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Abstract

Training models to efficiently use test-time compute is crucial for improving
the reasoning performance of LLMs. While current methods mostly do so via
fine-tuning on search traces or running RL against the 0/1 outcome reward,
do these approaches efficiently utilize test-time compute? Would these
approaches continue to scale as the budget improves? In this paper, we try
to answer these questions. We formalize the problem of optimizing test-time
compute as a meta reinforcement learning (RL) problem, which provides
a principled perspective on spending test-time compute from the lens of
exploration and exploitation. It also motivates the use of cumulative regret
to measure the efficacy of test-time compute by viewing a long output stream
as consisting of several episodes from the model. While current state-of-the-
art models do not optimize regret, we show that regret can be minimized by
running final 0/1 reward RL regularized by a dense reward bonus, given by
the “information gain” from each subsequent block in the output stream.
We prescribe an approach for quantifying information gain, which measures
the utility of an intermediate segment of tokens towards improving accuracy
of the final answer. We instantiate this idea to develop MRT, a new class
of finetuning methods for optimizing test-time compute. Fine-tuning with
MRT leads to substantial improvements in both performance and token
efficiency on the AIME dataset.

1 Introduction

Large language model (LLM)

Question

Generate Backtrack Revise Generate Backtrack Revise
Episode # 1 2 3 4 5 6

Figure 1: Meta reinforcement finetuning
(MRT) trains an LLM to produce a stream of
episodes, which are correlated attempts at solv-
ing the input problem (an example is shown
above). MRT poses the problem of optimizing
test-time compute as meta RL, which teaches
it to optimize cumulative regret over episodes.

Recent results in LLM reasoning (Snell et al.,
2024) illustrate the potential of improving rea-
soning capabilities by scaling test-time compute.
Generally, these approaches train models to pro-
duce traces that are longer than the typical cor-
rect solution, and consist of tokens that attempt
to implement some “algorithm”: for example,
reflecting on the previous answer (Qu et al.,
2024; Kumar et al., 2024), planning (DeepSeek-
AI et al., 2025), or implementing some form of
linearized search (Gandhi et al., 2024). These
approaches explicitly finetune pre-trained LLMs
for algorithmic behavior, e.g., SFT on search
data (Gandhi et al., 2024; Nie et al., 2024), or
the more recent but proprietary outcome reward
RL (DeepSeek-AI et al., 2025) methods.

Training models to spend test compute by generating long reasoning chains supervised by
outcome-reward RL has shown promise. However, to improve continued gains from scaling
test-time compute, we will ultimately need to answer the following questions. First, are
current LLMs efficiently using test-time compute, especially at large test-time
budgets? That is, do the lengthy thought chains they produce actually help “discover” the
correct solution? Second, would models be able to improve performance if run at
much larger test-time budgets without being trained to do so? Ultimately, we would
want models to derive enough utility from every token (or any semantically meaningful
segment) they produce, not only for efficiency but also because doing so imbues a systematic
algorithmic procedure to discover solutions for harder, out-of-distribution problems.
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In this paper, we formalize the problem of learning to use test-time compute as a meta
reinforcement learning (RL) problem (Weng, 2019). Given a query, the LLM generates a
stream of output tokens that are segmented into episodes (Figure 1). The LLM is trained to
maximize test accuracy given a large test-time compute budget, but the exact budget is not
known to it. If done right, this should enable generalization to arbitrarily high test-time
budgets, beyond what was used for training. An optimal “budget-agnostic” LLM should
strike a balance between committing to an approach prematurely (i.e., an “exploitation”
episode) and attempting high-risk strategies to tackle the problem (i.e., an “exploration”
episode), in case one of them succeeds or at least provides information about what not to
do. We formalize this notion of “optimality” as minimizing cumulative regret over the
output episodes. Cumulative regret serves two key roles: (1) it provides a metric to evaluate
how effective SOTA reasoning models such as Deepseek-R1 (DeepSeek-AI et al., 2025) are at
effectively utilizing test-time compute; and (2) it lends a new class of fine-tuning methods for
optimizing test-time compute, that we refer to as Meta Reinforcement fineTuning (MRT).

Along axis (1), we show that LLMs finetuned with outcome reward RL fail to make steady
progress towards discovering the right approach with more episodes. In fact, a much
more näıve approach of running substantially fewer episodes coupled with majority voting
outperforms outcome-reward RL in terms of both performance and efficiency (Figure 2).
Inspired by the lack of progress–which seems critical for discovery of solutions to hard unseen
problems–in current models, along axis (2), we utilize the notion of regret to design a family
of finetuning approaches that we call MRT. The key idea in MRT is to provide a reward
bonus to each induced episode in the output stream, and optimize it jointly with outcome
reward. This reward bonus measures some notion of “progress” made by each episode or
alternatively, the amount of information “gained” by the model through that episode. We
instantiate MRT to train models how to implement backtracking-based search (Figure 10),
where we’d expect efficiently utilizing information from prior episodes to be especially helpful
in discovering the final answer. MRT -B (“B” to indicate backtrack) extends iterated SFT
and RL methods with an information gain based reward bonus.

We evaluate MRT -B on math reasoning tasks. We use MRT -B to finetune Llama3.1-8B and
Llama3.2-3B base models on math reasoning problems from the NuminaMATH dataset (Yu
et al., 2024). We find that MRT -B outperforms both standard STaR (Zelikman et al.,
2022) and RL without any backtracking, as well as methods that spend test-time compute
on backtracking and search: outcome-reward RL/STaR (DeepSeek-AI et al., 2025) and
self-correction (Qu et al., 2024) approaches. On a token-matched evaluation on AIME, we
find that MRT -B attains an improvement of 30% and 38% by extending iterated STaR
and GRPO respectively. When evaluated primarily on hard, out-of-distribution problems,
MRT -B boosts performance by 10% compared to the best prior approach on this dataset.

2 Preliminaries and Background

Problem setup. Our goal is to optimize LLMs to effectively use test-time compute to
tackle difficult problems. We assume access to a reward function r(x, ·) : Z 7→ {0, 1} that
we can query on any output stream of tokens z. For e.g., on a math problem x, with token
output stream z, reward r(x, z) can be one that checks if the z is correct. We are given
a training dataset D = {(xi,y

∗
i )}Ni=1 of problems xi and oracle solution traces y∗

i for each
problem that ends at the right answer. Our goal is to use this dataset to train an LLM,
which we model as a policy from RL, π(·|x). We want to train LLM π to produce a stream
of tokens z on a test problem x ∼ Ptext that achieves a large r(x, z). We also want the total
test-time compute, as measured by the number of tokens in z, to be bounded, but the model
is not provided with its value for training to simulate different deployment budgets.

Meta RL primer. RL trains a policy to maximize the reward function. In contrast, the
meta RL problem setting assumes access to a distribution of tasks with different reward
functions and dynamics. The goal in meta RL is to train a policy on tasks from the training
distribution, such that it can do well on the test task. We do not evaluate this policy in
terms of its zero-shot performance on the test task, but let it adapt by executing “adaptation”
episodes at test time first. Most meta RL methods differ in the design of this adaptation
procedure (e.g., in-context RL such as RL2 (Duan et al., 2016), explicit gradient-based
training (Finn et al., 2017b), and latent variable inference (Rakelly et al., 2019)).
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3 Problem Formalization: Optimizing Test-Time Compute as
Meta RL

In this section, we will formalize the problem of optimizing test-time compute. Then we will
show how this formulation can naturally be viewed as a meta RL problem. In the next section,
we will show that this meta RL perspective can be used to evaluate if state-of-the-art models
are effectively and efficiently using test-time compute (e.g., Deepseek-R1 (DeepSeek-AI et al.,
2025)). Finally, we will utilize these ideas to develop a finetuning paradigm, called MRT ,
to train models to optimize test-time compute.

3.1 Optimizing Test-Time Compute

We want an LLM to attain maximum performance on Dtest within test-time budget C0.

max
π

Ex∼Dtest,z∼π(·|x) [r(x, z) | D] s.t. Eπ|z| ≤ C0.

While this is identical to the standard test performance, we emphasize that the budget C0

used for evaluation is larger than the typical length of a correct response. This means that the
LLM π(·|x) can afford to spend a part of the token budget into performing operations that do
not actually solve x but rather indirectly help the model in discovering the correct answer
eventually. For example, consider a math proof question where the output is composed of
a sequence of steps. If the policy could “on-the-fly” determine that it should backtrack a
few steps and restart its attempt, it may not only increase its chances of success, but also
gain information about what steps or strategies to avoid, and which steps to be particularly
careful about. However, the LLM π is not aware of the compute budget C0 before hand
during training, and must learn a “budget-agnostic” strategy that can work well for all large
enough budgets. Therefore, to attain a high test performance, an LLM π should exhibit
adaptive behavior, that can make the most use of the compute budget available. Doing so
requires a different loss than standard outcome-reward RL or STaR, which incentivize the
model to learn to directly answer problems, or work well for a specific budget only.

3.2 Characterizing Optimal Use of Test-Time Compute

To develop a training paradigm for using test-time compute effectively, we first need to
understand characteristics of budget-agnostic LLMs that most optimally use test-time
compute. One way to characterize these LLMs is by explicitly segmenting the output stream
z ∼ π(·|x) into a sequence of episodes, and viewing this sequence of episodes as some sort of
an “adaptation” procedure on the test problem. Formally, suppose that z can be divided into

k contiguous segments z
def
= [z0, z1, · · · , zk−1]

1. We say an LLM exhibits adaptive behavior if
it can use previous episodes z0:i−1 to update its approach in zi. As shown in Figure 1, these
episodes could consist of multiple attempts at a problem (Qu et al., 2024), alternate between
verification and generation (Zhang et al., 2024) such that successive generation episodes
attain better performance, or be paths in a search tree separated by backtrack markers.

Of course, we eventually want the LLM π to succeed in the last episode it produces within
the budget zk−1. However, since the LLM is budget-agnostic, we need to make sure that
the LLM is constantly making progress and is able to effectively strike the balance between
“exploration”: producing tokens that are irrelevant to the final answer, but might help in
later episodes, and “exploitation”: attempting to never try out high-risk behaviors.

Building on this intuition, our key insight is that the adaptation procedure implemented in
the test-time tokens stream can be viewed as running an RL algorithm on the test problem,
where prior episodes serve the role of “training” data for this purely in-context process.
Under this abstraction, an “optimal” algorithm is one that makes steady progress towards
discovering the solution for the problem with each episode, balancing between discovery and
exploitation. As a result, we can use the metric of cumulative regret from RL to also
quantify the optimality of this process.

1While there are many different strategies to segment z into variable number of episodes, for
simplicity we assume a fixed number of episodes k in our exposition. Note that if a particular z
contains l ≥ k natural episodes, we can always choose to merge the last l − k episodes into one for
the purposes of our discussion.
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Definition 3.1 (Cumulative regret). Given k episodes z generated from LLM π(·|x),
and another LLM µ that computes an estimate (best guess) of the correct response given
some episodes, we define cumulative regret as:

∆µ
k(x;π)

def
= Ez∼π

k−1∑
j=0

Jr(x;π
∗)− Jr(µ(·|x, z0:j))

.
Here Jr denotes the expected 0/1 correctness reward attained by LLM µ when conditioning
on prior episodes z0:j−1 produced by π and Jr(π

∗) denotes the reward attained by the best
possible budget-agnostic comparator π∗ that attains the highest test reward and can be
realized by finetuning the base model πb. The policy µ, that we call the meta-prover
policy , could be identical to or different from π itself. For example, if each episode produced
by π ends in an estimate of the answer, then we can measure 0/1 correctness of this answer

in itself for computing ∆̃µ
k and set µ = π. On the other hand, if some episodes produced by π

do not end in a final answer that can be scored (e.g., episodes within the “think” block), but
do provide helpful information, we can use a different µ to help us extrapolate the answer
from our existing trajectory. As we will see empirically, µ can be obtained by steering the
same LLM π with a system instruction to estimate the best answer so far.

If the regret is large and grows linearly (or faster) as the number of episodes k increases,
then we say that episodes z did not actually make meaningful progress. On the other hand,
a low cumulative regret that only grows sublinearly in k indicates that the budget-agnostic
LLM π will continue to improve performance as the test-time budget grows.

4 Case Study: Analyzing SoTA DeepSeek-R1

Figure 2: R1 scaling curve on Omni-
MATH subset across different episodes.
We compare scaling up R1 compute with
direct pass@k for k = 1, ..., 32 against
[maj@p]j for p = 1, 2, 8.

Having defined the notion of cumulative regret,
we now use it to analyze if state-of-the-art models,
such as DeepSeek-R1 DeepSeek-AI et al. (2025) en-
joy a low regret over the episodes they produce. To
this end, we compare performance conditioned on
different numbers of episodes in the thought block
when asking the DeepSeek-R1-Distill-Qwen-32B
model to solve problems from two datasets: AIME
2024 and a subset from OmniMATH (Gao et al.,
2024). In this context, an episode is defined as a
continuous segment of thinking uninterrupted by
words such as “Wait” and “Alternatively” which
break the current flow of logic. More concretely,
we compute [maj@p]j, in which we truncate the
thought block produced by the R1 model to the
first j episodes (z0:j−1) and steer it into produc-
ing immediate answers (without producing more
episodes) conditioned on this truncated thought
block. We sample such immediate answers p times
and run majority voting over them to produce
a single answer. This tells us if adding more
episodes in the thought block makes meaningful
progress and helps the model to discover the cor-
rect solution. We further compare this against
the direct baseline, in which we finetune the base model to produce “best guess” responses
in one episode (we chose the Qwen2.5-32B-Instruct model here since it was trained using the
same base model as DeepSeek-R1-Distill-Qwen-32B ) (see Appendix D for more details).

Analysis results. We plot the model’s average accuracy at different episodes j = {0, · · · , k−
1} as a function of the test-time compute (measured in tokens) and the episode index j in
Figure 2. To avoid bias induced by averaging across episode lengths, we group solutions
based on episode lengths (total episodes = 10, 30, 45). We plot the performance of the direct
baseline in orange, and the performance of [maj@1]j at different j in blue. The dashed
green lines branching from the blue curve extend each [maj@1]j to [maj@p]j at different p.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Takeaways and implications. When only provided with a few episodes (≤ 10), cumulative
regret is low and sequential episodes continuously reduce regret, whereas [maj@p]j and the
direct baseline both plateau. However, in “harder” settings that require more episodes (e.g.,
41-45; Appendix D), we find that the accuracy of R1 does not increase with each episode
and sometimes degrades continuously as more episodes are generated in the output stream.
This illustrates that outcome reward RL does not optimize regret, which is significantly high
in this case (Figure 2). In addition, simply running the [maj@p]j baseline from intermediate
episodes zj often results in a higher peak performance under equal compute budgets. For
total episodes ∈ [41, 45], [maj@p]j (green dashed lines) no longer pleateaus and outperforms
producing more episodes.

This result is surprising because a long trace with multiple episodes should be capable of
implementing the [maj@p]j baseline since there is no new knowledge beyond what the LLM
already knows. Inconsistent progress with many episodes likely indicates poor performance
as we scale up test-time compute even further. If outcome reward RL was imbuing the LLM
with algorithmic procedures, the LLM should be able to improve consistently.

5 MRT: Meta Reinforcement Finetuning

We now turn to developing a finetuning paradigm that we call meta reinforcement
finetuning (MRT), which finetunes budget-agnostic LLMs to directly optimize cumulative
regret. To build our paradigm, we start by conceptually understanding the failure mode of
outcome-reward RL that was used to train R1 which failed to show a consistent reduction in
regret with more episodes.

Exploit Explore

Per-episode outcome reward

Self-correct / RL² MRT (Ours) R1 / E-RL²

Outcome reward

Figure 3: Explore/exploit spectrum. Final re-
ward RL does not reward intermediate episodes
encouraging unstructured exploration, whereas
SCoRe (Kumar et al., 2024; Qu et al., 2024) con-
strains each episode based on its outcome reward
making it too exploitative. MRT strikes a balance
by assigning an information gain based reward which
aims to make progress in a budget-agnostic setting.

In principle, optimizing the outcome re-
ward over a long stream does not incen-
tivize meaningful progress. As long as
the LLM finds some arbitrary way to suc-
ceed eventually, all intermediate episodes
in this rollout will be equally reinforced
without accounting for the contribution
of every episode towards the eventual suc-
cess. This is problematic for two reasons:
(i) in a budget-agnostic setting, we may
simply run out of token budget to discover
solutions to hard problems if we are not
making progress, and (ii) we will waste the token budget on easy problems that could be
solved otherwise more efficiently. One way of addressing these issues is to directly optimize
for the cumulative regret objective (Definition 3.1). We argue that optimizing cumulative
regret over budget-agnostic policies is equivalent to optimizing a notion of “information
gain” per episode, which strikes a balance between spending tokens on exploration and
exploitation (Figure 3). As we will see in the next section, an episode results in information
gain if it reduces uncertainty over a correct answer.

5.1 Gaining Information by Minimizing Regret

In a budget-agnostic setting, one can hope to achieve sub-linear regret only when each episode
makes consistent progress. In RL, this notion of progress typically translates to a value
function that computes the information or advantage of an action (episode) by marginalizing
over all possible future actions (episodes). While appealing, doing so requires aggressive
Monte-Carlo sampling and hence, we substitute the value function with Jr from a separate
meta-prover LLM policy µ, and define information gain from an episode zi as the change in
average reward obtained by this meta-prover policy µ with and without this episode.

Definition 5.1 (Information gain). Given an episode zj from LLM π(·|x) and prior
context c, and another LLM µ that computes an estimate of the correct response, we
define information gain offered by zj as

Iµ(zj ; c) = Jr(µ(·|zj , c))− Jr(µ(·|c)).

We will now use this notion of information gain as a dense reward bonus for each intermediate
episode, extending ideas from process supervision (Setlur et al., 2024).

5
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5.2 Incorporating Information Gain as a Dense Reward

Defining the standard finetuning loss function based on the expected final reward attained
by the last episode as the following objective, ℓFT:

ℓFT(π) := Ex∼D,z∼π [r(x, zk−1)] , (1)

we can train train the LLM π either with the policy gradient obtained by differentiating
Equation 1 or with SFT on self-generated data (Singh et al., 2023). We can extend Equation 1
to incorporate the information gain, giving rise to the abstract training objective (c is the
context so far):

ℓMRT(π) := ℓFT(π)+α

k−1∑
j=0

E ck∼π′,
zj∼π(·|ck)

[Iµ(zj ; ck)]. (2)

The term in red corresponds to the reward bonus, and it is provided under the distribution
of contexts ck sampled from prefixes produced by the previous LLM checkpoint, shown as
π′. Utilizing the previous policy π′ in place of the current policy π serves dual purpose: (1)
akin to trust-region methods in RL (Schulman et al., 2015; Peng et al., 2019), it allows us to
improve over the previous policy provably, and (2) it lends MRT amenable to an offline
instantiation based on STaR, which does not run rollouts from the policy after each gradient
step. The meta prover policy µ can be any other LLM (e.g., an “-instruct” model which is
told to utilize episodes so far to guess the best answer) or the same LLM π itself. We also
remark that this additional reward can be provided to the segment of tokens spanning a
particular episode (“per-episode” reward) or as a cumulative bonus at the end of the entire
test-time trace. Finally, while this objective might appear similar to that of Setlur et al.
(2024), we crucially note that the information gain is not an advantage and is computed per
episode, and not per step. With this abstract objective in place, we now write down concrete
instantiations for SFT and RL.

6 MRT -B: Learning to Backtrack

We now instantiate MRT for training LLMs to implement backtracking-based search in its
output stream of tokens. Concretely, we want the LLM to be able to attempt a problem,
identify its own mistakes in doing so, and backtrack towards a better solution while still
repurposing the progress it made in the previous attempts. This problem can benefit from
making progress and gaining information from failed episodes to be produce successful
episodes eventually.

Formulating backtracking under MRT. To instantiate MRT in this setting, we first
need to construct episodes from the output stream of backtracking traces (Figure 5). A
convenient way to do so is to split the entire trace at markers that indicate the beginning
and end of a backtracking operation. For example, the trace in Figure 10 would be split into
three episodes (initial response formatted as a sequence of steps, detecting the error and
detecting where to backtrack to, and a revised response). We then optimize the objective in
Definition 2 over these episodes with STaR (Zelikman et al., 2022) or RL (Shao et al., 2024).
With STaR, this would involve sampling on-policy traces, followed by cloning the ones that
succeed not only under the outcome reward, but also attain high information gain. With
RL, this would involve adding a reward bonus that corresponds to information gain. We
formalize these ideas next.

6.1 STaR and RL Variants of MRT -B

The STaR variant of MRT -B uses self-generated rollouts from the base model πb to construct
a filtered dataset of traces for SFT. To do so, for each prompt x, we first sample an initial
response z0 ∼ πb(·|x). We then add a backtracking episode z1, where the model explicitly
decides to revert to a previous step in z0, followed by a new attempt z2, which shares the
prefix with z0 up until the backtracking step only (see Figure 4). With these traces in hand,
we now run filtering to only retain those that (1) eventually attain the right answer in z2,
i.e., r(x; z2) = 1, and (2) have high information backtracks, i.e., Iµ(zj+1;x, z0:j) is high,
which is computed by rolling out µ(·). The policy µ is outlined in implementation details.
After this, we finetune the LLM, optionally running more than one STaR iteration.

6
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…
Question Step 1 Step 2 Step n Answer 1

Question       → [ Step 1       → … → Answer 1       ] → Backtrack → [Step 2       → Answer 2        ]

Answer 2

Figure 4: On-policy rollout generation for
MRT -B (STaR). For each context c, MRT -B
(STaR) only finetunes on rollouts where Iµ(zi; c) ≥
0 and which eventually end at the right final an-
swer, i.e., episodes where r(x, zk−1) = 1.

MRT-B RISE STaR
0

1 2 3 4

65 7 8

9 10 11 12

13

14 15 16 17

0

1 2 3 4

65 7 8

9 10 11 12

13

14 15 16 17

0

1 2 3 4

65 7 8

9 10 11 12

13

14 15 16 17

18

0 2 6 5 9 15 0 2 6 13 1813 0 2 5 159

intermediate node incorrect node correct node single step entire rolloutroot node

Figure 5: Different data construction
schemes for obtaining warmstart SFT data
for learning. MRT -B traverses two paths with
the shared prefix, making use of backtracking,
which RISE style approaches.

The RL variant of MRT -B implements a similar idea, but using an online RL method (e.g.,
GRPO (Shao et al., 2024), PPO (Schulman et al., 2017), etc.). The key idea is to now
maximize the reward computed in Equation 2 during RL, instead of only the 0/1 outcome
reward. There are multiple ways of implementing this procedure including the use of different
reward bonuses for different episodes, or just a final reward for all episodes equal to the
information-gain adjusted 0/1 outcome reward2. We utilize the latter for simplicity and
generality of implementation in our experiments.

6.2 Initialization with Warmstart SFT

We found in our preliminary experiments that base pre-trained LLMs (at 3B and 8B parameter
ranges) often lacked the ability to sample meaningful backtracking operations due to low
coverage over such behavior in the pre-training data. This inability to sample backtracks at
all, will severely inhibit learning during RL and STaR. Therefore, before running MRT -B,
we had to run an initial phase of “warmstart” supervised finetuning (SFT) to imbue the LLM
with a basis of backtracking behavior. To do so without human supervision, we generated
multiple solution traces by running beam search against the 0/1 outcome reward on every
training problem. This beam search did not require any process reward model (PRM) (Snell
et al., 2024), since we could simply run additional rollouts to estimate values without any
PRM estimation errors. We then generated SFT traces by traversing this tree using a number
of heuristics (see Figure 5).

Figure 6: Training loss for warmstart
SFT on multiple data configurations: random
stitching (“RISE”), STaR (“rejection sam-
pling”), and our warmstart SFT data (“Back-
track”). A lower loss implies ease of fit.

We found that backtracking to nodes in the pre-
fix of an attempt that attain a high estimated
success rate, followed by completing the solu-
tion from there on resulted in an warmstart SFT
dataset that was easy to fit when normalized for
the same token budget. On the other hand, SFT
datasets generated by stitching arbitrary incor-
rect solutions from the beam search tree with a
correct solution (e.g., RISE) and direct answer
traces were both harder to fit as evidenced by
the trend in the training loss in Figure 6.

6.3 Implementation Details

The complete algorithmic implementation for each approach is detailed in Algorithm C.1.
The warmstart SFT stage operates on a large dataset of 50k problem-solution pairs sampled
from NuminaMath (Li et al., 2024). For each pair, we generated one trace per solution.
During each iteration of MRT -B, we use only 20k randomly-sampled problem-solution pairs
from NuminaMath. We estimated the information gain reward bonus of backtracking to
each of the first 10 steps of the initial episode with 20 rollouts each. The complete set of
hyperparameters and training details can be found in Appendix C.2.

2Note that both of these implementations will induce the same gradient in expectation, but
attain different gradient variance.
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7 Experimental Evaluation

The main goal of our experiments is to evaluate the efficacy of MRT in enabling good use
of test-time compute. We situate our experiments in the backtracking problem setting, and
run MRT -B. Concretely, we answer the following questions: (1) Can MRT -B enable LLMs
to successfully discover and backtrack on their mistakes?, (2) Does an information gain
based reward bonus help the model in discovering nuanced strategies that are better than
simply re-attempting the question at hand?, and (3) Can the procedure learned by MRT -B
generalize to even larger test-time compute budgets than what it was trained on? To this
end, we finetune Llama-3.1-8B and Llama-3.2-3B models with STaR and RL variants of
MRT -B respectively and perform a number of ablations.

Baselines & experimental setup. We compare MRT -B to existing representative
methods: (a) RISE (Qu et al., 2024), a self-correction method that teaches LLMs to
spend test-time compute on revising their previous responses from the beginning, without
backtracking; (b) STaR (Zelikman et al., 2022), which improves the LLM’s accuracy
within one episode using 0/1 rewards and self-training; and (c) outcome-reward RL w/
GRPO (Shao et al., 2024), which runs on-policy RL to maximize the 0/1 outcome rewards
on top of a backtrack trace. While our training dataset is a subset of NuminaMATH (Li et al.,
2024), all responses on these problems are generated from Llama-3.1-8B-Instruct, which also
serves as the base model for many of our finetuning runs. We evaluate the performance on a
dataset of AIME questions, which is a test bed consisting of unseen, difficult and challenging
problems (8B has a pass@10 of ≈30% on AIME vs ≈60% on our training set).

Evaluation protocol. We evaluate MRT -B in two modes: (i) “parallel”: for any problem,
we sample N independent three-episode traces and compute maj@N and pass@N metrics; and
(ii) “linearized”: following the protocol in Qu et al. (2024), we run N rounds of sequential
improvement in a sliding window fashion (i.e. the latest 2048 tokens are retained in context),
to still be able to generate long output token streams even when the context length is not
that high. We compute pass@N and maj@N evaluations because with models of our size
pass@1 numbers on a hard dataset like AIME are expected to only show minor differences.

7.1 Main Performance Results

MRT -B (STaR). We start by evaluating the performance of the STaR variant of MRT -B
with the 8B model. As shown in Figure 7, in both evaluation modes (parallel in solid lines;
linearized in dashed lines), the LLM finetuned by MRT -B attains the highest performance
for any given test-time token budget (x-axis) and also the highest peak performance of
any method. MRT -B improves token efficiency by over 30% when sampling sequentially.
Also observe that running a second iteration of MRT -B, leads to further improvement.
Interestingly, while RISE (Qu et al., 2024) based on self-correction without information
gain or cumulative regret also improves the final performance compared to the direct STaR
approach, it does not do so in a token-efficient manner, falling below the direct approach on
the plot.

Figure 7: MRT -B (STaR) results (Left). We plot pass@10 (left) and maj@10 (right) performance
of models on AIME. We also run linearized search (dashed line) for MRT (rest are parallel). For
each, we sample k times (1 to 10), and plot pass/maj@k against tokens spent. MRT-B (RL)
results (Right). The evaluation protocol is similar to Left, where for each method, we sample k
times (from 1 to 10), and plot pass/maj@k against tokens spent.

We also note that running MRT -B with linearized evaluations maj@K outperform MRT -B
with parallel evaluations maj@K once the test-time compute budget is high enough, indicating
that information gain from previous context is useful for attaining higher performance. Finally,
also note that running multiple iterations of MRT -B (STaR) improves performance as shown
upto 2 iterations in Figure 7.
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MRT -B (RL). Next, we test the on-policy version of our approach using the GRPO (Shao
et al., 2024) algorithm, finetuning the 3B model with the warmstart SFT as initialization.
As discussed in Section 6.3, in this case, the information gain bonus is added to the entire
episode. As shown in Figure 7, we find that MRT -B (RL) with GRPO is able to improve
the compute efficiency of linearized maj@K by 38% compared to the strong baseline of
GRPO with only the final outcome reward, that has been fundamental to the recent successes
of proprietary reasoning models (DeepSeek-AI et al., 2025). Again we note that not only
does RL improve token efficiency (i.e., better performance for a given token budget), it
also improves the peak performance. In the next section, we show that this is because our
approach actually discovers new solutions on the harder questions.

7.2 Ablation Studies and Diagnostic Visualizations
Next, we perform controlled experiments to better understand the reasons behind the efficacy
of MRT -B. First, we aim to understand if the reward bonus introduced by MRT -B is
effective at discovering solutions. To this end, we specifically stress-test MRT -B and its
counterparts trained without information gain (i.e., RISE and näıve outcome-reward RL) on
hard problems on which the base model generally fails. Hard problems are those on which
the warmstart SFT model attains a low performance (≤ 10%). We find that the difference in
pass@10 performance between MRT -B and its counterpart without information gain is even
larger in this setting: notably, MRT -B (RL) solves 60 additional AIME test problems (out
of 660 hard questions) that näıve GRPO cannot solve. This substantial gap indicates that
incentivizing information gain is crucial for performance on hard questions, where models
need to discover new solutions.

Figure 8: Information gain histograms over the backtracking episode for RISE and MRT -B
(STaR) on the left and GRPO and MRT -B (RL) on right, computed on the evaluation set. In each
case, using reward values prescribed by MRT -B amplifies information gain on the test-time trace,
enabling it to make consistent progress.

We visualize information gain (Definition 5.1) histograms obtained by running many episodes
in the evaluation rollouts produced after finetuning with MRT -B, and compare it with its
counterpart without the bonus (Figure 8). Observe that both MRT -B (STaR) and MRT -
B (RL) exhibit a net positive and higher information gain over the backtracking episode
compared to RISE and outcome-reward RL respectively. This shows that by incorporating
the reward bonus, MRT amplifies information gain at test time as well.

Figure 9: Information gain vs. length penalty .
Left: pass@k scaling curves on AIME. While
length-adjusted outcome reward attains better to-
ken efficiency, running MRT -B (RL) with a reward
bonus outperforms it in peak performance and ef-
ficiency with more linearized evaluation. Right:
evolution of length distributions in RL training.

Our final ablation study compares MRT -
B (RL) to a variant of outcome-reward RL
that utilizes a length penalty. Concretely,
this approach rewards an on-policy rollout
with a length-normalized final outcome re-
ward, preferring shorter sequences in or-
der to explicitly improve efficiency of test
compute. We find in Figure 9 that this ap-
proach is more efficient at small token bud-
gets and produces much shorter responses,
but surprisingly it attains a worse peak
performance, perhaps because it does not
explicitly incentivize the model to make
progress and only prefers shorter lengths.

Conclusion. We formalize optimizing test-time compute via meta-RL and introduce
cumulative regret as a measure of its efficiency. Our paradigm, MRT, finetunes LLMs to
minimize regret by making steady progress via a dense reward bonus. Empirically, MRT
improves performance when provided with more test-time compute. Future work should
study longer training contexts, flexible notions of episodes, and scale MRT -B to use branched
rollouts and, hence, exactly optimize the cumulative regret metric.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

References

Agarwal, R., Liang, C., Schuurmans, D., and Norouzi, M. Learning to generalize from sparse
and underspecified rewards. In International conference on machine learning, pp. 130–140.
PMLR, 2019.

Beck, J., Vuorio, R., Liu, E. Z., Xiong, Z., Zintgraf, L., Finn, C., and Whiteson, S. A survey
of meta-reinforcement learning. arXiv preprint arXiv:2301.08028, 2023.

Beeching, E., Tunstall, L., and Rush, S. Scaling test-time compute with
open models. URL https://huggingface.co/spaces/HuggingFaceH4/
blogpost-scaling-test-time-compute.

Chen, X., Xu, J., Liang, T., He, Z., Pang, J., Yu, D., Song, L., Liu, Q., Zhou, M., Zhang,
Z., et al. Do not think that much for 2+ 3=? on the overthinking of o1-like llms. arXiv
preprint arXiv:2412.21187, 2024.

Chow, Y., Tennenholtz, G., Gur, I., Zhuang, V., Dai, B., Thiagarajan, S., Boutilier, C.,
Agarwal, R., Kumar, A., and Faust, A. Inference-aware fine-tuning for best-of-n sampling
in large language models. arXiv preprint arXiv:2412.15287, 2024.

Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H., Kaiser, L., Plappert, M., Tworek,
J., Hilton, J., Nakano, R., et al. Training verifiers to solve math word problems. arXiv
preprint arXiv:2110.14168, 2021.

DeepSeek-AI, Guo, D., Yang, D., Zhang, H., Song, J., Zhang, R., Xu, R., Zhu, Q., Ma, S.,
Wang, P., Bi, X., Zhang, X., Yu, X., Wu, Y., Wu, Z. F., Gou, Z., Shao, Z., Li, Z., Gao,
Z., Liu, A., Xue, B., Wang, B., Wu, B., Feng, B., Lu, C., Zhao, C., Deng, C., Zhang, C.,
Ruan, C., Dai, D., Chen, D., Ji, D., Li, E., Lin, F., Dai, F., Luo, F., Hao, G., Chen, G.,
Li, G., Zhang, H., Bao, H., Xu, H., Wang, H., Ding, H., Xin, H., Gao, H., Qu, H., Li, H.,
Guo, J., Li, J., Wang, J., Chen, J., Yuan, J., Qiu, J., Li, J., Cai, J. L., Ni, J., Liang, J.,
Chen, J., Dong, K., Hu, K., Gao, K., Guan, K., Huang, K., Yu, K., Wang, L., Zhang, L.,
Zhao, L., Wang, L., Zhang, L., Xu, L., Xia, L., Zhang, M., Zhang, M., Tang, M., Li, M.,
Wang, M., Li, M., Tian, N., Huang, P., Zhang, P., Wang, Q., Chen, Q., Du, Q., Ge, R.,
Zhang, R., Pan, R., Wang, R., Chen, R. J., Jin, R. L., Chen, R., Lu, S., Zhou, S., Chen,
S., Ye, S., Wang, S., Yu, S., Zhou, S., Pan, S., Li, S. S., Zhou, S., Wu, S., Ye, S., Yun, T.,
Pei, T., Sun, T., Wang, T., Zeng, W., Zhao, W., Liu, W., Liang, W., Gao, W., Yu, W.,
Zhang, W., Xiao, W. L., An, W., Liu, X., Wang, X., Chen, X., Nie, X., Cheng, X., Liu,
X., Xie, X., Liu, X., Yang, X., Li, X., Su, X., Lin, X., Li, X. Q., Jin, X., Shen, X., Chen,
X., Sun, X., Wang, X., Song, X., Zhou, X., Wang, X., Shan, X., Li, Y. K., Wang, Y. Q.,
Wei, Y. X., Zhang, Y., Xu, Y., Li, Y., Zhao, Y., Sun, Y., Wang, Y., Yu, Y., Zhang, Y.,
Shi, Y., Xiong, Y., He, Y., Piao, Y., Wang, Y., Tan, Y., Ma, Y., Liu, Y., Guo, Y., Ou,
Y., Wang, Y., Gong, Y., Zou, Y., He, Y., Xiong, Y., Luo, Y., You, Y., Liu, Y., Zhou, Y.,
Zhu, Y. X., Xu, Y., Huang, Y., Li, Y., Zheng, Y., Zhu, Y., Ma, Y., Tang, Y., Zha, Y.,
Yan, Y., Ren, Z. Z., Ren, Z., Sha, Z., Fu, Z., Xu, Z., Xie, Z., Zhang, Z., Hao, Z., Ma, Z.,
Yan, Z., Wu, Z., Gu, Z., Zhu, Z., Liu, Z., Li, Z., Xie, Z., Song, Z., Pan, Z., Huang, Z., Xu,
Z., Zhang, Z., and Zhang, Z. Deepseek-r1: Incentivizing reasoning capability in llms via
reinforcement learning, 2025. URL https://arxiv.org/abs/2501.12948.

Dorfman, R., Shenfeld, I., and Tamar, A. Offline meta learning of exploration. arXiv preprint
arXiv:2008.02598, 2020.

Duan, Y., Schulman, J., Chen, X., Bartlett, P. L., Sutskever, I., and Abbeel, P. Rl 2̂: Fast
reinforcement learning via slow reinforcement learning. arXiv preprint arXiv:1611.02779,
2016.

Finn, C., Abbeel, P., and Levine, S. Model-agnostic meta-learning for fast adaptation of deep
networks. CoRR, abs/1703.03400, 2017a. URL http://arxiv.org/abs/1703.03400.

Finn, C., Abbeel, P., and Levine, S. Model-agnostic meta-learning for fast adaptation of
deep networks. In International conference on machine learning, pp. 1126–1135. PMLR,
2017b.

10

https://huggingface.co/spaces/HuggingFaceH4/blogpost-scaling-test-time-compute
https://huggingface.co/spaces/HuggingFaceH4/blogpost-scaling-test-time-compute
https://arxiv.org/abs/2501.12948
http://arxiv.org/abs/1703.03400


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Gandhi, K., Lee, D., Grand, G., Liu, M., Cheng, W., Sharma, A., and Goodman, N. D.
Stream of search (sos): Learning to search in language. arXiv preprint arXiv:2404.03683,
2024.

Gao, B., Song, F., Yang, Z., Cai, Z., Miao, Y., Dong, Q., Li, L., Ma, C., Chen, L., Xu, R.,
et al. Omni-math: A universal olympiad level mathematic benchmark for large language
models. arXiv preprint arXiv:2410.07985, 2024.

Ghosh, D., Rahme, J., Kumar, A., Zhang, A., Adams, R. P., and Levine, S. Why gener-
alization in RL is difficult: Epistemic pomdps and implicit partial observability. CoRR,
abs/2107.06277, 2021. URL https://arxiv.org/abs/2107.06277.

Gupta, A., Eysenbach, B., Finn, C., and Levine, S. Unsupervised meta-learning for reinforce-
ment learning. CoRR, abs/1806.04640, 2018a. URL http://arxiv.org/abs/1806.04640.

Gupta, A., Mendonca, R., Liu, Y., Abbeel, P., and Levine, S. Meta-reinforcement learning
of structured exploration strategies. CoRR, abs/1802.07245, 2018b.

Jones, A. L. Scaling scaling laws with board games. arXiv preprint arXiv:2104.03113, 2021.

Kamienny, P.-A., Pirotta, M., Lazaric, A., Lavril, T., Usunier, N., and Denoyer, L. Learn-
ing adaptive exploration strategies in dynamic environments through informed policy
regularization. arXiv preprint arXiv:2005.02934, 2020.

Kang, K., Wallace, E., Tomlin, C., Kumar, A., and Levine, S. Unfamiliar finetuning examples
control how language models hallucinate, 2024.

Kimi-Team. Kimi k1.5: Scaling reinforcement learning with llms, 2025.

Kumar, A., Zhuang, V., Agarwal, R., Su, Y., Co-Reyes, J. D., Singh, A., Baumli, K., Iqbal,
S., Bishop, C., Roelofs, R., et al. Training language models to self-correct via reinforcement
learning. arXiv preprint arXiv:2409.12917, 2024.

Lehnert, L., Sukhbaatar, S., Su, D., Zheng, Q., Mcvay, P., Rabbat, M., and Tian, Y. Beyond
a*: Better planning with transformers via search dynamics bootstrapping. arXiv preprint
arXiv:2402.14083, 2024.

Li, J., Beeching, E., Tunstall, L., Lipkin, B., Soletskyi, R., Huang, S., Rasul, K., Yu, L.,
Jiang, A. Q., Shen, Z., et al. Numinamath: The largest public dataset in ai4maths with
860k pairs of competition math problems and solutions. Hugging Face repository, 13:9,
2024.

Liu, E. Z., Raghunathan, A., Liang, P., and Finn, C. Decoupling exploration and exploitation
for meta-reinforcement learning without sacrifices. In International conference on machine
learning, pp. 6925–6935. PMLR, 2021.

Mendonca, R., Gupta, A., Kralev, R., Abbeel, P., Levine, S., and Finn, C. Guided meta-policy
search. Advances in Neural Information Processing Systems, 32, 2019.

Moon, S., Park, B., and Song, H. O. Guided stream of search: Learning to better search
with language models via optimal path guidance. arXiv preprint arXiv:2410.02992, 2024.

Nie, A., Su, Y., Chang, B., Lee, J. N., Chi, E. H., Le, Q. V., and Chen, M. Evolve: Evaluating
and optimizing llms for exploration. arXiv preprint arXiv:2410.06238, 2024.

Peng, X. B., Kumar, A., Zhang, G., and Levine, S. Advantage-weighted regression: Simple
and scalable off-policy reinforcement learning. arXiv preprint arXiv:1910.00177, 2019.

Qu, Y., Zhang, T., Garg, N., and Kumar, A. Recursive introspection: Teaching language
model agents how to self-improve. arXiv preprint arXiv:2407.18219, 2024.

Rakelly, K., Zhou, A., Finn, C., Levine, S., and Quillen, D. Efficient off-policy meta-
reinforcement learning via probabilistic context variables. In International conference on
machine learning, pp. 5331–5340. PMLR, 2019.

11

https://arxiv.org/abs/2107.06277
http://arxiv.org/abs/1806.04640


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Schulman, J., Levine, S., Abbeel, P., Jordan, M., and Moritz, P. Trust region policy
optimization. In Bach, F. and Blei, D. (eds.), Proceedings of the 32nd International
Conference on Machine Learning, volume 37 of Proceedings of Machine Learning Research,
pp. 1889–1897, Lille, France, 07–09 Jul 2015. PMLR.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. Proximal policy
optimization algorithms. CoRR, abs/1707.06347, 2017.

Setlur, A., Nagpal, C., Fisch, A., Geng, X., Eisenstein, J., Agarwal, R., Agarwal, A., Berant,
J., and Kumar, A. Rewarding progress: Scaling automated process verifiers for llm
reasoning. arXiv preprint arXiv:2410.08146, 2024.

Shao, Z., Wang, P., Zhu, Q., Xu, R., Song, J., Bi, X., Zhang, H., Zhang, M., Li, Y., Wu,
Y., et al. Deepseekmath: Pushing the limits of mathematical reasoning in open language
models. arXiv preprint arXiv:2402.03300, 2024.

Singh, A., Co-Reyes, J. D., Agarwal, R., Anand, A., Patil, P., Garcia, X., Liu, P. J., Harrison,
J., Lee, J., Xu, K., et al. Beyond human data: Scaling self-training for problem-solving
with language models. arXiv preprint arXiv:2312.06585, 2023.

Snell, C., Lee, J., Xu, K., and Kumar, A. Scaling llm test-time compute optimally can be
more effective than scaling model parameters. arXiv preprint arXiv:2408.03314, 2024.

Stadie, B. C., Yang, G., Houthooft, R., Chen, X., Duan, Y., Wu, Y., Abbeel, P., and
Sutskever, I. Some considerations on learning to explore via meta-reinforcement learning,
2019. URL https://arxiv.org/abs/1803.01118.

Welleck, S., Bertsch, A., Finlayson, M., Schoelkopf, H., Xie, A., Neubig, G., Kulikov, I.,
and Harchaoui, Z. From decoding to meta-generation: Inference-time algorithms for large
language models. arXiv preprint arXiv:2406.16838, 2024.

Weng, L. Meta reinforcement learning. lilianweng.github.io, 2019. URL https://lilianweng.
github.io/posts/2019-06-23-meta-rl/.

Wu, Y., Sun, Z., Li, S., Welleck, S., and Yang, Y. Inference scaling laws: An empirical
analysis of compute-optimal inference for problem-solving with language models. arXiv
preprint arXiv:2408.00724, 2024.

Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T. L., Cao, Y., and Narasimhan, K. Tree
of thoughts: Deliberate problem solving with large language models. arXiv preprint
arXiv:2305.10601, 2023.

Yin, M., Tucker, G., Zhou, M., Levine, S., and Finn, C. Meta-learning without memorization.
In 8th International Conference on Learning Representations, ICLR 2020, Addis Ababa,
Ethiopia, April 26-30, 2020. OpenReview.net, 2020. URL https://openreview.net/
forum?id=BklEFpEYwS.

Yu, L., Jiang, W., Shi, H., Yu, J., Liu, Z., Zhang, Y., Kwok, J. T., Li, Z., Weller, A., and Liu,
W. Metamath: Bootstrap your own mathematical questions for large language models,
2024.

Zelikman, E., Wu, Y., Mu, J., and Goodman, N. Star: Bootstrapping reasoning with
reasoning. Advances in Neural Information Processing Systems, 35:15476–15488, 2022.

Zhang, L., Hosseini, A., Bansal, H., Kazemi, M., Kumar, A., and Agarwal, R. Generative
verifiers: Reward modeling as next-token prediction. arXiv preprint arXiv:2408.15240,
2024.

12

https://arxiv.org/abs/1803.01118
https://lilianweng.github.io/posts/2019-06-23-meta-rl/
https://lilianweng.github.io/posts/2019-06-23-meta-rl/
https://openreview.net/forum?id=BklEFpEYwS
https://openreview.net/forum?id=BklEFpEYwS


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Appendices

A Related Work

Scaling test-time compute. Recent works Snell et al. (2024); Jones (2021) show that
scaling test-time compute can be more optimal than scaling data or model parameters.
Early works Wu et al. (2024); Welleck et al. (2024) on test-time compute train separate
verifiers Setlur et al. (2024); Chow et al. (2024) for best-of-N Cobbe et al. (2021) or beam
search Beeching et al.. Building on this, recent work (Gandhi et al., 2024; Moon et al., 2024)
trains LLMs to “simulate” in-context search at test time by training them to imitate manually-
stitched search traces. However, gains from such approaches are limited since finetuning
on search traces that are unfamiliar to the base model can lead to memorization (Kumar
et al., 2024; Kang et al., 2024). As a result, MRT -B designs the data for warmstart SFT
carefully and then runs on-policy STaR/RL, which does not suffer from this issue (Kumar
et al., 2024; Qu et al., 2024). More recently, RL with outcome rewards has shown promise
for finetuning LLMs to produce long CoTs that can search Lehnert et al. (2024), plan Yao
et al. (2023), introspect Qu et al. (2024) and correct DeepSeek-AI et al. (2025); Kimi-Team
(2025). We show that RL with outcome rewards alone does not learn to discover solutions
by making use of test-time compute efficiently, corroborating prior evidence with overly long
solutions (Chen et al., 2024). Our approach MRT poses optimizing test-time compute as a
meta RL problem to make good use of test-time compute.

Meta RL. MRT formulates optimizing test-time compute as a meta RL problem (Beck
et al., 2023; Gupta et al., 2018b;a). In fact, prior work in RL (Ghosh et al., 2021; Rakelly
et al., 2019) shows that it is necessary to solve a meta RL problem to effectively generalize
to unseen initial states or contexts (i.e., new test problems in our case), with a little bit of
interaction (i.e., initial episodes in the token history). Most prior work in meta RL (Finn
et al., 2017a; Agarwal et al., 2019; Mendonca et al., 2019) differs in the design of the
adaptation procedure employed. MRT is closest to meta RL methods that use in-context
histories (Duan et al., 2016; Stadie et al., 2019), but differs in the design of the reward
bonus, striking a balance between E-RL2 (Stadie et al., 2019) that does not reward all but
the last episode (only exploration), and RL2 (Duan et al., 2016) that rewards each episode
based on its success rate (only exploitation). Other works (Kamienny et al., 2020; Dorfman
et al., 2020) try to jointly optimize for exploration and exploitation, but often collapse to
simply memorizing the direct solution because of a “chicken-and-egg” problem at the start
of learning (Liu et al., 2021; Yin et al., 2020). Our paradigm MRT alleviates this problem
with the use of an information gain bonus under decoupled meta-prover policies µ.
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B Example of Backtrack

Example of Backtrack

Query: A type of operation is defined as follows:

([
a b
c d

]
= ad− bc

)
. The conjugate

of the complex number

([
1 + i −1
2 3i

])
is .

Solution:

([
a b
c d

])
is defined as (ad− bc), but this doesn’t appear to be a matrix

operation. Instead, it seems to be a determinant operation. The problem statement

seems to be a bit unclear, but if we consider the given complex number

([
1 + i −1
2 3i

])
as a 2× 2 matrix, we can calculate its determinant, which would be the conjugate.

Step 1: To find the conjugate of the complex number

([
1 + i −1
2 3i

])
, we first need to

calculate the determinant of this matrix using the formula: (ad− bc).
Step 2: From the given matrix, we have a = 1 + i, b = −1, c = 2, and d = 3i.
Step 3: The determinant of the matrix is ((1 + i)(3i)− (−1)(2)) =

(
3i2 + 2

)
.

Step 4: Simplify the expression by substituting
(
i2
)
with −1: (3(−1) + 2) = (−3 + 2).

Step 5: Calculate the expression: (−3 + 2 = −1).
Step 6: The conjugate of a complex number (a+ bi) is (a− bi), so the conjugate of
(−1) is (−1).
Answer: −1 ✗

Wait, this seems off. Let’s try something else.
Step 3: Plugging these values into the determinant formula, we get
(1 + i)(3i)− (−1)(2) = 3i2 + 3i+ 2 = −3 + 3i+ 2 = −1 + 3i.
Step 4: However, the conjugate of a complex number is obtained by changing the sign
of the imaginary part. Therefore, the conjugate of −1+3i is −1−3i. Step 5: Therefore,

the conjugate of the given complex number

([
1 + i −1
2 3i

])
is (−1− 3i)).

Answer: −1− 3i ✓

Figure 10: Example of backtrack trajectory used to train the model. The trajectory shows
that the model first try to solve the problem, then it recognized that the prior solution is wrong from
step 3, therefore, the model backtrack to step 2 in the prior solution and redo step 3 with correction.
The mistake is highlighted in red, the correction is highlighted in green, and the backtracking step
detection is highlighted in yellow.
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C Implementation Details

C.1 Pseudocode

Algorithm 1 MRT -B (STaR)

1: Input base model πθb ; problems D
2: model πθ ← πθb , fine-tune dataset Dft ← ∅
3: for iteration = 1, ..., T do
4: for q ∈ D do
5: Sample 1 rollout z0 ∼ πθb(·|q).
6: Compute reward {r0} for z0 as in Definition 5.1
7: Sample G outputs {zi1:2}Gi=1 ∼ πθ(·|q, z0)
8: Compute rewards {ri}Gi=1 for each sampled output zi1:2 as in Definition 5.1
9: Dft ← Dft ∪

{
(q, z0, z

i
1:2)|ri > r0, i = argmaxi{ri}Gi=1

}
10: end for
11: πθ ← Fine-tune πθb with Dft

12: end for

Algorithm 2 MRT -B (RL)

1: Input base model πθb ; problems D
2: model πθ ← πθb
3: for iteration = 1, ..., T do
4: πref ← πθ

5: for step = 1, ..., k do
6: Sample a batch Db from D
7: Update the old policy model πθold ← πθ

8: for q ∈ Db do
9: Sample 1 rollout z0 ∼ πθb(·|q).

10: Sample G outputs {zi1:2}Gi=1 ∼ πθold(·|q, z0)
11: Compute rewards {ri}Gi=1 for each sampled output zi1:2 as in Definition 5.1

12: Compute Âi,t for the t-th token of zi through group relative advantage esti-
mation

13: end for
14: for GRPO iteration = 1, ..., µ do
15: Update the policy model πθ by maximizing the GRPO objective
16: end for
17: end for
18: end for
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C.2 Hyperparameters

For MRT -B (STaR), we utilize the trl codebase, but we customize the loss function to be
weighted by information gain defined in Definition 5.1. The base models are directly loaded
from Hugging Face: Llama-3.1-8B-Instruct. The hyperparameters used for finetuning are
specified in Table 2.

Hyperparameter Values

learning rate 1.0e-6
num train epochs 3
batch size 256
gradient checkpointing True
max seq length 4096
bf16 True
num gpus 8
learning rate 1e-6
warmup ratio 0.1

Table 1: Hyperparameters used for MRT -B (STaR)

For MRT -B (RL), we utilize the open-r1 codebase, but we customize the loss function to
be weighted by information gain defined in Definition 5.1. The base models are directly
loaded from Hugging Face: meta-llama/Llama-3.2-3B-Instruct. The hyperparameters used
for finetuning are specified in Table 2.

Hyperparameter Values

learning rate 1.0e-6
lr scheduler type cosine
warmup ratio 0.1
weight decay 0.01
num train epochs 1
batch size 256
max prompt length 1500
max completion length 1024
num generations 4
use vllm True
vllm gpu memory utilization 0.8
temperature 0.9
bf16 True
num gpus 8
deepspeed multinode launcher standard
zero3 init flag true
zero stage 3

Table 2: Hyperparameters used for MRT -B (RL)
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D Full Analysis of DeepSeek-R1

In this section we will give a more detailed outline on how the study on DeepSeek-R1 is
done.

We focus our analysis primarily on a subset of 40 problems taken from Omni-MATH. We
chose Omni-MATH because it is not an explicit benchmark that DeepSeek-R1 mentioned in
their report and therefore could be a better representation of problems encountered outside
of their selected benchmarks. We chose these 10 problems from each of the difficulty levels 4,
4.5, 5, and 5.5. The reason for doing this is to avoid the trivial cases of getting an accuracy
close to either 0 or 100. To look at how R1 performs on a benchmark it did mention in its
report, we additionally show experiments done on 30 problems from AIME 2024.

The first step in generating the data is to obtain the main ”stems” which we will later
truncate to construct solutions of different episode lengths. To do so, we sample 4 stems by
querying the model problems in our datasets at a temperature of 0.7 and 8192 max tokens.
The same is done to obtain our pass@k baseline for the direct approach, except that we take
k = 32 to simulate pass@32.

After we have obtained our stems, we separate them into episodes by filtering for explicit
phrases that indicate a disruption in the natural flow of logic. We further constrain each
episode to be at least three steps (each ”step” is an entry separated by the delimiter ”\n\n”)
to avoid consecutive trivial episodes. The explicit phrases are listed in Figure 12. If a step
begins with one of these phrases, then we consider it to be the beginning of a new episode.

The number of episodes depends on the problem and particular solution that was sampled.
The distribution is shown in Figure 15. Due to the large number of episodes, we group the
episodes in groups of 5 for Omni-MATH and groups of 3 for AIME, so each dot on the blue
curve in Figures 13 and 14 represent 5 or 3 episodes.

For each episode prefix z0:j−1 (j ≡ 0 mod 5 or 3), we ask the model to stop taking further
episodes, summarize the existing work, and give an answer (i.e., µ(·|x, z0:j−1)). To do so, we
leverage R1’s tendency to give answers after it indicates that it has thought for too long and
the ⟨think⟩ tag is closed with ⟨\think⟩. The model is asked to give an answer in this way 8
times to simulate maj@8, at temperature 0.7 and 4096 max tokens. We show the prompt in .
With the accuracy of these rollouts we are able to compute the blue and green curves in
Figures 13 and 14.

Explicit step prefixes for separating episodes in R1 solution

Wait
But wait
Alternatively
Is there another way to think about this?
But let me double-check
But hold on

Figure 11: Explicit step prefixes for separating episodes in R1 solution. This is a list of
phrases that indicate a disturbance in the natural flow of logic under R1. If a step begins with one
of these phrases, we consider it the start of a new episode.

Prompt used to extract answer from R1

{Insert x, z0:j−1 here (⟨think⟩ tag will be part of z0:j−1)}

Time is up.

Given the time I’ve spent and the approaches I’ve tried, I should stop think-
ing and formulate a final answer based on what I already have.
⟨\think⟩

**Step-by-Step Explanation and Answer:**

1. **

Figure 12: Prompt used to extract answer from R1. We use the prompt above to simulate
µ(·|x, z0:j−1) and extract an answer after j episodes.
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Figure 13: R1 scaling curve on Omni-MATH subset across different episodes. We compare
scaling up R1 compute with direct pass@k for k = 1, 2, 8, 16, 32 against [maj@p]j for p = 1, 2,
8 and varying levels of j. Note that the total episodes matches the length of the blue curve. It is
a range rather than a single number due to the concatenation of episodes into groups of 5 and 3
mentioned in the full analysis.
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Figure 14: R1 scaling curve on AIME 2024 across different episodes. We compare scaling
up R1 compute with direct pass@k for k = 1, 2, 8, 16, 32 against [maj@p]j for p = 1, 2, 8 and
varying levels of j.

Figure 15: Distribution of the number of episodes generated by R1 responses on AIME
and Omni-MATH.
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