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ABSTRACT

Single-cell RNA sequencing (scRNA-seq) and spatially-resolved imag-
ing/sequencing technologies are the current cutting edge of transcriptomics
data generation in biomedical research. On one hand, scRNA-seq data brings rich
high-throughput information spanning the entire transcriptome, sacrificing the
structural context of the cells. On the other hand, high-resolution measurements
of the spatial context of cells comes with a trade-off in throughput and coverage.
Combining data from these two modalities facilitates better understanding of
the development and organization of complex tissues, as well as the emerging
processes and function of distinct constituent cell types within the tissue. Recent
approaches focus only on the expression of genes available in both modalities.
They don’t incorporate other relevant and available features, especially the spatial
context. We propose DOT, a novel optimization framework for assigning cell
types to tissue locations, ensuring a high-quality mapping by taking into account
relevant but previously neglected features of the data. Our model (i) incorporates
ideas from Optimal Transport theory to exploit structural similarities in the data
modalities, leveraging not only joint features but also distinct features, i.e. the
spatial context, (ii) introduces scale-invariant distance functions to account for
differences in the sensitivity of different measurement technologies, (iii) ensures
representation of rare cell types using Nash-fairness objectives, and (iv) provides
control over the abundance of cell types in the localization. We present a fast
implementation based on the Frank-Wolfe algorithm and we demonstrate the
effectiveness of DOT on correctly assigning cell types to spatial data coming from
(i) the primary motor cortex of the mouse brain, (ii) the primary somatosensory
cortex of the mouse brain, and (iii) the developing human heart.

1 INTRODUCTION

In biological systems, the organization of cells within the tissue, their contextual cellular programs
and their response to perturbations are central to better understanding intercellular communication,
emergence of function, disease progression and to eventual identification of targets for therapeutic
intervention (Trapnell, 2015; Arendt et al., 2016). Cell types are distinct subpopulations of cells
which are often identified by known markers and/or by data-driven techniques, most commonly
clustering based on transcriptomic profiles (Kiselev et al., 2019). Single-cell RNA sequencing can
profile the entire transcriptome (mRNA expression of the full range of genes) of large portions of
individual (single) cells. This has made scRNA-seq an essential tool for revealing distinct cell types
in complex tissues and has profoundly impacted our understanding of developmental processes and
the underlying mechanisms that control cellular functions (Haghverdi et al., 2016; Papalexi & Satija,
2018; Potter, 2018; Rajewsky et al., 2020). However, scRNA-seq requires dissociation of the tissue
(Lee et al., 2020), losing the information about the spatial context and relationship between cells.

Recent advancements in spatially resolved transcriptomics methods present unique opportunities
for analyzing the relationships between cell types in their spatial context (Marx, 2021). Spatial
transcriptomics methods measure gene expression coupled with two- or three-dimensional loca-
tions, hereafter referred to as spots, and vary in two axes: spatial resolution and gene throughput.
On one hand, technologies such as Multiplexed Error-Robust Fluorescence In-Situ Hybridization
(MERFISH) and In-Situ Sequencing (ISS), achieve subcellular resolution (Chen et al., 2015), but
are limited to measuring up to a couple of hundred pre-selected genes. On the other hand, spatially
resolved RNA sequencing, such as Visium (Ståhl et al., 2016) and Slide-seq (Rodriques et al., 2019),
enable high-throughput gene profiling by capturing mRNAs in-situ at the cost of spots with the size
of tens of cells. Thus, there is a trade-off between the resolution and the richness of the data.
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A strategy to overcome these limitations is to combine scRNA-seq data with high resolution spatial
data to map dissociated cells to spatial locations or more generally to combine it with low-resolution
spatial data to estimate the composition of cell types and expression in each spot. We refer to this
task as deconvolution. Alternatively, we can attempt to enrich high-resolution data by predicting the
expression of unmeasured genes. As the latter requires extrapolation to various degrees, machine
learning and optimization methods are better suited to the deconvolution task.

Since the initial efforts to bridge this gap (Tanevski et al., 2020) there has been an increased interest
in improvement and new method development (see Section 2). However, so far the methods rely
on the genes that are captured both by scRNA-seq and spatial data, either neglect the spatial rela-
tionships between spots in the spatial data, are not using the remaining distinctly captured genes,
or come with high computation cost for large instances. Neglecting the spatial context is equiv-
alent to assuming random placement of spots in the space, which is in contrast to the established
structure-function relationship of tissues. On the other hand, considering only a subset of genes
limits the applicability of these methods to cases where the two data sets share several informative
genes, which might not be the case when different technologies are used for profiling, or when few
genes are measured in the spatial data (e.g., in MERFISH).

We address these deficiencies by incorporating ideas from the Optimal Transport (OT) theory and
adapting a Gromov-Wasserstein (GW) distance (Mémoli, 2011; Peyré et al., 2016) between scRNA-
seq and spatial data. We present DOT (Fast Cell Type Deconvolution by Optimal Transport), a fast
and scalable optimization framework to integrate scRNA-seq and spatial data for cell type localiza-
tion by solving a multi-criteria probabilistic matching problem. We summarize the main contribu-
tions of our work as follows:

(i) We propose a novel formulation for mapping cell types from scRNA-seq to spots in spatial
data by casting this problem to a multi-objective probabilistic matching problem. Our
model is applicable to both high- and low-resolution spatial data, in the form of inferring
membership probabilities for the former and relative abundance of cell types in the latter.

(ii) We adapt a generalization of OT with a Gromov-Wasserstein objective to leverage spatial
information and to go beyond the use of genes common to the two modalities.

(iii) We introduce a scale-invariant metric based on cosine-similarity to account for differences
in measurement and the scale of gene expressions in scRNA-seq and spatial data.

(iv) We present a very fast implementation for our model based on the Frank-Wolfe algorithm,
ensuring scalability and efficient solvability.

2 RELATED WORK

Cell type deconvolution. Several deconvolution methods have been proposed in recent years.
While most of these models are designed specifically for low-resolution spatial data, some are also
applicable to high-resolution spatial data. Elosua-Bayes et al. (2021) proposed SPOTlight, which
estimates relative abundance of cell types in spots using non-negative matrix factorization regression
and non-negative least squares. Robust cell type decomposition (RCTD) (Cable et al., 2021) fits a
statistical model by maximum-likelihood estimation, assuming a Poisson distribution for the expres-
sion of each gene at each spot. More recently, Kleshchevnikov et al. (2022) introduced cell2location,
which assumes a two-step Bayesian model for inferring cell type composition of spots.

As cell type deconvolution, particularly in the high-resolution spatial data, is inherently a multiclass
classification task, classification methods, such as Random Forests (Breiman, 2001), can be used
for tackling this problem. However, because of the domain-specific properties of this problem,
including differences in gene coverage, resolution, measurement sensitivity, and modality-specific
characteristics, tailored learning mechanisms are needed. Tangram (Biancalani et al., 2021) proposes
a deep learning model to find the best placement of single cells in spots using a designed loss
function and can thus carry cell type information as a byproduct. Seurat V3 workflow (Stuart et al.,
2019) is a widely-used toolkit for analyzing scRNA-seq data, which offers an “anchoring” technique
based on mutual nearest neighbour classifier for aligning two modalities in the PCA space.

Optimal Transport. Optimal Transport (OT) (Villani, 2021) is a way to match with minimal cost
data points/histograms between two domains embedded in possibly different spaces using different
variants of the Wasserstein distance (Santambrogio, 2015; Peyré et al., 2019). Over the past decade,
OT has been applied to various machine learning problems in a wide variety of contexts, includ-
ing but not limited to generative modeling (An et al., 2019; Bunne et al., 2019), Wasserstein auto-
encoders (Tolstikhin et al., 2018), feature aggregation (Mialon et al., 2020), generalization error pre-
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diction (Chuang et al., 2021), dataset denoising (Mémoli et al., 2019), graph matching/classification
(Titouan et al., 2019), and domain adaptation (Courty et al., 2016; Fatras et al., 2021).

Recently, OT has been employed in biology applications. Tong et al. (2020) model cellular dynamics
as an unbalanced dynamic transport, with the goal of transporting entities from one cross sectional
measurement to the next. Schiebinger et al. (2019) use OT for studying developmental time courses
to infer ancestor-descendant fates and understanding the molecular programs that guide differentia-
tion during development by incorporating temporal information and modeling cell growth over time.
Similarly, Forrow & Schiebinger (2021) employ graphical models and OT to reconstruct develop-
mental trajectories from time courses with snapshots of cell states and lineages.

3 MODEL

Preliminaries. Let C be a set of predefined cell types (CT), derived from partitioning the reference
scRNA-seq data into |C| user-defined clusters, and XC

c,g denote the mean expression of gene g ∈ GC

in cell type c. Moreover, let I denote the set of spots in the spatial transcriptomics (ST) data. Note
that the term “spot” can refer to one or a group of cells in certain spatial contexts. Each spot i ∈ I
consists of spatial coordinates xi ∈ R2 or R3 and gene expressions XS

i,g for g ∈ GS, where GS is
the set of genes that are measured in the spatial data. Let ni be the given size of spot i. When such
information is not available, we set ni = 1 to compute the proportion or probability of cell types in
each spot rather than computing the number of cells of each type. Further, if prior information about
the expected abundance of cell types in ST is available (e.g., estimated from a matched single-cell
level sample), we denote the expected abundance of cell type c by rc. Note that r is scaled such
that

∑
i∈I ni =

∑
c∈C rc. For convenience, we also define G = GC ∩ GS as the set of genes that

are common between CT and ST. In the following, unless otherwise mentioned, vectors of gene
expressions are assumed to be in the space of common genes.

To assess dissimilarity between expression vectors a and b, we also introduce the distance function

dcos(a, b) :=
√

1− cos (a, b), (1)

where cos (a, b) = 1
∥a∥∥b∥ ⟨a, b⟩. Note that dcos is convex for positive vectors a and b, and is

scale-invariant, in the sense that it is indifferent to the magnitudes of the vectors. This is by design,
since we want to assess dissimilarity between expression vectors regardless of the measurement
sensitivities of different technologies. We also note the following important property of dcos (proofs
given in Appendix A).
Proposition 1. Unlike cosine dissimilarity (i.e., 1− cos(·, ·)), dcos is a metric distance function.

High-level model. Our model relies on determining a “many-to-many” mapping Y of cell types
in CT to spots in ST, with Yc,i denoting the proportion (or probability when ni = 1) of spot i ∈ I
that is of cell type c ∈ C. A high-quality mapping should naturally match the expression of common
genes across CT and ST. We ensure this by considering the following genomic criteria:

(i) Expression of genes in ST spots should match expression of genes mapped to spots via Y .

(ii) Centroid of cell types in CT should match the centroids in ST as determined via Y .

(iii) Distribution of genes in ST should be similar to distribution of genes mapped to ST via Y .

Additionally, we may incorporate prior knowledge in the form of spatial location of spots as well as
expected abundance of cell types using the following auxiliary criteria:

(iv) Spots that are both adjacent in space and have similar expression profiles should attain
similar cell type profiles.

(v) If prior information about abundance of cell types is available, abundance of cell types in
ST should match with the given abundances.

The genomic objectives naturally take precedence over the auxiliary objectives, especially when
a large number of genes are common between CT and ST, but the auxiliary objectives are useful
when the common genes are limited. Note that objective (v) is meant to provide additional control
over abundance of cell types in the spatial data, but can be ignored if prior information about the
abundance of cell types is not available. We elaborate on these objectives in the following.
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Formulation. Objective (i) ensures that the vector of gene expressions in spot i ∈ I (i.e., XS
i,:) is

most similar to the vector of gene expressions mapped to spot i through Y (i.e.,
∑

c∈C Yc,iX
C
c,:). To

achieve this objective, we minimize dissimilarity between these vectors by using

di(Y ) := dcos

(
XS

i,:,
∑

c∈C
Yc,iX

C
c,:

)
. (2)

Objective (ii) is in nature similar to objective (i). Here, we would like to minimize dissimilarity
between centroid of cell type c ∈ C in CT (i.e., XC

c,:) and centroid of cell type c in ST as determined
via Y (i.e., 1

ρc

∑
i∈I Yc,iX

S
i,:). Given the scale-invariance property of dcos, we can drop 1/ρc and

measure the dissimilarity between these centroids using the following distance function

dc(Y ) := dcos

(
XC

c,:, ρ
−1
c

∑
i∈I

Yc,iX
S
i,:

)
= dcos

(
XC

c,:,
∑

i∈I
Yc,iX

S
i,:

)
. (3)

Our goal in objective (iii) is to match distribution of expression of gene g ∈ G in ST (i.e., XS
:,g) with

the one mapped to ST through Y (i.e.,
∑

c∈C Yc,:X
C
c,g). Hence, we minimize dissimilarity between

these vectors by using

dg(Y ) := dcos

(
XS

:,g,
∑

c∈C
Yc,:X

C
c,g

)
. (4)

To achieve objective (iv), we borrow ideas from Optimal Transport theory and the Gromov-
Wasserstein metric. Let MC and MS be metrics in CT and ST, respectively, in that MC

c,k defines
distance between cell types c and k, while MS

i,j defines distance between spots i and j. Note that
these distances are defined for each dataset independently; hence, we can use the entire features
in each set: the entire genome in CT, including the genes not measured in ST, and the uncom-
mon/common genes as well as the spatial coordinates in ST (see Section 4 for how these matrices
are computed). The 2-Gromov-Wasserstein distance (Mémoli, 2011) between CT and ST for given
mapping Y , denoted dGW(Y ), is defined in equation 5. Minimizing dGW(Y ) ensures that similar
pair of spots in ST (with respect to their locations and expressions) are not assigned to dissimilar
pair of cell types in CT, and vice versa.

dGW(Y ) :=

√∑
i∈I

∑
j∈I

∑
c∈C

∑
k∈C

(
MC

c,k −MS
i,j

)2

Yc,iYk,j (5)

Let ρc :=
∑

i∈I Yc,i denote the abundance of cell type c in ST as determined by mapping Y . As
noted by Solomon et al. (2016), we may simplify equation 5 as stated in Proposition 2 below.

Proposition 2. Define parameter m̄i :=
∑

j∈I(M
S
i,j)

2nj and auxiliary variables m̄c :=∑
k∈C(M

C
c,k)

2ρk and Z := MCY M S. GW distance function in equation 5 is equivalent to

dGW(Y ) =

√∑
c∈C

∑
i∈I

Yc,i(m̄c + m̄i − 2Zc,i), (6)

Objective (v) provides optional control over abundance of cell types mapped to ST, when prior infor-
mation about expected abundance of cell types is available. We employ Jensen-Shannon divergence
between ρ and r to measure their dissimilarity

dA(Y ) :=
1

2
DKL

(
ρ

∥∥∥∥ρ+ r

2

)
+

1

2
DKL

(
r

∥∥∥∥ρ+ r

2

)
, (7)

where DKL (p∥q) =
∑

j pj log(pj/qj) denotes the Kullback–Leibler divergence (Manning &
Schutze, 1999). In addition, to avoid overfitting, we may require that all cell types are at least
minimally represented in the mapping. To achieve this goal, we define

dR(Y ) := −
∑

c∈C
log(ρc) = DKL (r̄∥ρ) , (8)

where r̄c = 1 for all c ∈ C. Equation 8 is a Nash fairness (Caragiannis et al., 2019) objective whose
logarithmic form ensures presence of all cell types (i.e., ρc > 0).
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Algorithm 1: Frank-Wolfe algorithm for DOT

1 Initialization: Setup distance matrices MC and MS.
2 Set t = 0 and find an initial map Y (0) (see Appendix B.1).
3 while not converged do
4 Compute gradient ∆(t) = ∇Y f(Y (t)) (see Appendix B.2)
5 for each spot i ∈ I do
6 Find current best cell type ĉ = argminc∈C{∆(t)

c,i}
7 Compute atom solution Ŷ

(t)
ĉ,i = ni and Ŷ

(t)
c,i = 0 for c ̸= ĉ

8 Update Y (t+1) = Y (t) + 2
2+t (Ŷ

(t) − Y (t))
9 t← t+ 1

We treat these criteria as objectives in a multi-objective optimization problem and to achieve them
simultaneously (i.e., produce a Pareto-optimal solution), we optimize Y against a linear combination
of these objectives as formulated below, hereafter referred to DOT model:

min
∑
i∈I

nidi(Y ) + λC

∑
c∈C

ρcdc(Y ) + λG

∑
g∈G

dg(Y ) + λGWdGW(Y ) + λAdA(Y ) + λRdR(Y ) (9)

w.r.t. Y ∈ R|C|×|I|
+ ,ρ ∈ R|C| (10)

s.t.
∑

c∈C
Yc,i = ni ∀i ∈ I, (11)∑

i∈I
Yc,i = ρc ∀c ∈ C, (12)

where λC, λG, λGW, λA and λR are the user-defined penalty weights, and coefficients ni and ρc in
equation 9 balance the scales of deviations in spots and cell types, respectively.
Remark 1. Unlike the conventional OT formulations, DOT does not require the cell type abun-
dances in ST (i.e., ρ) to be strictly equal to their expected abundances (i.e., r), and rather penalizes
their deviation in the objective function.

4 ALGORITHM

We propose a solution to the DOT model based on the Frank-Wolfe (FW) algorithm (Frank & Wolfe,
1956; Jaggi, 2013), which is a first-order method for solving non-linear optimization problems of
the form minx∈X f(x), where f : Rn → R is a (potentially non-convex) continuously differentiable
function over the convex and compact set X. FW operates by replacing the non-linear objective
function f with its linear approximation f̃(x) = f(x(0)) +∇xf(x

(0))⊤(x − x(0)) at a trial point
x(0) ∈ X, and solve a simpler problem x̂ = argminx∈X f̃(x) to produce an “atom” solution x̂. The
algorithm then iterates by taking a convex combination of x(0) and x̂ to produce the next trial point
x(1), which remains feasible thanks to convexity of X. The FW algorithm is described in Algorithm
1, in which f(Y ) is the objective function in equation 9.

Distance matrices. Distance matrices MC and MS incorporate the features that are not shared
across CT and ST. To compute MC

c,k, we calculate the dissimilarity between the centroids of cell
types c and k considering all genes in CT (i.e., XC

c,: = (XC
c,g)g∈GC for each c ∈ C)

MC
c,k = dcos(X

C
c,:,X

C
k,:).

The matrix MS captures the dissimilarity of ST spots in terms of their locations and expressions.
Let D1

i,j and D2
i,j represent distance of spots (i, j) with respect to their locations and expressions,

respectively, as defined below:

D1
i,j = 1condition

(
∥xi − xj∥ > d̄

)
, D2

i,j = dcos
(
XS

i,:,X
S
j,:

)
,

where d̄ is a given distance threshold, and D2
i,j is computed with respect to all genes in ST (i.e., GS).

Finally, we take MS to be the average of D1 and D2:

MS = (D1 +D2)/2 (13)
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Remark 2. MC is a metric in the domain of CT since dcos is a metric. M S is a metric in the domain
of ST, since both D1 and D2 are metrics.

To see why this definition of MS makes sense, we first note that cell types, by definition, are distinct
subpopulations in the scRNA-seq data. Therefore, it is reasonable to assume that their centroids are
dissimilar (i.e., Mc,k ≈ 1 for c ̸= k). This yields the following result.

Proposition 3. Let α =
∑

i∈I

∑
j∈I(1−M S

i,j)
2ninj . Assuming that cell types are relatively distinct,

so that MC
c,k ≈ 1, for c, k ∈ C, c ̸= k, then

dGW(Y ) ≈
√

α+
∑

i∈I

∑
j∈I

(
2M S

i,j − 1
)
⟨Y:,i,Y:,j⟩

Remark 3. Observe that ⟨Y:,i,Y:,j⟩ measures similarity between cell type profiles of spots i and
j. Therefore, dGW (i) rewards ⟨Y:,i,Y:,j⟩ when 2M S

i,j − 1 ≈ +1 (i.e., encourages adjacent spots to
attain similar cell types if their expressions are similar) and (ii) penalizes ⟨Y:,i,Y:,j⟩ when 2M S

i,j −
1 ≈ −1 is close to +1 (i.e., prevents distant spots from attaining similar cell types if their expressions
are different). Moreover, (iii) dGW is indifferent to pair (i, j) when 2M S

i,j − 1 ≈ 0 (i.e., if i and j are
distant or different in expressions, but not both).

Producing an atom solution. While the DOT model is not separable, its linear approximation can
be decomposed to |I| independent subproblems, one for each spot i ∈ I. This is because, unlike
conventional OT formulations, we do not require the distribution of cell types (i.e., ρ) to be equal
to their expected distribution (i.e., r), but have penalized their deviations in the objective function
using dA equation 7. The subproblem i then becomes

min
{
⟨Y:,i,∆

(t)
:,i ⟩ : Y:,i ∈ R|C|

+ ,
∑

c∈C
Yc,i = ni

}
which, in turn, is a simple sorting problem. This property of Algorithm 1 enables it to efficiently
tackle problems with large number of spots in the spatial data.

Convergence. Under suitable conditions, FW converges to an optimal solution in linear rate when
optimizing a convex function over a polytope domain (Jaggi & Lacoste-Julien, 2015). Given the non-
convex objective function in equation 9, Algorithm 1 instead obtains a first-order stationary point at
a rate of O(1/

√
t) (Bertsekas, 2016; Wai et al., 2017). We numerically assess the convergence of

Algorithm 1 at iteration t using the so-called “FW-gap” (Jaggi, 2013)

δ(t) :=
∑

i∈I

∑
c∈C

(Y
(t)
c,i − Ŷ

(t)
c,i )∆

(t)
c,i .

We also implemented acceleration techniques such as averaging gradients (Zhang et al., 2021b) and
away steps (Jaggi & Lacoste-Julien, 2015; Garber & Meshi, 2016), but did not observe materially
different convergence rates than the vanilla FW Algorithm 1.

5 PRACTICAL ENHANCEMENTS

In this section, we introduce practical enhancements to formulation equation 9–equation 12 to in-
corporate the domain-specific application of this formulation.

5.1 CELL TYPE HETEROGENEITY

While cell types are distinct subpopulations of cells, significant variations may naturally exist within
each cell type. This means, a single vector XC

c,: may not properly represent the distribution of cells
within this cell type. Consequently, mapping cell types solely based on the centroid of cell types
can be error-prone. To capture the intrinsic heterogeneity of cell types, we cluster each cell type
into predefined κ smaller groups using an unsupervised learning method, and produce a total of
κ|C| centroids to replace the original |C| centroids. With this definition of centroids, we treat all
terms except dA and dR as before. For dA and dR, since prior information about cell types (and not
sub-clusters) are available, we keep ρ to represent the abundance of original cell types by setting
ρc =

∑
k∈Kc

∑
i∈I Yk,i, where Kc denotes the set of sub-clusters of cell type c. Finally, once Y is

obtained,
∑

k∈Kc
Yk,i determines probability that spot i is of cell type c.
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5.2 SPARSE MAPPING

As previously discussed, spatial data are either high-resolution (single-cell level) or low-resolution
(multicell level). In the case of high-resolution spatial data, given that each spot corresponds to an
individual cell (i.e., ni = 1), it is desirable to produce sparse allocations, in the sense that we prefer
Yc,i close to 0 or 1. In general, assuming that Yc,i ∈ {0, ni}, then equation 11 implies that Yc,i = ni
for exactly one cell type c and is zero for all other cell types. Consequently, for binary Y we obtain

dcos

(
XS

i,:,
∑

c∈C
Yc,iX

C
c,:

)
=

1

ni

∑
c∈C

Yc,idcos
(
XS

i,:,X
C
c,:

)
,

which is linear in Y . As linear objectives promote sparse (or corner point) solutions, we may control
the level of sparsity of the mapping by introducing a parameter θ ∈ [0, 1] and redefining di(Y ) as

di(Y ) =(1− θ)dcos

(
XS

i,:,
∑

c∈C
Yc,iX

C
c,:

)
+ θ

1

ni

∑
c∈C

Yc,idcos
(
XS

i,:X
C
c,:

)
. (14)

Note that a higher value for θ yields a sparser solution. Indeed, with θ = 1 and zero weights assigned
to other objectives, the optimal mapping will be completely binary.

6 RESULTS

We compared the performance of our method, abbreviated DOT, against five state of the art
models in the literature: SPOTlight (Elosua-Bayes et al., 2021), RCTD (Cable et al., 2021),
cell2location (Kleshchevnikov et al., 2022), Tangram (Biancalani et al., 2021), and Seurat
Stuart et al. (2019). In Appendix C, we describe the choice of parameters for these models as well as
the metrics we used for evaluating these models. We performed experiments on data coming from
(i) the primary motor cortex of the mouse brain, (ii) the primary somatosensory cortex of the mouse
brain, and (iii) the developing human heart, specifics of which are presented in Appendix D.

6.1 RESULTS ON HIGH-RESOLUTION SPATIAL DATA

For our first set of experiments, we use the high-resolution MERFISH spatial data of the primary
motor cortex region (MOp) of the mouse brain (Zhang et al., 2021a) as detailed in Appendix D.1.
Our goal with this experiment is to evaluate the performance of different models in determining the
probability distribution of cell types at each spot. Since the identity of the cell type represented
by the spot is known in the MERFISH data, we can use this information as ground-truth when
evaluating the performance of the different models. In addition to deconvolution methods, as base-
line algorithms, we compared the methods with SingleR (Aran et al., 2019), which is suited for
single-cell resolution data. Given the multiclass classification nature of this task, we also used RF
(Breiman, 2001) as a multiclass classifier baseline.

The MERFISH MOp dataset contains the spatial information of 280,186 cells across 75 samples.
With each sample, we created a reference scRNA-seq data using all the 280,186 cells, except the
cells contained in the sample, and the 254 genes to estimate the centroids of the 99 reference cell
types. We further created 12 spatial datasets for each sample (i.e., a total of 1125 spatial datasets)
as follows. To simulate the effect of number of shared features between the spatial and scRNA-seq
data, we assumed that only a subset of the 254 genes are available in the spatial data by selecting
the first |G| genes, where |G| ∈ {50, 75, 100, 125, 150} (i.e., 20%, 30%, 40%, 50%, 60% of genes).
Moreover, to simulate the effect of differences in measurement sensitivities of different technologies,
we introduced random noise in the spatial data by multiplying the expression of gene g in spot i by
1 + βi,g , where βi,g ∼ U(−φ,φ) with φ ∈ {0, 0.25, 0.5}.
We compare the predictive performance of DOT to Seurat, RCTD, Tangram, SingleR and RF in
Figure 1. We removed SPOTlight and C2L from these plots due to their clear under-performance
in the high resolution spatial data. We observe that DOT not only dominates the three alternatives in
assigning correct cell types to the spots (Figure 1a), but also produces well-calibrated probabilities
(Figure 1b) and better captures the relationships between cell types in space (Figure 1c), owing
to its capacity to incorporate the spatial information in dGW through the distance matrices. We
also observe that even with very few genes in common between the spatial data and the reference
scRNA-seq data (e.g., |G| ≤ 75), DOT is able to reliably determine the cell type of spots in the space
with high accuracy. In contrast, RCTD fails to produce results due to lack of shared information,
and Seurat and Tangram produce results with low accuracy. Additionally, we observe that DOT
is more immune to fluctuations in expressions in the spatial data, implying the effectiveness of our
dcos distance function in accounting for differences in measurement scales of different technologies.
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Figure 1: Predictive performance of the algorithms in the high-resolution spatial data across different
number of genes in the spatial data (x-axis) and different noise factors (φ). Points represent the
median of 75 values, and the shaded areas correspond to their interquartile interval.

In terms of algorithmic performance (Table 1), DOT takes on average 441 seconds to solve each
instance, which is an order of magnitude faster than RCTD, Tangram, and RF, and is comparable
to Seurat and SingleR.

6.2 RESULTS ON LOW-RESOLUTION SPATIAL DATA

We now evaluate the performance of models on low-resolution spatial data. For these experiments,
since there is no ground truth for real multicell spatial data such as Visium and Slide-seq, we resort
to producing ground truth multicell spatial data by pulling the adjacent cells in the high resolution
spatial data of primary motor cortex of the mouse brain (MOp), primary somatosensory cortex of
the mouse brain (SSp), and the developing human heart. Figure 3 in Appendix E illustrates a sample
low-resolution spatial data obtained from a MERFISH MOp tissue. Note that, unlike the high-
resolution spatial data, the ground truth Pc,i now corresponds to relative abundance of cell type c
in spot i. We can therefore assess the performance of each model by comparing the probability
distributions P:,i and the estimated probabilities (i.e., Y:,i) using Brier Score or Jensen-Shannon
metrics.

6.2.1 EXPERIMENTS ON THE MOUSE MOP

To produce ground truth for MOp, using the common subclass annotations between MERFISH MOp
and scRNA-seq MOp (Yao et al., 2021b) (see Appendix D.1), for each of the 75 MERFISH MOp
samples, we randomly assigned each cell in the MERFISH MOp data to a cell in the scRNA-seq
MOp data of the same subclass. Next, we lowered the resolution of spatial data by splitting each
sample into regular grids of length 100µm to mimic the size and inter-distance of spots in multicell
spatial transcriptomics, such as Visium. Finally, we aggregated the expression profiles of cells within
each tile as the expression profile of the respective spots.
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Figure 2: Predictive performance of the algorithms in the low-resolution spatial data: (a) Perfor-
mance of models across 75 samples of MOp, with each point in the scatter plots denoting the aver-
age performance across all spots in the sample. (b) Distribution of performance of models on each
individual spot in the SSp and human heart samples.

Figure 2a compares the performance of DOT against RCTD, SPOTlight, C2L, Tangram and
Seurat in determining the cell type composition of the multicell spots. We observe that DOT
outperforms other models with respect to both metrics. As presented in Table 1, DOT took on
average 457 seconds to solve an instance, which proved to be more than twice faster than Seurat,
and orders of magnitude faster than RCTD, SPOTlight, C2L and Tangram, further highlighting
the superiority of DOT in terms of both accuracy and computational efficiency.

Experiment Resolution Instances DOT Seurat RCTD Tangram SPOTlight C2L SingleR RF
MOp High 1125 441 380 4748 10141 7884 3310 303 7427
MOp Low 75 457 1086 4705 8250 52825 6119 — —
SSp Low 1 4 21 117 248 705 364 — —

Heart Low 1 8 11 185 88 316 398 — —

Table 1: Average computation times (in seconds) of different models across different experiments.

6.2.2 EXPERIMENTS ON THE MOUSE SSP AND THE DEVELOPING HUMAN HEART

We also carried out experiments on data from the SSp region of mouse brain as well as the devel-
oping human heart to evaluate the performance of models on tissues of different structures. We
employed single-cell level spatial data coming from osmFISH technology (Codeluppi et al., 2018)
to produce multicell data for SSp (Appendix D.2). For the developing human heart, we used sub-
cellular spatial data generated by the ISS platform (Asp et al., 2019) (Appendix D.3). We tested the
performance of the six deconvolution methods on these two samples, results of which are illustrated
in Figure 2b. Each subplot shows the distribution of prediction error based on the Jensen-Shannon
divergence at each spot in the spatial data, with the average value over all spots given on top of each
plot. DOT outperforms other models in the human heart sample and is among the best-performing
models in the mouse SSp sample. Moreover, performance of DOT is not sensitive to different re-
gions/cell type of the tissue (compare to Tangram and Seurat in SSp and RCTD in human heart).
These results further highlight the competitive performance of DOT and its robustness in identifying
the cell type composition of spots across different tissues.

7 CONCLUSION

Single-cell RNA-seq and spatially-resolved imaging/sequencing technologies, the cutting edge tech-
nologies in transcriptomic data generation, each provide a partial picture in understanding the or-
ganization of complex tissues. To obtain a full picture, computational methods aim at combining
data from these two modalities. We present DOT, a fast and scalable optimization framework based
on Optimal Transport theory, for assigning cell types to tissue locations by leveraging the spatial
information as well as both joint and distinct genes across scRNA-seq and spatial data. Using ex-
periments on data from mouse brain and human heart, we show that DOT predicts the cell type
composition of spots in spatial data with high accuracy, outperforming the state of the art methods
both in terms of predictive performance and computation time.
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8 REPRODUCIBILITY STATEMENT

All datasets used in this study are publicly available, details of which are given in Appendix D.
We implemented the methods according to the guidelines provided in the respective studies. Perfor-
mance metrics, implementation details as well as computational considerations for the methods used
in this study are provided in Appendix C. Implementation details of the FW algorithm are given in
Section 4 and Appendix B. An anonymized downloadable source code is provided as supplementary
material.
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Grégoire Mialon, Dexiong Chen, Alexandre d’Aspremont, and Julien Mairal. A trainable optimal
transport embedding for feature aggregation. In International Conference on Learning Represen-
tations (ICLR), 2020.

Efthymia Papalexi and Rahul Satija. Single-cell RNA sequencing to explore immune cell hetero-
geneity. Nat. Rev. Immunol., 18(1):35–45, 2018.
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A PROOFS

Proof of Proposition 2.

Proof. Let g(Y ) =
∑

i∈I

∑
j∈I

∑
c∈C

∑
k∈C

(
MC

c,k −MS
i,j

)2
Yc,iYk,j , then

g(Y ) =
∑
c∈C

∑
i∈I

Yc,i

∑
k∈C

∑
j∈I

Yk,j

(
(MC

c,k)
2 + (MS

i,j)
2 − 2MC

c,kM
S
i,j

)
.

Expanding the inner summations:∑
k∈C

∑
j∈I

Yk,j(M
C
c,k)

2 =
∑
k∈C

(MC
c,k)

2
∑
j∈I

Yk,j =
∑
k∈C

(MC
c,k)

2ρk = m̄c (using
∑
j∈I

Yk,j = ρk)∑
k∈C

∑
j∈I

Yk,j(M
S
i,j)

2 =
∑
j∈I

(MS
i,j)

2
∑
k∈C

Yk,j =
∑
j∈I

(MS
i,j)

2nj = m̄i (using
∑
k∈C

Yk,j = ni)∑
k∈C

∑
j∈I

Yk,jM
C
c,kM

S
i,j =

∑
k∈C

MC
c,k

(
Y MS)

k,i
=
(
MCY MS)

c,i
= Zc,i

We can therefore rewrite g(Y ) as:

g(Y ) =
∑
c∈C

∑
i∈I

Yc,i(m̄c + m̄i − 2Zc,i).

Proof of Proposition 1.

Proof. Note that ∥∥∥∥ a

∥a∥
− b

∥b∥

∥∥∥∥2 =
∥a∥2

∥a∥2
+
∥b∥2

∥b∥2
− 2

⟨a, b⟩
∥a∥∥b∥

= 2− 2 cos(a, b)

⇒dcos(a, b) =
√
1− cos(a, b) =

√
2∥a/∥a∥ − b/∥b∥∥.

This shows that dcos is a metric since ∥ · ∥ is a metric. We can easily show that cosine dissimi-
larity (i.e., 1 − cos(·, ·)) is not a metric. For instance, consider a = (1, 0, 0), b = (0, 1, 0) and
c = (x, x,

√
1− 2x2) for arbitrary x ∈ ( 12 ,

1√
2
), and let f denote the cosine dissimilarity. Then

f(a, b) = 1 − cos(a, b) = 1, and f(a, c) = f(c, b) = 1 − x, which violates the triangu-
lar inequality since f(a, c) + f(c, b) = 2 − 2x < 1 = f(a, b). It is not difficult to see that
dcos(a, c) + dcos(c, b) > 1.

Proof of Proposition 3.

Proof. Let g(Y ) =
∑
i∈I

∑
j∈I

∑
c∈C

∑
k∈C

(
MC

c,k −MS
i,j

)2
Yc,iYk,j . Provided that MC

c,k = 1 for c ̸= k and

MC
c,c = 0, we obtain
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∑
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∑
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∑
c∈C
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)2
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∑
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(
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)2
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=
∑
i∈I

∑
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∑
c∈C
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)2)
Yc,iYc,j +

∑
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(
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)
=
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∑
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=
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where α =
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i∈I

∑
j∈I
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c∈C

∑
k∈C
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B IMPLEMENTATION DETAILS OF THE FW ALGORITHM

B.1 INITIAL SOLUTION

A good quality initial solution plays a critical role in fast convergence of FW. Given the multi-
objective nature of our model, we produce an initial solution as convex combination of two solutions.
In the first solution, for each spot i we first find cell type ĉ = argminc∈C{dcos

(
XS

i,:,X
C
c,:

)
} and

set Yc,i = ni if c = ĉ and Yc,i = 0 otherwise. Note that this solution is optimal for the sparse case
when di is the only objective. In the second solution, we simply set Yc,i = niρc/|I| for each i and c.
Note that this solution is optimal for dA. We then set the initial solution as the convex combination
of these two solutions, with 0.9 weight assigned to the first solution.

B.2 DERIVATIVES

To find the derivatives of di(Y ) and dc(Y ), defined in equation 2 and equation 3, we introduce
auxiliary quantities X̄S := Y ⊤XC and X̄C := Y XS, to denote the expressions mapped through
Y to spots and cell types, respectively. Derivatives for di(Y ) and dc(Y ) can then be calculated as:

∂di
∂Yc,i

=
1

∥XS
i,:∥
⟨XC

c,:,T
S
i,:⟩,

∂dc
∂Yc,i

=
1

∥XC
c,:∥
⟨XS

i,:,T
C
c,:⟩,

where

T S
i,g =

−1
2di(Y )

(
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i,g

∥X̄S
i,:∥
−

X̄S
i,g

∥X̄S
i,:∥3
⟨XS

i,:, X̄
S
i,:⟩

)
,

TC
c,g =

−1
2dc(Y )

(
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c,:∥
−

X̄C
c,g

∥X̄C
c,:∥3
⟨XC

c,:, X̄
C
c,:⟩

)
.

Derivative of ρcdc(Y ) then can be computed using the product rule. Similarly, we may derive the
derivative for dg(Y ) via

∂dg
∂Yc,i

=
−1

2dg(Y )

XC
c,g

∥XS
:,g∥

(
XS

i,g

∥X̄S
:,g∥
− Yc,i

∥X̄S
:,g∥3
⟨XS

:,g, X̄
S
:,g⟩

)

Taking into account the simplification from Proposition 2, noting that m̄c and Zc,i are functions of
Y while m̄i is constant, we can show that

∂dGW

∂Yc,i
=

1

2dGW(Y )
(2m̄c + m̄i − 4Zc,i).

Finally, the derivatives for dA and dR, defined in equation 7 and equation 8 respectively, can be
calculated as:

∂dA

∂Yc,i
=

1

2
log

(
2ρc

ρc + rc

)
,

∂dR

∂Yc,i
= − 1

ρc
.

C EXPERIMENTAL SETUP

C.1 PARAMETER SETTING

For DOT, we set penalty weights λC = 1 and λG = |n|/|G| to balance the scales of different
objectives, where |n| :=

∑
i∈I ni. This is because both

∑
i∈I nidi(Y ) and

∑
c∈C rcdc(Y ) are in

the range of 0 and |n|, while 0 ≤
∑

g∈G dg(Y ) ≤ |G|. For the GW objective, it is not difficult to
verify that 0 ≤ dGW(Y ) ≤ |n|. However, although spatial information contributes to the accuracy
of cell type mapping, meaning that λGW > 0 is desirable, a large value for λGW may dominate
the genomic objectives di(Y ), dc(Y ) and dg(Y ), thus reduce accuracy. A middle-ground is to
set a small positive value for λGW. In our computations, we found that λGW = 0.1 works best in
most cases. Whenever prior information about expected abundance of cell types is available, we
set λA = 1 and λR = 1. We computed ρc, the expected abundance of cell type c, based on the
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observed fraction of cell type c in the reference scRNA-seq data multiplied by |n|. We set the
sparsity parameter θ = 1 for high resolution spatial data, and set θ = 0 for low resolution spatial
data. To capture heterogeneity of cell types, we clustered each cell type into = 10 clusters. The
distance threshold d̄ is computed as follows. For each spot we computed its Euclidean distance to 8
closest spots in space1, yielding 8|I| values. We then took d̄ as the 99th percentile of these values.

For RCTD, SPOTlight, Tangram, and C2L we used the default parameters suggested by the
authors with the following exceptions. For RCTDwe set the parameter UMI min to 50 to prevent the
model from removing too many cells from the data. Given the large number of cell type in the mouse
MOp datasets, for SPOTlight we reduced the number of cells per cell type to 100 to enhance the
computation time. Similarly, as Tangram was not able to produce results in a reasonable time for
the MOp instances, we randomly selected 500 cells per cell type to reduce the computation time. For
C2L, we used 20000 epochs to balance computation performance and accuracy. For Seurat and
SingleR, we followed the package documentations, with functions used with default parameters.
For RF we used the implementation provided in the R package ranger (Wright & Ziegler, 2017)
with all parameters set at their default values.

C.2 PERFORMANCE METRICS

We compared the predictive performance of DOT against the other methods using three metrics.
Accuracy in the context of high-resolution spatial data (i.e., when each spot corresponds to an in-
dividual cell) is the proportion of correctly classified spots (i.e., sum of the main diagonal in the
confusion matrix) over all spots. To assess the accuracy of membership probabilities produced by
each model, we compared the models using Brier Score, also known as mean squared error:

Brier Score = |I|−1
∑

i∈I

∑
c∈C

(Yc,i − Pc,i)
2,

where Pc,i = 1 if spot i is of cell type c and Pc,i = 0 otherwise, and Yc,i is the predicted probability
that spot i is of cell type c. As Brier Score is a strictly proper scoring rule for measuring the accuracy
of probabilistic predictions (Gneiting & Raftery, 2007), a model with lower Brier Score produces
better-calibrated probabilities.

Besides the cell type that each spot is annotated with, we can produce a cell type probability distribu-
tion for each spot by considering the cell type of its neighboring spots, using a Gaussian smoothing
kernel of the form

P̃c,i = (
∑

j∈I
Ki,j)

−1
∑

j∈I
Ki,jPc,j , Ki,j = exp

(
−∥xi − xj∥2/2σ2

)
,

where σ is the kernel width parameter which we set to 0.5d̄. Note that as spot j becomes closer to
spot i, its label contributes more to the probability distribution at spot i. Using these probabilities, we
also introduce the Spatial Jensen-Shannon (SJS) divergence to compare the probability distributions
assigned to spots (i.e., Y ) with the smoothed probabilities (i.e., P̃ )

SJS = |I|−1
∑

i∈I
JS(Y:,i, P̃:,i),

where JS(Y:,i, P̃:,i) is the Jensen-Shannon divergence between probability distributions Y:,i and P̃:,i
with base 2 logarithm (Manning & Schutze, 1999), also defined in equation 7.

D DATASETS

D.1 MOUSE PRIMARY MOTOR CORTEX (MOP)

MERFISH. For high-resolution spatial transcriptomics, we used the spatially resolved cell atlas of
the MOp recently generated using multiplexed error-robust fluorescence in situ hybridization (MER-
FISH) technology and made publicly available by Zhang et al. (2021a). The processed dataset con-
tains normalized RNA counts of 254 genes and coordinates of the boundaries of a total of 280,186
segmented cells across 75 samples in the MOp of two adult mice, with the number of cells within
each sample ranging from 1000 to 7500 cells. We computed the (x, y) coordinates of the center
of each cell by taking the average of the coordinates of its boundary. The study also identifies 99
trasncriptionally distinct cell types by community detection applied on a cell similarity graph. The
clustering resulted in 39 excitatory neuronal cell types (clusters), 42 inhibitory neuronal cell types,
14 non-neuronal cell types, and four other cell types.

1We used 8 closest neighbors to mimic the number of adjacent tiles in a 2D regular grid.
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scRNA-seq. The corresponding scRNA-seq data comes from a cell atlas of the MOp (Yao et al.,
2021b), which contains the mRNA expression of the full range of genes for more than 500,000
individual cells across several omics layers. We used the scRNA-seq dataset scRNA 10x v2 A
generated at the Allen Institute, which contains 145,748 cells and 100 cell types. After removing
the unannotated cells and low quality cell types (as categorized in the study), we retrieved 124,330
cells and 90 distinct cell types. For computational efficiency, we also selected the top 5,000 variable
genes according to their means and variances (Stuart et al., 2019).

D.2 MOUSE PRIMARY SOMATOSENSORY CORTEX (SSP)

Similar to MOp, another well-studied tissue area is the primary somatosensory cortex area (SSp).
Here, we used high-resolution spatial data coming from the osmFISH platform (Codeluppi et al.,
2018), which contains measurements of 33 genes across 4,837 cells, as well as annotations based on
11 major cell types. For reference scRNA-seq data with matched cell types, we used the annotations
independently generated by (Yao et al., 2021a) using 5,392 single cells in the same SSp region.

D.3 DEVELOPING HUMAN HEART

For the developing human heart, we used subcellular spatial data generated by the ISS platform
(Asp et al., 2019), which contains tissue sections from human embryonic cardiac samples collected
at different times. We selected the PCW6.5 slide which contains measurements of 69 genes across
17,454 cells as well as annotations of 12 major cell types. The same study also provides scRNA-seq
data for similar slide, which contains matched cell types for 3,253 cells.

E SUPPLEMENTARY RESULTS
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Figure 3: Synthetic multicell spatial data from MERFISH. Dots show individual cells and tiles
represent multicell spots (darker tile means denser spot).
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