns student groups into low/middle/high 164

ability categories based on teacher intuition, and 165

selects the appropriate LLMs. 166

2.1 Question-solving with LLMs 167

Various Levels of LLMs We represent the abil- 168

ities of students at various levels in LLMs by uti- 169

lizing their structural diversity and training tech- 170

niques. To reflect the range of innate and acquired 171

abilities in the student population, we consider the 172

model size of the LLMs, training techniques such 173

as pre-training and alignment tuning (e.g., rein- 174

forcement learning from human feedback (Ouyang 175

et al., 2022)), and the data used in pre-training. 176

Based on these criteria, 65 LLMs are selected to 177

reflect the student population diversity. As shown 178

on the left side of Figure 1-a, these diverse LLMs 179

resolve these questions. 180
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Figure 1: Overview of LLaSA. (a) Performing IRT to the question-solving records of students and LLMs to extract
ability. (b) Using IRT results to select LLM clusters that substitute students, aggregate the question-solving results
of LLM clusters, and re-perform IRT to estimate the question difficulty as perceived by the simulated students.

Question-solving Prompting Technique LLMs181

demonstrate in-context learning abilities that allow182

them to perform new tasks without additional train-183

ing (Brown et al., 2020). Because LLMs are based184

on a causal language modeling architecture, various185

inference methods have been designed to solve mul-186

tiple choice questions (MCQs) with LLMs (Zhao187

et al., 2021; Brown et al., 2020; Holtzman et al.,188

2021; Min et al., 2022). Considering the aspects189

of performance and inference efficiency, we follow190

the multiple choice prompt (MCP) method from191

the previous study (Robinson and Wingate, 2023).192

To further leverage the question-solving ability193

of LLMs, we utilize prompting techniques in con-194

junction with MCP such as process of elimination195

(POE) (Ma and Du, 2023), chain-of-thought (CoT)196

(Wei et al., 2022), and plan-and-solve (PS) (Wang197

et al., 2023b). Across all question-solving meth-198

ods, we experiment with zero-, 1-, 3-, and 5-shot199

prompting. For the models used via the OpenAI200

API3, we conduct further experiments with 10-, 20-,201

and 30-shot prompting owing to its extended con-202

text length. In addition, we utilize GPT-4 (OpenAI,203

2023) to generate hints for questions, use them to204

enhance the question-solving capabilities of LLMs.205

3https://www.openai.com/api/

2.2 LLaSA 206

2.2.1 LLM Clustering Module 207

To effectively substitute for the question-solving 208

abilities of students, we propose an LLM cluster- 209

ing module. This module includes three key parts: 210

IRT for QDE, student representative LLM cluster 211

selection, and LLM cluster response aggregation. 212

IRT for QDE In this study, we use the Rasch 213

model (Rasch, 1960) for IRT to estimate question 214

difficulty and extract abilities from LLM question- 215

solving records. The Rasch model assigns an ability 216

level αm to each student m and a difficulty level βn 217

to each item (i.e., question) n, defined as follows: 218

pnm =
exp(αm − βn)

1 + exp(αm − βn)
, (1) 219

where βn denotes question difficulty and αm de- 220

notes student ability. The question response func- 221

tion pnm is defined as the probability that a student 222

with ability αm will correctly answer a question 223

with difficulty βn. The IRT allows for the simul- 224

taneous estimation of student ability and question 225

difficulty using maximum likelihood estimation. 226

Figure 1-a illustrates the process of solving ques- 227

tions, performing the IRT, and estimating the abili- 228

ties and difficulties in LLaSA. 229
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Figure 2: Overview of zero-shot LLaSA. The zero-shot LLaSA estimates student and LLM abilities as low, middle
or high. The LLM selection module compose LLMs based on these groups and performs IRT to estimate student
abilities and question difficulty.

Student Representative LLM Cluster Selection230

Based on the abilities of the students and LLMs231

obtained through the IRT, we select LLM clusters232

as substitutes for the students. We identify the top-233

k LLMs whose abilities closely match those of234

individual students. The process involves calculat-235

ing the difference in ability between each student236

and each LLM, and thereafter selecting the top-k237

LLMs with the smallest difference for each stu-238

dent. These top-k LLMs collectively represent the239

question-solving capabilities of the students, ensur-240

ing accurate and reliable substitution. This process241

is illustrated on the left side of Figure 1-b.242

LLM Cluster Response Aggregation During243

the course of our research, substituting each stu-244

dent with a single LLM has proven challenging to245

achieve the same question-solving performance. To246

overcome this, we utilize LLM clusters. As shown247

in the middle of Figure 1-b, we aggregate the LLM248

responses to substitute for student responses. If any249

LLM within a cluster correctly solves the question,250

the expected outcome of the LLM cluster is consid-251

ered correct. Our method ensures that the response252

pattern of each student is closely represented by253

the LLM cluster, leveraging the ability of LLMs.254

2.2.2 LLM Distribution Adjustment255

To further enhance the LLM cluster selection256

performance, we introduce a selective methodol-257

ogy, the LLM distribution adjustment (LLMDA).258

LLMDA adjusts the composition of the LLM pool259

when sufficient student question-solving records260

are available, thereby forming more effective LLM261

clusters. The LLMDA method involves randomly262

removing 1–10 LLMs from the LLM pool, re- 263

estimating the abilities of the remaining LLMs us- 264

ing the Rasch model, and iteratively evaluating 265

their performance. LLMDA flexibly refines the 266

LLM pool, ensuring that the LLM clusters are as 267

representative and accurate as possible. 268

2.3 Zero-shot LLaSA 269

In the LLM cluster selection process, LLaSA uti- 270

lizes the question-solving records of students to 271

obtain information regarding their abilities. How- 272

ever, LLM cluster selection can proceed without the 273

question-solving records of students if alternative 274

information representing their abilities (e.g., grades 275

and levels) is available. To demonstrate the effec- 276

tiveness of LLaSA in scenarios without question- 277

solving records, we propose a zero-shot LLaSA. 278

Figure 2 illustrates an example in which a 279

teacher has an approximate understanding of the 280

distribution of student levels. The LLM selection 281

module of zero-shot LLaSA utilizes information 282

such as the number of students at high, medium, 283

and low proficiency levels. It then combines the in- 284

formation with the proficiency levels of the LLMs 285

to configure an LLM cluster that represents a 286

student group. In this study, we use the number 287

of high-, medium-, and low-performing students 288

within a group as approximate information. How- 289

ever, with slight modifications, various types of 290

information such as grades or levels can be utilized. 291

LLM Selection Module To evaluate the profi- 292

ciency level of LLMs, we divide the levels based 293

on their question-solving accuracy. Rather than di- 294

viding by relative ranking, we categorize the pro- 295
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portion of performance they achieved relative to296

the highest-performing LLM. For instance, if the297

highest performing LLM has 0.8 accuracy, then298

LLMs with 0.6–0.8 accuracy (75%–100% of 0.8)299

are grouped into the high-level cluster. Those with300

0.0–0.2 accuracy (0%–25% of 0.8) are grouped301

into the low-level cluster, and the remainder are302

placed into the medium-level cluster.303

The importance of this approach lies in the fact304

that the distribution of question-solving abilities305

in LLMs does not mirror that of students. Gener-306

ally, LLMs demonstrate question-solving abilities307

similar to those of students. However, unlike the308

normally distributed abilities of students, the abili-309

ties of LLMs exhibit significant polarization, with310

extremely few falling within the mid-range. Using311

this approach, LLaSA can effectively construct an312

LLM pool that substitutes for students, regardless313

of differences in question-solving ability distribu-314

tions between LLMs and student groups.315

3 Experiments316

3.1 Datasets317

To verify the effectiveness of LLaSA, we used318

two QDE benchmarks. DBE-KT22 was collected319

from a relational database course at the Australian320

National University and included MCQ data and321

responses from 131 students who answered 206322

questions. ASSISTMents 2005–2006 features math323

questions solved by 8th-grade students. Images324

were converted to text, and short-answer ques-325

tions were transformed into the MCQ format for326

LLMs. We used data from 1,194 students who327

answered more than the median number of 233328

questions. For zero-shot LLaSA, we categorized329

students based on their question-solving accuracy,330

used as teacher intuition. DBE-KT22 and ASSIST-331

Ments are provided under licenses that allow for332

academic use, and we have used them for research333

purposes. In addition, both datasets have undergone334

de-identification to ensure privacy and safety. More335

details are described in Appendix B.3.336

3.2 Models337

In this study, we selected 65 LLMs by consider-338

ing the model size, base architecture, and training339

techniques. We selected models with diverse archi-340

tectures, including Llama 3 (AI@Meta, 2024), Mis-341

tral (Jiang et al., 2023), and Falcon (Almazrouei342

et al., 2023), along with similarly structured but dif-343

ferently trained models, such as Mistral and Solar344

(Kim et al., 2024). We also included variants of the 345

same model with different sizes, such as Llama 38B 346

and Llama 370B. Additionally, API-based models, 347

such as GPT-3.5 and GPT-4 (OpenAI, 2023), were 348

included to ensure that various LLMs participated 349

in question-solving. The list of LLMs used in this 350

study is provided in Appendix A.1. 351

3.3 Metrics 352

In this study, the root mean square error (RMSE) 353

(Willmott and Matsuura, 2005) and Pearson corre- 354

lation (P-Corr) (Freedman et al., 2007) were em- 355

ployed to evaluate the QDE regression effective- 356

ness. In addition, we segmented the question diffi- 357

culty into equal intervals and transformed it into a 358

6-class classification task, and F1-score (F1) (Chin- 359

chor, 1992) was used to evaluate performance. 360

3.4 Baselines 361

To demonstrate the efficacy of our methodology, we 362

selected several baseline methods. We included the 363

R2DE (Benedetto et al., 2020) model, which uses 364

TF-IDF to extract features from question-related 365

texts and employs random forest regression to pre- 366

dict the IRT difficulty. The TACNN model, which 367

combines a CNN-based sentence classifier with 368

attention layers, was also included. In addition, 369

we considered recent QDE models utilizing PLMs 370

such as BERTbase/large and DistilBERT. We also 371

included custom baselines like RoBERTabase/large 372

(Liu et al., 2019) and DeBERTaV3base/large (He 373

et al., 2023), and using low-rank adaptation (LoRA) 374

(Hu et al., 2022) to tune the LLMs for QDE 375

tasks. Specifically, we fine-tuned Llama 38B and 376

Gemma 37B (Team et al., 2024) using LoRA. 377

3.5 Experimental Details 378

In our training process on baselines, we conducted 379

experiments with various combinations of hyper- 380

parameters and reported the results averaged on 381

five different random seeds. When conducting ex- 382

periments on LLMs, the temperature was fixed at 383

0. All experiments were conducted with PyTorch4 384

and HuggingFace Transformers (Wolf et al., 2020) 385

on three NVIDIA A100 GPUs, with IRT performed 386

using mirt (Chalmers, 2012). More experimental 387

details are provided in the Appendix A. 388

3.6 QDE Results of LLaSA 389

Unlike baselines that train on the difficulty of 390

each question derived from the IRT results using 391

4https://pytorch.org/
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System
DBE-KT22 ASSISTMents

Full dataset Sampled dataset Full dataset Sampled dataset
RMSE F1 RMSE (Δδ) F1 (Δδ) RMSE F1 RMSE (Δδ) F1 (Δδ)

Published
R2DE 1.3940.04 0.2450.02 1.5560.05 (-11.67%) 0.2530.02 (3.27%) 1.1550.04 0.2780.04 1.1420.04 (1.18%) 0.2230.05 (-20.04%)

TACNN 1.6370.02 0.257<0.01 1.7870.01 (-9.16%) 0.2560.01 (-0.70%) 1.139<0.01 0.2900.01 1.3410.03 (-17.77%) 0.2920.02 (0.76%)
BERTbase 1.4820.04 0.2130.04 1.8670.50 (-25.92%) 0.2290.05 (7.50%) 1.2010.08 0.3130.03 1.1180.01 (6.88%) 0.181<0.01 (-42.25%)
BERTlarge 1.4000.04 0.2210.03 1.9150.56 (-36.78%) 0.2470.01 (11.97%) 1.1350.07 0.2730.09 1.1850.07 (-4.39%) 0.1920.02 (-29.42%)

DistillBERT 1.5170.03 0.2260.03 1.6020.13 (-5.61%) 0.2190.02 (-3.45%) 1.091<0.01 0.2110.05 1.101<0.01 (-0.93%) 0.181<0.01 (-14.38%)
Additional Systems

RoBERTabase 1.3820.08 0.2610.04 1.6840.07 (-21.88%) 0.2610.03 (0.23%) 1.098<0.01 0.2140.05 1.1970.04 (-9.09%) 0.183<0.01 (-14.50%)
RoBERTalarge 1.4650.03 0.2260.03 1.5950.14 (-8.88%) 0.2040.04 (-9.57%) 1.094<0.01 0.2230.05 1.1660.04 (-6.53%) 0.3350.03 (49.78%)

DeBERTaV3base 1.4990.08 0.2420.02 1.6210.14 (-8.13%) 0.2240.03 (-7.76%) 1.1110.02 0.180<0.01 1.1950.02 (-7.58%) 0.181<0.01 (0.11%)
DeBERTaV3large 1.5180.07 0.2390.04 1.6600.04 (-9.39%) 0.2330.02 (-2.26%) 1.112<0.01 0.2300.05 1.1130.01 (-0.09%) 0.2340.05 (1.74%)

Llama38B w/ LoRA 2.0250.21 0.2410.03 2.2280.23 (-10.01%) 0.2410.05 (-0.08%) 2.3280.46 0.2530.02 2.2150.39 (4.83%) 0.2260.08 (-10.51%)
Gemma7B w/ LoRA 2.7710.64 0.1800.04 4.0011.18 (-44.38%) 0.1860.03 (3.22%) 2.1830.73 0.2620.03 2.6500.40 (-21.38%) 0.2070.06 (-21.11%)

Ours
LLaSA w/o LLMDA 1.858<0.01 0.295<0.01 1.764<0.01 (5.06%) 0.334<0.01 (13.22%) 1.589<0.01 0.183<0.01 1.602<0.01 (-0.82%) 0.246<0.01 (34.43%)
LLaSA w/ LLMDA 1.6400.02 0.3210.02 1.668<0.01 (-1.66%) 0.3220.03 (0.31%) 1.6110.04 0.3380.02 1.6140.02 (-0.20%) 0.2980.04 (-12.00%)
Zero-shot LLaSA 2.3600.04 0.1500.01 2.3600.04 (=) 0.1500.01 (=) 1.323<0.01 0.2740.01 1.323<0.01 (=) 0.2740.01 (=)

Table 1: Experimental results (with standard deviation) on DBE-KT22 and ASSISTMents, using full and sampled
datasets. Δδ shows the improvement rate between full and sampled datasets. Zero-shot LLaSA shows no difference
as it doesn’t utilize student data. The best results are boldfaced, and the second-best results are underlined.

student question-solving records, LLaSA sets up392

LLM clusters. These clusters can substitute for stu-393

dents based on their abilities. It then estimates the394

question difficulty by performing the IRT on the395

question-solving results of the LLM clusters.396

To verify the efficacy of our approach on small397

question-solving data, we experimented with both398

full and sampled datasets, using approximately399

50% of the questions for the latter. In a sampled400

dataset, the baseline methods train on the ques-401

tion difficulty from the IRT results performed with402

fewer questions. The LLaSA adjusts the LLM clus-403

ters based on the student question-solving ability404

from these IRT results, which were also performed405

with fewer questions. Both approaches suffer from406

reduced IRT performance owing to the limited407

amount of question data in the sampled dataset,408

leading to a decline in the overall performance.409

Full Dataset As summarized in Table 1, our410

evaluation results indicate that the LLaSA outper-411

formed the baselines. In the classification setting412

on DBE-KT22, LLaSA with LLMDA achieved the413

best F1 of 0.321 among the baselines, reaching414

SOTA performance, followed by LLaSA without415

LLMDA. On ASSISTMents, LLaSA with LLMDA416

achieved the best F1 of 0.338, significantly out-417

performing the other baselines. In the regression418

setting, LLaSA exhibited a minimal RMSE differ-419

ence of only 0.258 on DBE-KT22 and 0.531 on AS-420

SISTMents, compared to the best performing base-421

line. Remarkably, the zero-shot LLaSA achieved422

an RMSE of 1.323 on ASSISTMents, outperform-423

ing LLaSA and exhibiting little difference from424

System
DBE-KT22

Full dataset Sampled dataset
P-Corr P-value P-Corr P-value

Published
R2DE 0.4360.02 <0.05 0.2740.03 <0.05

TACNN -0.2120.02 <0.05 0.282<0.01 <0.05
BERTbase 0.3680.03 <0.05 0.3160.02 <0.05
BERTlarge 0.4240.02 <0.05 0.2930.02 <0.05

DistillBERT 0.3710.02 <0.05 0.3740.04 <0.05
Additional Systems

RoBERTabase 0.4700.05 <0.05 0.3370.02 <0.05
RoBERTalarge 0.4030.05 <0.05 0.3130.02 <0.05

DeBERTaV3base 0.3730.03 <0.05 0.2970.03 <0.05
DeBERTaV3large 0.3700.03 <0.05 0.3190.05 <0.05

Llama38B w/ LoRA 0.2250.07 0.055 0.2100.07 0.071
Gemma7B w/ LoRA 0.1030.11 0.419 0.1090.10 0.444

Ours
LLaSA w/o LLMDA 0.143<0.01 0.149 0.223<0.01 <0.05
LLaSA w/ LLMDA 0.2330.02 <0.05 0.2830.02 <0.05
Zero-shot LLaSA 0.348<0.01 <0.05 0.348<0.01 <0.05

Table 2: The comparison between the student IRT and
the prediction of LLaSA, evaluated using P-Corr on
the full and sampled DBE-KT22. The best results are
boldfaced, and the second-best results are underlined.

the baseline models. However, on DBE-KT22, the 425

zero-shot LLaSA demonstrated poor performance. 426

For further analysis, we compared the P-Corr 427

value between the question difficulty derived from 428

the IRT using the question-solving records of 429

students and the question difficulty predicted by 430

LLaSA on DBE-KT22. As summarized in Table 2, 431

LLaSA achieved a significant P-Corr value of 0.348 432

on DBE-KT22. Remarkably, zero-shot LLaSA ex- 433

hibited over 74% relative performance compared 434

with the best result. This result demonstrates its 435

significance and potential in real world scenarios. 436
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Sampled Dataset As summarized in Table 1,437

even with fewer questions to perform the IRT,438

LLaSA did not exhibit a significant performance439

decline. Similar to the full dataset, LLaSA outper-440

formed the other baselines on the sampled dataset.441

In the classification setting experiments on DBE-442

KT22, LLaSA without LLMDA achieved the best443

F1 of 0.334 among the baselines, achieving SOTA444

performance with a large difference. On ASSIST-445

Ments, LLaSA with LLMDA achieved the second-446

best performance among the baselines, exhibiting447

little difference from the best-performing baseline.448

In the regression setting on DBE-KT22, LLaSA449

with LLMDA exhibited a 1.66% RMSE increase,450

whereas LLaSA without LLMDA improved by451

5.06% and was the least affected by the reduced452

training dataset. On ASSISTMents, the RMSE453

changes compared with the full dataset setting for454

LLaSA with and without LLMDA were only 0.2%455

and 0.82%, respectively. Notably, the P-Corr for the456

zero-shot LLaSA on ASSISTMents achieved the457

second-best performance on the sampled dataset,458

as summarized in Table 2. This demonstrates that459

LLaSA maintains robust performance even with460

limited question-solving records.461

4 Analysis of LLaSA462

4.1 Question-Solving Based QDE of LLMs463

Comparison of Question Difficulty Distribution464

We compared the QDE results of a strong baseline465

with those of LLaSA against the question diffi-466

culty derived from the question-solving records of467

students. Figure 3 presents the question difficulty468

histograms for each dataset. For DBE-KT22, the469

best-performing model, RoBERTabase, rarely pre-470

dicted difficulties above zero, likely because of the471

scarcity of such values in the training data. In con-472

trast, the predictions of LLaSA closely matched473

the student IRT distribution, as shown by the ker-474

nel density estimation lines. In ASSISTMents, the475

best result model DistillBERT excessively predicts476

values at approximately 0. Conversely, LLaSA pre-477

dicts a broader range of difficulties, similar to the478

distribution of the student IRT. This analysis high-479

lights the robustness of LLaSA, avoiding the local480

minimum trap for predicting a single value to mini-481

mize the loss in the training process.482

Effectiveness of top-k LLM Cluster Selection483

In Figure 4, we adjust the value of k, the number of484

LLMs used to substitute for a single student, from485

one to four. For DBE-KT22, increasing k improve486

Figure 3: Predicted difficulty histograms for the DBE-
KT22 and ASSISTMents comparing student IRT diffi-
culty, the best resulting model, and LLaSA w/ LLMDA.

the RMSE and F1. In contrast, for ASSISTMents, 487

the performance did not consistently improve with 488

higher k. In ASSISTMents, not all students an- 489

swered every question, limiting the IRT estimation. 490

Therefore, we set k to a maximum of 4 for clus- 491

tering experiments. The differences in the results 492

across the two datasets are analyzed in Section 4.2. 493

Effectiveness of LLMDA To evaluate the effec- 494

tiveness of LLMDA, we conducted experiments 495

with and without LLMDA. As shown in Figure 496

4 and Table 1, applying LLMDA resulted in bet- 497

ter performance for both DBE-KT22 and ASSIST- 498

Ments. In the sampled DBE-KT22, the method 499

with LLMDA exhibited an improvement over that 500

without LLMDA, and the RMSE was improved by 501

5.45%. LLMDA enhances performance by allow- 502

ing the model to more accurately simulate student 503

distributions through a random selection of LLMs. 504

This led to more precise IRT measurements and 505

better functioning of the LLM clustering module. 506

4.2 LLM Cluster Representation 507

Representational Capability of LLM Clusters 508

Experiments were conducted to evaluate the effec- 509

tiveness of the LLM clustering module in repre- 510

senting students. To assess the extent to which the 511

module selected the LLM clusters that represented 512

student question responses, we measured the F1 513

by comparing the question responses of the LLM 514

clusters with the actual answers of the students on 515

7



Figure 4: RMSE and F1 for each dataset, comparing the results of applying LLMDA and the top-k of LLM cluster.

DBE-KT22. The module achieved an F1 of 0.752516

for the training set and 0.762 for the test set, indi-517

cating that it accurately represented student records.518

The detailed results of the question-solving records519

of the LLM clusters compared with the actual stu-520

dent responses are provided in Appendix C.1.521

Is LLaSA Performing as Intended? In DBE-522

KT22, models such as Llama 3 and Falcon were523

frequently adopted, prompting methods used in the524

order of MCP, CoT, POE, and PS, and the number525

of few-shot examples in the order of 3-5-0-1. In526

ASSISTMents, models such as Amber (Street et al.,527

2024) and Openchat (Wang et al., 2023a) were528

frequently adopted, prompting methods used in the529

order of MCP, POE, PS, and CoT, and the number530

of few-shot examples in the order of 0-1-3-5. The531

relevant figures are provided in Appendix C.2.532

In DBE-KT22, a larger number of LLMs rep-533

resenting students, high-performance models, and534

prompting methods with a large number of few-535

shot examples resulted in a better performance.536

By contrast, in ASSISTMents, a smaller number537

of LLMs representing students, relatively lower-538

performance models, and prompting methods with539

fewer few-shot examples yielded a better per-540

formance. Considering the characteristics of the541

datasets, DBE-KT22 comprises questions aimed at542

university undergraduates, whereas ASSISTMents543

comprises questions for 8th-grade students. Re-544

markably, appropriate LLMs and inference method-545

ologies appear to be adopted according to the ques-546

tion levels and abilities of the student groups.547

5 Related Works548

5.1 Question-Solving Skills of LLM549

Since the release of GPT-3 (Brown et al., 2020),550

LLMs have rapidly advanced. Notable models such551

as GPT-4 (OpenAI, 2023) and Llama 3 (AI@Meta,552

2024) have emerged, exhibiting billions of pa-553

rameters and excelling in various NLP tasks. Re- 554

cently, MCQs have been used to evaluate the rea- 555

soning abilities of these models, with LLMs achiev- 556

ing human-like performances. Advanced studies 557

(Robinson and Wingate, 2023; Ma and Du, 2023; 558

Pezeshkpour and Hruschka, 2023) have improved 559

MCQs by eliminating least probable options and 560

reducing bias in answer positioning. 561

5.2 Question Difficulty Estimation 562

Traditionally, QDE relies on the IRT (Hamble- 563

ton et al., 1991) method, which statistically mea- 564

sures question difficulty and learner ability based 565

on responses. Prominent IRT models include the 566

Rasch model (Rasch, 1960) and 2-parameter lo- 567

gistic model; however, they require substantial re- 568

sponse data, posing challenges in data-scarce sce- 569

narios. To address this issue, recent studies have 570

used text analysis to estimate the difficulty without 571

response data. For instance, one study (Benedetto 572

et al., 2020) used TF-IDF and a random forest re- 573

gressor to infer difficulty, while another (Xue et al., 574

2020) utilized ELMo embeddings to predict re- 575

sponse times and correct answer probabilities. In 576

addition, research (Benedetto et al., 2021) using 577

BERT (Devlin et al., 2019) and DistilBERT (Sanh 578

et al., 2020) has explored methods for analyzing 579

question statements and choices to infer difficulty. 580

6 Conclusion 581

In this study, we proposed an LLaSA framework by 582

leveraging LLMs to estimate question difficulty in 583

personalized education. The LLaSA demonstrated 584

a competitive performance with strong baseline 585

models, even without extensive training data. The 586

zero-shot LLaSA exhibited a high correlation with 587

the student IRT, indicating its potential for effective 588

real world applications. This study underscores the 589

potential of LLMs in QDE, suggesting that they can 590

substitute for human abilities in various domains. 591
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Limitations592

Our study, while introducing a novel framework593

for QDE, has several limitations. Firstly, due to594

the lack of publicly available datasets containing595

questions and student question-solving records, our596

experiments were limited to the fields of math-597

ematics and computer science. However, institu-598

tions with proprietary datasets could adopt LLaSA599

to gain deeper insights and improve performance.600

Secondly, LLaSA requires significant storage and601

computational resources due to the use of multi-602

ple LLMs. As LLMs become more efficient and603

smaller while maintaining their question-solving604

capabilities, these limitations could be overcome,605

significantly enhancing the efficiency and effective-606

ness of the LLaSA framework. Lastly, this progress607

may pose a risk to jobs currently involved in the608

QDE domain.609
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Appendix995

A Experimental Settings996

A.1 List of LLMs Used in LLaSA997

LLaSA utilizes various LLMs with comprehensive998

question-solving capabilities to substitute for stu-999

dents in answering questions. We employed 651000

models ranging in size from 125M to 70B parame-1001

ters, including various API-based models such as1002

GPT-4. The LLMs used are Amber, Crystal (Liu1003

et al., 2023), Falcon (Almazrouei et al., 2023), GPT-1004

J (Wang and Komatsuzaki, 2021), GPT-Neo (Black1005

et al., 2021), GPT-3.5, GPT-4 (OpenAI, 2023), Mis-1006

tral (Jiang et al., 2023), Mixtral (Jiang et al., 2024),1007

OpenChat (Wang et al., 2023a), OPT (Zhang et al.,1008

2022), Orca (Mitra et al., 2023), Pythia (Bider-1009

man et al., 2023), Solar (Kim et al., 2024), Star-1010

ling (Zhu et al., 2023), Llama 1 (Touvron et al.,1011

2023a), Llama 2 (Touvron et al., 2023b), Llama 31012

(AI@Meta, 2024), Vicuna (Chiang et al., 2023), Yi1013

(AI et al., 2024), and Zephyr (Tunstall et al., 2023).1014

These models were sourced from the Huggingface1015

Transformers library (Wolf et al., 2020) and the1016

OpenAI API. A detailed list can be found in Table1017

4.1018

A.2 Question-Solving Prompts1019

In the DBE-KT22 and ASSISTments datasets, we1020

utilized the MCP, POE, CoT, and PS prompting1021

techniques for LLM question-solving. The spe-1022

cific prompts for each technique used in question-1023

solving are detailed in Table 5 and Table 6.1024

A.3 Details of Baseline Experiments1025

Our baseline models included R2DE, TACNN,1026

PLMs, and LLMs with LoRA. To comprehensively1027

compare their performance with LLaSA, we first1028

optimized the baseline models through extensive1029

hyperparameter tuning.1030

For R2DE, we tuned the number of estimators1031

{10, 25, 50, 100, 150, 200, 250} and the max1032

depth {2, 5, 10, 15, 25, 50} in RandomForest. For1033

TACNN, we tuned the learning rates {5e-5, 2e-5,1034

5e-6} and batch sizes {8, 16, 32}. For PLMs, we1035

tuned the learning rates {2e-6, 5e-6, 2e-5, 5e-5}1036

and batch sizes {16, 32}. For LLMs with LoRA, we1037

tuned the learning rates {2e-6, 5e-6, 2e-5}, batch1038

sizes {16, 32}, and LoRA parameters such as alpha1039

{4, 8} and r as alpha * 2. Using these optimized hy-1040

perparameters, we trained and evaluated the models1041

across five different seeds. We averaged the results1042

and calculated the standard deviation to ensure a 1043

robust baseline experiment. 1044

The R2DE model was implemented using pub- 1045

licly available code, TACNN was implemented 1046

manually, and PLM and LLM models with LoRA 1047

were implemented using the PyTorch-based Hug- 1048

gingface Transformers library. All experiments 1049

were conducted on three NVIDIA A100 GPUs. 1050

B Implementation Details of LLaSA 1051

B.1 IRT for LLaSA 1052

LLaSA estimate question difficulty based on stu- 1053

dents’ abilities derived from IRT. To achieve this, 1054

question-solving records are input into the IRT 1055

model. We used the R package mirt (Chalmers, 1056

2012) to perform IRT analysis, estimating students’ 1057

abilities and question difficulties. This allowed 1058

us to obtain each student’s ability level and the 1059

perceived difficulty of questions based on their 1060

question-solving records. 1061

B.2 LLM Clustering Module of LLaSA 1062

LLaSA includes a LLM Clustering Module, which 1063

consists of LLM cluster selection and LLM Cluster 1064

Response Aggregation. In LLM cluster selection, 1065

question-solving records (transactions) are input 1066

into IRT to measure the question-solving ability of 1067

respondents and the difficulty of questions based 1068

on these respondents. Each student’s ability is then 1069

used to select top-k LLMs with similar abilities, 1070

forming an LLM Cluster. 1071

In the LLM Cluster Response Aggregation, the 1072

question-solving records of the selected LLM Clus- 1073

ter are aggregated using sum aggregation. This pro- 1074

cess of the LLM clustering module simulates the 1075

question-solving records of an individual student. 1076

Finally, the aggregated question-solving records of 1077

the LLM Cluster are input into IRT to measure the 1078

question-solving ability of the LLM Cluster and 1079

the difficulty of questions from their perspective. 1080

For more details, in Algorithm 1. 1081

B.3 Zero-Shot LLaSA 1082

Zero-shot LLaSA typically requires teacher intu- 1083

ition to categorize students. However, lacking this 1084

intuitive understanding, we categorized students by 1085

their question-solving accuracy. For DBE-KT22, 1086

we selected 31 students with accuracy≤ 0.75 (low), 1087

69 with accuracy between 0.75 and 0.85 (middle), 1088

and 31 with accuracy > 0.85 (high). For ASSIST- 1089

Ments, we sampled 20% from each group: 146 with 1090
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Algorithm 1 LLM Clustering Module

1: Input:
2: TStrain : Student train questions transactions
3: TLtrain : LLM train questions transactions
4: TStest : Student test questions transactions
5: TLtest : LLM test questions transactions
6: k: Number of top similar LLMs to identify
7: Initialize:
8: LC ← ∅: Dictionary of Students with LLM

Clusters as Values
9: TLC ← ∅: LLM Cluster’s Aggregated re-

sponses
10: Rasch: Function returning ability α and diffi-

culty β parameters for question transactions
11: LLM cluster selection:
12: αS , βS ← Rasch(TStrain)
13: αL, βL ← Rasch(TLtrain)
14: for each student s and ability αs in αS do
15: ∆αi = |αs − αl| ∀l ∈ L
16: Sort LLMs by ∆αi in ascending order
17: Select top k LLMs: {L(1), L(2), . . . , L(k)}
18: LC[s]← {L(1), L(2), . . . , L(k)}
19: LLM Cluster Response Aggregation:
20: for each student s and LLM Cluster l in

LC.items() do
21: tLC ← 0: Zero vector of length |TLtest [0]|
22: for each LLM l in L do
23: tLC ← sum(tLC , TLtest [l], axis = 1)

24: tLC ← clip(tLC , 0, 1)
25: Append tLC to TLC

26: αLC , βLC ← Rasch(TLC)

accuracy ≤ 0.5, 61 with accuracy between 0.5 and1091

0.67, and 30 with accuracy > 0.67.1092

C Addtional Analysis1093

C.1 Evaluation Student Representation of1094

LLM Clustering1095

We evaluated the effectiveness of the LLM Clus-1096

tering module in LLaSA by assessing how well1097

it represents students on the DBE-KT22 dataset.1098

To accomplish this, we used the question-solving1099

records of the students as the ground truth labels1100

and the question-solving records of the LLM Clus-1101

ters as the predictions. This comparison allowed us1102

to evaluate the effectiveness of the LLM Clustering1103

module in LLaSA. We measured this by calculating1104

accuracy, precision, recall, and F1, and the results1105

of this evaluation are presented in Table 3.1106

F1 Accuracy Recall Precision
Training Set Responses 0.752 0.665 0.711 0.821
Test Set Responses 0.762 0.678 0.752 0.804

Table 3: Evaluating the LLM clusters prediction of stu-
dents question-solving records, the table shows results
for both training set questions and test set questions in
the DBE-KT22 dataset.

Figure 5: Histograms of prompting techniques and the
number of few-shot examples used in LLM clusters for
each dataset.

Figure 6: Histograms of models used in LLM clusters
for each dataset.
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C.2 Models and Prompting Techniques Used1107

in the LLM Clusters1108

LLaSA uses various models with different prompt-1109

ing techniques and example counts to represent1110

students. Each model used MCP, POE, PS, and1111

CoT techniques to solve questions with zero-, 1-,1112

3-, or 5-shot examples. Additionally, LLaSA’s clus-1113

tering module selected LLMs most similar to each1114

student’s ability, constructing LLM clusters to rep-1115

resent students. We aimed to analyze the diversity1116

of prompting techniques and models used in this1117

process. Figures 5 and 6 illustrate the distribution1118

of LLMs selected for the LLM clusters, as well1119

as the number of shots for the adopted prompting1120

techniques and model in the DBE-KT22 and AS-1121

SISTMents Full datasets. The analysis results are1122

discussed in Section 4.2.1123

LLaSA employs various models with different1124

prompting techniques and example counts to repre-1125

sent students. Each model utilized MCP, POE, PS,1126

and CoT techniques to solve questions with zero-,1127

1-, 3-, or 5-shot examples. Additionally, LLaSA’s1128

clustering module selected LLMs most similar to1129

each student’s ability, constructing LLM clusters1130

to represent students.1131

We aimed to analyze the diversity of prompting1132

techniques and models used in this process. Figures1133

5 and 6 illustrate the histogram of LLMs selected1134

for the LLM clusters, as well as the number of1135

shots and models used in the DBE-KT22 and AS-1136

SISTments Full datasets. The analysis results are1137

discussed in Section 4.2.1138
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Model Name HF Model Name Model URL Base Architecture Model Size
Amber amber https://huggingface.co/LLM360/Amber Llama 7B
Amber amber_chat https://huggingface.co/LLM360/AmberChat Llama 7B

CrystalChat crystal_chat https://huggingface.co/LLM360/CrystalChat Llama 7B
CrystalCoder crystal_coder https://huggingface.co/LLM360/CrystalCoder Llama 7B

Falcon falcon_40b https://huggingface.co/tiiuae/falcon-40b Llama 40B
Falcon falcon_40b_instruct https://huggingface.co/tiiuae/falcon-40b-instruct Llama 40B
Falcon falcon_7b https://huggingface.co/tiiuae/falcon-7b Llama 7B
Falcon falcon_7b_instruct https://huggingface.co/tiiuae/falcon-7b-instruct Llama 7B
GPT-J gpt_j_6b https://huggingface.co/EleutherAI/gpt-j-6b GPT2 6B

GPT-Neo gpt_neo_1.3b https://huggingface.co/EleutherAI/gpt-neo-1.3B GPT2 1.3B
GPT-Neo gpt_neo_125m https://huggingface.co/EleutherAI/gpt-neo-125m GPT2 125M
GPT-Neo gpt_neo_2.7b https://huggingface.co/EleutherAI/gpt-neo-2.7B GPT2 2.7B
GPT-Neo gpt_neox_20b https://huggingface.co/EleutherAI/gpt-neox-20b GPT2 20B
GPT 3.5 - https://openai.com/index/openai-api/ OpenAI unknown
GPT 4 - https://openai.com/index/openai-api/ OpenAI unknown

Llama 2 llama_2_13b https://huggingface.co/meta-llama/Llama-2-13b Llama 13B
Llama 2 llama_2_13b_chat https://huggingface.co/meta-llama/Llama-2-13b-chat-hf Llama 13B
Llama 2 llama_2_70b https://huggingface.co/meta-llama/Llama-2-70b Llama 70B
Llama 2 llama_2_70b_chat https://huggingface.co/meta-llama/Llama-2-70b-chat-hf Llama 70B
Llama 2 llama_2_7b https://huggingface.co/meta-llama/Llama-2-7b Llama 7B
Llama 2 llama_2_7b_chat https://huggingface.co/meta-llama/Llama-2-7b-chat-hf Llama 7B
Llama 3 llama_3_70b https://huggingface.co/meta-llama/Meta-Llama-3-70B Llama 70B
Llama 3 llama_3_70b_instruct https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct Llama 70B
Llama 3 llama_3_8b https://huggingface.co/meta-llama/Meta-Llama-3-8B Llama 8B
Llama 3 llama_3_8b_instruct https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct Llama 8B
Mistral mistral https://huggingface.co/mistralai/Mistral-7B-v0.1 Llama 7B
Mistral mistral_chat https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1 Llama 7B
Mixtral mixtral https://huggingface.co/mistralai/Mixtral-8x7B-v0.1 Llama 47B
Mixtral mixtral_chat https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1 Llama 47B

OpenChat openchat https://huggingface.co/openchat/openchat_8192 Llama 13B
OpenChat openchat_2 https://huggingface.co/openchat/openchat_v2 Llama 13B
OpenChat openchat_2_w https://huggingface.co/openchat/openchat_v2_w Llama 13B
OpenChat openchat_3.2 https://huggingface.co/openchat/openchat_3.5 Llama 13B
OpenChat openchat_3.2_super https://huggingface.co/openchat/openchat_v3.2_super Llama 13B

OPT opt_1.3b https://huggingface.co/facebook/opt-1.3b GPT2 1.3B
OPT opt_125m https://huggingface.co/facebook/opt-125m GPT2 125M
OPT opt_2.7b https://huggingface.co/facebook/opt-2.7b GPT2 2.7B
OPT opt_350m https://huggingface.co/facebook/opt-350m GPT2 350M
Orca orca_2_13b https://huggingface.co/microsoft/Orca-2-13b Llama 13B
Orca orca_2_7b https://huggingface.co/microsoft/Orca-2-7b Llama 7B

Pythia pythia_1.4b https://huggingface.co/EleutherAI/pythia-1.4b GPT2 1.4B
Pythia pythia_12b https://huggingface.co/EleutherAI/pythia-12b GPT2 12B
Pythia pythia_1b https://huggingface.co/EleutherAI/pythia-1b GPT2 1B
Pythia pythia_2.8b https://huggingface.co/EleutherAI/pythia-2.8b GPT2 2.8B
Pythia pythia_410m https://huggingface.co/EleutherAI/pythia-410m GPT2 410M
Pythia pythia_6.9b https://huggingface.co/EleutherAI/pythia-6.9b GPT2 6.9B
Solar solar_10.7b https://huggingface.co/upstage/SOLAR-10.7B-v1.0 Llama 10.7B
Solar solar_10.7b_instruct https://huggingface.co/upstage/SOLAR-10.7B-Instruct-v1.0 Llama 10.7B
Solar solar_70b https://huggingface.co/upstage/SOLAR-0-70b-16bit Llama 70B
Solar solar_orcadpo_solar_instruct_slerp https://huggingface.co/kodonho/Solar-OrcaDPO-Solar-Instruct-SLERP Llama 10.7B

Starling starling https://huggingface.co/berkeley-nest/Starling-LM-7B-alpha Llama 7B
Llama 1 upstage_llama_1_30b https://huggingface.co/upstage/llama-30b-instruct Llama 30B
Llama 1 upstage_llama_1_65b https://huggingface.co/upstage/llama-65b-instruct Llama 65B
Llama 2 upstage_llama_2_70b https://huggingface.co/upstage/Llama-2-70b-instruct Llama 70B
Vicuna 1 vicuna_1_13b https://huggingface.co/lmsys/vicuna-13b-v1.3 Llama 13B
Vicuna 1 vicuna_1_33b https://huggingface.co/lmsys/vicuna-33b-v1.3 Llama 33B
Vicuna 1 vicuna_1_7b https://huggingface.co/lmsys/vicuna-7b-v1.3 Llama 7B
Vicuna 2 vicuna_2_13b https://huggingface.co/lmsys/vicuna-13b-v1.5-16k Llama 13B
Vicuna 2 vicuna_2_7b https://huggingface.co/lmsys/vicuna-7b-v1.5-16k Llama 7B

Yi /w RLHF yi_34b_chat https://huggingface.co/01-ai/Yi-34B-Chat Llama 34B
Yi yi_6b https://huggingface.co/01-ai/Yi-6B Llama 6B

Yi /w RLHF yi_6b_chat https://huggingface.co/01-ai/Yi-6B-Chat Llama 6B
Zephyr zephyr_alpha https://huggingface.co/HuggingFaceH4/zephyr-7b-alpha Llama 7B
Zephyr zephyr_beta https://huggingface.co/HuggingFaceH4/zephyr-7b-beta Llama 7B

Table 4: LLMs used in LLaSA with their corresponding model names, Huggingface model names, and model
information.
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Prompting
Method Input Prompt

MCP

Instruction: You are an intelligent agent specialized for database subject problem solving.
The question below is about relational databases as taught at the Australian National University.
The exam is intended for undergraduate and postgraduate students with a variety of majors,
including computer science, engineering, arts, and business. Given the diversity of students’
majors and learning experiences, the difficulty level of the exam will vary depending on the
students’ background and understanding of relational databases. The content is likely to be
relatively familiar to computer science and engineering majors, but may be more challenging
for arts or business majors. Therefore, the difficulty of the exam will vary depending on the
student’s major and relevant experience. You’ll need to step into the role of these students.
Read the questions and options below, understand the question and select one answer from the choices.
Use any hints provided to assist in solving the problems.

{Question}
A. {Choice 1}
B. {Choice 2}
...
Hint: {Hint}

Answer:

CoT

You are an intelligent agent specialized for database subject problem solving.
The question below is about relational databases as taught at the Australian National University.
The exam is intended for undergraduate and postgraduate students with a variety of majors,
including computer science, engineering, arts, and business. Given the diversity of students’
majors and learning experiences, the difficulty level of the exam will vary depending on the
students’ background and understanding of relational databases. The content is likely to be
relatively familiar to computer science and engineering majors, but may be more challenging
for arts or business majors. Therefore, the difficulty of the exam will vary depending on the
student’s major and relevant experience. You’ll need to step into the role of these students.
Read the questions and options below, understand the question and select one answer from the choices.
Use any hints provided to assist in solving the problems.

{Question}
A. {Choice 1}
B. {Choice 2}
...
Hint: {Hint}

Let’s think step by step.

PS

You are an intelligent agent specialized for database subject solving.
The question below is about relational databases as taught at the Australian National University.
The exam is intended for undergraduate and postgraduate students with a variety of majors,
including computer science, engineering, arts, and business. Given the diversity of students’
majors and learning experiences, the difficulty level of the exam will vary depending on the
students’ background and understanding of relational databases. The content is likely to be
relatively familiar to computer science and engineering majors, but may be more challenging
for arts or business majors. Therefore, the difficulty of the exam will vary depending on the
student’s major and relevant experience. You’ll need to step into the role of these students.
Read the questions and options below, understand the question and select one answer from the choices.
Use any hints provided to assist in solving the problems.

{Question}
A. {Choice 1}
B. {Choice 2}
...
Hint: {Hint}

Let’s first understand the problem and devise a plan to solve the problem. Then,
let’s carry out the plan to solve the problem step by step.

Table 5: Prompts used for question-solving in DBE-KT22
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prompting
methods Input Prompt

MCP

You are an intelligent agent specialized for various subject problem solving. The
question below is a rich educational dataset derived from the ASSISTMents online
tutoring system, which is used to help students with math and other subjects.
You’ll need to step into the role of these students. Read the questions and options
below, understand the question and select one answer from the choices. Use any
hints provided to assist in solving the problems.

{Question}
A. {Choice 1}
B. {Choice 2}
...
Hint: {Hint}

Answer:

CoT

You are an intelligent agent specialized for various subject problem solving. The
question below is a rich educational dataset derived from the ASSISTMents online
tutoring system, which is used to help students with math and other subjects.
You’ll need to step into the role of these students. Read the questions and options
below, understand the question and select one answer from the choices. Use any
hints provided to assist in solving the problems.

{Question}
A. {Choice 1}
B. {Choice 2}
...
Hint: {Hint}

Let’s think step by step.

PS

You are an intelligent agent specialized for various subject problem solving. The
question below is a rich educational dataset derived from the ASSISTMents online
tutoring system, which is used to help students with math and other subjects.
You’ll need to step into the role of these students. Read the questions and options
below, understand the question and select one answer from the choices. Use any
hints provided to assist in solving the problems.

{Question}
A. {Choice 1}
B. {Choice 2}
...
Hint: {Hint}

Let’s first understand the problem and devise a plan to solve the problem. Then,
let’s carry out the plan to solve the problem step by step.

Table 6: Prompts used for question-solving in ASSISTMents
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