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ABSTRACT

In this paper, we propose a distributed training framework for fine-tuning vision
transformers. We address the training process in scenarios where heterogeneous
data is geographically distributed across a network of nodes communicating over
a peer-to-peer network topology. These nodes have the capability to exchange
information with neighboring nodes but do not share their personal training data
in order to maintain data privacy. Typically, training the entire vision transformer
model is impractical due to computational constraints. Therefore, it is highly
preferable to use a pre-trained transformer and fine-tune it for specific down-
stream tasks as required. In this paper, we propose a privacy-aware distributed
fine-tuning method for vision transformer based downstream tasks. We demon-
strate that our approach enables distributed models to achieve similar performance
results as achieved on a single computational device with access to the entire train-
ing dataset. We present numerical experiments for distributed fine-tuning of ViT,
DeiT, and Swin-transformer models on various datasets.

1 INTRODUCTION

Machine learning techniques have gained considerable attention recently due to their effectiveness
in solving many emerging problems in computer vision, robotics, and natural language process-
ing O’Shea & Nash (2015); Krizhevsky et al. (2012); He et al. (2016); Vaswani et al. (2017); Chung
et al. (2015); LeCun et al. (2015). This increase in performance and effectiveness can be attributed
to three main factors: (a) a deeper understanding of the learning methods, which has led to the
development of deep learning models, (b) availability of advanced computational devices, and (c)
easier accessibility to large training datasets. In particular, for the tasks related to image under-
standing, vision transformers have been widely successful in recent years Dosovitskiy et al. (2021);
Touvron et al. (2021); Liu et al. (2021; 2022); Han et al. (2023). Training such models however is
exceptionally resource-intensive since these models are trained on huge datasets containing millions
of training examples and involve millions or even billions of tuning parameters. Training all these
parameters requires substantial computational cost, resulting in extended training times required to
achieve optimal performance. To avoid these challenges, training a model from scratch is often not
ideal and already pre-trained models after some fine-tuning have been shown to work very well in
many applications.

Another important consideration in many practical applications is data acquisition, i.e., heteroge-
neous data is acquired by geographically distributed sensors and is often not practical to bring to
a single server. If these nodes are trained on local datasets, they often struggle to generalize well.
For example, if one node has a dataset with images of cats and dogs, while another node possesses
images of cars and ships, they may not perform well when attempting to classify all four classes
combined. These local datasets however cannot be included during pre-training because (i) they
often contain private information, and (ii) new data is continuously collected, making it unavailable
at the time of pre-training. Since training an entire model from scratch is practically infeasible at
distributed nodes, leveraging an existing pre-trained models and fine-tuning for new downstream
tasks becomes very significant.

In this paper, we propose a distributed training framework for fine-tuning vision transformers in
scenarios where heterogeneous data is distributed across a network of nodes. The nodes are allowed
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to communicate with their neighbors but due to privacy constraints, they are restricted from sharing
any personal data samples. The main contributions of this paper are listed below:

• We propose a privacy-aware distributed fine-tuning method called P2P-FT, which builds
upon weight-mixing and gradient-sharing. Each node only shares a subset of its model
parameters (which require fine-tuning), along with its local gradients (with respect to the
fine-tuning parameters), with its neighboring nodes. The proposed fusion strategies enable
the estimation of the global gradient and the computation of updated model parameters;

• The proposed framework can be generalized to any vision transformer with a similar struc-
ture. We provide numerical experiments on ViT, DeiT, and Swin transformer models.
The numerical experiments highlight the performance of P2P-FT and compare the results
with local fine-tuning methods;

• We analyze attention maps generated by P2P-FT and compare them with the maps gener-
ated by locally fine-tuned models and models fine-tuned on a single server with access to
all data. The proposed method encourages each node to learn feature representations for
unseen images and performs accurate classifications;

• The proposed method performs effectively in heterogeneous data settings and eliminates
the bias caused by the non-uniform data distributions present across different computational
nodes.

1.1 RELATED WORK

Transformers were initially introduced for applications in the field of natural language processing
for machine translation Vaswani et al. (2017). Since then, they have dominated all fields of ma-
chine learning encompassing both language and vision-related tasks Lin et al. (2022); Khan et al.
(2022). In contrast, earlier approaches in natural language processing predominantly relied on Re-
current Neural Networks (RNNs) He et al. (2016) and Long Short-Term Memory (LSTM) net-
works Hochreiter & Schmidhuber (1997); Sherstinsky (2020). These architectures were primarily
used for sequence-to-sequence tasks such as machine translation, text summarization, and speech
synthesis. Although useful, these models encountered challenges in capturing long-range depen-
dencies and were susceptible to vanishing gradient problems. Transformers effectively addressed
these issues using an “attention mechanism”. This inherent self-attention capability enables them
to concurrently consider the relationships and dependencies among all elements within a sequence.
Consequently, transformers can comprehend how each element in a sequence can be influenced by
every other element, enabling them to learn context-aware representations.

Let’s consider a simple example: “The cake came out of the oven and it tasted great.” In this sen-
tence, the word “it” can have a relationship with “oven” or “cake”. We can understand that “it” is
related to “cake” in the context of the sentence but due to the sequential nature and limited context
window, RNNs and LSTM networks may struggle to correctly identify this relationship. However,
transformers can accurately understand such contextual relation with the help of the attention mech-
anism. This contributes to the success of Large Language Models (LLM) that are trained on huge
corpora of data. Prominent LLM architectures such as Bidirectional Encoder Representations from
Transformers (BERT) and Generative Pre-trained Transformers (GPT) are fundamentally built upon
the foundation of transformers models Devlin et al. (2019); Radford & Narasimhan (2018).

Although transformers achieved remarkable success in natural language processing, they encoun-
tered certain challenges when applied to image understanding problems. Transformers were orig-
inally designed to process sequences of words or tokens, where each word is often related to the
neighboring words, making the attention mechanism highly effective. On the contrary, in vision
tasks, data is structured as grids of pixels with no sequential order. Therefore, vision models must
possess the capability to comprehend the spatial representation of different elements within the
images. Earlier work on vision understanding was primarily dominated by Convolutional Neural
Networks (CNNs) O’Shea & Nash (2015). The initial successful application of transformers for
image classification ViT was documented in Dosovitskiy et al. (2021). The authors introduced an
approach to divide the images into patches and used them as input for the encoder block of the trans-
formers. Notably, these models outperformed the previous performance results achieved by CNNs,
marking a significant breakthrough in the field of image classification.
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Figure 1: Distributed network topology: (Left) Hierarchical network; (right) Peer-to-peer network.

Over the past few years, vision transformers have been explored for a wide range of image under-
standing problems Han et al. (2023); Khan et al. (2022). However, due to the complexity of ViT
model Dosovitskiy et al. (2021), the training process requires significant computational resources
and consumes a considerable amount of time. This not only incurs substantial expenses but further
has a detrimental effect on the environment. Therefore, there has been a huge emphasis on reducing
the requirement of training ViT on large datasets. One successful attempt Touvron et al. (2021)
proposed a Data-efficient image Transformer (DeiT) model. This model is similar to ViT but in-
corporates an additional distillation token. DeiT has proven to achieve competitive performance
with smaller datasets, which is advantageous in scenarios where labeled data is limited. Similarly,
Swin-Transformers, proposed in Liu et al. (2021), implement a hierarchical structure for image
processing in multiple stages. They use shifted windows to efficiently understand images at various
scales. While their data efficiency is comparable to DeiT (demanding less training data), this ar-
chitecture is specifically designed for effective scaling and capturing both local and global context,
particularly when dealing with high-resolution images.

Each of the above-mentioned models has gained popularity due to their promising performance.
However, even the baseline models require training of more than 80 million parameters. It is gen-
erally impractical to train such models in entirety for numerous downstream tasks. Particularly for
mobile devices, although there is a demand for such models, training them poses a significant chal-
lenge. To address this problem, some quantization techniques are being explored to reduce the size
of vision transformers Sung et al. (2023); Frumkin et al. (2023). An alternative approach involves
the utilization of pre-trained models and then fine-tuning them on specific downstream tasks using
customized datasets for those particular tasks. This process leverages the representation learning
capabilities of pre-trained models, simplifying the adaptation to new tasks for users. For efficient
fine-tuning, the output layer is modified to match the number of classes specific to the underlying
task, and it is trained while keeping most of the model’s parameters frozen. Consequently, we only
train a small subset of the model parameters. This training method has gained significant interest
due to its ease of use and robustness Wei et al. (2022).

Vision transformers work well in addressing image understanding problems, but they encounter
challenges when the data is geographically distributed over a network of computational nodes (such
as cellphones, laptops, and tablets). For distributed training scenerios, different variants of two archi-
tectures are primarily explored Kairouz et al. (2021); Xin et al. (2020), i.e., (a) Hierarchical (server-
client) network (see Figure 1, left), which is mainly used for federated learning problems McMahan
et al. (2016); Wang et al. (2020); Karimireddy et al. (2020); Li et al. (2020); and (b) Peer-to-peer
network (see Figure 1, right), which is often used in distributed optimization theory Assran et al.
(2019); Ram et al. (2010); Xin et al. (2021); Qureshi et al. (2021). Hierarchical networks gained
significance due to their promising results in scenarios where the network is well-structured. How-
ever, this architecture is vulnerable because any disruption to the server can compromise the entire
system. To mitigate this risk, federated architectures often incorporate redundancy of servers. In
contrast, peer-to-peer networks lack a single point of failure, as there is no central server node.
Instead, all nodes (generally) contribute equally to the optimization task.
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2 PRELIMINARIES AND PROPOSED FRAMEWORK

In this section, we describe the proposed framework P2P-FT. To formulate the problem, we begin
by describing the fine-tuning problem for vision transformers and then proceed to explain various
distributed peer-to-peer training methodologies.

2.1 FINE-TUNING TRANSFORMERS

The transformers, initially proposed in Vaswani et al. (2017), consist of an encoder and a decoder.
The encoder helps understand the representation of different features possessed by the input, while
the decoder generates the sequential outputs commonly used in tasks like language translation. How-
ever, in computer vision, tasks often focus on image understanding (for example, image classifi-
cation or object detection). Therefore, vision transformers utilize the encoder component of the
standard transformer architecture.

Vision transformers take images as input and divide them into small patches. These patches undergo
flattening through a linear projection layer, and position embeddings are added to them. Addition-
ally, a learnable classification token is introduced into the input sequence. This modified input is
then processed by the standard Transformer’s encoder. Within the Transformer architecture, po-
sitional information and input features are used to apply the “attention mechanism”, enabling the
model to understand the underlying task (classification or object detection). To ensure that the out-
put layer’s size matches the number of classes, a Multi-Layer Perceptron (MLP) head is connected
to the encoder’s output. Transformer models typically consist of millions or even billions of learn-
ing parameters and require training on huge datasets containing millions of training instances. This
extensive training process ensures robustness and diversity, resulting in promising performance re-
sults on test datasets. However, training all these parameters can be infeasible due to computational
and time constraints. Recently, there has been significant interest in leveraging pre-trained models
available on open-source platforms and fine-tuning them for specific tasks.

Now, we formally describe the training process. We denote the model parameters θ ∈ Rp and the
pre-training dataset Dpre. We can mathematically represent the pre-training problem as follows:

min
θ

{
Ex∼Dpre

L(x;θ)
}
,

where L(x;θ) is the function that evaluates the loss based on the training data x sampled from the
pre-training dataset Dpre. The objective is to minimize the loss by learning the optimal model pa-
rameters θ∗. After successfully learning the optimal model parameters, we proceed to fine-tune the
vision transformers for downstream tasks. This involves taking the pre-trained model and modifying
it by replacing the MLP head to match the number of outputs required for our specific task. Sub-
sequently, the model undergoes training using the task-specific dataset. In the fine-tuning process,
a subset of pre-trained parameters θ′ ⊂ θ are typically kept constant, while training the remaining
parameters θ̂ to minimize the modified loss L̂:

min
θ̂

{
Ex∼DtuneL̂(x; θ̂,θ

′)
}
,

where the training dataset Dtune is specific to the new task. As an example, we consider the use
of a pre-trained “timm/vit small patch16 224” model for classifying the CIFAR-10 dataset. We
can download this model using timm library. However, it’s important to note that the model is pre-
trained on the Imagenet dataset. Therefore, to adapt it for CIFAR-10, we replace the MLP head with
one of size 10, matching the number of classes in the CIFAR-10 dataset. The transformer is then
trained on the downstream task using the CIFAR-10 dataset. This greatly speeds up the training
process since the pre-trained model already possesses valuable knowledge of essential features from
the Imagenet dataset, which are used to better understand the examples in the CIFAR-10 dataset.

2.2 DISTRIBUTED LEARNING FRAMEWORK

The distributed learning methods consider the problem to be divided over a network of n nodes.
Each node possesses its local loss function Li and some private data Di. The global problem is to
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minimize the average of all local cost functions, i.e., for D = {D1, · · · ,Dn},

min
θ

{
L(θ,D) := 1

n

n∑
i=1

Li(θ,Di)

}
.

An intuitive solution considers the federated learning framework, where the gradients are evaluated
at client nodes and then sent to the server node. The server aggregates these gradients and uses them
to update the server model parameters. These updated parameters are then transmitted back to the
client nodes, allowing them to update their local models using these parameters. The limitation of
this approach is dependent on the reliability of the server and the constraints imposed by network
connectivity. In this setup, all clients are required to maintain a bi-directional connection with the
server, which can result in significant communication bandwidth demands. Additionally, the server
represents a single point of failure within this architecture. In case of a server outage or an attack,
all clients are adversely impacted. Hence, there is a demand for methods designed to operate within
a fully distributed peer-to-peer network topology.

A well-known approach in the literature on distributed optimization considers a first-order gradi-
ent descent method DGD Kar et al. (2012) to minimize the loss when dealing with the data dis-
tributed over a peer-to-peer network of nodes. The nodes are prohibited from sharing private
data Di but can exchange their local model parameters θ ∈ Rq with neighboring nodes. We de-
fine W = {wi,j} ∈ Rn×n as the weight matrix representing network connectivity, where W is as-
sumed to be doubly stochastic for a strongly connected, weight-balanced graph. For each node i, we
consider θk

i ∈ Rq as the local parameter estimate vector computed at k-th iteration. For simplicity
of notation, we consider Li(θ

k
i ) := Li(θ

k
i ,Di). Then at each iteration DGD computes the following:

θk+1
i ←

n∑
j=1

wi.j

(
θk
i − α∇Li(θ

k
i )
)
, ∀k > 0, (1)

where α is the learning rate. We note that θk
i − α∇Li(θ

k
i ) represents a local gradient descent

update, while the aggregation helps in attaining consensus over all nodes. In summary, each node
tries to learn its local solution while being influenced by the parameters possessed by its neighboring
nodes. This approach performs well when data distributions are homogeneous across all nodes.

Figure 2: Different local and
global solutions for a dis-
tributed regression problem.

However, in the majority of practical applications, data heterogene-
ity often leads to a notable difference between the global and the
local solution. This discrepancy results in a finite gap between lo-
cal and global losses, i.e., for all i,

∥∇Li(θ)−∇L(θ)∥ ≠ 0,

and this leads to inexact convergence. Figure 2 shows an exam-
ple of a simple regression problem where the local solutions are
very different from the global solution. To address this issue, a
gradient-tracking methodology called GT-DGD was introduced Qu
& Li (2017). This approach involves computing an additional term
to estimate the gradient of the global loss function. This additional term τ k

i can be evaluated as:

τ k+1
i ←

n∑
j=1

wi.j

(
τ k
i +∇Li(θ

k+1
i )−∇Li(θ

k
i )
)
, k ≥ 0,

where θ0
i ∈ Rp and τ 0

i = ∇Li(θ
0
i ). GT-DGD replaces the local gradient ∇Li(θ

k
i ), as evaluated

in equation 1, with this gradient-tracking term τ k
i . It can be verified that at each node, τi → ∇L.

Consequently, this strategy eliminates the gap between local and global losses caused by the hetero-
geneous data distribution. Furthermore, the distributed processing enables the network to share the
computational demand, leading to faster convergence.

Another limitation of both DGD and GT-DGD is their deterministic nature, which requires the eval-
uation of full-batch gradients at every iteration. In many machine learning applications, dealing
with huge datasets makes computing the full-batch gradients infeasible. Particularly in streaming
scenarios, where data is acquired in real-time, models cannot access the entire dataset to compute
the gradient. These situations demand the use of stochastic mini-batch distributed gradient descent
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Figure 3: Proposed framework for distributed fine-tuning of vision transformer models.

methods. Furthermore, it is noteworthy that DGD and GT-DGD are primarily designed for bidirec-
tional undirected networks and cannot be directly applied to directed networks Nedić & Olshevsky
(2016); Assran et al. (2019); Xin et al. (2020). In the following section, we present our proposed
framework, which utilizes distributed gradient descent with gradient-tracking for fine-tuning vision
transformer models.

2.3 PROPOSED FRAMEWORK

Now, we describe a distributed learning method for fine-tuning transformer model parameters. Our
method uses an efficient weight-mixing and gradient-sharing strategy, enabling us to achieve good
performance comparable to the centralized fine-tuning setup. We define θ as the set of all pre-
trained model parameters out of which θ′ are kept constant and θ̂ are to be fine-tuned. Each node
possesses a local dataset Di ∈ D := {D1, · · · ,Dn} and a local loss function Li(θ̂,θ

′,Di). We
note that θ′ remains fixed throughout the training process. To simplify the notation, we define
Li(θ̂) := Li(θ̂,θ

′,Di) and the global loss L(θ̂) := 1
n

∑n
i=1 Li(θ̂). The goal is to minimize the

global loss, which can be expressed as follows:

P : min
θ̂

{
L(θ̂) :=

1

n

n∑
i=1

Li(θ̂)

}
.

To this aim, we propose a distributed stochastic gradient descent method that leverages weight-
mixing and gradient-sharing strategies to update the fine-tuning parameters using the estimate of
the global gradient. We consider n nodes communicating over a strongly connected network,
with W ∈ Rn×n representing the connectivity matrix. In general, this matrix may not be doubly
stochastic. To address the asymmetry, we define two mixing matrices A = {ai,j} and B = {bi,j},
where ai,j = wi,j/

∑n
j=1 wi,j and bi,j = wi,j/

∑n
i=1 wi,j for all i, j = {1, 2, · · ·n}. This normal-

ization ensures that matrix A is row stochastic, while matrix B is column stochastic. Furthermore,
for each node i, we define θ̂k

i ∈ Rq as the estimate of fine-tuning parameters evaluated at the k-th
iteration. Figure 3 illustrates the evolution of local models using P2P-FT method. Depending on
the type of devices, each node may differ in computational capabilities and have distinct local data
classes and dataset sizes. In each iteration, every node shares its local fine-tuning parameters with
its neighbors and obtains their local gradient-tracking terms. Subsequently, each node aggregates
these gradient estimates and computes a weighted sum to update the local models. Algorithm 1
formally describes the P2P-FT method. The estimate of the fine-tuning parameters θ̂k

i is initialized
(partially) randomly. The updates can be divided into two main steps: (i) computing the gradient-
tracking term τ k

i to estimate the global gradient direction (line 5); and (ii) updating the local model
parameters θ̂k

i by performing a gradient descent step and aggregating model parameters from neigh-
boring nodes (line 2). We note that the model parameters for the MLP head are always initialized
randomly, while the other parameters belonging to the layers to be fine-tuned can be initialized
with the same values as those obtained from the pre-trained model. This typically leads to faster
convergence as the model leverages the knowledge acquired by the pre-trained parameters.
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Algorithm 1 P2P-FT at each node i

Require: θ̂0
i ∈ Rq, α > 0,Di, {aij}, {bij}

Sample a mini-batch fromDi and evaluate the gradient τ 0
i := ∇Li(θ̂

0
i )

1: for k = 0, 1, 2, · · · do
2: θ̂k+1

i ←
∑n

j=1 ai.j

(
θ̂k
j − ατ k

j

)
3: Sample a mini-batch from Di and evaluate the gradient∇Li(θ̂

k+1
i )

4: gk+1
i ← ∇Li(θ̂

k+1
i )

5: τ k+1
i ←

∑n
j=1 bij

(
τ k
j + gk+1

j − gk
j

)
6: end for=0

3 NUMERICAL EXPERIMENTS

In this section, we consider the distributed fine-tuning of three vision transformer architec-
tures: ViT, DeiT, and Swin Transformer Dosovitskiy et al. (2021); Touvron et al. (2021); Liu
et al. (2021). Each of these models consists of several attention blocks. Our approach involves
freezing the model parameters for the majority of these blocks while training only a limited number
of selected layers. We evaluate the classification accuracy for P2P-FT and compare the results with
locally trained models (Local-FT) across multiple datasets. We perform all experiments using a
HPC cluster, and for a fair comparison, we set the learning rate to 10−3.

3.1 NETWORK

We now describe the distributed training setup. We consider a peer-to-peer network of n = 4 nodes
communicating over a strongly connected graph (see Figure 1 for a generic peer-to-peer network).
Each node possesses its own pre-tuned model and local training dataset. These nodes can exchange
fine-tuning model parameters and gradients computed during backpropagation but are prohibited
from sharing their private datasets. Next, we describe the datasets on which we fine-tune our models.

3.2 DATASETS

We use four datasets for fine-tuning the vision transformer models and for evaluating their classi-
fication accuracy: (i) Oxford-Pets Parkhi et al. (2012), (ii) Oxford-Flowers Nilsback & Zisserman
(2008), (iii) CIFAR-10 Krizhevsky et al. (b), and (iv) CIFAR-100 Krizhevsky et al. (a) datasets. Each
dataset consists of colored images categorized into multiple classes. The Oxford-Pets dataset con-
sists of 37 categories of dogs and cats with roughly 200 images for each class. The Oxford-Flowers
dataset comprises images belonging to 102 flower categories, with each class containing between 40
to 258 images. The CIFAR-10 dataset contains 60,000 images belonging to 10 different categories.
The CIFAR-100 dataset consists of 100 classes, each containing 600 images. Each dataset is divided
into training and testing sets. The models are fine-tuned on the training set, and their accuracy is
evaluated using the testing set.

Datasets Node 1 Node 2 Node 3 Node 4
Pets 0-4 5-19 20-29 30-36

Flowers 0-19 20-39 40-79 80-101
CIFAR-10 0-1 2-3 4-6 7-10
CIFAR-100 0-9 10-19 20-74 75-99

Table 1: Distribution of classes across different nodes.

In the distributed fine-tuning setup across a peer-to-peer network, the nodes are assigned non-
overlapping classes, i.e., node 1 is never fine-tuned on the classes possessed by any other node.
The class distributions for each dataset across different nodes are explicitly described in Table 1.
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3.3 TRANSFORMER ARCHITECTURES AND PERFORMANCE RESULTS

We now describe the architecture of ViT. We use timm/vit small patch16 224 which utilizes a
convolutional layer to generate patch embeddings. These embeddings are then passed through a
sequence of 12 blocks. Each block includes a combination of normalization, attention, and MLP
layers. Finally, the output is directed to the head, which we have modified to match the number
of classes in the global dataset. In our experiments, we assume that each node possesses the same
pre-tuned ViT model as described above. At each node, we keep the weights constant for all blocks
except the last one. The unfrozen weights are then updated using the method outlined in Algorithm 1.
Each node possesses a non-overlapping private fine-tuning dataset comprising images from distinct
classes. However, the testing dataset includes data from all classes. Table 2 highlights the accuracy
achieved using the test set at each node. It can be observed that fine-tuning Local-FT on local data
results in poor accuracy. This limitation arises because the nodes primarily focus on understanding
the features of their local dataset. However, P2P-FT uses weight-mixing and gradient-sharing
strategies to achieve superior performance, similar to centralized training setups. We now show the
attention maps to gain a better understanding of the differences between Local-FT and P2P-FT.

ViT Local-FT P2P-FT
Datasets Node 1 Node 2 Node 3 Node 4 Node 1 Node 2 Node 3 Node 4

Pets 13.80 43.10 23.88 13.13 87.21 87.28 87.21 87.21
Flowers 13.36 15.65 44.84 25.98 99.80 99.80 99.80 99.80

CIFAR-10 20.07 19.88 29.78 29.94 97.44 97.45 97.44 97.44
CIFAR-100 9.86 9.81 49.28 24.07 87.40 87.40 87.44 87.40

Table 2: Accuracy after fine-tuning ViT model for 100 epochs.

Figure 4: Visualizing attention weights for ViT model using Flowers and Pets datasets.

Figure 4 and 5 illustrate the attention maps overlaid on original images selected from the test set.
Figure 4 presents the results when the class of each original image is present in the local fine-tuning
dataset. A heat map is used to highlight the attention weights for the last block (which was fine-
tuned using Local-FT and P2P-FT). The figure illustrates that the attention weights learned
using Local-FT and P2P-FT are similar to what we expect from the centralized setup.

Figure 5: Visualizing attention maps for test samples belonging to unseen classes.

Figure 5 shows the attention maps learned when the class of each original image is absent from the
local fine-tuning dataset. It can be observed that Local-FT encounters difficulties in understanding
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the image and tends to apply attention towards incorrect objects. It either fails to recognize any target
object or applies attention to multiple objects. However, the attention maps learned by P2P-FT
closely resemble those learned in the centralized fine-tuning setup, despite not being trained on those
classes. Although Figures 4 and 5 show results for a single node in the network, it can be verified that
similar attention maps are learned by all nodes. This is because P2P-FT helps each node in learning
feature representations for unseen images through weight-mixing and gradient-tracking strategies.

We now extend our experiments to fine-tune the distributed DeiT architecture. We use the pre-
trained model timm/deit small patch16 224 and fine-tune it for the downstream task of classifying
the datasets discussed earlier in the section. Similar to ViT, we freeze all blocks of DeiT model
except the last one. Table 3 presents the accuracy results after fine-tuning the DeiT model for one
hundred epochs. It can be observed that Local-FT does not perform well on the test data because it
is not fine-tuned on several classes belonging to the global dataset. In contrast, P2P-FT consistently
outperforms Local-FT across all cases.

DeiT Local-FT P2P-FT
Datasets Node 1 Node 2 Node 3 Node 4 Node 1 Node 2 Node 3 Node 4

Pets 13.26 42.96 24.22 13.06 86.40 86.40 86.40 86.40
Flowers 13.36 15.58 44.63 25.78 92.81 92.98 92.87 92.84

CIFAR-10 19.88 19.63 29.45 29.70 95.15 95.12 95.1 95.11
CIFAR-100 9.70 9.34 45.96 23.20 79.05 79.04 79.14 79.03

Table 3: Accuracy after fine-tuning DeiT model for 100 epochs.

We finally consider the Swin transformer architecture, which differs significantly from both ViT
and DeiT. We use the timm/swin small patch4 window7 224.ms in22k model, which is struc-
tured into four stages, each containing several blocks. We freeze the parameters corresponding to
all stages except the last block of the fourth stage. Table 4 shows the accuracy results achieved
after fine-tuning Swin transformer using Local-FT and P2P-FT. Clearly, P2P-FT outper-
forms Local-FT significantly because each node collaborates through the weight mixing and
gradient-sharing methodologies. Furthermore, the Swin transformer provides better performance
results as compared to the DeiT model, as can be expected in the centralized setup as well.

Swin Local-FT P2P-FT
Datasets Node 1 Node 2 Node 3 Node 4 Node 1 Node 2 Node 3 Node 4

Pets 13.13 43.37 24.15 12.79 86.81 86.74 86.60 86.67
Flowers 13.36 15.65 44.90 25.98 99.83 99.83 99.83 99.83

CIFAR-10 19.98 19.72 29.72 29.88 97.59 97.65 97.55 97.59
CIFAR-100 9.86 9.86 48.79 24.05 87.04 86.99 87.03 87.02

Table 4: Accuracy after fine-tuning Swin-transformer model for 100 epochs.

4 CONCLUSION

Training large transformer models is not feasible in many applications. Fine-tuning the pre-trained
models usually guarantees the best performance. In numerous practical scenarios, heterogeneous
data is distributed across a network of nodes, and accumulating all the data at any central loca-
tion is not possible. When the nodes fine-tune their models using only their local datasets, they
struggle to generalize effectively due to the bias caused by heterogeneous data distribution. The
smaller size of local datasets and the incomplete representation of all classes significantly impact
the performance of vision transformers. We propose a privacy-aware distributed training frame-
work for fine-tuning the vision transformers. The proposed method P2P-FT uses weight-mixing
and gradient-sharing strategies to eliminate bias and achieve optimal results, even when handling
unseen data from classes the node was never trained on. We illustrate the performance of P2P-FT
for fine-tuning distributed ViT, DeiT, and Swin transformer models.
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cas. Communication-efficient learning of deep networks from decentralized data. In Inter-
national Conference on Artificial Intelligence and Statistics, 2016. URL https://api.
semanticscholar.org/CorpusID:14955348.
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R. Xin, S. Pu, A. Nedić, and U. A. Khan. A general framework for decentralized optimization with
first-order methods. Proceedings of the IEEE, 108:1869–1889, 2020. doi: 10.1109/JPROC.2020.
3024266.

Ran Xin, Usman Khan, and Soummya Kar. A hybrid variance-reduced method for decentral-
ized stochastic non-convex optimization. In Marina Meila and Tong Zhang (eds.), Proceed-
ings of the 38th International Conference on Machine Learning, volume 139 of Proceedings
of Machine Learning Research, pp. 11459–11469. PMLR, 18–24 Jul 2021. URL https:
//proceedings.mlr.press/v139/xin21a.html.

12

https://api.semanticscholar.org/CorpusID:49313245
https://www.sciencedirect.com/science/article/pii/S0167278919305974
https://www.sciencedirect.com/science/article/pii/S0167278919305974
https://openreview.net/forum?id=T-camDtiuUg
https://proceedings.mlr.press/v139/touvron21a.html
https://proceedings.mlr.press/v139/touvron21a.html
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://openreview.net/forum?id=gEZrGCozdqR
https://openreview.net/forum?id=gEZrGCozdqR
https://proceedings.mlr.press/v139/xin21a.html
https://proceedings.mlr.press/v139/xin21a.html

	Introduction
	Related Work

	Preliminaries and Proposed Framework
	Fine-tuning Transformers
	Distributed Learning Framework
	Proposed Framework

	Numerical Experiments
	Network
	Datasets
	Transformer Architectures and Performance Results

	Conclusion

