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Networked Digital Public Goods Games with
Heterogeneous Players and Convex Costs

Anonymous Author(s)
∗

ABSTRACT
In the digital age, resources such as open-source software and pub-

licly accessible databases form a crucial category of digital public

goods, providing extensive benefits across the Internet. However,

the inherent non-exclusivity and non-competitiveness of these

public goods frequently result in under-provision, a dilemma exac-

erbated by individuals’ tendency to free-ride. This scenario fosters

both cooperation and competition among users, leading to the

emergence of public goods games.

This paper investigates networked public goods games involv-

ing heterogeneous players and convex costs to explore solutions

of Nash Equilibrium (NE) for this problem. In these games, each

player can choose her own effort level, representing the contribu-

tions to public goods. We employ network structures to depict the

interactions among participants. Each player’s utility is composed

of a concave value component, influenced by collective efforts, and

a convex cost component, determined solely by individual effort.

To the best of our knowledge, this study is the first to explore a

networked public goods game with convex costs.

Our research begins by examining welfare solutions aimed at

maximizing social welfare and ensuring the convergence of pseudo-

gradient ascent dynamics. We establish the presence of NE in this

model and provide an in-depth analysis of the conditions under

which NE is unique. Additionally, we introduce the concept of game

equivalence, which expands the range of public goods games that

can support a unique NE. We also delve into comparative statics,
an essential tool in economics, to evaluate how slight modifica-

tions in the model—interpreted as monetary redistribution—impact

player utilities. In addition, we analyze a particular scenario with

a predefined game structure, illustrating the practical relevance

of our theoretical insights. Consequently, our research enhances

the broader understanding of strategic interactions and structural

dynamics in networked public goods games, with significant impli-

cations for policy design in internet economic and social networks.
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1 INTRODUCTION
The concept of public goods is not only a significant area of interest

in economic research but also closely related to the web era. Public

goods encompass a wide range of web resources, in the forms like

open-source software (e.g., GitHub), public databases (e.g., MNIST),

scientific technologies (e.g., papers in TheWebConf), and widely ac-

cessible scientific knowledge (e.g., Wikipedia, Stack overflow). The

defining characteristics of public goods are their non-excludability,

meaning all community members can freely use these resources

without excluding any-one, and non-rivalry, where one person’s

use does not diminish the availability for others. Such character-

istics are particularly notable in the internet. Web and internet

research delves into how to effectively provide and manage digital

public goods to maximize social welfare. This exploration is not

just theoretical but also has practical implications for policy and

development of website content, attracting an increasing number

of researchers to this burgeoning field.

However, from a societal perspective, digital public goods often

face challenges due to insufficient provision, a problem frequently

attributed to the issue of free-riding. Consequently, each partici-

pant must decide how much effort to contribute when investing

in digital public goods, aware that their efforts will also benefit

others. This strategic decision-making process embodies what is

known as a public goods game. This game can reveal complex inter-

actions between cooperation and competition, as individuals shall

balance their personal contributions against the collective benefits.

Much of the prior research [Bramoullé and Kranton 2007] has fo-

cused on idealized models where participants are assumed to be

homogeneous. However, in reality, especially in the case of digital

public goods, users exhibit significant heterogeneity. For example,

a specialized dictionary on Wikipedia is more beneficial to those

within the relevant field. On the other hand, in the context of paper

reviews, the efforts of one reviewer benefit the entire conference

but may disadvantage the author of a low-quality submission. This

demonstrates that the impact of a public good (or bad) can be either

positive or negative, and varies across different participants.

In this paper, we are more interested in the networked public

goods games, which effectively capture the social connections be-

tween individuals. Specifically, all participants are positioned at

1
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the vertices of the network, and the links—each weighted differ-

ently—represent the relationships and influence between any two

participants [Li et al. 2023]. Bramoullé and Kranton [2007] pio-

neered the study of public goods game within a network. In their

homogeneous model, the utility functions of all players are consis-

tently formulated as𝑢𝑖 (𝒙) = 𝑓 (𝑥𝑖 +
∑

𝑗∈𝑁𝑖
𝑥 𝑗 ) −𝑐𝑥𝑖 , where 𝑥𝑖 is the

effort level of player 𝑖 , 𝑓 (·) is a homogeneous benefit function appli-

cable to all players, and the cost function is linear, characterized by

a uniform unit cost 𝑐 for all players. Furthermore, this model is un-

weighted, as each player exhibits the same preference for both their

own efforts and those of others when computing the benefit. Based

on this simplified and idealistic setting, Bramoullé and Kranton

[2007] demonstrated the existence of an equilibrium where some

players exert the same maximum effort while all others engage in

free riding. Moreover, they showed that those contributing positive

effort form an independent set within the network. While later

studies have explored the public goods games with heterogeneous

utility functions [Bayer et al. 2023; Papadimitriou and Peng 2021],

their focus remained on the linear cost scenarios.

However, practical scenarios often feature non-linear cost func-

tions, particularly evident in digital public goods. For instance, the

initial setup of a Wikipedia article involves adding basic facts and

general information—tasks that are relatively low in cost. Yet, as

the article develops, ensuring accuracy and providing in-depth

analysis demand increasingly specialized knowledge, research, and

citations, raising the marginal cost of contributions. Unfortunately,

the predominant body of research on public goods games focuses

on linear cost functions [Bayer et al. 2023; Bramoullé and Kranton

2007; López-Pintado 2013; Papadimitriou and Peng 2021], and very

few studies delve into the implications of non-linear cost functions.

This paper presents a novel model of networked public goods

games that incorporates convex cost functions, aiming at under-

standing the equilibrium and dynamic in the field of digital public

goods. Specifically, given an effort profile x = (𝑥1, 𝑥2, · · · , 𝑥𝑛), each
player’s payoff is determined by the net gain, which is the difference

between a benefit function 𝑓𝑖 (𝑘𝑖 ) and a cost function 𝑐𝑖 (𝑥𝑖 ). The
benefit function 𝑓𝑖 for player 𝑖 is both concave and strictly increas-

ing, and it is derived from the gain 𝑘𝑖 . This gain 𝑘𝑖 is computed as

a weighted linear combination of the efforts of both the player and

her neighbors. The cost function 𝑐𝑖 , which is convex and strictly

increases, depends exclusively on the player’s own effort 𝑥𝑖 .

1.1 Results and Techniques
Our work is the first one to study the networked public good games

with convex costs. The heterogeneity of benefit functions and cost

functions lends greater generality to the networked pubic goods

game studied in this paper. We start at exploring the concept of

welfare solutions, focusing on the maximization of social welfare

and the investigation of pseudo-gradient ascent dynamics, which

shows insight on the following analysis. We carefully analyze the

existence and uniqueness of Nash Equilibrium (NE) across various

settings, providing deep insights into the NE’s structures in public

goods games. Our examination extends to cases in which distinct

characteristics of cost and benefit functions play a crucial role in

ensuring the NE’s uniqueness. Building on these foundations, we

delve into comparative statics to assess the effects of subtle shifts in

the model’s parameters, which we regard as money redistribution,

on the utilities of the players involved. Comparative statics is a

crucial analytical method in economics. This element of our study

illuminates how minor adjustments can significantly influence eco-

nomic outcomes and player behaviors within the game. We also

studies a special case, in which the game structure is pre-defined

and show how these theorems can be applied into this case.

The proof of the existence of a Nash Equilibrium (NE) primar-

ily relies on the application of the Brouwer fixed-point theorem.

Brouwer fixed-point theorem states that any continuous function

mapping a compact, convex set to itself must have a fixed point

[Brouwer 1911]. It’s important to note that the best-response func-

tion is continuous when the utility functions are strictly concave.

The proof then proceeds through a strategic modification of the util-

ity functions, ensuring they meet the criteria stipulated by Brouwer

fixed-point theorem.

To carve out the uniqueness of NE, we bring out the concept of

near-potential game, and show that under certain condition, the NE

of near-potential game is unique, and pseudo-gradient ascent dy-

namic will converges to this point with exponential rate. The proof

constructs the discrete version of pseudo-gradient ascent dynamic

and show that it is compressive mapping, which is guaranteed to

have unique fixed point by Banach’s theorem [Banach 1922]. We

then bridge the gap between near-potential game and public good

games, showing three conditions under which we can transform

the public good games into a specifically-designed near-potential

game while holding the NEs invariant, therefore guarantee the

uniqueness of NE. We also proposes the concept of game equiva-

lence, that ensures the one-to-one relationships between the NEs

of corresponding games, which can also broaden the class of games

possessing unique NE.

To study the comparative statics on money redistribution, we

mainly use the high-dimensional implicit function theorem. We

rewrite the conditions of Nash equilibrium 𝒙∗ as an implicit function

of infinitesimal model change 𝑡𝜹 and corresponding NE 𝒙∗ (𝑡). By
differentiating this implicit function on 𝑡 , we can derive the relation

between 𝒙∗ (𝑡), 𝜹 and 𝑡 .

1.2 Related Works
Public Goods in the Web Era. In the web era, public goods play

a crucial role in fostering collaborative contributions and main-

taining online platforms. Gallus [2017] demonstrates the impact of

symbolic awards on volunteer retention in a public goods setting

like Wikipedia, where recognition and community engagement can

encourage sustained contributions without direct financial incen-

tives. Similarly, the challenges of knowledge-sharing in Web 2.0

communities have been framed as a public goods problem, where

social dilemmas like free-riding are mitigated through enhanced

group identity and pro-social behavior [Allen 2010]. Experimental

research on cooperation in web-based public goods games further

examines how network structures influence contribution behavior,

with findings suggesting that contagion effects in cooperative be-

havior are limited to direct network neighbors [Suri andWatts 2011].

Moreover, the broader economic dynamics of the web are analyzed

through the concept of "web goods," where users contribute content,

exchange information, and interact in a socio-economic system that
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requires balancing open access with incentive structures for con-

tent production and infrastructure development [Vafopoulos et al.

2012]. These works collectively highlight the unique challenges and

opportunities of managing public goods in the digital age, empha-

sizing the importance of community-driven incentives and network

effects in fostering web-based cooperation.

Networked Public Good Games. Bramoullé and Kranton [2007]

initiated the study of public goods in a network. They studied the

public good games on an unweighted, undirected networks with

linear cost functions and homogeneous players. Under their models,

there is an unique level 𝑘∗ such that it’s optimal for each player to

make the sum efforts within her neighbourhoods to be 𝑘∗, which
greatly simplifies the analysis of the model. The authors showed

that the NE of the game corresponds to the maximal independent

set, where the player in the maximal independent set asserts full

effort 𝑘∗, and the players outside free-ride.

There are many other works following this literature, see [Al-

louch 2015; Boncinelli and Pin 2012; Bramoullé et al. 2014; Elliott

and Golub 2021]. Bramoullé et al. [2014] extended the model to the

imperfectly substitute public goods case, and proved the existence

and uniqueness of Nash equilibrium, under the condition of suffi-

ciently small lowest eigenvalue of the graph matrix. Allouch [2015]

differentiated the provision of public goods and private goods, and

their results of existence and uniqueness of Nash equilibrium also

relies on the lowest eigenvalue of the graph matrix. López-Pintado

[2013] began with the studies of public good games in directed

networks, by discussing both of the static model and the dynamic

model. To be specific, in the static model, all players are situated

within a fixed network where they choose their actions simulta-

neously. López-Pintado [2013] demonstrated that the structure of

Nash equilibria correlates with the maximal independent set. In con-

trast, the dynamic model is characterized by a dynamic sampling

process, where agents periodically sample a subset of other agents

and base their decisions on a myopic-best response. The author

established the existence of a unique globally stable proportion of

public good providers in this model. Bayer et al. [2023] studied the

convergence of best response dynamic on the public good games

in directed networks.

A significant networked public goods game variant considers in-

divisible goods, where players can onlymake binary decisions[Galeotti

et al. 2010]. Building upon this binary networked public goods

(BNPG) game model, Yu et al. [2020] introduced the algorithmic

inquiry of determining the existence of pure-strategy Nash equilib-

rium (PSNE). Specifically, they investigated the existence of PSNE

in the BNPG game and proved that it is NP-hard in both homoge-

neous and heterogeneous settings. The computational complexity

of public goods games with a network structure, such as tree or

clique [Maiti and Dey 2024; Yang and Wang 2020], and regular

graph [Feldman et al. 2013] has also been extensively studied. Pa-

padimitriou and Peng[Papadimitriou and Peng 2021] proved that

finding an approximate NE of the public good games in directed

networks is PPAD-hard, even the utility is in a summation form.

Subsequently, Gilboa and Nisan [2022] modeled players as different

patterns and showed that the existence of PSNE on some non-trivial

patterns is NP-complete, while a polynomial time algorithm ex-

ists for some specific patterns. In addition, Klimm and Stahlberg

[2023] further demonstrated the complexity results of the BNPG

game on undirected graphs with different utility patterns to be

NP-hard. They also showed that computing equilibrium in games

with integer weight edges is PLS-complete.

Continuous-time Public Good Games. A branch of the literature

on public goods focuses on studying the dynamic provision of

public goods in continuous time. Fershtman and Nitzan [1991] were

the first to explore this problem. They proposed two equilibrium

concepts: the open-loop equilibrium and the feedback equilibrium,

showing that in the feedback equilibrium, the players’ utilities are

lower than in the open-loop equilibrium. This result is derived under

the linear strategy assumption of the feedback equilibrium, as the

feedback equilibrium is not generally unique. Later, Wirl [1996]

discovered that if non-linear strategies are allowed in the feedback

equilibrium, it is possible for players’ utilities to be higher in some

feedback equilibria than in the open-loop equilibrium. Fujiwara

and Matsueda [2009] generalized these findings to more general

utility functions and confirmed that the results still hold. Wang

and Ewald [2010] extended this work by considering environments

with uncertainty.

Although these studies present findings in dynamic scenarios,

they generally assume homogeneity among players in terms of util-

ity functions (both gains and costs) and interpersonal relationships,

and thus do not take network effects into consideration. To the

best of our knowledge, there has been no previous research that

simultaneously explores the dynamic provision of public goods

with heterogeneous players.

Concave Games. Rosen [1965] firstly introduced the concept

of concave games, in which the utility function of each player is

concavewith respect to her own strategy. In this paper, Rosen [1965]

provided a sufficient condition for such games to have a unique

equilibrium and introduced a differential equation that converges to

this equilibrium. Because of the foundational results of Rosen [1965],

several works have extended the study of concave games in various

settings, such as learning perspective of equilibrium in concave

games [Bravo et al. 2018; Mertikopoulos and Zhou 2019; Nesterov

2009], equilibrium concept in concave games [Forgó 1994; Goktas

and Greenwald 2021; Ui 2008]. However, there is limited research

applying the concave games framework to public goods scenarios.

Our work is pioneering in applying the convex game framework to

public goods games. We demonstrate that public goods games can

be treated as a specific type of concave game, called near-potential

game, where the potential function is meticulously designed for

diverse scenarios. The uniqueness of equilibrium in near-potential

games therefore directly supports the uniqueness of equilibrium in

public goods games.

2 MODELS
Consider a community with 𝑛 players playing a public good game.

Each player 𝑖 needs to decide her effort 𝑥𝑖 ∈ [𝑥𝑖 , 𝑥𝑖 ] := 𝑋𝑖 to invest

the public goods, where {𝑥𝑖 , 𝑥𝑖 }𝑖∈[𝑛] are predetermined and public

known. Let 𝒙 = (𝑥1, ..., 𝑥𝑛) be the effort profile of all players, and
𝒙−𝑖 be the effort profile of all players without player 𝑖 . Therefore,
(𝑦𝑖 , 𝒙−𝑖 ) is the effort profile that player 𝑖 chooses 𝑦𝑖 and other

players keep their choices the same as 𝒙−𝑖 . Similarly, define 𝑋 =

3
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×𝑖∈[𝑛]𝑋𝑖 and 𝑋−𝑖 = ×𝑗≠𝑖𝑋 𝑗 . Let us denote𝑊 = {𝑤𝑖 𝑗 }𝑖, 𝑗∈[𝑛] as
the matrix, in which𝑤𝑖 𝑗 represents the marginal gain of player 𝑖

from player 𝑗 ’s effort. We normalize𝑊 such that 𝑤𝑖𝑖 = 1 for any

𝑖 ∈ [𝑛] without loss of generality. Our model is more general as

it imposes no additional constraints on the network, e.g., 𝑤𝑖 𝑗 ∈
[0, 1] or 𝑤𝑖 𝑗 = 𝑤 𝑗𝑖 , and any 𝑤𝑖 𝑗 ∈ R are permitted, provided that

𝑤𝑖 𝑗 = 0 if there is no edge between 𝑖 and 𝑗 . Let 𝑘𝑖 ∈ 𝐾𝑖 be the total
gain of player 𝑖 and 𝒌 = (𝑘1, ..., 𝑘𝑛) ∈ 𝐾 be the gain profile of all

players. Then we have 𝑘𝑖 =
∑

𝑗∈[𝑛] 𝑤𝑖 𝑗𝑥 𝑗 , i.e., the gain of player 𝑖

linearly depends on her own and other players’ efforts, weighted

by 𝒘𝑖 = (𝑤𝑖 𝑗 ) 𝑗∈[𝑛] . Therefore, 𝒌 = 𝑊 𝒙 . In addition, we assume

𝐾𝑖 = [𝑘𝑖 , ¯𝑘𝑖 ], where 𝑘𝑖 and ¯𝑘𝑖 are the minimum and maximum

possible gain for player 𝑖 for ease of representation, respectively1.

Similarly we use 𝐾 = ×𝑖∈[𝑛]𝐾𝑖 and define 𝐾−𝑖 = ×𝑗≠𝑖𝐾𝑗 .

Given an effort profile 𝒙 = (𝑥1, 𝑥2, · · · , 𝑥𝑛), each player 𝑖 has

utility function 𝑢𝑖 (𝒙) = 𝑓𝑖 (𝑘𝑖 ) − 𝑐𝑖 (𝑥𝑖 ), where 𝑓𝑖 is a concave and
strictly increasing function on 𝐾𝑖 , and 𝑐𝑖 is a convex and strictly

increasing function on 𝑋𝑖 . That is, 𝑓
′′
𝑖
(𝑥) ≤ 0, 𝑓 ′

𝑖
(𝑥) > 0, 𝑐′

𝑖
(𝑥) >

0, 𝑐′′
𝑖
(𝑥) ≥ 0, meaning that 𝑓𝑖 and 𝑐𝑖 are twice differentiable. Thus,

a networked public goods game 𝐺 is represented by a four-tuple,

𝐺 = ⟨{𝑓𝑖 }𝑖∈[𝑛] , {𝑐𝑖 }𝑖∈[𝑛] , {𝑋𝑖 }𝑖∈[𝑛] ,𝑊 ⟩, where 𝐾𝑖 is omitted since

it can be uniquely determined from 𝐺 .

Utility function𝑢𝑖 (𝒙) = 𝑓𝑖 (𝑘𝑖 )−𝑐𝑖 (𝑥𝑖 ) indicates that each player’s
utility is composed of two parts, the value part 𝑓𝑖 (𝑘𝑖 ) and the cost

part 𝑐𝑖 (𝑥𝑖 ). Clearly, the value part depends on her gains 𝑘𝑖 , which

are positively or negatively effected from other players’ efforts and

the cost part only depends on her own effort. Notice that one’s ef-

fort will increase or decrease others’ gains, and so will their utilities.

Therefore players’ efforts can be regarded as public goods (bads).

For the sake of convenience, we use R+ to denote the set of

non-negative real numbers and R++ as the set of (strict) positive

real numbers.

To begin with, we introduce some definitions, which are useful

for the following analysis.

Definition 2.1 (𝛼-Lipschitzness). Function 𝑔(𝑥) : 𝑋 → R is 𝛼-

Lipschitz (𝛼 ∈ R+) on 𝑥 ∈ 𝑋 ⊆ R𝑑 , if

|𝑔(𝑥) − 𝑔(𝑦) | ≤ 𝛼 ∥𝑥 − 𝑦∥
for all 𝑥,𝑦 ∈ 𝑋 .

Definition 2.2 (𝑐-concavity). A differentiable function 𝑔(𝑥) : 𝑋 →
R is 𝑐-(strongly) concave (𝑐 ∈ R+) on 𝑥 ∈ 𝑋 ⊆ R𝑑 , if 𝑋 is a convex

set and,

𝑔(𝑦) ≤ 𝑔(𝑥) + ⟨𝑦 − 𝑥,∇𝑔(𝑥)⟩ − 𝑐

2

∥𝑦 − 𝑥 ∥2, ∀𝑥,𝑦 ∈ 𝑋 . (1)

Intuitively, we may understand the definition to be that 𝑔(·) has
a directional curvature less than or equal to −𝑐 at any point 𝑥 inside

the convex set 𝑋 to any direction 𝑦 − 𝑥 .

Definition 2.3 (𝜶 -scaled Pseudo-Gradient Ascend Dynamic). Let

{𝑢𝑖 (𝒙)}𝑖∈[𝑛] be the utility functions of players in an 𝑛-player game

and 𝒙 (0) be an arbitrary initial strategy profile. We consider a

reasonable dynamic of players’ strategies, called 𝜶 -scaled pseudo-

gradient ascent dynamic, that describes the players’ behaviors

1
Since 𝑋𝑖 is bounded for all 𝑖 , 𝑘𝑖 and

¯𝑘𝑖 are well-defined. In fact, we have the explicit

expression that 𝑘𝑖 =
∑

𝑗 ∈ [𝑛] 1{𝑤𝑖 𝑗 > 0}𝑤𝑖 𝑗𝑥 𝑗 + 1{𝑤𝑖 𝑗 < 0}𝑤𝑖 𝑗𝑥 𝑗 and
¯𝑘𝑖 =∑

𝑗 ∈ [𝑛] 1{𝑤𝑖 𝑗 > 0}𝑤𝑖 𝑗𝑥 𝑗 + 1{𝑤𝑖 𝑗 < 0}𝑤𝑖 𝑗𝑥 𝑗

over time. The 𝜶 -scaled pseudo-gradient ascent dynamic 𝒙 (𝑡) =
(𝑥1 (𝑡), . . . , 𝑥𝑛 (𝑡)) with updating speed 𝜶 ∈ R𝑛

++ (possibly 𝜶 ≠ 1)
is a system of differential equations, defined as

d𝑥𝑖

d𝑡
(𝑡) = 𝛼𝑖

𝜕𝑢𝑖

𝜕𝑥𝑖
(𝒙 (𝑡)), ∀𝑖 ∈ [𝑛] .

Here the vector ( 𝜕𝑢𝑖𝜕𝑥𝑖
(𝒙))𝑖∈[𝑛] is called the pseudo-gradient of

the game (𝑢𝑖 (𝒙))𝑖∈[𝑛] at the point 𝒙 . In this dynamic, each player

updates her strategy, taking the direction as the gradient of her

utility, scaled by vector 𝜶 .

We finally present a property of 𝑐-concavity function for use in

the subsequent theorems.

Lemma 2.1. Assume 𝑔 : 𝑋 → R, where 𝑋 ⊆ R𝑑 is a convex and
closed set, and 𝑔 is a differential 𝑐0-concave function. Define 𝑥∗ be the
maximum point of 𝑔(𝑥) on 𝑋 , then,

2𝑐0

(
𝑔(𝑥∗) − 𝑔(𝑥)

)
≤ ∥∇𝑔(𝑥)∥2 ∀𝑥 ∈ 𝑋 .

For completeness, we present self-contained proofs for all results

in this paper. Many proofs are deferred to Appendix A due to space

limit.

2.1 Welfare Solutions
We first consider the social optimal solution. We characterize this

concept by social welfare SW(𝒙), which is the sum of all play-

ers’ utilities: SW(𝒙) = ∑
𝑖∈[𝑛] (𝑓𝑖 (𝑘𝑖 ) − 𝑐𝑖 (𝑥𝑖 )). The social optimal

solution is the effort profile 𝒙∗ that maximizes SW(𝒙).
Since the concavity of social welfare function and the convex,

bounded and closed domain 𝑋 , the social optimal solution is guar-

anteed to exist. However, The social optimal solution may not have

an explicit expression, which motivates us to explore the gradient

flow as a dynamic process to achieve the social optimal solution:

d𝑥𝑖

d𝑡
(𝑡) = 𝜕SW

𝜕𝑥𝑖
(𝒙 (𝑡)), 𝑖 ∈ [𝑛] . (2)

It is well-established that gradient flow converges to a stable

point, and in the case of a concave function, any stable point cor-

responds to a global maximum. Specifically, we have following

theorem:

Theorem 2.2. The best-response dynamic Equation (2) converges to
the social optimal solution with linear rate, i.e.,

𝑆𝑊 (𝒙∗) − 𝑆𝑊 (𝒙 (𝑡)) ≤ 𝑐

𝑡
, ∀𝑡 > 0

for some 𝑐 > 0.
Moreover, if at least one of following conditions holds:
(1) all cost functions 𝑐𝑖 (𝑥) are 𝑐0-convex for some 𝑐0 > 0;
(2) all value functions 𝑓𝑖 (𝑘) are 𝑐0-concave for some 𝑐0 > 0;

then, the best-response dynamic converges to the social optimal solu-
tion with exponential rate, i.e.,

𝑆𝑊 (𝒙∗) − 𝑆𝑊 (𝒙 (𝑡)) = 𝑂 (exp(−𝑐 · 𝑡))
for some 𝑐 > 0.

Theorem 2.2 establishes the pseudo-gradient ascent dynamic

with homogeneous utility function (SW(𝒙) in this case), regarded

as a continuous-time algorithm, converges to the social optimal

point. Though not surprising, the technical insight in this proof are

helpful for the later proof on the uniqueness of NE.

4
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3 EQUILIBRIUM SOLUTIONS OF PUBLIC
GOOD GAMES

In this section we establish the existence and uniqueness results

of equilibrium solution in public good games. We define an effort

profile 𝒙 as a (pure strategy) Nash Equilibrium (NE), if no player can

unilaterally increase her utility by changing her effort. Formally, 𝒙
is an NE if, for any player 𝑖 and any alternative effort 𝑥 ′

𝑖
, we have

𝑢𝑖 (𝑥 ′𝑖 , 𝒙−𝑖 ) ≤ 𝑢𝑖 (𝑥𝑖 , 𝒙−𝑖 ) ∀𝑥 ′𝑖 ∈ [𝑥𝑖 , 𝑥𝑖 ] . (3)

3.1 Existence of Nash Equilibrium
Generally, an (pure) NE may not exist in normal-form games. How-

ever, in the networked public good games studied in this paper, we

apply the Brouwer’s fixed-point theorem [Brouwer 1911] to show

that a NE always exists in following theorems.

Theorem 3.1. In the public good game 𝐺 = ({𝑓𝑖 }𝑖∈[𝑛] , {𝑐𝑖 }𝑖∈[𝑛] ,
{𝑋𝑖 }𝑖∈[𝑛] ,𝑊 ), an (pure strategy) NE always exists.

Proof Sketch of Theorem 3.1. Let us construct the best-response

function BR(𝒙) for all players. If it is continuous, then by Brouwer’s
fixed point theorem [Brouwer 1911], there is a fixed-point, which

is also the NE of the game.

However, this is not always the case, since the best-response may

be discontinuous and even not a singleton set. To resolve this issue,

we modify the cost function with an 𝛼-convex function, which

ensures that the best-response function of the 𝛼-modified game is

continuous.

As long as the 𝛼-modified game has a NE 𝒙∗𝛼 , we let 𝛼 → 0, then

by compactness of 𝑋 , we know that there is an accumulation point

𝒙∗ that is the limitation of 𝒙∗𝛼𝑘 for a sequence 𝛼𝑘 → 0. The next

step is to prove that 𝒙∗ is the NE of original game, given 𝒙∗𝛼𝑘 is the

NE of 𝛼𝑘 -modified game for all 𝑘 , which needs a few steps in taking

limits. □

Similar to normal form games, the Nash Equilibrium (NE) in

public goods games may not be unique. This is elaborated upon in

the example below.

Example 1. Consider a public good game containing four players,
see Figure 1-(a) . The marginal gain is 1 between one player from
left side and the other from right side, and 0 otherwise. We specify
homogeneous utility functions and action spaces for all players. The
action space is specified as [0, 1], while the only two constraints for
utility functions are:

𝑓 ′ (1) ≥ 𝑐′ (1) and 𝑓 ′ (2) ≤ 𝑐′ (0).

It’s straightforward to verify that players on one side exerting full
effort, i.e., 𝑥𝑖 = 1, while players on the opposite side free ride, i.e.,
𝑥𝑖 = 0, constitutes a Nash Equilibrium (NE). Thus, there are at least
two NEs in this game. This example can be readily extended to a
scenario involving 𝑛1 × 𝑛2 players, distributed into 𝑛1 groups with
𝑛2 players in each group. All pairs of players from different groups
are connected, see Figure 1-(b). The second condition then becomes
𝑓 ′ (𝑛2) ≤ 𝑐′ (0).

Example 1 motivates us to investigate the scenarios in which the

NE is unique.

1

1

1

1

(a)

n 2 
pla

ye
rs n2 players

n2 players

n1 groups

(b)

Figure 1: Examples of non-unique NE in public good games.
(a): There are four players on two sides, with two players in
each side. (b) There are 𝑛1 × 𝑛2 players in 𝑛1 groups, with 𝑛2

players in each group.

3.2 Uniqueness of Nash Equilibrium
In this section, we explore the conditions under which the Nash

Equilibrium (NE) of the public good game is unique. We begin by

introducing a necessary lemma along with some definitions that

will be frequently utilized in the subsequent theorems.

Definition 3.1 ((𝛾, 𝜎)-closeness). We call a function 𝑔(𝑥) : 𝑋 → R
is (𝛾, 𝜎)-close (𝛾, 𝜎 ∈ R+) to a function 𝑓 (𝑥) : 𝑋 → R, where
𝑋 ⊆ R𝑘

, if 𝛾∇𝑥𝑔(𝑥) − ∇𝑥 𝑓 (𝑥) is 𝜎-Lipschitz on 𝑥 .

Definition 3.2 (Near-potential Game). Consider a game containing

𝑛 players. Denote 𝑥𝑖 ∈ 𝑋𝑖 ⊂ R as the action of player 𝑖 and 𝑢𝑖 (𝒙)
as the utility function of player 𝑖 given joint action 𝒙 .

We say that this game is an (𝜸 , Σ)-near-potential (𝜸 ∈ R𝑛
++, Σ ∈

R𝑛×𝑛
+ ) game w.r.t. a potential function 𝑢 (𝒙), if for two players

𝑖, 𝑗 ∈ [𝑛] (it could be 𝑖 = 𝑗 ), we have that 𝑢𝑖 (𝒙) is (𝛾𝑖 , 𝜎𝑖 𝑗 )-close to
𝑢 (𝒙) on the domain 𝑋 𝑗 , assuming that 𝒙− 𝑗 is fixed, i.e.,

𝛾𝑖
𝜕𝑢𝑖

𝜕𝑥𝑖
(𝑥 𝑗 , 𝒙− 𝑗 ) −

𝜕𝑢

𝜕𝑥𝑖
(𝑥 𝑗 , 𝒙− 𝑗 )

is𝜎𝑖 𝑗 -Lipschitz on𝑥 𝑗 for all fixed 𝒙− 𝑗 ∈ 𝑋− 𝑗 , where Σ = {𝜎𝑖 𝑗 }𝑖, 𝑗∈[𝑛] .

Lemma 3.2. For a (𝜸 , Σ)-near-potential game w.r.t. potential func-
tion 𝑢 (𝒙), containing 𝑛 players, if the following holds

(1) 𝑢 (𝒙) is 𝑐-strongly concave on 𝒙 ;
5
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(2) 𝑐 > 𝜎𝑚𝑎𝑥 (Σ),
where 𝜎𝑚𝑎𝑥 (·) represents the maximum singular value of a matrix,
then the near-potential game has a unique NE 𝒙∗. Moreover, the 𝜸 -
scaled pseudo-gradient ascent dynamic 𝒙 (𝑡) with arbitrary initial
point 𝒙 (0) converges to the NE with exponential rate, i.e., there is
𝑐0 > 0 such that

∥𝒙 (𝑡) − 𝒙∗∥ = 𝑂 (exp(−𝑐0 · 𝑡)) .

Lemma 3.2 can be deduced from the results in Rosen [1965] by

the utilization of concave games and diagonal strict concavity, with a

technical assumption of the second-order differentiability of𝑢𝑖 (𝒙)’s
and 𝑢 (𝒙). The proof is done by verifying the conditions in Rosen

[1965] hold given conditions in this lemma. We present the proof

sketch in the following and the full derivation is moved to appendix.

Proof Sketch of Lemma 3.2. Rosen [1965] showed that diag-

onal strict concavity indicates the uniqueness of Nash equilib-

rium and a sufficient condition for diagonal strict concavity is that

𝐺 (𝒙,𝜸 ) +𝐺𝑇 (𝒙,𝜸 ) is negative definite, where 𝐺 (𝒙,𝜸 ) is the Jaco-
bian of 𝑔(𝒙,𝜸 ) w.r.t. 𝒙 ,𝐺𝑇

is the transpose of matrix𝐺 , and 𝑔(𝒙,𝜸 )
is the vector (𝛾𝑖 𝜕𝑢𝑖𝜕𝑥𝑖

(𝒙))𝑖∈[𝑛] representing the pseudo-gradient of
game (𝑢𝑖 (𝒙))𝑖∈[𝑛] .

By careful computation, we can write that

𝐺 (𝒙,𝜸 ) =𝐻 (𝒙) +


𝜕2 (𝛾1𝑢1−𝑢 )

𝜕𝑥2

1

(𝒙) · · · 𝜕2 (𝛾1𝑢1−𝑢 )
𝜕𝑥1𝜕𝑥𝑛

(𝒙)
.
.
.

. . .
.
.
.

𝜕2 (𝛾𝑢𝑛−𝑢 )
𝜕𝑥𝑛𝑥1

(𝒙) · · · 𝜕2 (𝛾𝑢𝑛−𝑢 )
𝜕𝑥𝑛𝜕𝑥𝑛

(𝒙)


≜𝐻 (𝒙) + 𝐼 (𝒙,𝜸 )

where𝐻 (𝒙) is the Hessian matrix of 𝑢 (𝒙) w.r.t. 𝒙 , thus is 𝑐-negative
definite. By near-potential property of game (𝑢𝑖 (𝒙))𝑖∈[𝑛] , we can
bound the 𝐼 (𝒙,𝜸 ) by Σ, with the largest eigenvalue of Σ + Σ𝑇 less

than 2𝑐 . Therefore, 𝐺 (𝒙,𝜸 ) + 𝐺𝑇 (𝒙,𝜸 ) is bound to be negative

definite, which completes the proof. □

Next we will present three results of the uniqueness of NE under

different conditions.

Theorem 3.3. Given a public goods game 𝐺 = ⟨{𝑓𝑖 (𝑘)}𝑖∈[𝑛] ,
{𝑐𝑖 (𝑥)}𝑖∈[𝑛] , {𝑋𝑖 }𝑖∈[𝑛] ,𝑊 ⟩. If the following conditions hold,

(1) 𝛾𝑖 (𝑓𝑖 (𝑥 + 𝑑) − 𝑐𝑖 (𝑥)) is 𝑐-concave on 𝑥 , for all 𝑖 and any fixed
𝑑 ∈ [𝑑𝑖 , ¯𝑑𝑖 ] := 𝐷𝑖 , where 𝑑𝑖 and ¯𝑑𝑖 are the minimum and
maximum externality gains of player 𝑖 , respectively; 2

(2) 𝑓 ′
𝑖
(𝑘) is 𝐿0-Lipschitz on 𝑘 for all 𝑖 ;

(3) 𝑐 > 𝐿0𝜎𝑚𝑎𝑥 (Σ), where Σ = {𝜎𝑖 𝑗 }𝑖, 𝑗∈[𝑛] and𝜎𝑖 𝑗 =
∑
𝑘≠𝑖 𝛾𝑘 |𝑤𝑘𝑖𝑤𝑘 𝑗 |,

then, the NE is unique.

Proof. We shall apply Lemma 3.2 to prove this theorem.

Firstly, we will construct a near-potential game by specifying

the potential 𝑢 (𝒙) and the utilities 𝑢𝑖 (𝒙) for all players.
To do this, we let the potential𝑢 (𝒙) = ∑

𝑖∈[𝑛] 𝛾𝑖 (𝑓𝑖 (𝑘𝑖 ) − 𝑐𝑖 (𝑥𝑖 )),
and specify the utilities 𝑢𝑖 (𝒙) in near-potential game identical with

2
Similar with 𝑘𝑖 and

¯𝑘𝑖 , we have the explicit formula as follows: 𝑑𝑖 =
∑

𝑗≠𝑖 1{𝑤𝑖 𝑗 >

0}𝑤𝑖 𝑗𝑥 𝑗 + 1{𝑤𝑖 𝑗 < 0}𝑤𝑖 𝑗𝑥 𝑗 and
¯𝑑𝑖 =

∑
𝑗≠𝑖 1{𝑤𝑖 𝑗 > 0}𝑤𝑖 𝑗𝑥 𝑗 + 1{𝑤𝑖 𝑗 < 0}𝑤𝑖 𝑗𝑥 𝑗

the utilities in the public good game. With some straightforward

calculations, we derive that

𝜕𝑢𝑖

𝜕𝑥𝑖
(𝒙) =𝑓 ′𝑖 (𝑘𝑖 ) − 𝑐

′
𝑖 (𝑥𝑖 )

𝜕𝑢

𝜕𝑥𝑖
(𝒙) =

∑︁
𝑖′≠𝑖

𝛾𝑖′ 𝑓
′
𝑖′ (𝑘𝑖′ )𝑤𝑖′𝑖 + 𝛾𝑖

(
𝑓 ′𝑖 (𝑘𝑖 ) − 𝑐

′
𝑖 (𝑥𝑖 )

)
Since 𝑓 ′

𝑖′ (𝑘𝑖′ ) is 𝐿0-Lipschitz on 𝑘𝑖′ , and 𝑘𝑖′ is |𝑤𝑖′ 𝑗 |-Lipschitz on
𝑥 𝑗 , we have𝛾𝑖′ 𝑓

′
𝑖′ (𝑘𝑖′ ) is𝐿0𝛾𝑖′ |𝑤𝑖′ 𝑗 | Lipschitz on𝑥 𝑗 and

∑
𝑖′≠𝑖 𝛾𝑖′ 𝑓

′
𝑖′ (𝑘𝑖′ )𝑤𝑖′𝑖

is 𝐿0

∑
𝑖′≠𝑖 𝛾𝑖′ |𝑤𝑖′ 𝑗𝑤𝑖′𝑖 | Lipschitz on 𝑥 𝑗 .

Construct thematrix Σ = {𝜎𝑖 𝑗 }𝑖, 𝑗∈[𝑛] with𝜎𝑖 𝑗 = 𝐿0

∑
𝑘≠𝑖 𝛾𝑘 |𝑤𝑘𝑖𝑤𝑘 𝑗 |,

we know that 𝑢𝑖 (𝒙) is Σ-near-potential respect to 𝑢 (𝒙).
By Lemma 3.2, we obtain the result and thus complete the proof.

□

Remark 3.1. The conditions in Theorem 3.3 intuitively means that

the players are close to play an individual-interest game, i.e., the non-
diagonal elements of𝑊—those describes the interactions among

different players—are small enough. In fact, from the expression of

potential 𝑢 (𝒙) = ∑
𝑖∈[𝑛] 𝛾𝑖𝑢𝑖 (𝒙), we know that the NE solution is

close to the (weighted) social optimal solution.

Theorem 3.4. Given a public goods game 𝐺 = ⟨{𝑓𝑖 (𝑘)}𝑖∈[𝑛] ,
{𝑐𝑖 (𝑥)}𝑖∈[𝑛] , {𝑋𝑖 }𝑖∈[𝑛] ,𝑊 ⟩. If the following conditions hold,

(1) 𝑓𝑖 (𝑘) is (𝛾𝑖 , 𝜎𝑖 )-close to 𝑓 (𝑘) for all 𝑖 ∈ [𝑛];
(2) 𝑓 (𝑥 + 𝑑) − 𝛾𝑖𝑐𝑖 (𝑥) is 𝑐-strongly concave on 𝑥 for all 𝑖 ∈ [𝑛]

and all 𝑑 ∈ [𝑑𝑖 , ¯𝑑𝑖 ], and 𝑓 ′ (𝑘) is 𝑐1-Lipschitz on 𝑘 , 𝑓 ′′ (𝑘) is
𝑐2-Lipschitz on 𝑘 , 𝑐, 𝑐1, 𝑐2 ∈ R+;

(3) 𝑐 > 𝜎𝑚𝑎𝑥 (𝐵), where 𝐵 = {𝛽𝑖 𝑗 }𝑖, 𝑗∈[𝑛] and 𝛽𝑖 𝑗 = 𝜎𝑖 |𝑤𝑖 𝑗 | +
𝑐1 |𝑤𝑖 𝑗 − 1| + 𝑐2

∑
𝑗∈[𝑛] |𝑤𝑖 𝑗 − 1| max{−𝑥 𝑗 , 𝑥 𝑗 },

then the NE is unique.

Remark 3.2. It’s important to note that the conditions specified

in Theorem 3.4 intuitively suggest that each element of𝑊 closely

approximates 1, and the values derived from the gains 𝑓𝑖 (𝑘)𝑖∈[𝑛] are
nearly identical (when scaled). Consequently, the game approaches

the characteristics of an identical-interest game, where the players’

actions nearly maximize the potential function 𝑢 (𝒙) = 𝑓 (∥𝒙 ∥1) −∑
𝑖∈[𝑛] 𝛾𝑖𝑐𝑖 (𝑥𝑖 ). However, the social welfare is close to 𝑛𝑓 (∥𝒙 ∥1) −∑
𝑖∈[𝑛] 𝛾𝑖𝑐𝑖 (𝑥𝑖 ), the 1

𝑛 coefficients on values means that in this case,

the free-ride phenomenon can occur.

Theorem 3.5. Given a public goods game 𝐺 = ⟨{𝑓𝑖 (𝑘)}𝑖∈[𝑛] ,
{𝑐𝑖 (𝑥)}𝑖∈[𝑛] , {𝑋𝑖 }𝑖∈[𝑛] ,𝑊 ⟩. If the following conditions hold,

(1) 𝑊 0 is positive definite and 𝜎𝑚𝑖𝑛 (𝑊 0) = 𝜎0 > 0. We also
restrict𝑤0

𝑖𝑖
= 1, ∀𝑖 ∈ [𝑛] where𝑊 0 = {𝑤0

𝑖 𝑗
}𝑖, 𝑗∈[𝑛] ;

(2) 𝑐′
𝑖
(𝑥) is 𝐿𝑖 -Lipschitz on 𝑥 for all 𝑖 ;

(3) 𝑓𝑖 (𝑘) is 𝐶𝑖 -concave on 𝑘 for all 𝑖 ;
(4) 𝜎0 > 𝜎𝑚𝑎𝑥 (Σ), where Σ = {𝜎𝑖 𝑗 }𝑖, 𝑗∈[𝑛] and 𝜎𝑖𝑖 = 0 and

𝜎𝑖 𝑗 =
2𝐿𝑖 |𝑤𝑖 𝑗 |

𝐶𝑖
+ |𝑤0

𝑖 𝑗
−𝑤𝑖 𝑗 |,

where 𝜎𝑚𝑖𝑛 (𝑊 ) represents the minimal eigenvalue of a symmetric
matrix𝑊 , then the NE is unique.

Proof Sketch of Theorem 3.5. Bayer et al. [2023] proved that,

when𝑊 is symmetric and the cost functions 𝑐𝑖 (𝑥)s are linear, then
the best-response dynamic converges. The insight is that when

𝑐𝑖 (𝑥)s are linear, each player 𝑖 has its own marginal cost 𝑐𝑖 , and
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the ideal 𝑘𝑖 such that 𝑓 ′
𝑖
(𝑘𝑖 ) = 𝑐𝑖 . Therefore, every player 𝑖 plays

the best-response to her ideal gain 𝑘𝑖 , and 𝜙 (𝒙) = 𝒌𝑇 𝒙 − 1

2
𝒙𝑇𝑊 𝒙

becomes a potential function. Moreover, the NE must be unique if

𝑊 is positive semi-definite.

Our proof follows this insight. We construct the potential 𝜙 (𝒙) =
𝒌∗𝑇 𝒙 − 1

2
𝒙𝑇𝑊 0𝒙 . Similarly define 𝑦𝑖 (𝒙−𝑖 ) as the optimal gain level

of player 𝑖 , when the strategy profile of other players is 𝒙−𝑖 . Then
the utilities in the near-potential game are constructed as,

𝜙𝑖 (𝒙) = 𝑦𝑖 (𝒙−𝑖 )𝑥𝑖 −
𝑥2

𝑖

2

−
∑︁
𝑗≠𝑖

𝑤𝑖 𝑗𝑥𝑖𝑥 𝑗 .

We then need to verify that: (1) the NE of near-potential game

corresponds to the NE of original public good game; and (2) the

constructed game {𝜙𝑖 (𝒙)}𝑖∈[𝑛] is indeed a near-potential game. We

completes the proof by Lemma 3.2. □

Remark 3.3. Theorem 3.5 intuitively suggests that, if𝑊 is close to

a positive definite matrix𝑊0, as well as that the profit functions

𝑓𝑖 (𝑘)s are more concave than cost functions 𝑐𝑖 (𝑥)s, then the NE

could be unique.

In addition to these three theorems that ensure the uniqueness

of the Nash Equilibrium (NE), we also explore a concept known

as game equivalence, which can expand the applicability of these

theorems.

Definition 3.3 (Game Equivalence). Given two public goods games

𝐺1,𝐺2
with 𝑛 players, where

𝐺 𝑗 = ({𝑓 𝑗
𝑖
}𝑖∈[𝑛] , {𝑐

𝑗
𝑖
}𝑖∈[𝑛] , {𝑋

𝑗
𝑖
= [𝑥 𝑗

𝑖
, 𝑥

𝑗
𝑖
]}𝑖∈[𝑛] ,𝑊 𝑗 ), 𝑗 ∈ {1, 2}.

We say that𝐺1
is equivalent to𝐺2

, if there is a diagonal matrix 𝐷 =

diag(𝑑1, ..., 𝑑𝑛), 𝑑𝑖 ∈ R++ and an offset vector 𝒃 ∈ R𝑛
, satisfying

that,

𝑊 2 =𝐷𝑊 1𝐷−1

𝑥2

𝑖 =𝑑𝑖𝑥
1

𝑖 + 𝑏𝑖
𝑥2

𝑖 =𝑑𝑖𝑥
1

𝑖 + 𝑏𝑖
𝑐1

𝑖 (𝑥) =𝑐
2

𝑖 (𝑑𝑖𝑥 + 𝑏𝑖 ) ∀𝑥 ∈ 𝑋 1

𝑖

𝑓 1

𝑖 (𝑘) =𝑓
2

𝑖 (𝑑𝑖𝑘 +𝑚𝑖 ) ∀𝑘 ∈ 𝐾1

𝑖

where𝑚1, ...,𝑚𝑛 are constants such that𝑚𝑖 = 𝑑𝑖
∑

𝑗∈[𝑛]
𝑤1

𝑖 𝑗𝑏 𝑗

𝑑 𝑗
.

Intuitively, Definition 3.3 says that, if𝐺1
is equivalent to𝐺2

, then

𝐺1
and𝐺2

are intrinsically same in terms of linear transformation.

Through this insight, we have following theorem.

Theorem 3.6. If two games, 𝐺1 and 𝐺2, are equivalent, then there
exists a one-to-one mapping between NEs of 𝐺1 and the NEs of 𝐺2.

From Theorem 3.6, we can easily know that the uniqueness

property of NE keep the same under equivalent class. Therefore,

we have corollary below, which can further broaden the class of

public goods game with unique NE.

Corollary 3.7. For a public goods game 𝐺1, if 𝐺1 is equivalent to
game𝐺2, and𝐺2 satisfies the conditions in Theorem 3.3, Theorem 3.4
or Theorem 3.5, then 𝐺1 has a unique NE.

4 CASE STUDY
4.1 Comparative Statics: Money Redistribution

for Welfare Analysis
In this section, we study comparative statics, i.e., how the players’

utilities will change if the model parameters are modified by an

infinitesimal amount. We characterize the infinitesimal modifica-

tion by money redistribution, i.e., replace {𝑓𝑖 (𝑘𝑖 )}𝑖∈[𝑛] by {𝑓𝑖 (𝑘𝑖 +
𝛿𝑖𝑡)}𝑖∈[𝑛] , where 𝜹 = (𝛿1, . . . , 𝛿𝑛) ∈ R𝑛

is called the direction of

money redistribution and 𝑡 ∈ R is called the change magnitude.

Overall, there is an 𝜹𝑡 shift in the gain level of players. The goal of

infinitesimal change drive us to study the case 𝑡 → 0.

In this way, the utility of player 𝑖 becomes,

𝑢𝑖 (𝒙 ; 𝑡) = 𝑓𝑖 (𝑘𝑖 + 𝛿𝑖𝑡) − 𝑐𝑖 (𝑥𝑖 ),

Denote 𝒙∗ (𝑡) as the NE when the change magnitude is 𝑡 . We

do not assume the uniqueness of NE anymore, and 𝒙∗ (𝑡) might be

not unique. However, we assume the first-order differentiability of

𝒙∗ (𝑡) with respect to 𝑡 , as well as that 𝒙∗ (𝑡) is an inner point of 𝑋 .

These assumptions are quite natural. For the first assumption, if the

game changes with an infinitesimal magnitude and players always

achieve the rational outcome, i.e., NE, then it is imaginable and intu-

itive that the outcome of players should also change minimally. The

second assumption is only technical. We denote𝑢𝑖 (𝑡) = 𝑢𝑖 (𝒙∗ (𝑡); 𝑡)
for a little abuse of notation when the context is clear. We mainly

concern about 𝑢′
𝑖
(0), which means that what the marginal change

of 𝛿 would have effect on the players utilities.

We build this result as follows.

Theorem 4.1. Assume𝑢𝑖 (𝑡) and 𝒙∗ (𝑡) are defined above, and denote
𝒙∗ = 𝒙∗ (0), 𝒌∗ =𝑊 𝒙∗, then,

𝒖′ (0) = diag(𝒇 ′ (𝒌∗)) · diag(𝒄′′ (𝒙∗) − 𝒇 ′′ (𝒌∗))(
diag(𝒄′′ (𝒙∗)) −𝑊 diag(𝒇 ′′ (𝒌∗))

)−1 𝜹

where 𝒖 (0) represents the utility profile (𝑢1 (0), 𝑢2 (0), . . . , 𝑢𝑛 (0)).

We show some examples to illustrate the implication of this

result.

Example 2. Here are some simple cases of Theorem 4.1.
(1) If the value function is linear on gain, i.e., 𝑓 ′′

𝑖
(𝑘) ≡ 0, then,

it becomes that

𝒖′ (0) = diag(𝒇 ′ (𝒌∗))𝜹

This result is pretty intuitive, since a linear value function
indicates that the NE is unique and is constant, because the
marginal values for players’ efforts are constants and mar-
ginal costs only depend on players’ own value. Therefore, the
change of money redistribution has a direct change on the
utilities.

(2) If the cost function is linear on effort, i.e., 𝑐′′
𝑖
(𝑥) ≡ 0, then, it

becomes that

𝒖′ (0) = diag(𝒇 ′ (𝒌∗))𝑊 −1𝜹

In this case, NE might be not constant and not unique (see
Example 1). Therefore, the redistribution of money will affect
the interactions of players, thus have an indirect effect on the
utilities. Specifically, the indirect effect imposes the inverse of
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𝑊—the matrix that portraits the interactions of players—to
the money redistribution 𝜹 .

(3) If we want themoney redistribution to be Pareto dominant, i.e.,
𝑢′
𝑖
(0) ≥ 0 for all players, since the first two diagonal matrices

are positive diagonal matrices, the only requirements of 𝜹 is:[
diag(𝒄′′ (𝒙∗)) −𝑊 diag(𝒇 ′′ (𝒌∗))

]−1

𝜹 ≥ 0

Besides, a linear cost would reduce the requirements to,

𝑊 −1𝜹 ≥ 0

4.2 Some Applications of Results
In this section, we propose a specific example to illustrate how

the results regarding the uniqueness of Nash equilibrium (NE) can

be applied in practice. This example is inspired by Fershtman and

Nitzan [1991], where the cost functions are modeled as quadratic

functions.

Specifically, we assume the homogeneity of players in the public

good game 𝐺 , i.e., the values of gains, costs of efforts, and action

spaces are identical among players, with differences only in the

network structure𝑊 . Therefore, we use 𝑓 (𝑘) and 𝑐 (𝑥) instead of

𝑓𝑖 (𝑘𝑖 ) and 𝑐𝑖 (𝑥𝑖 ) to represents values and costs, when the context

allows.

Assume 𝑓 (𝑘) and 𝑐 (𝑥) has following expression:

𝑓 (𝑘) =
{
𝑎𝑘 − 𝑏𝑘2

if 0 ≤ 𝑘 ≤ 𝑎
2𝑏

𝑎2

4𝑏
if 𝑘 > 𝑎

2𝑏

𝑐 (𝑥) =𝑐0

2

𝑥2
for 𝑐0 > 0

and 𝑋 = [0, 𝑥] for a sufficiently large 𝑥 such that choosing 𝑥 is

a dominated strategy for all players, due to extremely high costs

and bounded values for gains. The values and costs are quadratic

functions in their domains, with a clipping on value function at the

maximum point. We also restrict𝑤𝑖 𝑗 to be either 0 or 1.

From the expressions of 𝑓 (𝑘) and 𝑐 (𝑥), we know that 𝑐 (𝑥) is 𝑐0-

strongly convex, 𝑐′ (𝑥) is 𝑐0-Lipschitz, 𝑓 (𝑘) is 2𝑏-strongly concave

in the domain [0, 𝑎
2𝑏
] and 𝑓 ′ (𝑘) is 2𝑏-Lipschitz on the full domain.

4.2.1 The Application of Theorem 3.3. In this part, we assume that

the non-diagonal elements of𝑊 is i.i.d. generated with probability

𝑝 =
𝑝0

𝑛 equals to 1 and 0 otherwise, where 𝑝0 > 0 is a constant. We

have following theorem,

Theorem 4.2. if 𝑐0

2𝑏
> 2𝑝0 + 𝑝2

0
+
√︃
𝑛(8𝑝0 + 10𝑝2

0
+ 4𝑝3

0
), then with

probability at least 1

2
, the public good game 𝐺 has a unique NE.

Proof Sketch and Remark. This proof is done by substituting Theo-

rem 3.3 and using Chebyshev’s inequalities. Notice that 𝜎𝑚𝑎𝑥 (Σ)
can be bounded by the ∞-norm ∥Σ∥∞, which is the maximum row

sum of Σ. We extract sum of each row 𝑖 by 𝛾𝑖 , using Chebyshev’s

inequalities to bound the tail of 𝛾𝑖 and union bound to control

∥Σ∥∞ = max𝑖 𝛾𝑖 .

Notice that the result inevitably has a dependency on the square

root of 𝑛 by Chebshev’s inequality. Due to dependence between 𝜎𝑖 𝑗
and 𝜎𝑖 𝑗 ′ , we can not directly use concentration inequalities, such

as Chernoff’s inequality [Chernoff 1952], which can help decrease

the dependency to log𝑛. However, we believe that the poly log(𝑛)

dependency can be established, by the intrinsic independence on

{𝑤𝑖 𝑗 }𝑖, 𝑗∈[𝑛] , which allows for further studies.

4.2.2 The Application of Theorem 3.5 and Theorem 3.6. In this part,

we assume that𝑊 has a specific up-triangular structure, i.e.,𝑤𝑖 𝑗 = 0

if 𝑖 > 𝑗 . Next we will show that under this assumption, the NE of

public good game is unique.

Theorem 4.3. If𝑊 is an up-triangular matrix, i.e.,𝑤𝑖 𝑗 = 0 for 𝑖 > 𝑗 ,
then the public good game 𝐺 has unique NE.

Proof Sketch and Remark. In such scenarios, the conditions specified
in Theorems 3.3 to 3.5 may no longer be satisfied. However, we can

employ the technique described in Theorem 3.6 to transform the

original game 𝐺 into another game 𝐺 ′
that meets the conditions

outlined in Theorem 3.5.

Notice that this game must have unique NE. It is because the

following insight: since 𝑤𝑖 𝑗 for 𝑖 > 𝑗 means that the efforts of

players with lower identifiers 𝑗 have no externalities on players

with higher identifiers 𝑖 . Therefore, player𝑛 is playing an individual-

interest game, thus have an optimal strategy 𝑥∗𝑛 . Given 𝑥
∗
𝑛 fixed,

player 𝑛 − 1 can also determine an optimal strategy 𝑥∗
𝑛−1

. Overall,

each player can determine an optimal strategy in turn, which forms

an equilibrium. However, our proof can give a stronger results that,

if𝑤𝑖 𝑗 = 𝑂 (𝜀𝑖+1− 𝑗 )3 for 𝑖 > 𝑗 , we can also guarantee the uniqueness

of NE.
4

5 CONCLUSION
In this paper, we have presented a novel approach to understanding

networked public goods games featuring heterogeneous players and

convex cost functions. Through rigorous analysis and theoretical

explorations, we have expanded the conventional understanding of

strategic interactions in public goods provision within networked

environments. Our model, which integrates heterogeneous benefits

and convex costs, provides a more realistic portrayal of individual

contributions and the resultant dynamics compared to traditional

models with linear and homogeneous cost structures.

The theoretical insights and methodological contributions of our

study on networked public goods games with heterogeneous play-

ers and convex costs fill a significant gap in the economic theory,

and also provide new perspectives for policymakers. Specifically,

by understanding the conditions under which Nash Equilibrium

can be achieved and sustained, policymakers can better design in-

terventions and incentives in the context of the Internet economy

and social networks, that encourage optimal contribution levels to

public goods. In future research, it would be valuable to extend this

model to consider dynamic environments, where players can adjust

their strategies over time. Additionally, incorporating stochastic

elements to model uncertainty in player interactions could provide

further insights into the robustness of the model in more complex

and realistic scenarios.

3
here 𝜀 is a constant used in the proof

4
It is because after the transformation in the proof, the lower-triangular elements hold

to be𝑂 (𝜀 ) .
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A OMITTED PROOFS
A.1 Proof of Lemma 2.1
Lemma 2.1. Assume 𝑔 : 𝑋 → R, where𝑋 ⊆ R𝑑 is a convex and closed set, and 𝑔 is a differential 𝑐0-concave function. Define 𝑥∗ be the maximum
point of 𝑔(𝑥) on 𝑋 , then,

2𝑐0

(
𝑔(𝑥∗) − 𝑔(𝑥)

)
≤ ∥∇𝑔(𝑥)∥2 ∀𝑥 ∈ 𝑋 .

Proof. The case 𝑐0 = 0 is trivial. Consider 𝑐0 > 0, take maximum on both sides of Equation (1), we have

𝑔(𝑥∗) =max

𝑦∈𝑋
𝑔(𝑦)

≤ max

𝑦∈R𝑑
𝑔(𝑥) + ⟨𝑦 − 𝑥,∇𝑔(𝑥)⟩ − 𝑐0

2

∥𝑦 − 𝑥 ∥2

The maximum of RHS is achieved at 𝑦∗ = 𝑥 + 1

𝑐0

∇𝑔(𝑥), and therefore,

𝑔(𝑥∗) ≤𝑔(𝑥) + ⟨𝑦∗ − 𝑥,∇𝑔(𝑥)⟩ − 𝑐0

2

∥𝑦∗ − 𝑥 ∥2

=𝑔(𝑥) + 1

2𝑐0

∥∇𝑔(𝑥)∥2

which completes the proof. □

A.2 Proof of Theorem 2.2
Theorem 2.2. The best-response dynamic Equation (2) converges to the social optimal solution with linear rate, i.e.,

𝑆𝑊 (𝒙∗) − 𝑆𝑊 (𝒙 (𝑡)) ≤ 𝑐

𝑡
, ∀𝑡 > 0

for some 𝑐 > 0.
Moreover, if at least one of following conditions holds:
(1) all cost functions 𝑐𝑖 (𝑥) are 𝑐0-convex for some 𝑐0 > 0;
(2) all value functions 𝑓𝑖 (𝑘) are 𝑐0-concave for some 𝑐0 > 0;

then, the best-response dynamic converges to the social optimal solution with exponential rate, i.e.,

𝑆𝑊 (𝒙∗) − 𝑆𝑊 (𝒙 (𝑡)) = 𝑂 (exp(−𝑐 · 𝑡))
for some 𝑐 > 0.

Proof. Case 1: We first consider the case that one of the conditions hold. If 𝑐𝑖 (𝑥𝑖 ) is 𝑐0-convex, then we know that SW(𝒙) is 𝑐0-convex on

𝑥𝑖 . Similarly, if 𝑓𝑖 (𝑘𝑖 ) is 𝑐0-concave, since 𝑘𝑖 depends linearly on 𝑥𝑖 , we also know that SW(𝒙) is 𝑐0-convex on 𝑥𝑖 . Also if SW(𝒙) is 𝑐0-concave

on 𝑥𝑖 for all 𝑖 , then SW(𝒙) is 𝑐0-concave on 𝒙 .
As a property of 𝑐0-concave function 𝑓 (𝒙) and maximum point 𝒙∗, we have

𝑓 (𝒙∗) − 𝑓 (𝒙) ≤ 1

2𝑐0

∥∇𝑓 (𝒙)∥2 . (4)

Define the energy function 𝐸 (𝑡) = SW(𝒙∗) − SW(𝒙 (𝑡)), then

d𝐸 (𝑡)
d𝑡

= −
∑︁
𝑖∈[𝑛]

𝜕SW

𝜕𝑥𝑖
(𝒙 (𝑡)) d𝑥𝑖

d𝑡
(𝑡) = −

∑︁
𝑖∈[𝑛]

(
𝜕SW

𝜕𝑥𝑖
(𝒙 (𝑡))

)
2

= −∥∇SW(𝒙 (𝑡))∥2 .

Since SW(𝒙) is 𝑐0-concave, by Equation (4) we have ∥∇SW(𝒙 (𝑡))∥2 ≥ 2𝑐0 (SW(𝒙∗) − SW(𝒙)) = 2𝑐0𝐸 (𝑡). Therefore, we have
d𝐸 (𝑡)

d𝑡
≤ −2𝑐0𝐸 (𝑡).

By standard differential equation analysis, we have 𝐸 (𝑡) ≤ exp(−2𝑐0𝑡)𝐸 (0). Taking 𝑐 = −2𝑐0 completes the proof.

Case 2: Next, we consider the general case. Define 𝐽 (𝑡) = 𝑡 (SW(𝒙∗) − SW(𝒙 (𝑡))) + 1

2
∥𝒙∗ − 𝒙 (𝑡)∥2

. We have

d𝐽 (𝑡)
d𝑡

=SW(𝒙∗) − SW(𝒙 (𝑡)) − 𝑡 ⟨ 𝜕SW

𝜕𝒙
(𝒙 (𝑡)), d𝒙

d𝑡
⟩ − ⟨𝒙∗ − 𝒙 (𝑡), d𝒙

d𝑡
⟩

=SW(𝒙∗) − SW(𝒙 (𝑡)) − ⟨𝒙∗ − 𝒙 (𝑡),∇SW(𝒙 (𝑡))⟩ − 𝑡 ∥∇SW(𝒙 (𝑡))∥2

By concavity of SW(𝒙) we have SW(𝒙∗) − SW(𝒙 (𝑡)) ≤ ⟨𝒙∗ − 𝒙 (𝑡),∇SW(𝒙 (𝑡))⟩, then we have
d𝐽 (𝑡 )

d𝑡
≤ 0. This indicates that

𝐽 (𝑡) ≤ 𝐽 (0) = 1

2

∥𝒙∗ − 𝒙 (0)∥2
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where 𝐽 (𝑡) ≥ 𝑡 (SW(𝒙∗) − SW(𝒙 (𝑡))), and therefore

SW(𝒙∗) − SW(𝒙 (𝑡)) ≤ 1

2𝑡
∥𝒙∗ − 𝒙 (0)∥2

Taking 𝑐 =
∥𝒙∗−𝒙 (0) ∥2

2
completes the proof.

□

A.3 Proof of Theorem 3.1
Theorem 3.1. In the public good game 𝐺 = ({𝑓𝑖 }𝑖∈[𝑛] , {𝑐𝑖 }𝑖∈[𝑛] , {𝑋𝑖 }𝑖∈[𝑛] ,𝑊 ), an (pure strategy) NE always exists.

Proof. We first consider the case where all 𝑐𝑖 (𝑥𝑖 )s are 𝑐-strongly concave for some 𝑐 > 0, in which case best responses of players are

always unique and continuous. We will generalize the result to the general case in the second step.

Case 1: Strongly Convex Cost. Consider the best response function of players: BR : ×𝑖∈[𝑛]𝑋𝑖 → ×𝑖∈[𝑛]𝑋𝑖 , where BR𝑖 (𝒙) represents the
best response of player 𝑖 given the effort profile 𝒙−𝑖 , omitting the dummy variable 𝑥𝑖 .

Consider the utility function of player 𝑖:

𝑢𝑖 (𝒙) = 𝑓𝑖 ©­«
∑︁
𝑗∈[𝑛]

𝑤𝑖 𝑗𝑥 𝑗
ª®¬ − 𝑐𝑖 (𝑥𝑖 )

BR𝑖 (𝒙) = arg max

𝑥 ′
𝑖

𝑢𝑖 (𝑥 ′𝑖 , 𝒙−𝑖 )

Now we will show the continuity of BR𝑖 (𝒙). We assume the negation holds. It indicates that there is two sequence {𝒙 𝑗

𝑘
}𝑘∈N+ , 𝑗 ∈ {1, 2}

such that lim 𝒙1

𝑘
= lim 𝒙2

𝑘
but lim BR𝑖 (𝒙1

𝑘
) ≠ lim BR𝑖 (𝒙2

𝑘
) or one of the limitations do not exist. If the latter hold, since the compactness of 𝑋

we can choose a sub-sequence of {𝒙 𝑗

𝑘
} such that the limitation of BR𝑖 (𝒙 𝑗

𝑘
) exists for 𝑗 = 1, 2. Therefore we only consider the former case.

Let 𝑑 = ∥ lim BR𝑖 (𝒙1

𝑘
) − lim BR𝑖 (𝒙2

𝑘
)∥. By optimality of BR𝑖 (𝒙 𝑗

𝑘
), we have

𝑢𝑖 (BR𝑖 (𝒙 𝑗

𝑘
), 𝒙 𝑗

𝑘,−𝑖 ) ≥ 𝑢𝑖 (BR𝑖 (𝒙− 𝑗

𝑘
, 𝒙 𝑗

𝑘,−𝑖 ) +
𝑐

2

∥BR𝑖 (𝒙 𝑗

𝑘
) − BR𝑖 (𝒙− 𝑗

𝑘
)∥2, 𝑗 = 1, 2

Sum up with 𝑗 = 1, 2, we have

2∑︁
𝑗=1

[
𝑢𝑖 (BR𝑖 (𝒙 𝑗

𝑘
), 𝒙 𝑗

𝑘,−𝑖 ) − 𝑢𝑖 (BR𝑖 (𝒙 𝑗

𝑘
), 𝒙− 𝑗

𝑘,−𝑖 )
]
≥ 𝑐 ∥BR𝑖 (𝒙1

𝑘
) − BR𝑖 (𝒙2

𝑘
)∥2

Then taking limits of 𝑘 → ∞, we know that LHS becomes 0 and RHS becomes 𝑐𝑑2 > 0, which leads a contradiction.

Since ×𝑖∈[𝑛]𝑋𝑖 is a bounded convex set, by Brouwer’s fixed-point theorem, we know that there exists 𝒙 ∈ 𝑋 such that BR(𝒙) = 𝒙 , which
indicates that 𝒙 is an NE.

Case 2: General Convex Cost. To deal with the case that 𝑐𝑖 (𝑥𝑖 ) might be not strongly concave, we use the technique of utility reshaping.

Specifically, we define another public good game𝐺𝛽 = ({𝑓𝑖 }𝑖∈[𝑛] , {𝑐
𝛽

𝑖
}𝑖∈[𝑛] {𝑋𝑖 }𝑖∈[𝑛] ,𝑊 ) where 𝛽 > 0 and 𝑐𝛽 (𝑥𝑖 ) = 𝑐 (𝑥𝑖 ) + 𝛽𝑥2

𝑖
. It’s obvious

that in public good game 𝐺𝛽
, the cost functions are 𝛽-strongly concave, and the NE must exist.

We denote an NE of𝐺𝛽
as 𝒙𝛽 . The next step is to construct a strategy profile 𝒙 , from 𝒙𝛽 for 𝛽 > 0, such that 𝒙 is an NE of𝐺 . Notice that a

simple limit may not work, since there is no guarantee that 𝒙𝛽 is continuous with 𝛽 , even that 𝒙𝛽 might be unmeasurable with 𝛽 .

To resolve this issue, we notice that 𝒙𝛽 ∈ 𝑋 where 𝑋 is a compact set. By the Bolzano-Weierstrass theorem, we know that there exists a

convergent subsequence 𝒙𝛽𝑘 → 𝒙 for some 𝒙 ∈ 𝑋 and 𝛽𝑘
𝑘→∞−→ 0, 𝑘 ∈ Z+.

Finally we verify the NE property of 𝒙 . Notice that 𝑋 is compact again, we know that 𝑐𝛽𝑘 (𝑥𝑖 ) converges to 𝑐 (𝑥𝑖 ) consistently, therefore,
𝑢
𝛽

𝑖
(𝒙) = 𝑓𝑖 (𝑘𝑖 ) − 𝑐𝛽𝑘𝑖 (𝑥𝑖 ) also converges to 𝑢𝑖 (𝒙) consistently. Take limit on both sides of following equality,

𝑢
𝛽𝑘
𝑖

(𝒙𝛽𝑘 ) = max

𝑥 ′
𝑖
∈𝑋𝑖

𝑢
𝛽𝑘
𝑖

(𝑥 ′𝑖 , 𝒙
𝛽𝑘
−𝑖 ),

we achieve that,

𝑢𝑖 (𝒙) = max

𝑥 ′
𝑖
∈𝑋𝑖

𝑢𝑖 (𝑥 ′𝑖 , 𝒙−𝑖 ),

which indicates that 𝒙 is an NE of 𝐺 .

□
11
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A.4 The derivation of Lemma 3.2 with the results of concave games in Rosen [1965]
Lemma 3.2. For a (𝜸 , Σ)-near-potential game w.r.t. potential function 𝑢 (𝒙), containing 𝑛 players, if the following holds

(1) 𝑢 (𝒙) is 𝑐-strongly concave on 𝒙 ;
(2) 𝑐 > 𝜎𝑚𝑎𝑥 (Σ),

where 𝜎𝑚𝑎𝑥 (·) represents the maximum singular value of a matrix, then the near-potential game has a unique NE 𝒙∗. Moreover, the 𝜸 -scaled
pseudo-gradient ascent dynamic 𝒙 (𝑡) with arbitrary initial point 𝒙 (0) converges to the NE with exponential rate, i.e., there is 𝑐0 > 0 such that

∥𝒙 (𝑡) − 𝒙∗∥ = 𝑂 (exp(−𝑐0 · 𝑡)).

Proof. To prove Lemma 3.2, we only need to check the diagonal strictly concavity of the public good game.

Denote 𝑔(𝒙,𝜸 ) = (𝛾1 · 𝜕𝑢1

𝜕𝑥1

(𝒙), . . . , 𝛾𝑛 · 𝜕𝑢𝑛
𝜕𝑥𝑛

(𝒙)) and 𝐺 (𝒙,𝜸 ) be the Jacobian of 𝑔(𝒙,𝜸 ) with respect to 𝒙 . Rosen [1965] shows that if

(𝐺 (𝒙,𝜸 ) +𝐺𝑇 (𝒙,𝜸 )) is negative definite for all 𝒙 where 𝐺𝑇
represents the transpose of 𝐺 , then the original game must be diagonal strictly

concave.

Now we compute the 𝐺 (𝒙,𝜸 ) directly.

𝐺 (𝒙,𝜸 ) =


𝛾1 · 𝜕2𝑢1

𝜕𝑥2

1

(𝒙) · · · 𝛾1 · 𝜕2𝑢1

𝜕𝑥1𝜕𝑥𝑛
(𝒙)

.

.

.
. . .

.

.

.

𝛾𝑛 · 𝜕2𝑢𝑛
𝜕𝑥𝑛𝑥1

(𝒙) · · · 𝛾𝑛 · 𝜕2𝑢𝑛
𝜕𝑥𝑛𝜕𝑥𝑛

(𝒙)


Let 𝐻 (𝒙) be the Hessian matrix of 𝑢 (𝒙). We have that

𝐺 (𝒙,𝜸 ) =𝐻 (𝒙) +


𝜕2 (𝛾1𝑢1−𝑢 )

𝜕𝑥2

1

(𝒙) · · · 𝜕2 (𝛾1𝑢1−𝑢 )
𝜕𝑥1𝜕𝑥𝑛

(𝒙)
.
.
.

. . .
.
.
.

𝜕2 (𝛾𝑢𝑛−𝑢 )
𝜕𝑥𝑛𝑥1

(𝒙) · · · 𝜕2 (𝛾𝑢𝑛−𝑢 )
𝜕𝑥𝑛𝜕𝑥𝑛

(𝒙)


≜𝐻 (𝒙) + 𝐼 (𝒙,𝜸 )

By 𝑐-concavity of 𝑢 (𝒙), we know that 𝐻 (𝒙) + 𝐻𝑇 (𝒙) is negative definite with largest eigenvalue smaller than −2𝑐 .

By (𝜸 , Σ) near-potential property of the public good game, we know that the term | 𝜕 (𝛾𝑖𝑢𝑖−𝑢 )𝜕𝑥𝑖𝜕𝑥 𝑗
(𝒙) | ≤ 𝜎𝑖 𝑗 . Therefore, the maximum

eigenvalue of 𝐼 (𝒙,𝜸 ) + 𝐼𝑇 (𝒙,𝜸 ) can be upper bounded by the maximum eigenvalue of Σ + Σ𝑇 , which is also upper bounded by 2𝜎𝑚𝑎𝑥 (Σ).
Above all, for all 𝒙 ≠ 0,

𝒙𝑇𝐺 (𝒙,𝜸 )𝒙 =𝒙𝑇𝐻 (𝒙)𝒙 + 𝒙𝑇 𝐼 (𝒙,𝜸 )𝒙

≤ − 𝑐 ∥𝒙 ∥2 + ∥𝒙𝑇 ∥∥𝐼 (𝒙,𝜸 )𝒙 ∥
≤ − 𝑐 ∥𝒙 ∥2 + ∥𝒙 ∥𝜎𝑚𝑎𝑥 (𝐼 (𝒙,𝜸 ))∥𝒙 ∥
≤ − 𝑐 ∥𝒙 ∥2 + ∥𝒙 ∥𝜎𝑚𝑎𝑥 (Σ)∥𝒙 ∥
=(𝜎𝑚𝑎𝑥 (Σ) − 𝑐)∥𝒙 ∥2

< 0

Therefore, the public good game is diagonal strictly concave, and we completes the proof.

□

A.5 A Self-contained Proof of Lemma 3.2
Proof. Step 1: The uniqueness of NE.
We prove the uniqueness of NE mainly by constructing a contraction mapping and using Banach fixed-point theorem. The contraction

mapping is constructed by descritized version of best-response dynamic:

𝑥 ′𝑖 = 𝑔𝑖 (𝒙) = 𝑥𝑖 + 𝜀𝛾𝑖
𝜕𝑢𝑖

𝜕𝑥𝑖
(𝑥𝑖 , 𝒙−𝑖 ), ∀𝑖 ∈ [𝑛]

for some 𝜀 > 0 small enough. Now we prove that 𝑔 : 𝑋 → 𝑋 is a contraction mapping.

12
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Consider two effort profiles 𝒙,𝒚 ∈ 𝑋 , we have that

∥𝑔(𝒙) − 𝑔(𝒚)∥2 =
∑︁
𝑖∈[𝑛]

(𝑔𝑖 (𝒙) − 𝑔𝑖 (𝒚))2

=
∑︁
𝑖∈[𝑛]

(
𝑥𝑖 + 𝜀𝛾𝑖

𝜕𝑢𝑖

𝜕𝑥𝑖
(𝑥𝑖 , 𝒙−𝑖 ) − 𝑦𝑖 − 𝜀𝛾𝑖

𝜕𝑢𝑖

𝜕𝑥𝑖
(𝑦𝑖 ,𝒚−𝑖 )

)
2

=∥𝒙 −𝒚∥2 + 𝜀⟨𝒙 −𝒚, 𝛾𝑖

(
𝜕𝑢𝑖

𝜕𝑥𝑖
(𝑥𝑖 , 𝒙−𝑖 ) −

𝜕𝑢𝑖

𝜕𝑥𝑖
(𝑦𝑖 ,𝒚−𝑖 )

)
𝑖∈[𝑛]

⟩

+𝜀2

∑︁
𝑖∈[𝑛]

𝛾2

𝑖

(
𝜕𝑢𝑖

𝜕𝑥𝑖
(𝑥𝑖 , 𝒙−𝑖 ) −

𝜕𝑢𝑖

𝜕𝑥𝑖
(𝑦𝑖 ,𝒚−𝑖 )

)
2

We focus on 𝜀 term:

⟨𝒙 −𝒚, 𝛾𝑖

(
𝜕𝑢𝑖

𝜕𝑥𝑖
(𝑥𝑖 , 𝒙−𝑖 ) −

𝜕𝑢𝑖

𝜕𝑥𝑖
(𝑦𝑖 ,𝒚−𝑖 )

)
𝑖∈[𝑛]

⟩

=⟨𝒙 −𝒚,
𝜕𝑢

𝜕𝒙
(𝒙) − 𝜕𝑢

𝜕𝒙
(𝒚)⟩ + ⟨𝒙 −𝒚,

(
𝜕(𝛾𝑖𝑢𝑖 − 𝑢)

𝜕𝑥𝑖
(𝑥𝑖 , 𝒙−𝑖 ) −

𝜕(𝛾𝑖𝑢𝑖 − 𝑢)
𝜕𝑥𝑖

(𝑦𝑖 ,𝒚−𝑖 )
)
𝑖∈[𝑛]

⟩

Since the 𝑐-concavity of 𝑢 (𝒙), we have

⟨𝒙 −𝒚,
𝜕𝑢

𝜕𝒙
(𝒙) − 𝜕𝑢

𝜕𝒙
(𝒚)⟩ ≤ −𝑐 ∥𝒙 −𝒚∥2

By 𝜎𝑖 𝑗 -Lipschitzness of
𝜕 (𝛾𝑖𝑢𝑖−𝑢 )

𝜕𝑥𝑖
(𝒙) on 𝑥 𝑗 , we have

⟨𝒙 −𝒚,

(
𝜕(𝛾𝑖𝑢𝑖 − 𝑢)

𝜕𝑥𝑖
(𝑥𝑖 , 𝒙−𝑖 ) −

𝜕(𝛾𝑖𝑢𝑖 − 𝑢)
𝜕𝑥𝑖

(𝑦𝑖 ,𝒚−𝑖 )
)
𝑖∈[𝑛]

⟩

≤
∑︁
𝑖∈[𝑛]

(
𝜕(𝛾𝑖𝑢𝑖 − 𝑢)

𝜕𝑥𝑖
(𝑥𝑖 , 𝒙−𝑖 ) −

𝜕(𝛾𝑖𝑢𝑖 − 𝑢)
𝜕𝑥𝑖

(𝑦𝑖 ,𝒚−𝑖 )
)
|𝑥𝑖 − 𝑦𝑖 |

≤
∑︁
𝑖∈[𝑛]

∑︁
𝑗∈[𝑛]

𝜎𝑖 𝑗 |𝑥 𝑗 − 𝑦 𝑗 | |𝑥𝑖 − 𝑦𝑖 |

=∥𝒙 −𝒚∥2

∑︁
𝑖∈[𝑛]

∑︁
𝑗∈[𝑛]

𝜎𝑖 𝑗𝑧𝑖𝑧 𝑗

=∥𝒙 −𝒚∥2𝒛𝑇 Σ𝒛

≤𝜎𝑚𝑎𝑥 (Σ)∥𝒙 −𝒚∥2

where in the third equality, 𝑧𝑖 :=
|𝑥𝑖−𝑦𝑖 |
∥𝒙−𝒚 ∥ , we have ∥𝑧𝑖 ∥ = 1, notice that 𝜎𝑚𝑎𝑥 (Σ) = max∥𝒛 ∥=∥𝒛′ ∥=1

𝒛𝑇 Σ𝒛′.
Therefore, the 𝜀 term:

⟨𝒙 −𝒚, 𝛾𝑖

(
𝜕𝑢𝑖

𝜕𝑥𝑖
(𝑥𝑖 , 𝒙−𝑖 ) −

𝜕𝑢𝑖

𝜕𝑥𝑖
(𝑦𝑖 ,𝒚−𝑖 )

)
𝑖∈[𝑛]

⟩

≤(𝜎𝑚𝑎𝑥 − 𝑐)∥𝒙 −𝒚∥2

Therefore, we can choose 𝜀 so small such that ∥𝑔(𝒙) −𝑔(𝒚)∥2 ≤ (1 + 𝜀
2
(𝜎𝑚𝑎𝑥 − 𝑐))∥𝒙 −𝒚∥2 < ∥𝒙 −𝒚∥2

for all 𝒙,𝒚, which indicates that 𝑔

is a contraction mapping. By Banach fixed-point theorem, we know that there exists a unique fixed point 𝒙∗ of 𝑔, which means that there is a

unique 𝒙∗ such that
𝜕𝑢𝑖
𝜕𝑥𝑖

(𝒙∗) = 0 for all 𝑖 , indicating that 𝒙∗ is the unique NE.
Step 2: The exponential convergence rate.
To do this, we aim at constructing an energy function 𝐸 (𝒙) such that it holds with the following properties:

• 𝐸 (𝒙) ≥ 0 for all 𝒙 , the equality holds if 𝒙 = 𝒙∗.
• d𝐸 (𝒙 (𝑡 ) )

d𝑡
≤ −𝑝0𝐸 (𝒙 (𝑡)) for some 𝑐0 > 0.

As long as these properties hold, we immediately get that 𝐸 (𝒙 (𝑡)) ≤ 𝐸 (𝒙 (0)) exp(−𝑝0𝑡), take 𝑐0 = 𝑝0 completes the proof.

We first define the energy function 𝐸 (𝒙) = 𝑢 (𝒙∗) − 𝑢 (𝒙) + ⟨𝒙 − 𝒙∗,∇𝑢 (𝒙∗)⟩. Since 𝑢 (𝒙) is a concave function, we know that,

𝑢 (𝑦) − 𝑢 (𝑥) ≤ ⟨𝑦 − 𝑥,∇𝑢 (𝑥)⟩
Take 𝑥 = 𝒙∗ and 𝑦 = 𝒙 , we derive that 𝐸 (𝒙) ≥ 0 for all 𝒙 . When 𝒙 = 𝒙∗, we have 𝐸 (𝒙∗) = 0. We also know that 𝐸 (𝒙) is 𝑐-strongly convex

function.
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By little computation and define 𝑣𝑖 (𝒙) = 𝛾𝑖𝑢𝑖 (𝒙) − 𝑢 (𝒙),

𝜕𝐸

𝜕𝒙
(𝒙) =

(
− 𝜕𝑢
𝜕𝒙

(𝒙) + 𝜕𝑢

𝜕𝒙
(𝒙∗)

)
d𝑥𝑖

d𝑡
(𝑡) =𝛾𝑖

𝜕𝑢𝑖

𝜕𝑥𝑖
(𝒙 (𝑡)) = 𝜕𝑣𝑖

𝜕𝑥𝑖
(𝒙 (𝑡)) + 𝜕𝑢

𝜕𝑥𝑖
(𝒙 (𝑡)) = 𝜕𝑣𝑖

𝜕𝑥𝑖
(𝒙 (𝑡)) + 𝜕𝑢

𝜕𝑥𝑖
(𝒙∗) − 𝜕𝐸

𝜕𝑥𝑖
(𝒙 (𝑡))

Next, we compute the derivative of 𝐸 (𝒙 (𝑡)):

d𝐸

d𝑡
(𝒙 (𝑡)) = ⟨ 𝜕𝐸

𝜕𝒙
(𝒙 (𝑡)), d𝒙

d𝑡
(𝑡)⟩

= − ∥ 𝜕𝐸
𝜕𝒙

(𝒙 (𝑡))∥2 · · · first term

+⟨ 𝜕𝐸
𝜕𝒙

(𝒙 (𝑡)), 𝜕𝑢
𝜕𝒙

(𝒙∗)⟩ +
∑︁
𝑖∈[𝑛]

𝜕𝑣𝑖

𝜕𝑥𝑖
(𝒙 (𝑡)) 𝜕𝐸

𝜕𝑥𝑖
(𝒙 (𝑡)) · · · second term

We also know
𝜕𝑢𝑖
𝜕𝑥𝑖

(𝒙∗) = 0 by definition of NE. Combining them on the second term, we achieve,

second term =
∑︁
𝑖∈[𝑛]

𝜕𝐸

𝜕𝑥𝑖
(𝒙 (𝑡)) · 𝜕𝑢

𝜕𝑥𝑖
(𝒙∗) +

∑︁
𝑖∈[𝑛]

𝜕𝑣𝑖

𝜕𝑥𝑖
(𝒙 (𝑡)) · 𝜕𝐸

𝜕𝑥𝑖
(𝒙 (𝑡))

=
∑︁
𝑖∈[𝑛]

𝜕𝐸

𝜕𝑥𝑖
(𝒙 (𝑡)) · 𝜕(𝑢 − 𝛾𝑖𝑢𝑖 )

𝜕𝑥𝑖
(𝒙∗) +

∑︁
𝑖∈[𝑛]

𝜕𝑣𝑖

𝜕𝑥𝑖
(𝒙 (𝑡)) · 𝜕𝐸

𝜕𝑥𝑖
(𝒙 (𝑡))

= −
∑︁
𝑖∈[𝑛]

𝜕𝐸

𝜕𝑥𝑖
(𝒙 (𝑡)) · 𝜕𝑣𝑖

𝜕𝑥𝑖
(𝒙∗) +

∑︁
𝑖∈[𝑛]

𝜕𝑣𝑖

𝜕𝑥𝑖
(𝒙 (𝑡)) · 𝜕𝐸

𝜕𝑥𝑖
(𝒙 (𝑡))

=
∑︁
𝑖∈[𝑛]

𝜕𝐸

𝜕𝑥𝑖
(𝒙 (𝑡)) · ( 𝜕𝑣𝑖

𝜕𝑥𝑖
(𝒙 (𝑡)) − 𝜕𝑣𝑖

𝜕𝑥𝑖
(𝒙∗))

Denote Δ𝑣𝑖 =
𝜕𝑣𝑖
𝜕𝑥𝑖

(𝒙 (𝑡)) − 𝜕𝑣𝑖
𝜕𝑥𝑖

(𝒙∗) and Δ𝒗 = (Δ𝑣1, ...,Δ𝑣𝑛), we have,

second term =⟨ 𝜕𝐸
𝜕𝒙

(𝒙 (𝑡)),Δ𝒗⟩

≤∥ 𝜕𝐸
𝜕𝒙

(𝒙 (𝑡))∥∥Δ𝒗∥

We also know that
𝜕𝑣𝑖
𝜕𝑥𝑖

is 𝜎𝑖 𝑗 -Lipschitz on 𝑥 𝑗 , now we consider ∥Δ𝑣𝑖 ∥,

∥Δ𝑣𝑖 ∥ = max

∥𝑧 ∥=1

∑︁
𝑖∈[𝑛]

𝑧𝑖Δ𝑣𝑖

≤ max

∥𝑧 ∥=1

∑︁
𝑖∈[𝑛]

∑︁
𝑗∈[𝑛]

𝑧𝑖𝜎𝑖 𝑗 |𝑥 𝑗 (𝑡) − 𝑥∗𝑗 |

≤∥𝒙 (𝑡) − 𝒙∗∥ max

∥𝑧 ∥=1,∥𝑦 ∥=1

∑︁
𝑖∈[𝑛]

∑︁
𝑗∈[𝑛]

𝜎𝑖 𝑗𝑧𝑖𝑦 𝑗

=∥𝒙 (𝑡) − 𝒙∗∥𝜎𝑚𝑎𝑥 (Σ)

≤𝜎𝑚𝑎𝑥 (Σ)
𝑐

∥ 𝜕𝐸
𝜕𝒙

(𝒙 (𝑡))∥

Combining these, we have,

d𝐸

d𝑡
(𝒙 (𝑡)) ≤ − (1 − 𝜎𝑚𝑎𝑥 (Σ)

𝑐
)∥ 𝜕𝐸
𝜕𝒙

(𝒙 (𝑡))∥2

≤ − 2(𝑐 − 𝜎𝑚𝑎𝑥 (Σ))𝐸 (𝒙 (𝑡))

Take 𝑝0 = 2(𝑐 − 𝜎𝑚𝑎𝑥 (Σ)), we complete the proof.

□
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A.6 Proof of Theorem 3.4
Theorem 3.4. Given a public goods game 𝐺 = ⟨{𝑓𝑖 (𝑘)}𝑖∈[𝑛] , {𝑐𝑖 (𝑥)}𝑖∈[𝑛] , {𝑋𝑖 }𝑖∈[𝑛] ,𝑊 ⟩. If the following conditions hold,

(1) 𝑓𝑖 (𝑘) is (𝛾𝑖 , 𝜎𝑖 )-close to 𝑓 (𝑘) for all 𝑖 ∈ [𝑛];
(2) 𝑓 (𝑥 + 𝑑) − 𝛾𝑖𝑐𝑖 (𝑥) is 𝑐-strongly concave on 𝑥 for all 𝑖 ∈ [𝑛] and all 𝑑 ∈ [𝑑𝑖 , ¯𝑑𝑖 ], and 𝑓 ′ (𝑘) is 𝑐1-Lipschitz on 𝑘 , 𝑓 ′′ (𝑘) is 𝑐2-Lipschitz on

𝑘 , 𝑐, 𝑐1, 𝑐2 ∈ R+;
(3) 𝑐 > 𝜎𝑚𝑎𝑥 (𝐵), where 𝐵 = {𝛽𝑖 𝑗 }𝑖, 𝑗∈[𝑛] and 𝛽𝑖 𝑗 = 𝜎𝑖 |𝑤𝑖 𝑗 | + 𝑐1 |𝑤𝑖 𝑗 − 1| + 𝑐2

∑
𝑗∈[𝑛] |𝑤𝑖 𝑗 − 1| max{−𝑥 𝑗 , 𝑥 𝑗 },

then the NE is unique.

Proof. consider the potential function 𝑢 (𝒙) = 𝑓 (∑𝑖∈[𝑛] 𝑥𝑖 ) −
∑
𝑖∈[𝑛] 𝛾𝑖𝑐𝑖 (𝑥𝑖 ). We have that 𝑢 (𝒙) is 𝑐-strongly concave on 𝑥𝑖 for all 𝑖 ,

thus 𝑐-strongly concave on 𝒙 .
We also derive that,

𝜕𝑢

𝜕𝑥𝑖
(𝒙) =𝑓 ′ (

∑︁
𝑖∈[𝑛]

𝑥𝑖 ) − 𝛾𝑖𝑐′𝑖 (𝑥𝑖 )

𝛾𝑖
𝜕𝑢𝑖

𝜕𝑥𝑖
(𝒙) =𝛾𝑖 𝑓 ′𝑖 (𝑥𝑖 +

∑︁
𝑗≠𝑖

𝑤𝑖 𝑗𝑥 𝑗 ) − 𝛾𝑖𝑐′𝑖 (𝑥𝑖 )

𝜕(𝛾𝑖𝑢𝑖 − 𝑢)
𝜕𝑥𝑖

(𝒙) =𝛾𝑖 𝑓 ′𝑖 (𝑥𝑖 +
∑︁
𝑗≠𝑖

𝑤𝑖 𝑗𝑥 𝑗 ) − 𝑓 ′ (
∑︁
𝑖∈[𝑛]

𝑥𝑖 )

=𝛾𝑖 𝑓
′
𝑖 (𝑥𝑖 +

∑︁
𝑗≠𝑖

𝑤𝑖 𝑗𝑥 𝑗 ) − 𝑓 ′ (𝑥𝑖 +
∑︁
𝑗≠𝑖

𝑤𝑖 𝑗𝑥 𝑗 ) · · · first term

+𝑓 ′ (
∑︁
𝑗∈[𝑛]

𝑤𝑖 𝑗𝑥 𝑗 ) − 𝑓 ′ (
∑︁
𝑖∈[𝑛]

𝑥𝑖 ) · · · second term

For the first term, since 𝑓𝑖 (𝑘) is (𝛾𝑖 , 𝜎𝑖 )-close to 𝑓 (𝑘), we know that 𝛾𝑖 𝑓
′
𝑖
(𝑥𝑖 +

∑
𝑗≠𝑖 𝑤𝑖 𝑗𝑥 𝑗 ) − 𝛾 𝑓 ′ (𝑥𝑖 +

∑
𝑗≠𝑖 𝑤𝑖 𝑗𝑥 𝑗 ) is 𝜎𝑖 |𝑤𝑖 𝑗 |-Lipschitz on

𝑥 𝑗 for all 𝑗 .

For the second term, by Lipschitzness of 𝑓 ′ (𝑘) and 𝑓 ′′ (𝑘) and some computations, consider two points 𝑥 𝑗 and 𝑥 𝑗 + 𝛿 ,

| ©­«𝑓 ′ (
∑︁
𝑗∈[𝑛]

𝑤𝑖 𝑗𝑥 𝑗 ) − 𝑓 ′ (
∑︁
𝑖∈[𝑛]

𝑥𝑖 )ª®¬ − ©­«𝑓 ′ (
∑︁
𝑘≠𝑗

𝑤𝑖𝑘𝑥𝑘 +𝑤𝑖 𝑗 (𝑥 𝑗 + 𝛿)) − 𝑓 ′ (
∑︁
𝑘≠𝑗

𝑥𝑘 + (𝑥 𝑗 + 𝛿))ª®¬ |
=| ©­«𝑓 ′ (

∑︁
𝑗∈[𝑛]

𝑤𝑖 𝑗𝑥 𝑗 ) − 𝑓 ′ (
∑︁
𝑗∈[𝑛]

𝑤𝑖 𝑗𝑥 𝑗 + 𝛿)ª®¬ − ©­«𝑓 ′ (
∑︁
𝑖∈[𝑛]

𝑥𝑖 ) − 𝑓 ′ (
∑︁
𝑖∈[𝑛]

𝑥𝑖 + 𝛿)ª®¬
+𝑓 ′ (

∑︁
𝑗∈[𝑛]

𝑤𝑖 𝑗𝑥 𝑗 + 𝛿) − 𝑓 ′ (
∑︁
𝑗∈[𝑛]

𝑤𝑖 𝑗𝑥 𝑗 +𝑤𝑖 𝑗𝛿) |

≤| ©­«𝑓 ′ (
∑︁
𝑗∈[𝑛]

𝑤𝑖 𝑗𝑥 𝑗 ) − 𝑓 ′ (
∑︁
𝑗∈[𝑛]

𝑤𝑖 𝑗𝑥 𝑗 + 𝛿)ª®¬ − ©­«𝑓 ′ (
∑︁
𝑖∈[𝑛]

𝑥𝑖 ) − 𝑓 ′ (
∑︁
𝑖∈[𝑛]

𝑥𝑖 + 𝛿)ª®¬ | · · · first term
+|𝑓 ′ (

∑︁
𝑗∈[𝑛]

𝑤𝑖 𝑗𝑥 𝑗 + 𝛿) − 𝑓 ′ (
∑︁

𝑘∈[𝑛]
𝑤𝑖𝑘𝑥𝑘 +𝑤𝑖 𝑗𝛿) | · · · second term

The first term is upper bounded by 𝛿
∑

𝑗∈[𝑛] |𝑤𝑖 𝑗 − 1| max{−𝑥 𝑗 , 𝑥 𝑗 }𝑐2
, while the second term is upper bounded by |𝑤𝑖 𝑗 − 1|𝛿𝑐1

. Overall,

this term is 𝑐1 |𝑤𝑖 𝑗 − 1| + 𝑐2
∑

𝑗∈[𝑛] |𝑤𝑖 𝑗 − 1| max{−𝑥 𝑗 , 𝑥 𝑗 }-Lipschitz on 𝑥 𝑗 .
Above all, 𝑢𝑖 is (𝛾𝑖 , 𝛽𝑖 𝑗 )-close to 𝑢 on 𝑥 𝑗 , where

𝛽𝑖 𝑗 = 𝜎𝑖 |𝑤𝑖 𝑗 | + 𝑐1 |𝑤𝑖 𝑗 − 1| + 𝑐2

∑︁
𝑗∈[𝑛]

|𝑤𝑖 𝑗 − 1| max{−𝑥 𝑗 , 𝑥 𝑗 }

Therefore, we completes the proof by Lemma 3.2.

□

A.7 Proof of Theorem 3.5
Theorem 3.5. Given a public goods game 𝐺 = ⟨{𝑓𝑖 (𝑘)}𝑖∈[𝑛] , {𝑐𝑖 (𝑥)}𝑖∈[𝑛] , {𝑋𝑖 }𝑖∈[𝑛] ,𝑊 ⟩. If the following conditions hold,

(1) 𝑊 0 is positive definite and 𝜎𝑚𝑖𝑛 (𝑊 0) = 𝜎0 > 0. We also restrict𝑤0

𝑖𝑖
= 1, ∀𝑖 ∈ [𝑛] where𝑊 0 = {𝑤0

𝑖 𝑗
}𝑖, 𝑗∈[𝑛] ;
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(2) 𝑐′
𝑖
(𝑥) is 𝐿𝑖 -Lipschitz on 𝑥 for all 𝑖 ;

(3) 𝑓𝑖 (𝑘) is 𝐶𝑖 -concave on 𝑘 for all 𝑖 ;
(4) 𝜎0 > 𝜎𝑚𝑎𝑥 (Σ), where Σ = {𝜎𝑖 𝑗 }𝑖, 𝑗∈[𝑛] and 𝜎𝑖𝑖 = 0 and 𝜎𝑖 𝑗 =

2𝐿𝑖 |𝑤𝑖 𝑗 |
𝐶𝑖

+ |𝑤0

𝑖 𝑗
−𝑤𝑖 𝑗 |,

where 𝜎𝑚𝑖𝑛 (𝑊 ) represents the minimal eigenvalue of a symmetric matrix𝑊 , then the NE is unique.

Proof. Bayer et al. [2023] shows that, when𝑊 is symmetric and the cost functions 𝑐𝑖 (𝑥)s are linear, then the best-response dynamic

converges. The insight is that when 𝑐𝑖 (𝑥)s are linear, each player 𝑖 has its own marginal cost 𝑐𝑖 , and the ideal 𝑘𝑖 such that 𝑓 ′
𝑖
(𝑘𝑖 ) = 𝑐𝑖 .

Therefore, every player 𝑖 best-response to her ideal gain 𝑘𝑖 , and 𝜙 (𝒙) = 𝒌𝑇 𝒙 − 1

2
𝒙𝑇𝑊 𝒙 becomes a potential function. Moreover, the NE must

be unique if𝑊 is positive semi-definite.

Our proof follows this insight, and try to utilize the conclusion of Lemma 3.2. By Theorem 3.1 we know that there is an NE 𝒙∗, let
𝒌∗ =𝑊 𝒙∗ be the gain profile in the equilibrium level. We construct the potential following,

𝑢 (𝒙) = 𝒌∗𝑇 𝒙 − 1

2

𝒙𝑇𝑊0𝒙

It’s easy to observe that 𝑢 (𝒙) is 𝜎0-strongly concave.

Now consider 𝑦𝑖 (𝒙−𝑖 ) as the best response function of player 𝑖 , i.e., 𝑦𝑖 (𝒙−𝑖 ) is the gain level 𝑘𝑖 such that, it’s optimal for player 𝑖 to choose

the effort level 𝑥𝑖 such that her gain level becomes 𝑘𝑖 . If we define 𝑢
0

𝑖
(𝑘𝑖 , 𝒙−𝑖 ) is the utility of player 𝑖 when other players play 𝒙−𝑖 and the

gain level of player 𝑖 is 𝑘𝑖 , we can write that,

𝑢0

𝑖 (𝑘𝑖 , 𝒙−𝑖 ) =𝑓𝑖 (𝑘𝑖 ) − 𝑐𝑖 (𝑘𝑖 −
∑︁
𝑗≠𝑖

𝑤𝑖 𝑗𝑥 𝑗 )

=(−𝑐0

𝑖 (𝑘𝑖 , 𝒙−𝑖 )) + 𝑓𝑖 (𝑘𝑖 )

where 𝑐0

𝑖
(𝑘𝑖 , 𝒙−𝑖 ) = 𝑐𝑖 (𝑘𝑖 −

∑
𝑗≠𝑖 𝑤𝑖 𝑗𝑥 𝑗 ) is the cost function of player 𝑖 (in another form).

We have 𝑐′
𝑖
(𝑘𝑖 ) is 𝐿𝑖 -Lipschitz on 𝑘𝑖 by assumption, therefore, we could eaasily find that

𝜕2𝑐0

𝑖

𝜕𝑘𝑖𝜕𝑥 𝑗
(𝑘𝑖 , 𝒙−𝑖 ) is upper bounded by |𝑤𝑖 𝑗 |𝐿𝑖 .

Togerther with 𝑓𝑖 (𝑘𝑖 ) is 𝐶𝑖 -concave on 𝑘𝑖 , by ??, we have that

𝑦𝑖 (𝒙−𝑖 ) = arg max

𝑘𝑖

𝑢0

𝑖 (𝑘𝑖 , 𝒙−𝑖 ) = (−𝑐0

𝑖 (𝑘𝑖 , 𝒙−𝑖 )) + 𝑓𝑖 (𝑘𝑖 )

is

2𝐿𝑖 |𝑤𝑖 𝑗 |
𝐶𝑖

-Lipschitz on 𝑥 𝑗 .

Now we define the utility function for player 𝑖 in the near-potential game,

𝑢𝑖 (𝒙) = 𝑦𝑖 (𝒙−𝑖 )𝑥𝑖 −
𝑥2

𝑖

2

−
∑︁
𝑗≠𝑖

𝑤𝑖 𝑗𝑥𝑖𝑥 𝑗

If 𝒙 is an NE for the game {𝑢𝑖 (𝒙)}𝑖∈[𝑛] constructed above, we have that

0 =
𝜕𝑢𝑖

𝜕𝑥𝑖
(𝒙) = 𝑦𝑖 (𝒙−𝑖 ) − 𝑥𝑖 −

∑︁
𝑗≠𝑖

𝑤𝑖 𝑗𝑥 𝑗 (5)

⇒ 𝑦𝑖 (𝒙−𝑖 ) =𝑥𝑖 +
∑︁
𝑗≠𝑖

𝑤𝑖 𝑗𝑥 𝑗 (6)

i.e., the choice of 𝑥𝑖 will make her gain level to 𝑦𝑖 (𝒙−𝑖 ), which is also the optimal gain level of player 𝑖 given 𝒙−𝑖 by definition of 𝑦 (𝒙−𝑖 ),
therefore, 𝒙 is also an NE of the original public good game 𝐺 .

The last step is to show that the NE for the near-potential game {𝑢𝑖 (𝒙)}𝑖∈[𝑛] is unique. We derive that,

𝜕𝑢

𝜕𝑥𝑖
(𝒙) =𝑘∗𝑖 −

∑︁
𝑗∈[𝑛]

𝑤0

𝑖 𝑗𝑥 𝑗

𝜕𝑢𝑖

𝜕𝑥𝑖
(𝒙) =𝑦𝑖 (𝒙−𝑖 ) −

∑︁
𝑗∈[𝑛]

𝑤𝑖 𝑗𝑥 𝑗

It’s obvious that
𝜕 (𝑢𝑖−𝑢 )

𝜕𝑥𝑖
(𝒙) is 𝜎𝑖𝑖 = |𝑤0

𝑖𝑖
− 1| = 0-Lipschitz on 𝑥𝑖 (constant on 𝑥𝑖 ) and 𝜎𝑖 𝑗 =

2𝐿𝑖 |𝑤𝑖 𝑗 |
𝐶𝑖

+ |𝑤0

𝑖 𝑗
−𝑤𝑖 𝑗 |-Lipschitz on 𝑥 𝑗 . Thus

the constructed utilities, {𝑢𝑖 (𝒙)}𝑖∈[𝑛] , are (1, Σ)-near potential to 𝑢 (𝒙). By Lemma 3.2, we have that the NE of the game {𝑢𝑖 (𝒙)}𝑖∈[𝑛] is
unique, which completes the proof.

□
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A.8 Proof of Theorem 3.6
Theorem 3.6. If two games, 𝐺1 and 𝐺2, are equivalent, then there exists a one-to-one mapping between NEs of 𝐺1 and the NEs of 𝐺2.

Proof. We prove this theorem by reduction, i.e., there is a injective function 𝑔 : 𝑋 1 → 𝑋 2
such that if 𝒙1

is an NE in𝐺1
, then 𝒙2

is an NE

in 𝐺2
.

We construct 𝒙2
by follows,

𝑥2

𝑖 = 𝑑𝑖𝑥
1

𝑖 + 𝑏𝑖
The construction is obviously injective. Therefore, we have

𝑘2

𝑖 =
∑︁
𝑗∈[𝑛]

𝑤2

𝑖 𝑗𝑥
2

𝑗 =
∑︁
𝑗∈[𝑛]

𝑑𝑖

𝑑 𝑗
𝑤1

𝑖 𝑗 (𝑑 𝑗𝑥
1

𝑗 + 𝑏 𝑗 )

=𝑑𝑖

∑︁
𝑗∈[𝑛]

𝑤1

𝑖 𝑗𝑥
1

𝑗 + 𝑑1

∑︁
𝑗∈[𝑛]

𝑤1

𝑖 𝑗
𝑏 𝑗

𝑑 𝑗

=𝑑𝑖𝑘
1

𝑖 +𝑚𝑖

Now fix 𝒙2

−𝑖 , consider the case that player 𝑖 choose action 𝑥
2

𝑖
:

𝑢2

𝑖 (𝑥
2

𝑖 , 𝒙
2

−𝑖 ) =𝑓
2

𝑖 (𝑘
2

𝑖 ) − 𝑐
2

𝑖 (𝑥
2

𝑖 )
=𝑓 2

𝑖 (𝑑𝑖𝑘
1

𝑖 +𝑚𝑖 ) − 𝑐2

𝑖 (𝑑𝑖𝑥
1

𝑖 + 𝑏𝑖 )
=𝑓 1

𝑖 (𝑘
1

𝑖 ) − 𝑐
1

𝑖 (𝑥
1

𝑖 )

which is the maximum utility player 𝑖 can achieve, since 𝒙1
is an NE of 𝐺1

. Therefore, 𝒙2
is an NE of 𝐺2

.

We also need to prove that the inverse direction also holds, to clarify this statements, we show that the equivalence relation is symmetric,

i.e., if 𝐺1
is equivalent to 𝐺2

, then 𝐺2
is also equivalent to 𝐺1

.

To show this, we let 𝑑′
𝑖
= 1/𝑑𝑖 and 𝑏′𝑖 = −𝑏𝑖/𝑑𝑖 , we have 𝑑′𝑖 ∈ R++ and 𝑏′

𝑖
∈ R. Denote 𝐷′ = 𝐷−1 = diag(𝑑′

1
, ..., 𝑑′𝑛), then we have

𝑊 1 =𝐷′𝑊 2𝐷′−1

𝑥1

𝑖 =𝑑′𝑖𝑥
2

𝑖 + 𝑏
′
𝑖

𝑥1

𝑖 =𝑑′𝑖𝑥
2

𝑖 + 𝑏′𝑖
𝑐2

𝑖 (𝑥) =𝑐
1

𝑖 (𝑑
′
𝑖𝑥 + 𝑏′𝑖 ) ∀𝑥 ∈ 𝑋 2

𝑖

𝑓 2

𝑖 (𝑘) =𝑓
1

𝑖 (𝑑
′
𝑖𝑘 +𝑚

′
𝑖 ) ∀𝑘 ∈ 𝐾2

𝑖

for some constants {𝑚′
𝑖
}𝑖∈[𝑛] . This indicates that an NE of 𝐺2

also corresponds to an NE of 𝐺1
, which completes the proof.

□

A.9 Proof of Theorem 4.1
Theorem 4.1. Assume 𝑢𝑖 (𝑡) and 𝒙∗ (𝑡) are defined above, and denote 𝒙∗ = 𝒙∗ (0), 𝒌∗ =𝑊 𝒙∗, then,

𝒖′ (0) = diag(𝒇 ′ (𝒌∗)) · diag(𝒄′′ (𝒙∗) − 𝒇 ′′ (𝒌∗))(
diag(𝒄′′ (𝒙∗)) −𝑊 diag(𝒇 ′′ (𝒌∗))

)−1 𝜹

where 𝒖 (0) represents the utility profile (𝑢1 (0), 𝑢2 (0), . . . , 𝑢𝑛 (0)).

Proof. 𝒙∗ (𝑡) should satisfies,

𝑥∗𝑖 (𝑡) = arg max

𝑥𝑖

𝑓𝑖 (𝑥𝑖 +
∑︁
𝑗≠𝑖

𝑤𝑖 𝑗𝑥
∗
𝑗 (𝑡) + 𝛿𝑖𝑡) − 𝑐𝑖 (𝑥𝑖 ), (7)

By Equation (7), we have

𝑐′𝑖 (𝑥
∗
𝑖 (𝑡)) − 𝑓

′
𝑖 (𝑘

∗
𝑖 (𝑡) + 𝛿𝑖𝑡) = 0,

which carves out an implicit function

𝐹𝑖 (𝒙∗ (𝑡), 𝑡) = 0, ∀𝑖 ∈ [𝑛]

with 𝐹𝑖 (𝒙, 𝑡) = 𝑐′𝑖 (𝑥𝑖 ) − 𝑓
′
𝑖
(𝑘𝑖 + 𝛿𝑖𝑡). Take 𝐸𝑖 (𝑡) = 𝐹𝑖 (𝒙∗ (𝑡), 𝑡), by implicit function theorem, we have

d𝐸𝑖

d𝑡
(𝑡) = 𝜕𝐹𝑖

𝜕𝒙
(𝒙∗ (𝑡), 𝑡) d𝒙∗

d𝑡
(𝑡) + 𝜕𝐹𝑖

𝜕𝑡
(𝒙∗ (𝑡), 𝑡) = 0 (8)
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Together Equation (8) with all 𝑖 , we have

d𝒙∗

d𝑡
(𝑡) = −

(
𝜕𝐹

𝜕𝒙

)−1

𝜕𝐹

𝜕𝑡
(𝒙∗ (𝑡), 𝑡)

where 𝐹 (𝒙∗ (𝑡), 𝑡) = (𝐹1 (𝒙∗ (𝑡), 𝑡), 𝐹2 (𝒙∗ (𝑡), 𝑡), . . . , 𝐹𝑛 (𝒙∗ (𝑡), 𝑡)), by computation we have,

𝜕𝐹

𝜕𝑡
(𝒙∗ (𝑡), 𝑡) = −diag(𝒇 ′′ (𝒌∗ (𝑡) + 𝑡𝜹))𝜹

𝜕𝐹

𝜕𝒙
(𝒙∗ (𝑡), 𝑡) = diag(𝒄′′ (𝒙∗ (𝑡))) − diag(𝒇 ′′ (𝒌∗ (𝑡) + 𝑡𝜹))𝑊

By 𝒖 (𝑡) = 𝒖 (𝑥∗ (𝑡); 𝑡), we derive that,

𝒖′ (0) = 𝜕𝒖

𝜕𝑡
(𝒙∗; 0) + 𝜕𝒖

𝜕𝒙
(𝒙∗; 0) d𝒙∗

d𝑡
(0)

where

𝜕𝒖

𝜕𝑡
(𝒙∗; 0) = diag(𝒇 ′ (𝒌∗))𝜹

𝜕𝒖

𝜕𝒙
(𝒙∗; 0) = diag(𝒇 ′ (𝒌∗))𝑊 − diag(𝒄′ (𝒙∗))

d𝒙∗

d𝑡
(0) =

(
diag(𝒄′′ (𝒙∗)) − diag(𝒇 ′′ (𝒌∗))𝑊

)−1

diag(𝒇 ′′ (𝒌∗))𝜹

By equilibrium condition, we have

diag(𝒄′ (𝒙∗)) = diag(𝒇 ′ (𝒌∗))

and thus

𝜕𝒖

𝜕𝒙
(𝒙∗; 0) = diag(𝒇 ′ (𝒌∗)) (𝑊 − 𝐼 )

Above all,

𝒖′ (0) =diag(𝒇 ′ (𝒌∗))
(
𝜹 + (𝑊 − 𝐼 )

(
diag(𝒄′′ (𝒙∗)) − diag(𝒇 ′′ (𝒌∗))𝑊

)−1

diag(𝒇 ′′ (𝒌∗))𝜹
)

=diag(𝒇 ′ (𝒌∗))
(
𝐼 + (𝑊 − 𝐼 )

(
diag(𝒄′′ (𝒙∗)) − diag(𝒇 ′′ (𝒌∗))𝑊

)−1

diag(𝒇 ′′ (𝒌∗))
)
𝜹

=diag(𝒇 ′ (𝒌∗))
(
𝐼 + (𝑊 − 𝐼 )

(
diag(𝒄′′ (𝒙∗)/𝒇 ′′ (𝒌∗)) −𝑊

)−1

)
𝜹

=diag(𝒇 ′ (𝒌∗))
( (

diag(𝒄′′ (𝒙∗)/𝒇 ′′ (𝒌∗)) −𝑊
)
·
(
diag(𝒄′′ (𝒙∗)/𝒇 ′′ (𝒌∗)) −𝑊

)−1

+ (𝑊 − 𝐼 )
(
diag(𝒄′′ (𝒙∗)/𝒇 ′′ (𝒌∗)) −𝑊

)−1

)
𝜹

=diag(𝒇 ′ (𝒌∗))
(
(diag(𝒄′′ (𝒙∗)/𝒇 ′′ (𝒌∗)) − 𝐼 )

(
diag(𝒄′′ (𝒙∗)/𝒇 ′′ (𝒌∗)) −𝑊

)−1

)
𝜹

=diag(𝒇 ′ (𝒌∗)) · diag(𝒄′′ (𝒙∗) − 𝒇 ′′ (𝒌∗)) ·
[
diag(𝒄′′ (𝒙∗)) −𝑊 diag(𝒇 ′′ (𝒌∗))

]−1

𝜹

which completes the proof.

□

A.10 Proof of Theorem 4.2
Theorem 4.2. if 𝑐0

2𝑏
> 2𝑝0 + 𝑝2

0
+
√︃
𝑛(8𝑝0 + 10𝑝2

0
+ 4𝑝3

0
), then with probability at least 1

2
, the public good game 𝐺 has a unique NE.

Proof. We firstly substitute the model into the conditions of Theorem 3.3.

• For the first condition, we just specify 𝛾𝑖 ≡ 1, then 𝑓𝑖 (𝑥 + 𝑑) − 𝑐𝑖 (𝑥) is 𝑐-concave.
• For the second condition, 𝑓 ′

𝑖
(𝑘) is 2𝑏-Lipschitz on 𝑘 for all 𝑖 .

• For the third condition, we need that 𝜎𝑚𝑎𝑥 (Σ) < 𝑐
2𝑏
, where 𝜎𝑖 𝑗 =

∑
𝑘≠𝑖 𝑤𝑘𝑖𝑤𝑘 𝑗 .
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It’s well-known that 𝜎𝑚𝑎𝑥 (Σ) ≤ min{∥Σ∥∞, ∥Σ∥1}, where ∥Σ∥∞ (∥Σ∥1) represents the ∞-norm (one-norm) of Σ, i.e., maximum row sum

(column sum) of Σ, respectively. Specifically,

∥Σ∥∞ =max

𝑖

∑︁
𝑗∈[𝑛]

∑︁
𝑘≠𝑖

𝑤𝑘𝑖𝑤𝑘 𝑗

=max

𝑖

∑︁
𝑘≠𝑖

𝑤𝑘𝑖 +
∑︁
𝑗≠𝑖

∑︁
𝑘≠𝑖

𝑤𝑘𝑖𝑤𝑘 𝑗

=max

𝑖

∑︁
𝑘≠𝑖

𝑤𝑘𝑖 +
∑︁
𝑗≠𝑖

𝑤 𝑗𝑖 +
∑︁
𝑗≠𝑖

∑︁
𝑘≠𝑖, 𝑗

𝑤𝑘𝑖𝑤𝑘 𝑗

=max

𝑖
2

∑︁
𝑗≠𝑖

𝑤 𝑗𝑖 +
∑︁
𝑗≠𝑖

∑︁
𝑘≠𝑖, 𝑗

𝑤𝑘𝑖𝑤𝑘 𝑗

Denote 𝛿𝑖 = 2

∑
𝑗≠𝑖 𝑤𝑖 𝑗 +

∑
𝑗≠𝑖

∑
𝑘≠𝑖, 𝑗 𝑤𝑘𝑖𝑤𝑘 𝑗 , then,

E𝑊 [𝛿𝑖 ] = 2(𝑛 − 1)𝑝 + (𝑛 − 1) (𝑛 − 2)𝑝2 ≤ 2𝑝0 + 𝑝2

0

When the context is clear we denote E𝑊 [𝛿] = E𝑊 [𝛿𝑖 ], since this term is constant.

We also compute the second-order moment of 𝛿𝑖 , i.e.,

𝛿2

𝑖 =
©­«2

∑︁
𝑗1≠𝑖

𝑤 𝑗1,𝑖 +
∑︁

𝑗1≠𝑖,𝑘1≠𝑗1,𝑖

𝑤 𝑗1,𝑖𝑤 𝑗1,𝑘1

ª®¬
2

=4

∑︁
𝑗1≠𝑖, 𝑗2≠𝑖

𝑤 𝑗1,𝑖𝑤 𝑗2,𝑖 + 4

∑︁
𝑗2≠𝑖

∑︁
𝑗1≠𝑖,𝑘1≠𝑗1,𝑖

𝑤 𝑗1,𝑖𝑤 𝑗1,𝑘1
𝑤 𝑗2,𝑖 +

∑︁
𝑗1≠𝑖,𝑘1≠𝑗1,𝑖

∑︁
𝑗2≠𝑖,𝑘2≠𝑗2,𝑖

𝑤 𝑗1,𝑖𝑤 𝑗2,𝑖𝑤 𝑗1,𝑘1
𝑤 𝑗2,𝑘2

By simple counting, we have,

E𝑊 [𝛿2

𝑖 ] = 4(𝑛 − 1)𝑝 + 9(𝑛 − 1) (𝑛 − 2)𝑝2 + 6(𝑛 − 1) (𝑛 − 2)2𝑝3 + (𝑛 − 1) (𝑛 − 2) (𝑛2 − 5𝑛 + 5)𝑝4

and the variance of 𝛿𝑖 ,

Var𝑊 [𝛿𝑖 ] = E𝑊 [𝛿2

𝑖 ] − E2

𝑊 [𝛿𝑖 ]
=4(𝑛 − 1)𝑝 + (𝑛 − 1) (5𝑛 − 14)𝑝2 + (𝑛 − 1) (𝑛 − 2) (2𝑛 − 8)𝑝3 + (𝑛 − 1) (𝑛 − 2) (−2𝑛 + 3)𝑝4

≤4𝑝0 + 5𝑝2

0
+ 2𝑝3

0

Combining them by using Chebyshev inequalities,

Pr[𝛿𝑖 − E[𝛿] ≥ 𝑘] ≤ Var[𝛿𝑖 ]
𝑘2

and

Pr[∥Σ∥∞ − E[𝛿] ≥ 𝑘] ≤ 𝑛Var[𝛿𝑖 ]
𝑘2

since ∥Σ∥∞ = max𝑖∈[𝑛] 𝛿𝑖 .

To make RHS = 1

2
, we take 𝑘 =

√︃
𝑛(8𝑝0 + 10𝑝2

0
+ 4𝑝3

0
), therefore, with probability at least

1

2
, we have that 𝜎𝑚𝑎𝑥 (Σ) ≤ ∥Σ∥∞ ≤

2𝑝0 + 𝑝2

0
+
√︃
𝑛(8𝑝0 + 10𝑝2

0
+ 4𝑝3

0
) < 𝑐

2𝑏
, and the game has unique NE by Theorem 3.3.

□

A.11 Proof of Theorem 4.3
Theorem 4.3. If𝑊 is an up-triangular matrix, i.e.,𝑤𝑖 𝑗 = 0 for 𝑖 > 𝑗 , then the public good game 𝐺 has unique NE.

Proof. We denote the original game as 𝐺1 = {{𝑓 1

𝑖
}, {𝑐1

𝑖
}, {𝑋 1

𝑖
},𝑊 1}, and the transformed game as 𝐺2 = {{𝑓 2

𝑖
}, {𝑐2

𝑖
}, {𝑋 2

𝑖
},𝑊 2}. 𝑓 1

𝑖
is

2𝑏-concave and (𝑐1

𝑖
)′ is 𝑐-Lipschitz.

To do a game transformation, we need to construct scaling vector 𝒅 ∈ R++ and offset vector 𝒃 ∈ R++. We set 𝒃 = 0 without loss of

generality, we have that,

𝑤2

𝑖 𝑗 =
𝑑𝑖𝑤

1

𝑖 𝑗

𝑑 𝑗
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𝑤2

𝑖 𝑗
also equals to 0 if 𝑖 > 𝑗 and 1 if 𝑖 = 𝑗 , for 𝑖 < 𝑗 , we observe that if 𝑑𝑖 << 𝑑 𝑗 as long as 𝑗 > 𝑖 , then𝑤2

𝑖 𝑗
can be arbitrarily small. In fact,

we let 𝑑𝑖 = 𝜀
−𝑖
, where 𝜀 > 0 is a pre-specific constant. Therefore, we have that

𝑤2

𝑖 𝑗
= 0 if 𝑖 > 𝑗

𝑤2

𝑖 𝑗
= 1 if 𝑖 = 𝑗

𝑤2

𝑖 𝑗
≤ 𝜀 if 𝑖 < 𝑗

By this transformation, we have that 𝑓 2

𝑖
is

2𝑏

𝑑2

𝑖

-concave and (𝑐2

𝑖
)′ is 𝑐

𝑑2

𝑖

-Lipschitz, in Theorem 3.6.

Now we prove that game 𝐺2
satisfies the conditions in Theorem 3.5. We choose𝑊 0 = 𝐼 so that 𝜎0 = 𝜎𝑚𝑖𝑛 (𝑊 0) = 1. 𝐿𝑖 =

𝑐

𝑑2

𝑖

and 𝐶𝑖 =
2𝑏

𝑑2

𝑖

.

We compose Σ − Σ1 + Σ2
, where Σ𝑘 = {𝜎𝑘

𝑖 𝑗
} and 𝜎1

𝑖 𝑗
=

2𝐿𝑖 |𝑤2

𝑖 𝑗 |
𝐶𝑖

, 𝜎2

𝑖 𝑗
= |𝑤0

𝑖 𝑗
−𝑤2

𝑖 𝑗
|. We have 𝜎𝑚𝑎𝑥 (Σ) ≤ 𝜎𝑚𝑎𝑥 (Σ1) + 𝜎𝑚𝑎𝑥 (Σ2).

Since |𝑤0

𝑖 𝑗
−𝑤2

𝑖 𝑗
| = 0 if 𝑖 = 𝑗 and ≤ 𝜀 is 𝑖 ≠ 𝑗 , we know that 𝜎𝑚𝑎𝑥 (Σ2) is bounded by 𝑛𝜀. Besides, 𝜎1

𝑖 𝑗
=

2𝐿𝑖 |𝑤2

𝑖 𝑗 |
𝐶𝑖

≤ 𝑐𝜀
𝑏
, therefore 𝜎𝑚𝑎𝑥 (Σ1)

is bounded by
𝑛𝑐𝜀
𝑏

. Therefore, if we choose 𝜀 < 𝑏
𝑛 (𝑏+𝑐 ) , we can get 𝜎𝑚𝑎𝑥 (Σ) < 1 = 𝜎0, which indicates that𝐺2

has unique NE, which is same

for 𝐺1
.

□
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