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Abstract

While Large language models (LLMs) have the001
capability to iteratively reflect on their own out-002
puts, recent studies have observed their strug-003
gles with knowledge-rich problems without004
access to external resources. In addition to005
the inefficiency of LLMs in self-assessment,006
we also observe that LLMs struggle to revisit007
their predictions despite receiving explicit neg-008
ative feedback. Therefore, We propose Mirror,009
a Multiple-perspective self-reflection method010
for knowledge-rich reasoning, to avoid get-011
ting stuck at a particular reflection iteration.012
Mirror enables LLMs to reflect from multiple-013
perspective clues, achieved through a heuristic014
interaction between a Navigator and a Reasoner.015
It guides agents toward diverse yet plausibly016
reliable reasoning trajectory without access to017
ground truth by encouraging (1) diversity of di-018
rections generated by Navigator and (2) agree-019
ment among strategically induced perturbations020
in responses generated by the Reasoner. The021
experiments on five reasoning datasets demon-022
strate that Mirror’s superiority over several023
contemporary self-reflection approaches. Addi-024
tionally, the ablation study studies clearly indi-025
cate that our strategies alleviate the aforemen-026
tioned challenges.027

1 Introduction028

Large Language Models (LLMs) have become an029

important and flexible building block in a variety030

of tasks. They can be further improved by iterative031

correction in many tasks (Madaan et al., 2023; Gou032

et al., 2023a; Shinn et al., 2023; Pan et al., 2023),033

such as code generation, arithmetic problem solv-034

ing and reasoning. During iterative refinement, the035

critic module, which assesses the current response036

and generates valuable feedback, is crucial to drive037

performance improvement.038

Some research shows that LLMs have self-039

assessment abilities (Manakul et al., 2023; Madaan040

et al., 2023). For example, LLMs can reject its041

own prediction and generate a response ‘I don’t 042

know’ when they are not confident about their pre- 043

dictions (Kadavath et al., 2022). Empirical obser- 044

vations demonstrate LLMs’ competence in various 045

reasoning tasks, leading to the utilization of ad- 046

vanced LLMs to evaluate the predictions made by 047

other models (Hao et al., 2023; Zhou et al., 2023; 048

Liu et al., 2023b). However, recent studies suggest 049

that relying directly on LLMs’ judgements is not 050

trustworthy and can lead to failures in knowledge- 051

rich iterative reasoning (Huang et al., 2023). To 052

guide LLMs through a reasoning loop, existing 053

solutions either incorporate external resources to 054

verify LLMs’ outputs (Peng et al., 2023; Yao et al., 055

2023b), or train a critic module on labelled assess- 056

ment datasets (Gou et al., 2023a; Zelikman et al., 057

2022). Furthermore, self-consistency is considered 058

a robust unsupervised method to identify confident 059

and reliable LLM outputs. 060

In self-refinement, the quality of generated feed- 061

back also plays a pivotal role. The Self-Refine 062

method (Madaan et al., 2023) introduced task- 063

specific metrics for multifaceted feedback gener- 064

ation, requiring LLMs to evaluate their outputs 065

across various aspects, such as fluency, engage- 066

ment, and relevance for the dialogue generation 067

task. This process often heavily relies on human 068

expertise, and generating effective feedback for rea- 069

soning tasks can be even more difficult as it is ob- 070

scure to define the essential attributes for different 071

problems. Providing overly general feedback fails 072

to guide LLMs toward generating better outputs in 073

subsequent iterations. 074

The inefficiency of self-assessment and feedback 075

generation capabilities largely hinders the perfor- 076

mance of iterative refinements. On one hand, as 077

depicted in Figure 1, it is evident that in the ab- 078

sence of a ground truth reference, LLMs fail to 079

consistently improve their predictions, indicating 080
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Figure 1: Without ground truth for validating LLM-generated outputs, LLMs struggle to consistently improve their own outputs
due to their incapability of self-assessment. Autostop and Neverstop provide different generic feedback without leaking the
correctness of the current response.

their limitations in self-assessment1. On the other081

hand, even when ground truth labels are available,082

LLMs often fail to adhere to instructions for revis-083

ing their incorrect predictions, as shown in Figure084

2. Each bar represents the number (averaged over 5085

iterations) of revised (blue) and unchanged samples086

(grey) among the incorrectly predicted samples. It087

is undesirable to see that a large number of incor-088

rect predictions stay unchanged, suggesting that089

LLMs can become trapped in a reasoning loop.090

To address the aforementioned limitations and091

generate high-quality feedback without relying092

on human experts, we propose a novel frame-093

work, refer to as Mirror (Multiple-perspective self-094

reflection method for knowledge-rich reasoning).095

Mirror enables LLMs to reflect from multiple-096

perspective clues and this is achieved in a heuristic097

manner between a Navigator and a Reasoner, re-098

sembling a typical human tutoring process. For099

example, when tackling a complex scientific prob-100

lem, the Navigator generates clues of key elements101

and rationales behind posing the question, which102

are crucial in focusing the response on the essential103

aspects. This information, tailored to the question,104

serve as instructions for prompting the Reasoner105

to adjust their predictions accordingly and avoid106

getting stuck at a particular stage.107

To initiate the unsupervised self-reflection prop-108

erly and avoid being trapped in the reasoning loop,109

Mirror integrates an intrinsically motivated plan-110

ning algorithm to search for the optimal reason-111

ing trajectory. Inspired by the findings in §3.1112

and §3.2, we propose to reward both the diversity113

of generated directions and the agreement among114

strategically induced perturbations in responses.115

Notably differing from existing tree-based plan-116

ning methods for reasoning (Hao et al., 2023; Zhou117

et al., 2023), Mirror avoids deteriorated search-118

1Details of Autostop and Neverstop are in Appendix A.1.

ing space by encouraging diverse generative out- 119

comes from LLMs at each reflection step, and en- 120

hances the self-assessment ability by considering 121

the agreements among multiple-perspective per- 122

turbations strategically induced in responses. We 123

evaluate the performance of Mirror on two cat- 124

egories of reasoning tasks: MMLU (Hendrycks 125

et al., 2021), a knowledge-rich question-answering 126

dataset, and FEVER (Thorne et al., 2018), a fact- 127

checking dataset. Mirror achieves a significant 128

average improvement of over 15% compared to 129

recent popular unsupervised self-refinement meth- 130

ods. The empirical observations demonstrate that 131

the proposed diversity-based reward and answer 132

assessment strategy serve as reliable sources for 133

performance enhancement. 134

2 Related Work 135

Self-Reflection LLMs. Extensive research (Hon- 136

ovich et al., 2022; Xie et al., 2023) has been con- 137

ducted to enhance LLMs through the concept of 138

self-reflection, where LLMs learn from automati- 139

cally generated feedback to understand and reflect 140

on their own outputs. This feedback can stem 141

from various sources: the LLM itself (Madaan 142

et al., 2023; Shinn et al., 2023), a separately trained 143

critic module (Gou et al., 2023b; Peng et al., 2023) 144

or external sources (Yao et al., 2023b), such as 145

Wikipedia or an Internet Browser. Gou et al. 146

(2023b); Peng et al. (2023) argued that evaluators 147

trained on task-oriented feedback offer superior per- 148

formance. For example, Refiner (Paul et al., 2023) 149

took context and hypotheses as input to generate 150

templates-based feedback for various error types. 151

Recent studies (Peng et al., 2023; Shinn et al., 2023; 152

Hao et al., 2023) have fully utilized the in-context 153

learning capability of LLMs, prompting them to 154

generate high-quality feedback based on their pre- 155

vious generation or potential templates. Madaan 156
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et al. (2023) proposed multiple task-oriented met-157

rics and prompted LLMs to evaluate their own158

outputs based on these criteria. Similarly, Peng159

et al. (2023); Glaese et al. (2022) adopted exter-160

nal tools to predict multi-facet human preference161

scores. Our solution aligns with this trend by aim-162

ing to provide informative and customized instruc-163

tions tailored to the specific task and query. More-164

over, it seeks to achieve this without relying on165

human intervention or external tools, thereby ren-166

dering self-refinement more feasible in practice.167

Reasoning models augmented with tree search.168

Recently, tree-based reasoning has attracted signifi-169

cant attention, such as Tree-of-Thought (ToT) (Yao170

et al., 2023a), Grace (Khalifa et al., 2023), and171

SelfEval-Decoding (Xie et al., 2023). At each172

reasoning step, ToT adopts breadth-first search173

and depth-first search, while the latter two meth-174

ods select the top-k scoring candidates during the175

decoding process. Moreover, Monte-Carlo Tree176

Search (MCTS) is one of the popular search algo-177

rithms (Swiechowski et al., 2023), which strikes178

a balance between exploitation and exploration.179

Some existing approaches establish a reinforce-180

ment learning framework to maximize reward181

through learning optimal actions/states (Du et al.,182

2023a; Parthasarathy et al., 2023; Zhu et al., 2023).183

Other studies fully utilize the capability of LLMs184

for interaction and feedback generation. For in-185

stance, RAP (Hao et al., 2023) leveraged step-wise186

rewards from interactions with the world model to187

decompose and solve the problem step-by -step,188

rather than a iterative manner. LATS (Zhou et al.,189

2023) was the first work in leveraging MCTS for190

self-reflection. However, their feedback contains191

information from comparisons with ground truth,192

which is not applicable in our case. Instead, our193

approach, Mirror has no access to gold labels, and194

we incorporate a novel diversity reward to avoid195

the inefficient search in the reflection iteration.196

3 Lost in the Reasoning Loop197

Given the observed challenges in enhancing LLMs’198

self-improvement without ground truth labels, par-199

ticularly in knowledge-rich reasoning tasks, our200

initial experiment aims to address these challenges201

by breaking them down into two sub-questions.202

Q1: To what extent can LLMs assess the correct-203

ness of a statement? This investigation involves en-204

hancing their capabilities through supervised train-205

ing. The primary goal is to discern if there are206

viable solutions to enhance the verification ability 207

of LLMs on knowledge-rich statements. 208

Q2: How well can LLMs generate high-quality 209

feedback to guide their own subsequent response 210

update? It is especially challenging when the feed- 211

back generation models are not trained on high- 212

quality data, relying solely on the in-context learn- 213

ing capability of LLMs. 214

3.1 LLMs in Knowledge Grounding 215

We experiment with the multiple-choice dataset, 216

MMLU (Hendrycks et al., 2021), covering 57 sub- 217

jects across STEM, Humanity, Social and other 218

domains. To evaluate the ability of LLMs in assess- 219

ing the knowledge-rich statements, we construct 220

the positive and negative statements by substitut- 221

ing the question with the correct choice and a ran- 222

domly selected choice from the other three incor- 223

rect choices, respectively. Table 1 presents the 224

assessment accuracy of assessing. There are three 225

categories of methods: in-context learning, fine- 226

tuned on statements, and classification based on 227

intermediate activations from LLMs. 228

As illustrated in the first group results in Ta- 229

ble A1, an increase in accuracy is observed as the 230

size of Llama-2-13B-chat increases. Notably, GPT- 231

3.5 with 175B parameters consistently achieves 232

the best results across the three domains, although 233

the improvement is not directly proportional to the 234

parameter size. We then apply advanced prompt- 235

ing techniques, i.e., UniLangCheck (Zhang et al., 236

2023) on the best-performing method, GPT-3.5. 237

Our analysis reveals that the improvements are 238

predominantly driven by self-consistency, while 239

UniLangCheck does not consistently contribute to 240

improvement in grounding. For UniLangCheck, 241

we firstly prompt LLMs to generate a fact about the 242

key elements in a question before making the final 243

assessment. It can be partially explained by the 244

accumulation error, i.e., the inaccurate facts gener- 245

ated by LLMs before reaching the final conclusion 246

can affect the outcome. We also calculate the corre- 247

lation between accuracy and self-consistency, rep- 248

resented by the probability of generating a single 249

answer through multiple repeated prompting. The 250

average correlation R2 for questions in the MMLU 251

datasets across three LLMs is about 0.85, indicat- 252

ing that self-consistency can be relied upon as a 253

proxy for assessment 2. 254

2Experiment details are shown in Appendix A.2, self-
consistency evaluation results are shown in Table A1.
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Model STEM Social Humanity
Llama-2-13B-chat 0.541 0.540 0.525
Llama2-70B-chat 0.569 0.593 0.587
Vicuna-v1.5-13B 0.539 0.580 0.558
GPT-3.5(175B) 0.666 0.725 0.733
:+UniLangCheck 0.621 0.729 0.713
:+Self-Consistency 0.712 0.730 0.752
TRUE⋆ 0.545 0.532 0.559
ActivationRegress⋆ 0.531 0.529 0.553
ContrastSearch 0.606 0.645 0.617

Table 1: The (binary classification) accuracy in evaluating
the factual correctness of statements in the MNLU dataset.
Methods denoted with ⋆ can access to fact labels.

We also evaluate the performance of some su-255

pervised methods (denoted with ⋆ in Table 1).256

TRUE (Honovich et al., 2022) involves fine-tuning257

a T5 (Raffel et al., 2020) model on a collection258

of natural language inference (NLI) datasets for259

fact-checking. We further fine-tune its classifier260

head on our training set. ActivationRegress (Marks261

and Tegmark, 2023) trains classifiers using activa-262

tions extracted from Llama2-13B 12-layer encod-263

ings as inputs. ContrastSearch (Burns et al., 2023)264

is trained using contrastive and consistency loss265

while having no access to the factual labels. This266

is achieved by constructing data pairs that include267

both a positive-labeled and negative-labeled state-268

ments, irrespective of the true factual labels. It is269

surprising that both TRUE and ActivationRegress270

are inferior than the unsupervised ContrastSearch.271

3.2 LLMs in Feedback Generation272

Evaluating the quality of generated feedback poses273

a significant challenge, particularly when such feed-274

back is utilized across diverse tasks (Madaan et al.,275

2023). Drawing inspiration from the pivotal role of276

feedback in the self-improvement, we propose to277

leverage the performance of LLMs in subsequent278

iterations for evaluation. Specifically, LLMs can279

access to ground truth, enabling them to evaluate280

the correctness of their current responses. This281

information is then integrated into feedback gen-282

eration. Consequently, we assess the quality of283

feedback by examining the percentage of examples284

that are incorrectly answered, along with the per-285

centage of instances where responses in the next286

round are revised for the same incorrectly answered287

examples. This comparison sheds light on the effec-288

tiveness of instructions in guiding LLMs to rectify289

their erroneous responses. Firstly, we follow the290

settings in (Shinn et al., 2023) to incorporate the as-291

sessment results in the feedback: "Observation:292

The answer is incorrect." is inserted after 293

presenting the question and previous attempt, and 294

the LLMs are required to generate refection and 295

response to this question again. From the results 296

in Figure 2, it is consistently observed across dif- 297

ferent model scales that LLMs struggle to update 298

their predictions despite receiving explicit negative 299

feedback. The average percentage of successfully 300

updated examples for GPT-3.5, Llama, and Vicuna 301

are 65.6%, 51.79% and 74.09%, respectively, indi- 302

cating an ample room for improvement. 303

Motivated by the following two observations: (1) 304

LLMs are particularly susceptible to context influ- 305

ence at the beginning or near the end (Liu et al., 306

2023a), (2) In-Context Learning is highly sensi- 307

tive to stylistic and emotional words in demonstra- 308

tions (Min et al., 2022; Li et al., 2023), we de- 309

velop three prompting strategies for feedback gen- 310

eration. An incorrectly predicted example with dif- 311

ferent prompting strategies is shown in Figure A2. 312

The results in Table A2 and Table A3 suggest that 313

based on correct question assessment, enhancing 314

the exploration capability within a diverse answer 315

space could lead to higher accuracy in answering 316

knowledge-rich questions. 317

The above empirical findings regarding the two 318

research questions provide valuable insights for 319

our proposed model, named Mirror. Distinguish- 320

ing itself from existing self-improvement methods, 321

Mirror makes two significant contributions: (1) it 322

features a Navigator module for generating mul- 323

tiple question-adaptive directions, with diversity 324

constraints implemented to prevent invalid reflec- 325

tions. (2) it relies on the consistency of the inherent 326

multiple perspectives for boosted self-assessment. 327

4 The Framework of Mirror 328

In this section, we introduce our unsupervised self- 329

reflection framework, Mirror, depicted in Figure 3. 330

The reward R consists of Diversity and Consis- 331

tency terms. Diversity is applied to prevent reflec- 332

tion from becoming stuck and to facilitate intra- 333

consistency involved in the stop criteria for self- 334

assessment. The Consistency reward also influ- 335

ences direction generation. 336

4.1 Problem Setup 337

Given a question, the Reasoner is to arrive at the 338

final answer through interacting with a Navigator. 339

We consider a Markov Decision Process (MDP) 340

defined by a tuple (S,A,P, π, γ,R), where the 341

st ∈ S and at ∈ A denote the state and action, re- 342
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Figure 2: The average number (across all iterations) of changed and unchanged samples among those predicted incorrectly.
Large percentage of unchanged samples indicate the limited capability for efficient reflection.
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Figure 3: An overview of Mirror. It facilitates diverse
question-specific directions (represented by different colored
dots in the action space) to encourage extensive reflection by
the Reasoner. The stopping criterion is based on the consis-
tency among states from multiple perspectives, which also
contributes to the direction generation.

spectively in the t-th reflection iteration. In the con-343

text of multiple-choice question, at is the direction344

generated by the Navigator, and st is the response345

generated by the Reasoner, including the answer346

to the question and the rationale behind. R(s, a)347

is the reward function. Therefore, we have state348

transition distribution P(st|st−1, at−1) and action349

generation distribution π(at|st, q, p0,R), where p0350

is the prompt for the Navigator to generate direction351

at. It is nontrivial to obtain frequent rewards that352

incentivize self-refinement progress without access353

to the ground truth. Therefore, we turn to an intrin-354

sically motivated planning algorithm, i.e., Monte-355

Carlo Tree Search (MCTS) (Kocsis and Szepesvári,356

2006; Browne et al., 2012; Swiechowski et al.,357

2023) to efficiently explore the environment aug-358

menting rewards with auxiliary objectives (Mu359

et al., 2022; Du et al., 2023b).360

Comparing to existing work search-based rea-361

soning methods based on frozen LLMs (Hao et al.,362

2023; Zhou et al., 2023), we highlight two no-363

table contributions addressing the vulnerabilities of364

LLMs as discussed in §3: (1) Step-wise Multiple-365

perspective self-assessment: unlike approaches366

that rely on ground truth or majority-voting based367

on several complete generated trajectories, our368

framework utilizes multiple-perspective consis-369

tency as stop criteria at each step t. (2) Novel 370

Reward Mechanism: a novel diversity mechanism 371

is designed to avoid the null space encountered in 372

traditional random search settings. Our method is 373

detailed in Algorithm 1 in the Appendix. 374

4.2 Multiple-perspective Assessment 375

Motivated by the empirical results in § 3.1 re- 376

garding knowledge-grounding, we propose to em- 377

ploy an advanced consistency-based method as 378

a surrogate for factual correctness when external 379

resources are unavailable. This method consid- 380

ers both intra- and inter-consistency of the gener- 381

ated responses. Specially, we employ the Naviga- 382

tor for K question-oriented direction generation, 383

a ∼ π(at|q, st, p0,R). These K directions are in- 384

tended to provide diverse perspectives for problem- 385

solving, with the agreement among guided re- 386

sponses representing inter-consistency. Meanwhile, 387

the confidence in self-consistency (Wang et al., 388

2023) serves as the measure of intra-consistency. 389

To integrate consistency considerations into the 390

assessment per reflection iteration, we use intra- 391

consistency to determine whether the Reasoner 392

should accept its initial response. If the intra- 393

consistency surpasses a threshold T0, we consider it 394

as the final result; otherwise, we integrate the inter- 395

consistency as an indicator for stopping criteria in 396

subsequent reflection iterations. We derive the fi- 397

nal answer when the inter-consistency exceeds T0 398

or when reach the predefined maximum iterations, 399

selecting the final answer with the highest consis- 400

tency score. This inter-consistency also becomes 401

part of rewardRconsistency for the current state and 402

contribute to the direction generation. We com- 403

pare with majority voting in Table 4 to illustrate 404

the efficiency of our assessment strategy. 405

4.3 Diverse and Valid Search Space 406

Obtaining a meaningful and diverse action space 407

is challenging due to the absence of a dense and 408

well-defined reward function in the planning al- 409
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gorithm. One of the predominant reasons is that410

different action sequences can lead to similar out-411

comes (Baranes and Oudeyer, 2013). In our con-412

text, considering the limitation of LLMs in fol-413

lowing instructions, the Reasoner may ignore the414

differences among multiple directions and gener-415

ate identical responses merely based on the ques-416

tion. Therefore, some intrinsically motivated rein-417

forcement learning algorithms choose to explore418

outcomes rather than actions (Oudeyer and Ka-419

plan, 2007; Ladosz et al., 2022). MCTS ad-420

dresses the limitation of sparse rewards by visiting421

novel states or transitions through random explo-422

ration (Du et al., 2023b). The most popular al-423

gorithm in the MCTS family, Upper Confidence424

Bound for Trees (UCT) (Kocsis and Szepesvári,425

2006) is treated as the choice of child node, UCT =426

Rj + 2Cp

√
2 InN(n)
N(nj)

, where Rj is the average re-427

ward for child node j, while the second term en-428

courages sampling from nodes whose children are429

less visited. N(n) is the number of times current430

node (parent) has been visited in previous iterations,431

and N(nj) is times of the child node has been vis-432

ited. The Cp > 0 is a constant to control balance433

between exploitation (first term) and exploration434

(second term). In our case, we specifically pro-435

mote diversity between the parent and child node,436

i.e., the response in previous attempt st−1 and the437

current attempt st3. For multiple-choice questions438

in MMLU, we assess if the predicted choices are439

the same across two reflection iterations. The dis-440

crepancy in responses indicates the alleviation of441

null direction space and the avoidance of being442

stuck, especially given the relatively low consis-443

tency with the response from the previous iteration.444

The relationship between task performance and the445

diversity of responses in the generated tree, as il-446

lustrated in Figure 5, confirms our motivation for447

diversity enhancement. However, maximizing di-448

versity of outcomes may not always be enough, as449

less relevant states might be collected (Du et al.,450

2023b). Therefore, we filter out states whose asso-451

ciated responses are not in the correct form, such452

as failing to provide a final choice, or refusing to453

answer questions for moral considerations.454

3We conducted experiments by filtering K distinct direc-
tions based on their semantic similarity derived from Sentence-
BERT (Reimers and Gurevych, 2019), but the performances
did not match those achieved by directly constraining the
diversity of outcomes.

5 Can Mirror Steer LLMs in Iterative 455

Improvements? 456

We evaluate our proposed Mirror on MMLU 457

and FEVER (Thorne et al., 2018). FEVER 458

is a fact-checking dataset featuring three labels 459

for knowledge-rich statements, i.e., supports, 460

refutes and not enough info. 461

5.1 Experimental Setup and Results 462

Comparison methods. The evaluation models 463

are GPT-3.5, Llama2-13B-Chat (Touvron et al., 464

2023), and Vicuna-v1.5-7B (Zheng et al., 2023) 4. 465

We equip the LLMs with different reasoning mech- 466

anisms, including Chain-of-Thought (CoT) (Wei 467

et al., 2022), Self-consistency (Wang et al., 2023), 468

Self-Correction (Huang et al., 2023) and Reflex- 469

ion(w.GT) (Shinn et al., 2023). We implement CoT 470

by prompting LLMs to first generate step-by-step 471

thoughts and then generate answers based on those 472

thoughts. We repeat this process for five times, re- 473

sulting in Self-Consistency(5). The remaining two 474

methods are self-improvement techniques where 475

LLMs are first prompted to generate reflections, 476

followed by updating their current response ac- 477

cordingly if applicable. Self-Correction relies on 478

LLM’s internal knowledge for answer assessment, 479

while Reflexion compares the current answer with 480

the ground truth for evaluation. 481

Methods STEM Social Hum Others FEVER

Relexion(w.GT)(5) 0.79 0.84 0.78 0.73 0.72
GPT-3.5 (CoT) 0.63 0.65 0.53 0.60 0.58
Self-Consistency(5) 0.67 0.68 0.58 0.64 0.61
Self-Correct(2) 0.63 0.62 0.55 0.54 0.55
Mirror 0.76 0.77 0.71 0.67 0.64

Relexion(w.GT)(5) 0.64 0.63 0.60 0.64 0.59
Llama13B(CoT) 0.42 0.58 0.42 0.53 0.40
Self-Consistency(5) 0.45 0.60 0.49 0.57 0.46
Self-Correct(2) 0.42 0.52 0.53 0.45 0.36
Mirror 0.57 0.62 0.58 0.62 0.54

Relexion(w.GT)(5) 0.62 0.68 0.59 0.69 0.59
Vicuna13B (CoT) 0.46 0.57 0.43 0.57 0.39
Self-Consistency(5) 0.50 0.62 0.53 0.60 0.43
Self-Correct(2) 0.43 0.49 0.42 0.49 0.38
Mirror 0.59 0.64 0.56 0.65 0.46

Table 2: Performances of different reasoning methods, with
an upper-bound represented by results obtained when ground
truth is provided, denoted as Relexion(w.GT). The superscripts
denote the number of reasoning iterations.

Results. The results are shown in Table 2. By 482

comparing CoT with Self-Correction, we observe 483

the performance degradation after two rounds of 484

4We denote them as Llama13B and Vicuna13B for sim-
plicity. Experiment details can be found in Appendix C.
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Thought: I think a score of 50 on the Beck Depression Inventory-II suggests moderate depression.
It's important to note that this score indicates a significant level of depression that may require
professional attention. So, the correct choice is C. moderate depression. 

Answer: D

Thought:  Upon reviewing the scoring criteria for the Beck Depression Inventory-II, I have revised my
understanding. A score of 50 on the inventory actually suggests severe depression, indicating a high
level of depression that may require immediate professional attention. Therefore, the correct answer
is D. severe depression. Thank you for directing me to ensure a precise understanding of the scoring
criteria.
Answer: D

Question: A score of 50 on the
Beck Depression Inventory-II
suggests:?

A. no or minimal depression.
B. mild depression.
C. moderate depression.
D. severe depression.

Thought: A score of 50 on the Beck Depression Inventory-
II  suggests: A. no or minimal depression. Scores on the
BDI-II range from 0 to 63, with higher scores indicating
more severe depressive symptoms. A score of 50 falls
within the range considered to indicate no or minimal
depression. So, the correct choice is: A. 

Answer: A

Initial Answer

Thought: Upon reviewing the previous answer, I realized that I made an
error in my initial response. I apologize for any confusion. Let me correct
the answer: A score of 50 on the Beck Depression Inventory-II suggests: B.
mild depression.

Answer: B

Self-improvement

Please check your answer and find possible errors. If everything
is good, stick to your answer, otherwise, update to a new answer.

...
Answer:

D

...
Answer:

C

...
Answer:

D

...
Answer:

D

...
Answer:

C

Thought:  My previous response was partly correct. A
score of 50 on the Beck Depression Inventory-II does
suggest  a significant level of depression. Therefore, the
correct answer is D.
Answer: D

It seems there may be a discrepancy between your
rationale and your selection.  Please consider revising
your answer to align with the correct interpretation of
the score. 

Self-improvement

Question

Initial Answer

Self-improvement

Encourage the student to consider the specific indicators that would lead to each level of
depression. Encourage them to think about the impact of a score of 50 on the Beck Depression
Inventory-II and how it matches up with the levels of depression described in the choices given.

It seems there may be a discrepancy between your rationale and your selection.  Please consider
revising your answer to align with the correct interpretation of the score. Consider revising your
answer accordingly.

Self-Correction

Mirror

Figure 4: Reasoning process of self-correction and Mirror. Text in red are generated directions.

self-Correction across almost all datasets and mod-485

els. This observation aligns with our findings in486

§3.1 and in (Huang et al., 2023). Equipped with487

self-consistency(5), significant performance im-488

provements are evident across all settings. Mirror489

considers additional inter-consistency, achieves the490

most notable improvements, with a relative in-491

crease of more than 15% across the three mod-492

els. Figure 4 illustrates the reasoning process of493

Self-correction and Mirror. Both methods fail to494

answer correctly in the first trial. With question-495

oriented direction, the Reasoner better identify er-496

rors in the initial response, such as, the error in497

score direction and inconsistency between ratio-498

nales and selection. The consistency-based criteria499

built in the tree further improves the fact assess-500

ment. During backpropagation, node s
(1)
1 receives501

a higher reward, leading to the leftmost reasoning502

path (details of direction a
(1)
1 , a

(1)
2 , a

(2)
2 and corre-503

sponding responses are shown in the text frame).504

By contrast, Self-correction seems to engage in505

groundless inference by switching answers without506

explicit clues. Even comparing Mirror with Relex-507

ion(w.GT), we find comparable results for GPT-3.5508

on the STEM dataset, for Llama on all datasets509

except for STEM and for Vicuna on STEM and510

Humanity. From the perspective of the model, the511

average improvements over baselines for GPT-3.5512

are particularly prominent, partly explained by its513

better ability to adhere to provided directions. This514

can also explain the marginal improvements even515

ground truth are accessible to the smaller models.516

5.2 Analysis 517

We discuss the effects of key strategies in Mirror. 518

Question-Oriented Direction. Motivated by the 519

findings in § 3.2 that LLMs struggle to effec- 520

tively reflect on themselves with generic feedback, 521

Mirror is equipped with a Navigator for gener- 522

ating question-oriented directions. To study the 523

effects of these directions (results in Table 3), 524

we adopt our Navigator for direction generation 525

for CoT settings, in which the direction (Gener- 526

ativeDirect) is introduced before the LLM gen- 527

erates its thought on the previous trial. We 528

then replace all adaptive directions with a sin- 529

gle generic direction (FixedDirect) which reads: 530

Read the question and choices carefully 531

and diagnose the previous response by 532

locating the incorrect clues and update 533

the response if applicable. Comparing with 534

CoT, the inclusion of GenerativeDirect boosts the 535

performance across all settings with significant im- 536

provements. Conversely, FixedDirect sometimes 537

results in performance degradation for Llama13B. 538

The impact of FixedDirect is similar to advanced 539

instruction intended to provide general direction for 540

the task, whereas GenerativeDirect offers question- 541

specific advice to accurately summarize clues for 542

solution. Referencing to the example in Figure A3, 543

Mirror (bottom) firstly prompts the Navigator for 544

direction generation (highlighted in red), which 545

captures the key elements, such as “the character- 546

istics of a connected and undirected graph”. The 547

Reasoner then follows this direction to explain the 548

key concepts of this graph, laying a solid founda- 549
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tion for reaching the correct conclusion. Without550

such direction, the Reasoner may overlook or mis-551

interpret knowledge about this graph, leading to552

errors in the conclusion.

Models Methods MMLU FEVER

GPT-3.5: CoT 0.68 0.58
+ FixedDirect 0.73 0.60
+ GenerativeDirect 0.78 0.64

Llama13B: CoT 0.46 0.40
+ FixedDirect 0.43 0.39
+ GenerativeDirect 0.49 0.45

Vicuna13B: CoT 0.48 0.42
+ FixedDirect 0.51 0.43
+ GenerativeDirect 0.55 0.45

Table 3: Performances of using generic fixed direction
and generative direction on top of CoT.

553 Diversity of the Search Space. We demonstrate554

the impact of multiple-perspective directions, aim-555

ing at guiding the Reasoner out of reflection556

traps. To this end, we compute the percentage557

of generated trajectories containing the correct an-558

swers (ans_presence) and the according task per-559

formances (acc) across various action space sizes,560

i.e., the number of generated directions. The re-561

sults in Figure 5 indicate that lager search space562

enhanced by the Rdiversity can increase the proba-563

bility of reaching the correct answer.
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Figure 5: The Accuracy (acc) and the percentage of samples
where the ground truth is included in the tree (ans-presence),
with different sizes of search space (Num). Results for GPT-
3.5 and Llama13B are in Figure A4a and A4b.

564
Performance of Answer Assessment Criteria.565

As discussed in Section 3.1, LLMs struggle to566

assess the correctness of knowledge-rich state-567

ments, a capability that can be consistently en-568

hanced through self-consistency. We further re-569

form the majority-voting assessment process by570

considering the inter-consistency built in the hi-571

erarchical decision-making tree. To study the ef-572

fects of our answer assessment criteria described573

in §4.2, we compare them with two other voting574

methods, i.e., self-consistency (majority vote for575

5 CoT-generated reasoning trajectories) and ma-576

jority vote within our generated tree-trajectories.577

We average the results from Table 2 for CoT and 578

Self-consistency(5) across four domains in MMLU 579

and denote them as CoT(1) and CoT(5), respec- 580

tively. For Majority(tree), we select the final an- 581

swer through majority-voting among all interme- 582

diate nodes in our generated tree-trajectories. The 583

results of different final answer assessments are 584

presented in Table 4. We observe a performance 585

increase after applying majority-voting in the CoT 586

settings, while this simple strategy doesn’t yield im- 587

provements in the generated tree. This is because 588

undesirable responses may be generated during the 589

node expanding phase, and majority voting treats 590

all nodes equally. In contrast, our reward-based 591

search tends to focus on reliable nodes with higher 592

confidence in each reflection step, thereby avoiding 593

less desirable nodes. 594

Models Ans. Assessment MMLU Fever

GPT-3.5: CoT(1) 0.60 0.58
CoT(5) 0.64 0.61

+Majority(tree) 0.69 0.59
+Reward Search(tree) 0.73 0.64

Llama13B: CoT(1) 0.49 0.40
CoT(5) 0.53 0.46

+Majority(tree) 0.58 0.50
+Reward Search(tree) 0.60 0.54

Vicuna13B: CoT(1) 0.51 0.39
CoT(5) 0.56 0.43

+Majority(tree) 0.59 0.43
+Reward Search(tree) 0.60 0.46

Table 4: Results of different answer assessment methods.

6 Conclusion 595

In this paper, we present a multiple-perspective 596

reflection method, called Mirror, for knowledge- 597

enriched reasoning. To tackle the limitations of 598

LLMs in fact assessment and the generation of 599

high-quality feedback, Mirror is equipped with 600

a directional Navigator, enabling the Reasoner to 601

identify multiple key clues in problem-solving. Fur- 602

thermore, the consistency among responses gener- 603

ated under different directions enhances the valid- 604

ity of answer assessment, particularly when ground 605

truth is not accessible. Experiments conducted 606

on five reasoning datasets demonstrate Mirror’s 607

superiority over several contemporary CoT-based 608

and self-consistency-based reasoning approaches. 609

Moreover, the ablation study results clearly show 610

that our strategies effectively alleviate the afore- 611

mentioned challenges. 612

8



7 Limitations613

In this study, our primary focus on identifying op-614

timal reasoning trajectories based on generated615

outputs and frozen states. However, the fact-616

assessment and reflection generation capabilities617

may be limited by the intact decoding process and618

pre-training. To fully leverage the potential of619

LLMs in complex reasoning, it is valuable to ex-620

plore in the two directions: (1) Strategically guid-621

ing the fine-grained generation, such as token-level622

generation in the decoding phase within the expan-623

sive generation space. (2) Fine-tuning LLMs using624

access to limited task-oriented data to enhance their625

responses to more complex problems.626

8 Ethics Statement627

We utilized two publicly available datasets: Mas-628

sive Multitask Language Understanding (MMLU)629

and FEVER (Fact Extraction and Verification).630

MMLU is a multiple-choice question-answering631

dataset covering 57 subjects across STEM, social632

sciences, humanities, and more. Notably, some633

subjects, such as moral disputes and moral sce-634

narios, contain statements raising ethical concerns.635

Large language models may pose a risk of misuse636

or misjudgment in these contexts. We strongly ad-637

vise thorough consideration of safety implications638

before applying relevant techniques in real-world639

scenarios. For the FEVER dataset, positive claims640

(facts) are extracted from Wikipedia, and negative641

claims are generated by contrasting these facts and642

subsequently verified without knowledge of their643

source sentences. However, considering Wikipedia644

as a social network where virtually anyone can re-645

vise content, the extracted facts may not be perfect.646

Consequently, we discourage the usage of our work647

as ground truth for any fact verification task in case648

any confusion and bias.649
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A More Experimental Details for Initial927

Study928

A.1 Experiment for Figure 1929

The prompt used in Autostop is “You were930

either successful or unsuccessful in your931

previous trial. Stick to your previous932

answer if it is correct, otherwise933

consider a new answer”. The prompt used for934

NeverStop is “You failed in your previous935

trial and reconsider a new answer”. The936

motivation behind Autostop is that we totally rely937

on the LLM’s internal knowledge to check the cor-938

rectness of its own outputs. However, LLM fails939

in this setting as the performance is even worse940

than initial stage. For NeverStop, we hope to iden-941

tify that some correctly answered samples will be942

kept unchanged even the negative feedback pro-943

vided. However, we didn’t find a pattern between944

the changed and unchanged predicted samples.945

A.2 Implementation for Knowledge946

Grounding and Results947

Dataset We evaluate LLMs’ knowledge ground-948

ing ability on knowledge-rich multiple-choice949

dataset, MMLU. It consists of four domains:950

STEM, Social, Humanity and Other, totaling 56951

subjects. All methods are evaluated on 50 randomly952

selected samples for each subject (excluding those953

in the Other domain), and the remaining samples954

are used as the training set where applicable.955

Models and Baselines In addition to Llama2-956

13B, Llama2-70B, and GPT-3.5 for prompting,957

we also leverage unified language checking, Uni-958

LangCheck (Zhang et al., 2023), for statement959

assessment. UniLangCheck aims to check if960

language input is factual and fair via prompting961

LLMs to generate groundings for fact-checking.962

Therefore, we firstly prompt LLMs to generate963

a fact about the key element in the question be-964

fore proceeding to the final assessment. We re-965

peatedly prompt the LLMs for 5 times and use966

the majority-voted answer as the result for Self-967

Consistency (Wang et al., 2023). TRUE (Hon-968

ovich et al., 2022) is the T5-11B (Raffel et al.,969

2020) model fine-tuned on a collection of natural970

language inference (NLI) datasets to check factual971

correctness, and has been used by previous works972

within similar contexts (Gao et al., 2023a,b). We973

further fine-tune its classifier head on our train-974

ing set, which is annotated as factually correct or975

not, before evaluation. Both Contrastive Consis- 976

tent Search (ContrastSearch ) (Burns et al., 2023) 977

and ActivationRegress (Marks and Tegmark, 2023) 978

train classifiers whose inputs are activations ex- 979

tracted from Llama2-13B 12-layer encodings 5. 980

ActivationRegress trains a logistic classifier on the 981

activations with factual labels as supervision. Con- 982

trastSearch, instead, operates without factual la- 983

bels. For a statement si, we firstly construct a data- 984

pair x+ and x− by annotating True and False to 985

this statement ,regardless of its factual correctness. 986

Then, we derive the probabilities by mapping x to a 987

number between 0 and 1, i.e., p+ = pθ(ϕ(x
+
i )) and 988

p− = pθ(ϕ(x
−
i )). The mapping function pθ is up- 989

dated such that the probabilities are both confident 990

(p+i ≈ 1− p−i ) and consistent (p+i ̸≈ p−i ). 991

Prompt Settings The basic prompt for knowl- 992

edge grounding is shown in Figure A1a. This is 993

used for Llama2, GPT-3.5 and Self-Consistency. 994

The advanced prompt inspired by UniLangCheck 995

is illustrated in Figure A1b. For each subject, we 996

randomly select 50 samples and extract their ques- 997

tion and choice to build a statement for knowl- 998

edge checking. The correctness of this statement is 999

deemed True if the selected choice is exactly the 1000

correct one, otherwise it is labeled False. 1001

Correlation between Self-consistency Confi- 1002

dence and Accuracy For the self-consistency(5) 1003

baseline, we calculate the R2 for confidence (the 1004

frequency of the current answer among all gener- 1005

ated answers, totaling 5) and the accuracy. The 1006

results are shown in Table A1. We observe a high 1007

correlation between the two variables, which in- 1008

spires our design of multiple-consistency for an- 1009

swer assessment.

STEM Social Humanity Others
GPT-3.5 0.80 0.89 0.84 0.88
Llama 0.86 0.85 0.91 0.86
Vicuna 0.92 0.90 0.74 0.92

Table A1: The correlation between accuracy and
self-consistency confidence over three domains in the
MMLU datasets.

1010

A.3 Implementation for Direction Generation 1011

Based on the observation that existing feedback 1012

has limited effects to guide LLMs to update their 1013

5The original dimensions of Llama2-30B is 5024. We
apply PCA to reduce this dimensionality to obtain 50-
dimensional activations as classifier input.
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As an expert in knowledge grounding, you'll be assessing statements that consist of a question followed by a proposed answer.
The question forms the initial part of the statement, and the answer follows it. Utilize your thoughtful analysis to determine the
correctness of each statement. Conclude the assessment with a "Finish[answer]" that returns either True or False, marking the
completion of the task.

Here are some examples:
{examples}
(END OF EXAMPLES)

Statement: {question:q, answer: a}
Thought: thought
Action: Finish[answer]

(a) Basic prompt for knowledge grounding. Text in gray is extracted from datasets, in red shadow is generated by LLMs.

In your capacity as a specialist in knowledge grounding, your task is streamlined into a comprehensible two-step process. Firstly, assume the role of
a question architect, delineating the essential "key elements/knowledge" integral to formulating a sound question. Subsequently, based on these
identified key knowledge elements, proffer your response. The ensuing step involves a meticulous comparison of your proposed answer with the
provided solution to ascertain accuracy. Conclude this evaluative process with a succinct 'Finish[answer]' statement, conclusively designating either
True or False, thereby encapsulating the successful execution of the task."
Here are some examples{examples}
(END OF EXAMPLES)

Statement: {question:q, answer: a}
Key Element/fact: fact
Thought: thought
Comparison: comparison
Action: Finish[answer]

(b) Fact-extract prompt applied to UniLangCheck for knowledge grounding. Text in gray shadow is extracted from
datasets, in red shadow is generated by LLMs. Comparing to the basic prompt, it includes additional fact generation.

current incorrect response, we propose several sim-1014

ple strategies to enhance the effectiveness of gen-1015

erated feedback in the self-improvement process.1016

These strategies are mainly inspired by the follow-1017

ing two observations: (1) LLMs are more suscepti-1018

ble to context influence at the beginning or near the1019

end (Liu et al., 2023a) (2) ICL is highly sensitive1020

to the stylish and emotional words in demonstra-1021

tions (Min et al., 2022; Li et al., 2023). We summa-1022

rize the different strategies in the diagram shown1023

in Figure A2.1024

We show the performances over three LLMs af-1025

ter applying different instructions in Table A3. It1026

is clear that NegPrefix demonstrates the most sig-1027

nificant improvements across all the datasets and1028

models. In contrast, NewAnswer has the same1029

sentences NegPrefix as but its position is far away1030

from the generating point for LLMs. This can be1031

explained that position of instruction is important1032

in ICL. And the performance of NewAnswer is1033

slightly better than baseline, it can be partly ex-1034

plained that the NewAnswer explicitly show the1035

negative attitude towards and guide the model to1036

generate a different answer. Among the three mod-1037

els, the average promotion on GPT3.5 is the most1038

negligible. This can be explained that larger model1039

are more confident with its internal knowledge and1040

less vulnerable to given noisy text.1041

Model Prompts Change

GPT35
Oracle 0.56

NegReflect 0.72

Llama
Oracle 0.54

NegReflect 0.72

Vicuna
Oracle 0.64

NegReflect 0.74

Table A2: The relative percentage of changed samples
among those incorrectly predicted ones. We use the
average results for different domains in MMLU.

B Mirror algorithm 1042

We introduce the pipeline of the proposed Mirror in 1043

Algorithm 1 involves iteratively conducting a UCT- 1044

SEARCH until predefined iteration constraint is 1045

reached, and the best action a(BESTCHILD(v0, 0)) 1046

leading to the best child of the root node v0 returns. 1047

Node in the tree is v and its associated state is s(v), 1048

representing the response generated by Reasoner. 1049

The action is a(v), reward is R and N(·) is the 1050

times of the node having been visited. r(v) is the 1051

reward for the terminate state at each iteration. 1052

The overall process consists of three steps: (1) 1053

SEARCHPOLICY to obtain the terminal node vl. 1054

through which expands the tree until fully ex- 1055

panded. Specially, we randomly add one or more 1056

nodes to the root node according to the possible ac- 1057
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You're an advanced reasoning agent capable of self-reflection and continuous improvement. You have attempted to answer the following
question before and failed. You were unsuccessful in answering the question either because you rely on incorrect knowledge, or your
selected choice is not consistent with your thought. Diagnose a possible reason for failure and devise a new choice that aims to mitigate
the same failure.

Question:  One suggestion that Lukianoff and Haidt make to challenge vindictive protectiveness is
Choices:
A. have colleges and universities officially and strongly discourage trigger warnings.
B. to defund the Department of Education.
C. to promote greater understanding of historical and contemporary oppression.
D. none of the above.

Thought: Lukianoff and Haidt suggest challenging vindictive protectiveness by promoting discourse and intellectual freedom through the
use of open-minded dialogue, civility, and reasoned disagreement. This would include promoting an understanding of of historical and
contemporary oppression (Choice C). So, the answer is C. to promote greater understanding of historical and contemporary oppression.
Action: Finish[C. to promote greater understanding of historical and contemporary oppression]

(END PREVIOUS TRIAL)

Reflections: 

Previous Trial

You have attempted to answer the following question before and
failed. Below is the last unsuccessful trial you attempted to answer. 
.

Baseline

The answer is incorrect . 
Observation

The Thought in last trial is not factually correct and
I will reconsider and propose a different answer.

NewAnswer

The Thought in last trial is not factually correct and
I will reconsider and propose a different answer.

NegPrefix

Baseline

Observation

NewAnswer

NegPrefix

Feedback

Figure A2: Given the question and the LLM’s previous trial, it is asked to generated feedback under different
prompts to facilitate reflection and potentially update its previous response. The four candidate instructions, Baseline,
Observation, NewAnswer and NegPrefix, are enclosed in dashed frames, and they will be positioned differently to
exert their respective effects.

Model Stem Social Humanity Other
GPT35 0.80 0.82 0.78 0.73
+Observation 0.76 0.82 0.75 0.70
+NewAnswer 0.80 0.84 0.80 0.75
+NegReflect 0.84 0.86 0.84 0.76
Llama 0.64 0.63 0.60 0.64
+Observation 0.63 0.62 0.61 0.62
+NewAnswer 0.64 0.67 0.65 0.64
+NegReflect 0.70 0.72 0.76 0.69
Vicuna 0.62 0.68 0.59 0.69
+Observation 0.64 0.52 0.45 0.67
+NewAnswer 0.66 0.58 0.47 0.65
+NegReflect 0.69 0.63 0.52 0.72

Table A3: Self-improvments results with different
prompt constraints for answer correction. By compar-
ing with the ground truth, this evaluation is to show
the capability of LLMs in obeying the instructions of
changing their incorrect predictions.

tions. In our case, we generate multiple responses1058

to the given question and previous attempts/re-1059

sponse. When the current node is fully expanded,1060

we apply the UTC algorithm to select the best child1061

node. (2) SIMULATION the reward r for vl through1062

SIMULATIONPOLICY. This phrase is to simulate1063

the future rewards of the current node through mul-1064

tiple interactions. For simplicity, we follow the1065

similar process as expansion and return the reward1066

r for selected action-state pair. (3) BACKPROPA-1067

GATE the simulation results to the selected nodes1068

to accelerate SEARCHPOLICY in next iteration.1069

C Experiments for Mirror 1070

We will introduce the implementation details and 1071

provide complementary results experimented on 1072

Mirror in this section. 1073

C.1 Implementation Details 1074

Hyper-parameter settings. In order to encour- 1075

age diverse direction generation, we set the gen- 1076

eration temperature as 0.8 for all the models, and 1077

we set do_Sample = True for llama and vicuna to 1078

avoid greedy search. For the threshold T0 in self- 1079

assessment to deriving the final answer, we set 0.8 1080

for GPT35, and 0.5 for llama and Vicuna according 1081

to the results on limited validation data. 1082

Prompt Settings. We provide 5 demonstrations 1083

along with instruction when prompting LLMs. We 1084

show the prompts/instructions provided to LLMs 1085

in direction generation and response generation 1086

process. 1087

(a) p0 in direction generation in 1088

π(at|st, p0,R). The guidance in the 1089

upper is for initial response, the bottom one is 1090

for reflection in the subsequent iterations. 1091

(b) Prompt for response generation 1092

given previous response and direction. 1093

P(st|st−1, at−1; q) 1094
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Prompt for Direction Generation (MMLU)
As a tutor, your focus is on guiding the student to nav-
igate multiple-choice question-answering problems
strategically. Encourage them to dissect the question,
identifying key elements and nuances within each
choice. Emphasize the importance of understanding
subtle differences that could distinguish correct from
incorrect options.

As a tutor, your are supposed to meticulously evaluate
the student’s approach to multiple-choice problems.
Question, Choices and the student’s previous thought
and answer are given, check if the facts mentioned
in the thought is correct and if there might be a more
appropriate option than the one chosen. If the stu-
dent’s reasoning thought is accurate and the proposed
answer is the most appropriate, encourage them to ad-
here to their initial trial. Otherwise, guide the student
to revisit specific details, explore alternative choice.

1095

Prompt for Direction Generation (FEVER)
As a tutor, your focus is on guiding the student to navi-
gate fact-checking problems strategically. Encourage
them to dissect the claim, identifying key elements
and associate facts. Emphasize the correct relation
between important elements that could distinguish
SUPPORTS from REFUTES options. Also, lacking
of enough information will lead to NOT ENOUGH
INFO.

As a tutor, your are supposed to meticulously eval-
uate the student’s approach to fact verification task.
Claim and the student’s previous thought and answer
are given, check if the relations mentioned in the
Thought is correct and if there might be a more ap-
propriate answer. If the student’s reasoning thought
is accurate and the proposed answer is the most ap-
propriate, encourage them to adhere to their initial
trial. Otherwise, guide the student to revisit specific
details, explore alternative answer.

1096

Prompt for Response Generation (MMLU)
You are an expert in multiple-choice question answer-
ing. Each problem will provide you with a question
and answer choices. Read the question and all the
choices carefully, along with the provided advice, and
solve the problem by having a thought. Thought can
reason about the current situation. Finish[answer]
returns the answer and finishes the task.

You’re an advanced reasoning agent capable of self-
reflection and continuous improvement. Your objec-
tive is to tackle multiple-choice question answering
problems. Each problem will provide you with a ques-
tion, answer choices, your previous line of reasoning,
and the detailed analyses from an experienced tutor.
In a succinct review, assess the accuracy of your ear-
lier answer based on your expertise and the advice,
subsequently arrive at the definitive response.

1097

Prompt for Response Generation (FEVER)
You are a knowledgeable and accurate fact verifier.
Please verify the correctness of the following claim
based on your expertise and provided advice. Return
SUPPORTS or REFUTES a Claim, or if there is NOT
ENOUGH INFO.

You’re an advanced reasoning agent capable of self-
reflection in fact verification task. Claim and the your
previous response and answer are given, along with
the advice. In a succinct review, assess the accuracy
of your earlier answer based on your expertise and the
advice, subsequently arrive at the definitive response.

1098

Computational budget. The total running costs 1099

for using GPT-3.5 in our experiments are approx- 1100

imately $500. In addition, the running time for 1101

Llama2 and Vicuna in our experiments totalled 320 1102

hours, utilising one 40G A100 graphics cards. 1103

C.2 Additional Results 1104

Effects of question-oriented direction. To save 1105

computational resources, we randomly select 20 1106

samples from each of the four domain datasets in 1107

MMLU and from FEVER. We show an example of 1108

generated direction in the CoT settings.

Question: For a connected, undirected graph , which of the following must be true?
I.  degree is even. II. . III. G has at least one vertex with degree 1.
A. I only B. II only C. III only D. I and II

Oversight: Consider first identifying any possible misconceptions about the concepts of
connected, undirected graphs and their properties. Next, analyze each statement in the
question and evaluate its relevance to the definition and characteristics of connected, undirected
graphs. 

Thought: I. A connected, undirected graph G = (V, E) is a type of graph in which there is a path
between every pair of vertices. For such a graph, the sum of the degrees of all vertices is always
even. This is because the sum of the degrees of all vertices is equal to twice the number of edges

. Therefore, statement I must be true.

Action: Finish[D. I and II only]
 

Model Output

Thought: I.  degree is even. This statement is not necessarily true. In an undirected
graph, the sum of the degrees of all vertices can be odd. For example, consider a graph with three
vertices, each with degree 1. The sum of the degrees would be 3, which is odd.        ...

Action: Finish[A. I only]

Input

Model Output

Figure A3: With question-oriented direction, the Rea-
soner answers questions with explicit clues.

1109

The diversity of Search Space One of our moti- 1110

vations is to broaden the diversity of actions avail- 1111

able for more effective exploration. Consequently, 1112

we compute the upper bound results for our gen- 1113

erated tree, indicating the presence of the correct 1114

answer in the tree signifies a correctly answered 1115

sample. Results are shown in Figure 5. 1116

15



Algorithm 1 Mirror-UCT
Require: state transition function f : S×A→ S,

weight Cp, RewardR, Stop Criteria g → {0, 1}
function UCT-SEARCH(s0)

create root node v0 with state s0
while within computational iteration do

vl ← SEARCHPOLICY(v0)
r ← SIMULATIONPOLICY(svl)
BACKPROPAGATE(vl, r)

return a(BESTCHILD(v0, 0))

function SEARCHPOLICY(v)
while g(v) == 0 do

if v not fully expanded then
return EXPAND(v)

else
v ← BESTCHILD(v, Cp)

return v

function EXPAND(v)
choose a ∈ untried actions from A(s(v))
add a new child v′ to v

with s(v)′ = f(s(v), a) and a(v′) = a
return v′

function BESTCHILD(v, Cp)

return argmax
v′∈children of v

Rv′
N(v′)+2Cp

√
2 ln N(v)
N(v′)

function SIMULATIONPOLICY(s)
While s is non-terminal do

a = argmax
a∈A

(R(a, s))

s← f(s, a)
return reward for s

function BACKPROPAGATE(v, r)
while v is not null do

N(v)← N(v) + 1
R(v)← R(v) + r(v)
v ← parent of v
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Figure A4: The task performance, Accuracy (acc) and
the percentage of samples where the ground truth is
included in the tree (ans-presence), with different size
of search space (Num).
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