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ABSTRACT

We present Dynamic Skill Adaptation (DSA), an adaptive and dynamic framework
to adapt novel and complex skills to Large Language Models (LLMs). Compared
with previous work which learns from human-curated and static data in random
orders, we propose to first automatically generate and organize the training data by
mimicking the learning pathways of human and then dynamically tailor the training
data based on the training dynamics. Specifically, inspired by the learning structures
and teaching strategies in the human education system, we first construct a skill
graph by decomposing complex skills into sub-skills and arranging them based on
their dependencies in human syllables. For every skill, we utilize LLMs to generate
both textbook-like data which contains detailed descriptions of skills for pre-
training and exercise-like data which targets at explicitly utilizing the skills to solve
problems for instruction-tuning. Furthermore, during the instruction-tuning, we
dynamically update the training data which down-weight easy-to-learn examples,
generate more complex examples, and filter out data with errors. Experiments on
large language models such as LLAMA and Mistral demonstrate the effectiveness
of our proposed methods in adapting math reasoning skills and social study skills.

1 INTRODUCTION

Large Language Models (LLMs) have witnessed a significant rise in popularity and utility across
various domains in NLP such as text generation, machine translation, and question-answering systems
(Brown et al., 2020; Radford et al., 2019; Smith et al., 2022; Chowdhery et al., 2022; Lewkowycz
et al., 2022; Sanh et al., 2021; Wei et al., 2021; Mishra et al., 2022; Chung et al., 2022; Ouyang et al.,
2022; OpenAI, 2023; Touvron et al., 2023). The success of LLMs such as ChatGPT and GPT-4 and
its predecessors has demonstrated their ability to learn, understand, and generate human-like text
based on massive amounts of existing data(Qin et al., 2023; Ziems et al., 2024; OpenAI, 2023; Wang
et al., 2022; Dubois et al., 2024). Despite their remarkable achievements in general benchmarks and
tasks, these current LLMs often fail when it comes to specialized domains which require complex
and novel skills such as math reasoning, coding, and etc. (Khot et al., 2022; Chen et al., 2023; Dziri
et al., 2023; Xu et al., 2023; Shao et al., 2024; Frieder et al., 2024).

When adapting specific and complex skills to LLMs that are pre-trained on general corpus, there are
several challenges. First, LLMs may lack specific domain knowledge that is necessary to understand
and generate content in a specialized field such as math. Adapting to them requires mechanisms to
incorporate domain-specific terminology, concepts, and context. However, specialized, or complex
skills often only have limited data available for fine-tuning. While previous approaches mainly collect
existing data Yue et al. (2023) or generate synthetic data from a small set of human-written seed
examples Wang et al. (2022); Xu et al. (2023) and mix them together to fine-tune the models Xie et al.
(2024); Yue et al. (2023); Li et al. (2024), it is still under-explored how to select, organize, and utilize
domain-specific data to effectively learn novel and complex skills Chen et al. (2024). Furthermore,
LLMs are often easy to overfit limited and static training data during fine-tuning Xu et al. (2023);
Shao et al. (2024), which could result in sub-optimal performance.

To overcome these challenges, we draw inspirations from teaching strategies in human education
systems (Weinstein & Mayer, 1983). Good teaching strategies often involve several key steps: (i)
Teachers would decompose and organize content into several levels, starting from easier childhood
education up to higher education and beyond (Brighouse, 2006). (ii) Within each level, teachers would
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Figure 1: The overall process of our Dynamic Skill Adaptation framework. For a given complex
skills, we first built the skill graph where sub-skills are organized following their dependencies (e.g.,
mastering summing first and then learning multiplying). Then we generate textbook-like descriptions
for every skill and generate exercise-data where the skills that have been learned need to be explicitly
used to solve the generated problems. During the training, we dynamically adjust the training data
based on the training dynamic.

rehearse previous knowledge and link them to more complex content with detailed elaborations. (iii)
During the entire process, teachers would actively monitor the learning of students and dynamically
adjust the teaching materials. We believe that a learning framework that follows and utilizes human
learning strategies and structures would have the potential to allow LLMs to better adapt complex
skills.

To this end, we introduce Dynamic Skill Adaptation (DSA), a framework specifically designed for
LLMs that adaptively generates and organizes training data automatically and allows LLMs to acquire
specialized or novel skills dynamically. Specifically, inspired by the organization strategy in teaching
(Weinstein & Mayer, 1983), we first build a skill graph based on human learning syllables which
decompose complex skills such as calculus into sub-skills and further arrange them based on their
dependencies so that model could learn prerequisite knowledge and then higher-level knowledge.
Next, following the elaboration and rehearsal strategy, we automatically generate detailed textbook-
like descriptions for each skill using LLMs like GPT4 as well as the exercise data where the skills
that have been learned need to be explicitly used to solve the generated problems. In addition, with
the monitoring strategy, during the training, we would dynamically adjust the training data based on
the learning dynamics where we generate more complex and hard-to-learn examples, filter out data
with errors and down-weight easy-to-learn examples. Experiments on large language models such as
LLAMA (Touvron et al., 2023) and Mistral (Jiang et al., 2023) demonstrate the effectiveness of our
proposed methods in adapting math reasoning skills and social study skills.

Our work has three major contributions: (i) We propose to generate and organize the training corpus
that contains both textbook and exercise-like data based on skill graphs for LLMs to adapt novel skills
inspired by human teaching strategies. (ii) We introduce the dynamic training mechanism that adjusts
the training data based on the training dynamics to avoid overfitting static data. (iii) Experiments
on several LLMs in Math and Social Study domain and extensive ablation studies demonstrate the
effectiveness of our introduced Dynamic Skill Adaptation framework.

2 RELATED WORK

Large Language Model Large language models have witnessed extensive progress recently (Brown
et al., 2020; Radford et al., 2019; Smith et al., 2022; Chowdhery et al., 2022; Lewkowycz et al., 2022;
Sanh et al., 2021; Wei et al., 2021; Mishra et al., 2022; Chung et al., 2022; Ouyang et al., 2022;
OpenAI, 2023; Touvron et al., 2023; Wei et al., 2022) and have shown superior performance in a wide
range of general tasks such as natural language understanding (Hendrycks et al., 2021; Qin et al.,
2023), reasoning (OpenAI, 2023) and code generation (Touvron et al., 2023). However, LLMs that is

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

pre-trained on general data usually fail domain specific tasks (Xu et al., 2023; Shao et al., 2024; Shah
et al., 2022; Cheng et al., 2023) or tasks that require complex skills (Yue et al., 2023; Xu et al., 2023;
Zhu et al., 2023; Chen et al., 2023; Khot et al., 2022). Instead of general LLMs, in this work, we
focus on how to adapt pre-trained general LLMs automatically and efficiently with specialized and
complex skills.

Large Language Model for Specialized Domain Recent approaches have also explored generating
or collecting domain-specific data for tuning models for specialized domain such as math (Shao
et al., 2024; Yue et al., 2023; Xu et al., 2023) and coding (Nijkamp et al., 2022; Luo et al., 2023;
Li et al., 2023). They either collect a wide range of online data (Wang et al., 2023; Li et al., 2023;
Shao et al., 2024) or generate instruction tuning data with LLMs (Li et al., 2023; Yue et al., 2023; Xu
et al., 2023; Luo et al., 2023; Toshniwal et al., 2024) through techniques such as Self-instruct(Wang
et al., 2022) or Evol-instruct (Xu et al., 2023; Luo et al., 2023). However, these methods usually
randomly mix all the data together while ignoring the dependencies and relations between different
data (Xie et al., 2024; Chen et al., 2024). Also, the diversity is often restricted by seed instructions or
seed topics. As a result, the training process might suffer from overfitting on these static data. To
overcome these issues, we propose to not only generate the training data through LLMs but also
organize them following human learning orders and dynamically update them during adapting the
LLMs to novel and complex skills for specialized domains.

Curriculum Learning Curriculum learning (Bengio et al., 2009) propose to train the model with
data that is arranged from easy samples to hard ones with designed pacing functions and mixing rates
(Soviany et al., 2022; Wang et al., 2021; Portelas et al., 2020; Matiisen et al., 2019; Jiang et al., 2015)
through assigning learnability scores (Xu et al., 2020; Lu et al., 2024; Bejan et al., 2023) or utilizing
agents to generate harder examples (Feng et al., 2023; Fan & Jaggi, 2023; Balloccu et al., 2024).
Saxena et al.; Mindermann et al. also explores parametrizing and ordering samples with importance.
Chen et al. propose algorithms to select the orders of data from different tasks by enumerating all the
sequences and selecting the best sequence based on the performances on smaller scale experiments.
While our work is inspired by curriculum learning, we focus more on the skill-level: instead of
ranking specific examples, we model the order of different skills based on their dependencies and
does not necessarily follow an easy-to-hard manner.

3 METHODS

The first step towards equipping LLMs with domain-specific knowledge efficiently and adaptively is to
review how humans learn new skills in a new domain comprehensively. Good teaching includes teach-
ing students how to learn, remember, think, and motivate themselves through organization, rehearsal
and elaboration, comprehension monitoring(Weinstein & Mayer, 1983). Motivated by these human
learning strategies, we propose the Dynamic Skill Adaptation (DSA) framework for LLM shows
in Figure 1 and Algorithm 1, which consists of several key components: Skill Graph Construction
(Section 3.1), Training Data Generation (Section 3.2) and Dynamic Training (Section 3.3).

3.1 SKILL GRAPH CONSTRUCTION

When human learn new skills, it is necessary for teachers to structure and arrange the information to
make it more understandable and easier to remember for students, such as creating outlines, mind
maps, charts, or using other organizational tools to group related concepts together(Weinstein &
Mayer, 1983). As a result, one key component of DSA involves constructing a skill graph and
organizing them following the learning structures. For example, to learn skills about calculus in math,
models need to first learn skills such as algebra, function, geometry, trigonometry, etc. Every node in
our skill graphs is a specific skill, and the edges between them represent their dependence.

In practice, when adapting a complex skill S (e.g., calculus in math), we build the skill graphs in
two ways: (i) we gather the basic skills in human learning syllabus 1 and the edges are pointed from
lower-level skills to higher-level skills; (ii) we recursively prompt GPT4 (e.g., what are the basic
skills that are required to learn Calculus) to decompose complex skills into sub-skills and the edges

1For example, https://www.ixl.com/

3

https://www.ixl.com/


162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

are pointed from sub-skills to complex skills. We then merge the skill graphs from both human
syllabus and LLM generations into a final skill graph G. Example sub-graphs in our skill graphs are
visualized in Figure 3 and Figure 4. Following the skill graphs we constructed, we will organize the
training data and train the models to acquire skills from lower-levels to higher-levels based on the
skill graphs (i.e., learn lower-level knowledge first before learning higher-level knowledge).

3.2 TRAINING DATA GENERATION

In human learning systems, elaboration goes beyond rote memorization and involves expanding
the material, making connections to previous knowledge, and deepening understanding. Rehearsal
is the process of repeatedly going over information to commit it to memory. This might involve
reading notes, rephrasing ideas, or reciting key facts. It helps in retaining information in memory
and can be useful for rote memorization. Based on these human learning strategies (Weinstein &
Mayer, 1983), in our DSA, we then automatically generate textbook data for elaboration and exercise
data for rehearsal to learn new skills. During the training, we would first pre-train LLMs with the
textbook descriptions following the orders in the skill graph we constructed in Section 3.1 and then
instruction-tune LLMs with the exercise data.

Textbook Generation For every node s in the generated skill graph G, we instruct GPT4 to
generate textbook descriptions (Li et al., 2023) which could be used for pre-training. Specifically, we
regularize the generation of textbook descriptions to (i) link the current skill with its predecessors in
the skill graph G, (ii) cover as much detail with both descriptions and examples, (iii) highlight all the
key concepts at the end of the descriptions, and (iv) provide homework that covers every key concept
for the current skill.

Exercise Generation For the nodes in G, we further instruct GPT4 to generate exercise problems
which could be used for instructional tuning. We intend to generate questions that each of them would
leverage multiple skills in G which are different from the homework which only cover one specific
skill in the textbook generation stage. As a result, for every generation, we first randomly sample
different numbers of skills from the skill graph G and then instruct GPT4 to generate problems
which requires the provided skills to solve. When generating answers for the exercise problems, we
regularize the generated reasoning steps to be explicitly grounded in specific skills (Chen et al., 2023)
and further improve quality through self-consistency (Wang et al., 2022).

3.3 DYNAMIC TRAINING

From a human learning perspective, effective learning involves students to actively assess their own
understanding of the material. It is about being aware of when students don’t fully grasp a concept
and taking steps to fill in the gaps (Weinstein & Mayer, 1983). Building upon these insights, we
propose a dynamic training scheme to dynamically update the training data based on learning curves.
Specifically, after pre-training on textbook-like data, during the instructional tuning of exercise data,
we would further categorize and adjust the training data to make models better adapt novel skills.

To distinguish among different types of training examples, inspired by Swayamdipta et al., we utilize
two metrics:

• The average loss L̂i for one example (xi, yi) across E epochs:

L̂i =
1

E

E∑
e=1

L (yi, F (xi))

where F is the learned LLM. Intuitively, the lower average loss l̂i means that the instance is
easier for the given LLM.

• The variance for the predictions losses σ̂i one example (xi, yi) across E epochs:

σ̂i =

√√√√∑E
e=1

(
L (yi, F (xi))− l̂i

)2

E
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Table 1: Data statistics including the number of skills and the number of textbook and exercise tokens
generated from LLMs for training.

Levels # of Math Skills # of tokens # of Social Study Skills # of tokens

Pre-K 135 103,925 - -
Kindergarten 258 205,209 31 22,646
First Grade 284 231,465 41 29,869

Second Grade 349 291,007 62 47,238
Third Grade 425 370,830 98 80,001
Fourth Grade 415 372,806 111 97,794
Fifth Grade 447 405,265 111 97,551
Sixth Grade 413 378,255 150 136,589

Seventh Grade 374 341,207 205 180,191
Eighth Grade 392 361,625 181 168,095

Algebra 1 396 388,712 - -
Algebra 2 367 384,239 - -
Geometry 277 266,328 - -

Pre-calculus 375 397,065 - -

Total 4,907 4,497,938 990 859,974

Intuitively, the lower variance means that LLM F predict the same answers consistently
while high variance means that the model is indecisive across training.

Based on these two measures, we would first compute a baseline loss Lb and variance σb which are
the losses and variance after fine-tuning with constructed error examples for three epochs. During
actual instructional tuning, after every three epochs of training on the actual training examples which
leads to an average training loss Laverage and average variance σaverage across all training samples,
we would divide them into four categories:

• Data with errors, whose training loss L̂i is larger than Lb: L̂i ≥ Lb and variance is smaller:
σ̂i ≤ σb.

• Hard-to-learn data, whose training loss L̂i is higher than average loss but less than Lb:
Lb ≥ L̂i ≥ Laverage, and the variance is larger than baselines but less than average:
σb ≤ σ̂i ≤ σaverage.

• Easy-to-learn data, whose training loss L̂i is low and less than Lb: Lb ≥ L̂i and Laverage ≥
L̂i, and the variance is low: σb ≥ σ̂i and σaverage ≥ σ̂i.

• Ambiguous data, which contains all the other data.

We would filter out all the data with errors. For hard-to-learn examples, we would generate more
similar data with the use of GPT4 (Wang et al., 2022; Xu et al., 2023). For easy-to-learn examples,
we perform compositional augmentation (Ouyang et al., 2023) where we instruct GPT4 to compose
different easy problems together to form harder ones. We keep the ambiguous data unchanged. With
the updated training set, we then continue the instructional tuning process.

4 EXPERIMENTS

4.1 EXPERIMENTS SETUP

To demonstrate the effectiveness of our proposed DSA framework, we perform experiments to adapt
the skills of calculus and social studies to LLMs which are two challenging subjects in human
education (Duncan, 1960; Jarvis, 2012; Kivunja, 2014; Myers, 2006).

Data Generation We first construct the skill graph for calculus and social studies. Specifically, as
discussed in Section 3.1, we decompose calculus and social studies with GPT4 and further merge

5
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them with the human-curated syllabus 2 into 14 levels of skills for math (4,907 skills in total) and 9
levels of skills for social studies (990 skills in total), as described in Table 1. Skills in lower levels
are pointed to skills in higher levels in the constructed skill graph (e.g., Inside one level, pre-request
skills like counting up to 3 are pointed to more complex ones like counting up to 10. Across different
levels, skills in Pre-K are pointed to skills in Kindergarten. ). Example skill graphs for calculus and
social studies are visualized in Figure 3 and Figure 4.

Next, we prompt the GPT4 model with nucleus sampling (Ravfogel et al., 2023) with temperature
T = 0.5 and top−p = 0.95 to generate the textbook descriptions following the constraints stated
in Section 3.2 for every skill in the constructed skill graph 3. Likewise, we utilize the GPT4 model
with nucleus sampling (T = 0.1 and top−p = 0.95 (we use a lower temperature here to make the
problems and answers more accurate.)) to generate both the problems and answers for exercise
generation as stated in Section 3.2 4. On average, every problem requires 3.8 skills to solve. To
improve the quality of the generated answers, we apply self-consistency where we set k = 3. The
total number of generated tokens for textbook descriptions and exercise is shown in Table 1 where
we generate 4,497,938 tokens for adapting calculus and 859,974 tokens for adapting social studies.

During the dynamic training, after categorizing the training data with criteria stated in Section 3.3, we
also use GPT4 with nucleus sampling (T = 1.0 and top−p = 0.95 (we use a higher temperature here
to improve the diversity.)) to generate problems which are similar to the given hard-to-learn examples
and generate more complex problems by instruct the models to compose two different easy-to-learn
problems. Similarly, we apply self-consistency with k = 3 to generate the answers for these newly
generated problems.

Evaluation Set To evaluate the abilities for calculus, we utilize the Pre-Calculus subset in MATH
benchmark (Hendrycks et al., 2021). For social studies, we collect multiple choice exams from
online 5, which results in an evaluation set that consists of 1430 questions6. In addition, to evaluate
the generalization abilities after adapting to specialized domain like calculus, we further evaluate
models on GSM8K (Cobbe et al., 2021), MATH(Hendrycks et al., 2021) and a constructed arithmetic
task where we define 200 new mathematical operations in the problem description and test the models
if they could understand the context to utilize novel math operations 7.

Backbone Models and Baselines We apply our proposed DSA to both LLAMA2-7/13/70b models
(Touvron et al., 2023) and Mistral-7b model (Jiang et al., 2023). During the pre-training on textbook
descriptions, for every level of skills, we train the models for two epochs with a learning rate of
3e − 4 with a linear warm-up of 500 steps and we learn following the sequence from lower-level
skills to higher-level skills. During the instruction-tuning on exercise data, we train the models for 5
epochs with a learning rate of 3e − 5. The batch size is set to 16. We update the training set after
every epoch of training.

We compare our learned models with several state-of-the-art baselines including ChatGPT(OpenAI,
2023), LLAMA2-7/13/70b(Touvron et al., 2023), Mistral-7b (Jiang et al., 2023), WizardMATH-
7/13/70b (Xu et al., 2023), OpenMath-7b(Toshniwal et al., 2024) and DeepSeekMATH-Inst-7b(Shao
et al., 2024).

4.2 MAIN RESULTS

We apply our DSA framework to adapt the skills of solving calculus problems and social study
problems respectively to LLMs including LLAMA2-7/13/70b and Mistral-7b. The results are shown
in Table 2. Compared to LLAMA and Mistral models which learn on general corpus, models learned
with LLMs generated instructions for specialized domains like WizardMATH perform better. With a
larger scale of human-curated corpus, OpenMath and DeepSeekMATH outperform WizardMATH.

2https://www.ixl.com for calculus and social studies.
3An example is shown in Table 6 in the Appendix.
4An example is shown in Table 7 in the Appendix.
5https://www.helpteaching.com/search/index.htm?keyword=social+studies and https://www.

proprofs.com/quiz-school/topic/3rd-grade-social-study
6An example is shown in Table 8 in the Appendix.
7An example is shown in Table 9 in the Appendix.
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Table 2: Accuracy on Pre-Calculus and Social Studies evaluation sets. We compare our DSA with
close-sourced models including ChatGPT and GPT4 and open-sourced models including LLAMA2,
Mistral, WizardMATH, OpenMath and DeepSeekMath. Our DSA is significantly better than open-
sourced baseline models, even better than ChatGPT models. † means our methods.

Model Pre-Calculus Social Studies

ChatGPT 16.1 83.5
GPT4 29.8 95.0

LLAMA2-7b 0.8 53.0
Mistral-7b 4.6 62.0

WizardMATH-7b 2.5 28.5
WizardMATH-v1.1-7b 16.5 68.5

OpenMath-7b 12.0 46.8
DeepSeekMATH-Inst-7b 16.8 66.5

DSA-LLAMA2-7b † 16.5 72.8
DSA-Mistral-7b † 18.6 75.8

LLAMA2-13b 1.1 58.9
WizardMATH-13b 4.0 34.4

DSA-LLAMA2-13b † 18.8 78.0

LLAMA2-70b 2.6 76.2
WizardMATH-70b 6.9 40.6

DSA-LLAMA2-70b † 22.6 87.9

Table 3: Accuracy on Pre-Calculus evaluation sets after training LLAMA2-7/13/70b models on
textbook descriptions with different training sequences.

Training Sequence LLAMA2-7b LLAMA2-13b LLAMA2-70b

- 0.8 1.1 2.6

Lower to Higher 8.2 9.8 14.6
Higher to Lower 3.2 5.8 6.2

Random Order 1 3.5 6.0 9.2
Random Order 2 3.0 4.2 5.8
Random Order 3 4.8 6.8 9.5

With Dynamic Skill Adaptation framework, we could automatically generate textbook descriptions
for skills in the decomposed skill graph and arrange them following the human learning pathways,
which allow model to better grasp the knowledge in specialized domains. Furthermore, the exercise
which explicitly utilize the decomposed skills together with the dynamic training process empowers
LLMs with the ability to better solve the complex problems (e.g., a 304% performance improvement
of our DSA-Mistral-7b over general models like Mistral-7b and a 10.7% performance improvement
of our DSA-Mistral-7b over specialized models like DeepSeekMATH which leverages wider ranges
of human-written corpus).

We further visualize the accuracy on Pre-Calculus evaluation set of every intermediate step when
learning textbooks with LLAMA2-7b with Lower to Higher orders and the reversed Higher to
Lower orders in Figure 2 to better illustrate the effectiveness of training following the orders in our
constructed skill graph. When accumulating skills following the skill graphs, the blue line (left to
right) demonstrates steady performance improvements after learning different level of skills and
achieve better final performance compared to the orange line (right to left) which learns the textbook
in a reversed order.

7
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Figure 2: The accuracy on Pre-Calculus evaluation set of every intermediate step when learning
textbooks with LLAMA2-7b. The blue line (left to right) represents the process where we arrange
the learning sequence following the constructed skill graph from lower-levels to higher-levels while
the orange line (right to left) represents the process where the model is learning the textbook in a
reversed order.

Table 4: Accuracy on Pre-Calculus and Social Studies when we gradually add each components to
LLAMA2-7b models. Note that the last row contains all the components in our DSA framework
including textbook descriptions for pre-training, skill graphs to arrange the training sequence, exercise-
data for instruction-tuning and dynamic training to update the training data.

Model Pre-Calculus Social Studies

LLAMA2-7b 0.8 53.0

+ textbook 5.2 63.5
+ textbook,skill graph 8.2 68.0

+ textbook,skill graph,exercise 12.4 70.5
+ textbook,skill graph,exercise,dynamic training 16.5 72.8

4.3 ABLATION STUDIES

To further illustrate the effectiveness of our proposed DSA framework, we perform a set of ablation
studies shown below.

Shuffling the Training Sequence We first perform ablation studies on the skill graphs. Specifically,
we compare LLAMA2 models which learns the generated textbook descriptions (without exercise
instruction-tuning and dynamic training) in different orders: (i)Lower to Higher which follows
the orders in our constructed skill graph, (ii) Higher to Lower which follows a reversed order and
(iii) Random Order 1/2/3, where we randomly shuffle the constructed skill graph and arrange the
training data following the random skill graph. The results on Pre-Calculus with LLAMA2-7/13/70b
are shown in Table 3. Reversing orders or corrupting the skill graph would both decrease the
performances, suggesting the importance of constructing the skill graph and learning the knowledge
following the dependence orders in skill graphs.

Removing Each Component We the perform ablation studies to illustrate the contribution of each
component in our DSA framework by gradually adding different component (textbook descriptions
for pre-training, arranging the textbook with the skill graph orders, exercise for instruction-tuning
and dynamic training) to baseline model (LLAMA2-7b). The results are displayed in Table 4. After
training with domain specific textbook descriptions, the performances on Calculus and Social Studies
both improve compared to base model. Through learning all the content following the orders in skill
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Table 5: Accuracy on Pre-Calculus, MATH, GSM8K and Arithmetic evaluation sets. We directly
evaluate our DSA models which are learned for solving calculus problems on other general math
evaluation sets. † means our methods.

Model Pre-Calculus MATH GSM8K Arithmetic

ChatGPT 16.1 36.5 82.8 88.0

LLAMA2-7b 0.8 2.8 12.3 20.0
Mistral-7b 4.6 9.1 37.8 33.5

WizardMATH-7b 2.8 10.7 54.9 42.0
WizardMATH-v1.1-7b 16.5 33.0 83.2 48.0

OpenMath-7b 12.0 40.5 80.2 52.5
DeepSeekMATH-Inst-7b 16.8 46.8 82.9 52.0

DSA-LLAMA2-7b † 16.5 37.6 70.8 52.0
DSA-Mistral-7b † 18.6 43.5 83.8 58.0

graph, there are significant performance boosts (e.g., a 57.6% improvement on Pre-Calculus). After
instruction-tuning and dynamically update the training set, DSA achieves the best performances on
both Pre-Calculus and Social Studies. These demonstrate the effectiveness of every design component
in our DSA framework.

Generalization We then test the generalization abilities of models which are adapted to solve
calculus problems on general math evaluation sets including GSM8K (Cobbe et al., 2021),
MATH(Hendrycks et al., 2021) and a constructed arithmetic task where we define 200 new math-
ematical operations in the problem descriptions and show the results in Table 5. Even though our
DSA models are targeted at learning Calculus from the skill graph which decomposes Calculus skills,
DSA well generalizes to MATH, GSM8K and Arithmetic tasks compared to baseline models which
learn with wider ranges of general math corpus.

5 CONCLUSION

In this work, we propose Dynamic Skill Adaptation (DSA) framework to adapt LLMs with novel
and complex skills. DSA first decomposes the complex skills and constructing a skill graph, then
automatically generates the textbook and exercise for every skill in skill graph and arrange them in
a lower-to-higher level orders following the skill graph. Furthermore, DSA dynamically updates
the training data during training to avoid overfitting easy-to-learn and error examples. Extensive
experiments and ablation studies demonstrate the effectiveness of our proposed DSA. In this work,
we only use Calculus and Social Studies as case studies of our DS. For future work, we are interested
in expanding to a wider range of domains and merging different experts which are equipped with
specialized skills.

6 LIMITATION

In this paper, we mainly perform experiments on math and social studies due to the limit of com-
putational resources. However, DSA can be general to other domains because complex skills can
also be decomposed based on human prior or LLMs like ChatGPT to construct the skill graphs,
with which we could further generate and organize the initial training data. In the future work, we
would like to explore more domains. In this work, we limit the range of textbooks till US high
schools. However, we think a wider range (e.g., college-level) would bring in more performance
gains. In terms of data leakage risks, in our evaluation, we designed one artificial task to avoid the
impact of potential data leakage in Table 5 (Arithmetic task) where we randomly design and define
mathematical operations which are less likely to be seen by GPT-4. Also, even GPT-4 can not achieve
high scores on the pre-calculus evaluation (29.8%) which indicates that the data is less likely to be
contaminated. Furthermore, we ran a sanity check about the exact match between testing samples
and training data and we did not find any exact match. In the future work, we would include the data
contamination assessment (Golchin & Surdeanu, 2023) to avoid the data leakage risks.
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Algorithm 1 Dynamic Skill Adaptation
Input A complex skill S, an LLM F .
Output LLM F that adapts skill S.

1: Build skill graph G that decompose S
2: Textbook corpus = T , Exercise corpus = E
3: for every skill s in G do
4: Generate textbook descriptions t for s: T = T ∪ (t)
5: Generate exercise e explicitly utilizing s: E = E ∪ (e)
6: end for
7: for every skill s following the order in G do
8: Fetch textbook data t ∈ T
9: Pre-train F with t

10: end for
11: while No convergence do
12: Instruction-tune F with E
13: Compute loss and variance
14: Categorize E into Eeasy , Ehard, Eerror, Lambiguous

15: Generate more data E′
hard similar to Ehard

16: Compose data in Eeasy to more complex data E′
easy

17: E = Eambiguous ∪ E′
hard ∪ E′

easy
18: end while

return F

Figure 3: A sub-skill graph in our constructed Calculus skill graph.

Figure 4: A sub-skill graph in our constructed Social Study skill graph.
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Chapter N: Mixed Operations - Addition and Subtraction: Ways to Make a Number

Introduction:
In this chapter, we will explore the concept of addition and subtraction and how they can be used to make a given number.
We will learn different strategies to find combinations of numbers that add up to a given value.
By the end of this chapter, you will be able to confidently use addition and subtraction to make a number.

Section 1: Addition
1.1 Understanding Addition:
Addition is the process of combining two or more numbers to find the total. When we add numbers, the result is called the sum.
For example, if we add 2 and 3, the sum is 5.

1.2 Ways to Make a Number:
To find different ways to make a number, we can use addition. Let’s take the number 6 as an example. We can find different
combinations of numbers that add up to 6. Here are a few examples:

Example 1:
6 = 1 + 5
In this example, we added 1 and 5 to get 6.
Example 2:
6 = 2 + 4
Here, we added 2 and 4 to make 6.
Example 3:
6 = 3 + 3
In this case, we added 3 and 3 to get 6.

Section 2: Subtraction
2.1 Understanding Subtraction:
Subtraction is the process of taking away one number from another to find the difference. The result of subtraction is called the
remainder. For example, if we subtract 3 from 7, the remainder is 4.

2.2 Ways to Make a Number:
Similar to addition, we can also use subtraction to find different ways to make a number. Let’s continue with the number 6 and explore
some examples:

Example 1:
6 = 7 - 1
In this example, we subtracted 1 from 7 to get 6.
Example 2:
6 = 8 - 2
Here, we subtracted 2 from 8 to make 6.
Example 3:
6 = 9 - 3
In this case, we subtracted 3 from 9 to get 6.

Section 3: Mixed Operations
3.1 Combining Addition and Subtraction:
Now, let’s combine addition and subtraction to find different ways to make a number. We will use the number 10 as an example.

Example 1:
10 = 5 + 5
In this example, we added 5 and 5 to get 10.

Example 2:
10 = 12 - 2
Here, we subtracted 2 from 12 to make 10.

Example 3:
10 = 7 + 3
In this case, we added 7 and 3 to get 10.

Exercise:
Now it’s time for you to practice! Find different ways to make the number 8 using addition and subtraction. Write down at least
three different combinations.

Solution:
Here are three possible combinations to make the number 8:

8 = 4 + 4
8 = 10 - 2
8 = 6 + 2

Conclusion:
In this chapter, we learned about addition and subtraction and how they can be used to make a given number. We explored different
strategies to find combinations of numbers that add up to a specific value. By practicing these concepts, you will become more
confident in using addition and subtraction to solve problems. Keep up the good work!

Table 6: An example of the generated textbook description.
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Four years ago, Kody was only half as old as Mohamed. If Mohamed is currently twice 30 years old, how old is Kody?
Answer:
1. Mohamed is currently twice 30 years old. Using the Skill <Multiplication>, Mohamed is currently 30*2 = 60 years old.
2. Using Skill <Age>, four years ago, Mohamed was 4 years younger than now. Using the Skill <Subtraction>, Mohamed
was 60-4 = 56 years old.
3. Four years ago, Kody was only half as old as Mohamed. Using the skill <Division>, Kody was 56/2 = 28 years old.
4. Using Skill <Age>, currently, Kody is 4 years older than four years ago. Using the Skill <Addition>, Kody is currently
28+4 = 32 years old.
5. The answer is 32.

Table 7: An example of the generated exercise.

The definition of economics is:

A. a part of social studies that looks at the way government works
B. a part of social studies that looks at how we meet our wants and needs
C. a part of social studies that looks at how people make important decisions

Table 8: An example of the social study evaluation set.

There is a new mathematical procedure represented as ∗∗.
The rule of ∗∗ operation is, for two input numbers a and b,
the output is generated by adding them and the decreasing the
sum by 2. For example, 2 ∗∗ 6 = 6.

Now answer the following question:
What is 12 ∗∗ 8 ?

Table 9: An example of the arithmetic evaluation set.
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