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Reproducibility Summary1

Scope of Reproducibility2

The main claim of the original paper that our team tested was that their Multi-scale Interactive Network for Salient3

Object Detection model outperforms existing state-of-the-art SOD methods on the 5 mentioned datasets.4

Methodology5

Our team used the provided GitHub source from the authors, after downloading and installing all necessary dependencies.6

We first tested the model on the 5 given datasets in the paper then on 3 others by training on the same DUTS/Train7

dataset as mentioned in the paper. Since the provided code only computed three of the six measurement statistics8

reported on, a separate Saliency Evaluation Toolbox was utilized to compute the remaining measurements. While9

training the MINet model on our 3 datasets, we noticed some limitations. One being the results of all three F-measure10

statistics (Max-F, Mean-F and the Weighted-F) on both the SOC and THUR15K dataset were meaningless due to the11

datasets containing images with no salient object, so we attempted to improve upon the F-Measures. A related issue was12

that the THUR15K dataset could not be run through the MINet model because it does not include a mask for images13

with no salient object, so we wrote a script to generate a black mask. We then tested the model by training on the SOC14

training set and then on the combined DUTS and SOC training sets.15

Results16

After testing the results presented using the five datasets provided, we found good results that were close to the ones17

presented in the original paper. After checking the performance of the model on 3 additional datasets, we decided to18

modify the F-measures statistics as they were meaningless on the SOC dataset and recompute the measurements which19

gave us improved results. After training on the SOC set which contained images where the ground truth is a pure black20

mask, there was improvement on the SOC validation set and THUR15K. Training on the combined SOC and DUTS21

training sets saw overall good performance on all datasets except the THUR15K dataset, where the model is expected22

to not only identify salient objects, but if it is the object of interest.23

What was easy24

Since the author’s made their Python source code publicly available on GitHub, testing the model was fairly quick. The25

code available was thorough and worked well. Additionally, as opposed to the training, the testing did not take much26

time and the measurement results were fairly good.27

What was difficult28

The biggest difficulty our team faced was the long training time and access to GPUs. For instance, training the29

MINet-VGG16 Model on the DUTS/Train dataset as in the paper took 63.5 hours. Lastly, the THUR15K dataset needed30

to be modified before we could test on it.31

Communication with original authors32

Our team did not communicate with the authors at all, except to use their publicly available source code.33
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1 Introduction34

Salient object detection (SOD) methods have been of great use in recent years. This method distinguishes the most35

visually obvious features and region in an image. The applications of SOD include visual tracking, image retrieval,36

no-reference synthetic image quality assessment and so on [10] [13].37

Despite the large progress that the SOD method reached, two challenges remain: how to extract more effective38

information from the data of scale variation and how to improve the spatial coherence of predictions in this situation.39

2 Scope of reproducibility40

To address the challenge of scale variance in SOD, this paper proposed the Multi-scale Interactive Network (MINet)41

which equipped with aggregate interaction modules (AIMs) and self-interaction modules (SIMs) [13]. AIMs exploit42

multi-level features and avoid the interference caused by resolution differences. SIMs obtain scale-specific information43

from the extracted features.44

Besides, the paper introduced the consistency-enhanced loss (CEL) as the loss function. The CEL is insensitive to the45

scale of objects, handles the issue of spatial coherence better, and is able to highlight salient regions without the need of46

additional parameters.47

For validation, the author trained and tested the MINet on five widely-adopted SOD datasets and the output were48

compared, using six SOD evaluation measures, to the output of 23 state-of-the-art saliency detection methods. The49

results suggested that the MINet outperformed all existing SOD methods across almost all datasets.50

The claim from the original paper that our team tested is:51

• The MINet outperforms existing state-of-the-art SOD methods on the 5 given datasets52

3 Methodology53

Since the author’s source code is publicly available at https://github.com/lartpang/MINet, it was used as the basis for the54

implementation and training of the MINet. In the author’s paper, there were six measurement statistics reported for the55

results on each dataset. However, the Python code only contained functions to calculate three of the measurements. The56

author’s created lartpang/SODEvalToolkit, which was based on ArcherFMY/sal_eval_toolbox [6], both of which are57

available on GitHub. This toolkit contained functions implemented in MATLAB to compute the remaining measurement58

statistics on their dataset. For the testing, we added a measure module to compute the six measures within the Python59

code automatically during testing, which was based on Mehrdad-Noori/Saliency-Evaluation-Toolbox [11] [12], available60

on GitHub. Besides the five datasets used by the author, we also train and tested the model on the MSRA [2], the61

THURK15K [3], and the validation set of the SOC dataset [4].62

Figure 1: The overall framework of the proposed model [13]
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3.1 Model descriptions63

The MINet uses a pre-trained VGG-16 [15] network with a factor of 16 to extract multi-level features (or a ResNet-5064

[7] with a factor of 32). Specifically, the last max-pooling layer of the VGG-16 is removed to maintain the details of the65

final convolution layer.66

The extracted multi-level features are then fed into the Aggregate Interaction Modules (AIMs). AIMs enhance the67

features of one level by exploiting information from its adjacent levels. This differs from combining all level features,68

which produces information redundancy and noise interference. In the AIM, each node represents a combination of a69

single convolution layer, a batch normalization layer, and a ReLU layer. After the first layer, the branches are adjusted70

by element-wise addition with their two neighbors. Up-sampling or down-sampling is used to make the sizes of input71

from different resolutions match. Finally, the three branches are fused together, and the number of channels is reduced.72

This also employs a residual connection.73

The output of AIMs is fed into Self-Interaction Modules (SIMs) as input to produce multi-scale representations from the74

intra-layer features. In the SIM, each node represents a combination of a convolution, normalization, and a ReLU layer.75

Up-sampling/down-sampling is used to ensure the same resolution as features from the next branch. Element-wise76

addition of the adjacent branch is then performed in the interactive layer. The Fusion Units (FU) fuses the features of77

the two paths from the SIM and the residual branch. The output of a SIM is then up sampled and added to the output of78

the AIM of the previous level (See Figure 1 taken from the author’s paper [13]). The sum serves as an input of the SIM79

at the previous level.80

For the loss function, the Consistency-Enhanced Loss is introduced to highlight the foreground region as smoothly as81

possible and to handle the sample imbalance issue. The total loss function is determined by summing the binary cross82

entropy loss and the consistency enhanced loss.83

3.2 Datasets84

For testing the proposed model, we used five popular existing benchmark datasets that this paper uses for code evaluation:85

DUTS[16], DUT-OMRON[18], ECSSD[17], HKU-IS[8], and PASCAL-S[9]. The DUTS contains 10,553 training and86

5,019 test images, which is the largest salient object detection dataset. The DUT-OMRON contains 5,168 images of87

complex backgrounds and high content variety. The ECSSD is composed of 1,000 images with structurally complex88

natural contents. The HKU-IS contains 4,447 complex scenes that contain multiple disconnected objects with relatively89

diverse spatial distributions, and a similar background appearance makes it more difficult to distinguish. The PASCAL-S90

consists of 850 challenging images and 1,447 images for testing. Only the 850 challenging images from the PASCAL-S91

were used in our testing.92

For testing whether the efficiency of the given code held in other datasets, we tested on three other datasets common for93

salient object detection area. We also tested our modifications on those three datasets. Firstly, the MSRA[2] dataset94

which originally provides salient object annotation in terms of bounding boxes. This dataset contains 10,000 images95

with consistent bounding box labeling and pixel-level saliency.96

The second dataset our team chose was the THUR15K[3] dataset which contains about 3000 images for each of the 597

keywords: “butterfly”, “coffee mug”, “dog jump”, “giraffe”, and “plane”, together comprising of 15,531 images. For98

each image, if there is a non-ambiguous object with correct content matching with the query keyword and most part of99

the object is visible, the object region is marked with a ground truth mask. Images that do not have non-ambiguous100

objects matching the query keyword do not have any associated ground truth mask. This dataset can also be used for101

evaluating co-segmentation methods.102

Finally, the third dataset our team chose to test on was the SOC[4] Validation dataset, which overcomes design bias of103

other datasets which assume that each image contains at least one clearly outstanding salient object in low clutter. The104

SOC dataset has many images which do not contain any salient object and for which the ground truth is an empty black105

mask. The SOC dataset provides a total of 6,000 images with instance level salient object masks as well as attributes106

annotations. Of these images, 3600 are part of the Train set, 1200 part of the Validation set, and 1200 part of the Test107

set. However, we only tested on the Validation set as the Test set did not have complete ground truth data posted at the108

time of our testing.109

3.3 Measurements110

To validate the claim of the paper, we used the same six measures to evaluate the model. For all measures, the ground111

truth is first converted into a binary map by thresholding pixel intensities greater than 128 to 1 and below to 0. Note that112

this ignores the shades of grey in the ground truth mask of the PASCAL-S dataset.113
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F-Measures: To obtain a salient object’s binary mask, we can threshold a saliency map at a specific threshold between114

0 and 255 of the raw intensities or from 0 to 1 in 256 increments for the normalized map. From these, the true-positive115

(TP), true-negative (TN), false-positive (FP) and false-negative (FN) can all be calculated comparing the binary ground116

truth to the thresholded saliency map. The precision and recall are then calculated as:117

Precision =
TP

TP + FP

Recall =
TP

TP + FN

The F-Measure Fβ is then calculated from the equation below. [1]118

Fβ-measure =
(1 + β2)Precision · Recall
β2Precision + Recall

The Fmax denotes the maximal Fβ value when we vary the pixel threshold value from 0 to 1 in 256 increments.119

However, note that this is calculated by first averaging the precision and recall curves across all images in the dataset120

and then taking the max, not the other way around. This means that the maximum is still affected by every image in the121

dataset.122

The Favg is calculated using an adaptive threshold that is twice the prediction’s mean value for each image, and then123

these resulting F-measures are simply averaged over every image in the test set to produce the final Favg for the dataset.124

The Fωβ is calculated by replacing in the precision with weighted precision and recall with weighted recall. The125

weighted precision and recall are obtained by assigning different weights according to location and neighborhood126

information. The original F-Measure does not take into account if the pixels of the salient map sparsely cover the127

ground truth mask and therefore have good coverage, or if they are concentrated in one area with a segment of the128

object missing. The weighted F-measure will take this into account as well as weight errors (FP) in the mask differently129

depending on how far they are from the ground truth mask. The Fωβ for each dataset is simply taken as the average of130

the Fωβ for each image in the dataset.131

MAE: The MAE is obtained by calculating the mean of the absolute value of the difference between the saliency map132

and the ground truth. Note that in the code, only the ground truth is first converted to a binary mask, while the saliency133

map is merely normalized between 0 and 1. Also note that in contrast to all other measurements, a lower number is134

better for the MAE. [14]135

MAE =
1

W ×H

W∑
x=1

H∑
y=1

|M(x, y)−G(x, y)|

E-Measure: The E-Measure Em uses an enhanced alignment matrix to capture both pixel level and image statistics of136

a binary map when evaluating the similarity between the saliency map and the ground truth [5].137

To capture both pixel and image level information, a bias matrix φ is defined as the distance between each pixel value138

of the binary foreground map and its global mean. And to quantify the bias matrix, an alignment matrix ξFM is defined139

as the following equation where ◦ denotes the element-wise multiplication:140

ξFM =
2ϕGT ◦ ϕFM

ϕGT ◦ ϕGT + ϕFM ◦ ϕFM

The enhanced alignment matrix is obtained by applying a mapping function f that suppresses decrease at value regions141

and strengthens increase at positive regions to the alignment matrix:142

ΦFM = f(ξFM )

where143

f(x) =
1

4
(x+ 1)2
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Thus, the E-Measure Em can be calculated as the following where h and w are the height and the width of the map,144

respectively:145

Em =
1

w × h

w∑
x=1

h∑
y=1

ΦFM (x, y)

S-Measure: The S-Measure Sm is obtained by simultaneously computing the region-aware and object-aware structural146

similarities between a saliency map and the ground truth. [4]147

To compute the region-aware structural similarity, the saliency map and the ground truth is recursively divided into148

multiple sub-blocks and each sub-block is assigned a weight that is proportional to the ground truth foreground region149

the sub-block covers. The region-aware structural similarity Sr can be obtained from the equation:150

Sr =

K∑
k=1

wk × ssim(k)

where K denotes the number of sub-blocks and ssim denotes the structural similarity measure which can be computed151

as the product of luminance comparison, contrast comparison and structure comparison.152

To compute the object-aware structural similarity, we first need to compute the foreground comparison and background153

comparison between the saliency map and the ground truth. The foreground comparison OFG can be obtained from the154

equation:155

OFG =
2xFG

(xFG)2 + 1 + 2λ× σxFG

where xFG and sigmaxFG
denote the means and standard deviation, respectively, of probability values of foreground156

region of the saliency map and the ground truth. λ is a constant to balance the the saliency map and the ground truth.157

Similar, The background comparison OBG can be obtained from the equation:158

OBG =
2xBG

(xBG)2 + 1 + 2λ× σxBG

Let µ be the ratio of foreground area to image area, the object-aware structural similarity So can be computed as:159

So = µ×OFG + (1− µ)×OBG

Thus, the S-Measure Sm can be obtained with the equation below where α is set to 0.5 in the implementation:160

Sm = α× So + (1− α)× Sr

3.4 Modified F-Measures161

After running the author’s code on the SOC validation dataset and the THUR15K datasets, it was clear that the F-162

measures were misleading and returning unexpectedly low values on these datasets. After some investigation, it appears163

this was because the F-measures were not well defined when the ground truth was a purely black mask, indicating164

that there was no salient object in the image. Both the SOC and THUR15K contain such images where the model is165

expected to recognize that there is not any salient object and as such produce a black saliency map.166

When the ground truth is an "empty" or purely black mask, then the precision and recall curves that the F-measure167

depends on are ill-defined. In this case, both the True Positive and and the False Negative were always 0 because there168

are no pixels of interest in the ground truth mask. This results in the precision being 0 and the recall being 0/0 and ill169

defined. The author’s MINet code handles this by simply setting both the precision and recall to 0, which then affects170

the resulting F-Measure statistics, as they are averaged across all images in the dataset. Therefore, the results of all three171

F-measure statistics (Max-F, Mean-F and the Weighted-F) on both the SOC and THUR15K dataset are substantially172

lowered by every instance where the ground truth is a black mask, resulting in these measures being meaningless, and173

misleading to the uninformed user.174
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In an attempt to prevent the F-Measures from producing meaningless results for datasets that contain images without175

salient objects, our team attempted to extend the F-Measure to use an alternative measurement for said images. In the176

case when the ground truth is a black mask and has no pixels of interest, we propose a modification to the F-measure:177

Modified-Fβ =

{
Fβ ,

∑W
x=1

∑H
y=1G(x, y) 6= 0

(1−MAE)n,
∑W
x=1

∑H
y=1G(x, y) = 0

Where n is a parameter to control the weighting of errors in the saliency map compared to the black mask. We found178

that using a value of n = 2 resulted in reasonable results where the F-measure is no longer quite so misleading in the179

datasets which contain images with no salient object.180

For the Fmax, a modified approach was needed since this measurement is calculated by first averaging the precision181

and recall curves of all images in the dataset and then computing the F-measures. In this case, we modify the Precision182

and Recall to be calculated in reference to producing a pure black mask as below:183

Precision =

(
1

W ×H

W∑
x=1

H∑
y=1

S(x, y)

)n

Recall =
1

W ×H

W∑
x=1

H∑
y=1

S(x, y)

Where S(x, y) is a binary mask first calculated by thresholding in an inverse manner where M(x, y) ≤ γ, where γ is a184

threshold from 0 to 1 in 256 increments. We also find n = 2 gives decent results. As such, the recall is calculated based185

on recalling a pure black image where the Recall = 1 when the saliency map is purely black. The precision and recall186

are then averaged over all images, where they are calculated the same as originally when there is a salient object in187

the ground truth and as described here when there is not. The Fmax is then computed in the same manner as before.188

Although these are not "true" precision and recall definitions, they produce more meaningful results then simply setting189

them to 0.190

3.5 Hyperparameters191

We double-checked the hyperparameters of the source code provided and decided to leave most of them as the default192

as they were the same as reported in the author’s paper. The main hyperparameter settings are summarized in Table 1193

and these were not changed between any of the test runs.194

Table 1: Main hyperparameters used when training the MINet

Hyperparameter Value Comments in Author’s Code

Epoch number 50 None
Learning rate 0.001 None
Tensorboard update 50 if the value is >0, will use tensorboard
Print Frequency 50 if >0, the code will save the information into a file
Size list None Not using multi-scale training
Reduction "mean" How to handle reduction,’mean’ or ’sum’
Weight decay 5e-4 When fine-tuning, set to 0.0001
Momentum 0.9 None
Learning rate type ’poly’ None
Warm-up epoch 1 when set to 1, it means there is no warm-up
Learning rate decay 0.9 for the poly type
Batch size 4 Keep the same batch size for all datasets
Number worker 4 If this value is too big, it will impact the speed of data reading
Input size 320 None
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3.6 Experimental setup195

Since the author’s source code is publicly available, it was used as the basis for the implementation and training196

of the MINet. However, as previously mentioned, a separate toolbox was needed in order to calculate the six197

measurement statistics on the resulting images. We downloaded and integrated the Saliency Evaluation Toolbox from198

https://github.com/Mehrdad-Noori/Saliency-Evaluation-Toolbox into the author’s code to compute all the measurements199

statistics in Python when testing on the test sets. At a minimum, this involved modifying their solver.py file which200

contained the test function as well as the recorder.py file which outputted the results to an Excel spreadsheet.201

Also, in order to run their code, some Python packages needed to be installed first. These are listed below along with202

the versions we installed (not necessarily the same version as the authors).203

• Python = 3.7204

• PyTorch = 1.7.0205

• torchvision = 0.8.1206

• Pillow = 8.0.1207

• tqdm = 4.52.0208

• prefetch-generator = 1.0.1209

• tensorboard = 2.4.0210

• openpyxl = 3.0.5211

• scipy = 1.5.2212

Our fork of the author’s code is publicly available on Github at https://github.com/Farzanehkaji/MINet.213

Since the MINet model was tested using two backbone models (VGG-16 and ResNet-50) in the paper, we started by214

verifying the results on each. The MINet was trained on the same DUTS/Train dataset as in the paper using first the215

VGG-16 and then the ResNet-50 backbone, using the same hyperparameters described in the author’s paper. After216

training, the models were tested on the 8 datasets mentioned previously, of which 5 coincide with those tested in the217

author’s paper. Testing included both using the model to make prediction saliency maps for each test image, as well as218

computing the measurements statistics on the resulting maps. We also computed the modified F-measure statistics we219

propose to see their result.220

We then tested training the MINet model with the ResNet-50 backbone on different training sets that contain images221

with no salient object and where the associated ground truth is simply a pure black mask. These tests included training222

on just the SOC/Train set and then the DUTS/Train and SOC/Train sets combined for a total of 14,153 training images223

to see if performance on the SOC/Validation set and the THUR15K set increased.224

As the network is quite large, it was essential that the code be run on a computer with a NVIDIA CUDA-enabled GPU.225

See below for the computer specifications and training times.226

3.7 Computational requirements227

Table 2 represents a summary of the computational time required for training and testing the model on all 8 data-sets.228

The test time is the total time for the testing the model across all 8 data-sets and to compute all reported measurement229

statistics, both the original six measurements and our modified versions of the F-measures discussed later.230

Table 2: Training and testing time for each model tested on 8 data-sets with 40,215 images in total

Run Base Model Training Set Training Set Size Training Time
(hh:mm)

Test Time1

(hh:mm)

1 VGG-16 DUTS/Train 10,553 63:29 3:32
2 ResNet-50 DUTS/Train 10,553 32:32 3:34
3 ResNet-50 SOC/Train 3,600 10:50 3:39
4 ResNet-50 DUTS/Train +

SOC/Train
14,153 17:50 3:07

1The final test time is estimated as some output measurement statistics were computed during testing and further measurements
were added and computed on the already made output predictions later.
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See a summary of the computer specifications in Table 3. Note that the first three runs were done on a personal machine231

whereas the final run, which was trained on the combined DUTS and SOC training sets, was trained and tested using an232

Amazon AWS EC2 p3.2xlarge instance.233

Table 3: Computer Specifications

Runs OS GPU GPU Memory CPU RAM

1 - 3 Windows 10 NVIDIA GTX 1070 8 GB Intel i7-7700k 32 GB
4 Ubuntu 18.04 NVIDIA V100 16 GB 8 vCPUs 61 GB

4 Results234

The results were divided into 4 separate sections where we discuss the measurement results after each modification235

that was made. Firstly, we tested using the MINet with both the VGG-16 and ResNet-50 backbones trained on the236

DUTS/Train dataset using the same five test datasets in the paper as well as an additional three datasets the team chose237

for testing. Secondly, after creating the modified F-measures due to the poor results from the SOC dataset, we computed238

the modified F-Measures on the output predictions to check if the measurements were more meaningful. The third239

section discusses the training results on the SOC Training dataset to check if the results improved on the SOC validation240

set and the THUR15K dataset after training on a dataset that contains images where there is no salient object and as241

such have an associated pure black mask. Finally, the last section discusses the results of training the MINet-Res50 on242

the combined SOC and DUTS training sets.243

4.1 Results from training on DUTS/Train and testing on 8 datasets244

We started our experiments by testing the unchanged MINet model with a VGG-16 backbone trained on the DUTS245

trained dataset to compare with the results given by the paper and test the performance of the unchanged model. We first246

tested the MINet model on the 5 datasets similar to the paper’s experiment: DUTS, DUT-OMRON, HKU-IS, ECSSD,247

and PASCAL-S. Then we tested on the three additional datasets our team chose: MSRA10K, SOC, and THUR15K.248

As can be seen in Table 4 below, our testing values on the first 5 datasets were very close to those documented in the249

original paper, thus demonstrating that their results are reproducible. The S-Measure values are the only measurements250

that are slightly lower, though this could be due to slight differences in how they were calculated as we used a different251

toolbox for the calculation as the author’s, and all the other measurements are similar. As for the other three datasets,252

the results were similarly good on the MSRA10K set, but performance was worse on the SOC validation set and the253

THUR15K set. Refer to Figures 2 and 3 for sample saliency masks output images of this test in the 3rd column.254

Table 4: Run 1 - Testing MINet with VGG-16 backbone trained on DUTS/Train
Data-Set Fmax Favg Fωβ MAE Em Sm

Paper’s Results

DUTS 0.877 0.823 0.813 0.039 0.912 0.875
DUT-OMRON 0.794 0.741 0.719 0.057 0.864 0.822
HKU-IS 0.932 0.906 0.892 0.030 0.955 0.914
ECSSD 0.943 0.922 0.905 0.036 0.947 0.919
PASCAL-S 0.882 0.843 0.820 0.065 0.898 0.855

Our Testing

DUTS 0.878 0.821 0.814 0.039 0.912 0.847
DUT-OMRON 0.793 0.737 0.716 0.057 0.862 0.792
HKU-IS 0.932 0.904 0.890 0.031 0.955 0.890
ECSSD 0.943 0.920 0.904 0.036 0.948 0.896
PASCAL-S 0.869 0.829 0.810 0.063 0.897 0.838

Other Data-Sets
MSRA10K 0.916 0.894 0.869 0.049 0.938 0.879
SOC 0.385 0.360 0.344 0.092 0.834 0.835
THUR15K 0.324 0.300 0.296 0.187 0.792 0.765

Table 5 presents the results of the testing with ResNet-50 with the backbone trained on the DUTS dataset. Similar to the255

previously discussed results, we notice that our testing values are very close to the ones presented by the original authors.256

Our tests showed slightly lower measurements in comparison to the paper’s results when looking the F-Measures on257
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the PASCAL-S for example, but then our tests resulted in better performance on the same dataset when using other258

statistics such as the MAE and E-Measure. As for our additional datasets’ measurement values, these were similar to259

the ones from the previous run in Table 5 further showcasing the good performance of the given MINnet model on the260

MSRA10K set, and lower performance on the SOC validation set and THRU15K sets. Both the VGG16 and Resnet50261

models performed very well on the MSRA10K getting similar results to the five datasets already given. Refer to Figures262

2 and 3 for sample saliency masks output images of this test in the 4th column.263

Table 5: Run 2 - Testing MINet with ResNet-50 backbone trained on DUTS/Train
Data-Set Fmax Favg Fωβ MAE Em Sm

Paper’s Results

DUTS 0.884 0.828 0.825 0.037 0.917 0.884
DUT-OMRON 0.810 0.756 0.738 0.055 0.873 0.833
HKU-IS 0.935 0.908 0.899 0.028 0.961 0.920
ECSSD 0.947 0.924 0.911 0.033 0.953 0.925
PASCAL-S 0.882 0.842 0.821 0.064 0.899 0.857

Our Testing

DUTS 0.887 0.837 0.829 0.036 0.922 0.860
DUT-OMRON 0.805 0.756 0.736 0.053 0.874 0.811
HKU-IS 0.935 0.910 0.896 0.029 0.959 0.894
ECSSD 0.947 0.927 0.910 0.034 0.953 0.902
PASCAL-S 0.873 0.837 0.817 0.061 0.903 0.845

Other Data-Sets
MSRA10K 0.920 0.900 0.877 0.047 0.941 0.887
SOC 0.391 0.363 0.347 0.106 0.806 0.824
THUR15K 0.324 0.302 0.298 0.186 0.793 0.767

4.2 Results using modified F-Measures264

Running the given code for the SOC validation set of 1200 images gave us poor results. One of the reasons behind265

that was that the F-Measures were not well defined with the ground truth image being pure black mask since there is266

no salient object. In this case, both the True Positive and and the False Negative were always 0 because there are no267

pixels of interest in the ground truth mask. This results in the recall being 0/0 and ill defined. The author’s MINet code268

handles this by simply setting both the precision and recall to 0, which then affects the resulting F-Measure statistics,269

as they are averaged across all images in the dataset. Therefore, the results of all three F-measure statistics (Max-F,270

Mean-F and the Weighted-F) on both the SOC and THUR15K dataset were meaningless. From the MAE measures,271

which are still meaningful when the ground truth is a pure black mask, the model didn’t perform well on the SOC272

validation set; for many of the images where there were no salient objects, the model produces somewhat unpredictable273

results and will sometimes produce a mask that covers a large portion of the image. Refer to Figure 3 to see examples274

from the SOC Validation set and the THUR15K set where the ground truth image is a pure black mask.275

Table 6: Run 1 - Testing MINet with VGG-16 backbone trained on DUTS/Train with modified F-Measures

Dataset Fmax Favg Fωβ MAE Em Sm Fmax
′ Favg

′ Fωβ
′

Datasets
without empty
masks

DUTS 0.878 0.821 0.814 0.039 0.912 0.847 0.878 0.821 0.814
DUT-OMRON 0.793 0.737 0.716 0.057 0.862 0.792 0.793 0.737 0.716
HKU-IS 0.932 0.904 0.890 0.031 0.955 0.890 0.932 0.904 0.890
ECSSD 0.943 0.920 0.904 0.036 0.948 0.896 0.943 0.920 0.904
PASCAL-S 0.869 0.829 0.810 0.063 0.897 0.838 0.875 0.836 0.816
MSRA10K 0.916 0.894 0.869 0.049 0.938 0.879 0.916 0.894 0.869

Datasets with
empty masks

SOC 0.385 0.360 0.344 0.092 0.834 0.835 0.818 0.788 0.771
THUR15K 0.324 0.300 0.296 0.187 0.792 0.765 0.715 0.642 0.638

To allow for the instances where the ground truth is a pure black mask, we compute the modified F-measures as276

previously discussed. As can be seen in Table 6, there is a clear difference in the F-measures of the datasets that didn’t277

contain empty masks (DUTS, DUT-OMRON, HKU-IS, ECSSD, PASCAL-S, and MSRA10K) and the ones that did278

(SOC and THUR15K). The F-measures of the SOC and THUR15K datasets were markedly lower than other datasets.279

After computing the modified F-measures, we can see that the datasets SOC and THUR15K standout in their Modified280
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F-measures Fmax′, Favg ′, and Fωβ
′ values being very different from their respective Fmax, Favg, and Fωβ values as281

opposed to the other datasets where the Modified-F-Measures and original F-Measures are the same. When the datasets282

do not contain any instances where the ground truth saliency map is empty, there is no difference in the modified283

F-measures vs the original, as desired. However, in cases where the dataset does contain instances where the ground284

truth is a pure black image, the modified F-Measures provide a more meaningful statistic which is correspondingly285

inversely proportional to the MAE. Note that the PASCAL-S dataset is an exception where it does not contain any286

instances where the ground truth is empty, but it does contain shades of grey maps on the ground truths which may have287

been thresholded to black in some instances.288

Table 7: Run 2 - Testing MINet with ResNet-50 backbone trained on DUTS/Train with modified F-Measures

Dataset Fmax Favg Fωβ MAE Em Sm Fmax
′ Favg

′ Fωβ
′

Datasets
without empty
masks

DUTS 0.887 0.837 0.829 0.036 0.922 0.860 0.887 0.837 0.829
DUT-OMRON 0.805 0.756 0.736 0.053 0.874 0.811 0.805 0.756 0.736
HKU-IS 0.935 0.910 0.896 0.029 0.959 0.894 0.935 0.910 0.896
ECSSD 0.947 0.927 0.910 0.034 0.953 0.902 0.947 0.927 0.910
PASCAL-S 0.873 0.837 0.817 0.061 0.903 0.845 0.878 0.843 0.823
MSRA10K 0.920 0.900 0.877 0.047 0.941 0.887 0.920 0.900 0.877

Datasets with
empty masks

SOC 0.391 0.363 0.347 0.106 0.806 0.824 0.810 0.770 0.755
THUR15K 0.324 0.302 0.298 0.186 0.793 0.767 0.715 0.645 0.641

4.3 Results from training on SOC/Train dataset289

In this section, we look at the results of training the MINet with the ResNet-50 backend using the SOC training dataset,290

which only contains 3600 images compared to the 10,551 in the DUTS/Train. The SOC set however contains instances291

where the ground truth is a pure black mask, and as such should help to train the model to identify when there is no292

salient object. The resulting measurements from testing do indeed show an improvement on the SOC validation set as293

the code was able to return black image, no salient object detected, for certain cases. Note that the THUR15K dataset294

also has some confusing images that did not contain the object of one of the five classes, but instead had something that295

looked similar. In such cases, the similar looking object would still be detected as a salient object by this model, because296

it was not trained to only detect objects of those five classes. As can be seen in Table 8 below, there are improvement in297

the measurement values for both the SOC and THURK15K datasets in comparison with the measurements in Table 7.298

However, performance was still fairly poor on the THUR15K dataset. Refer to Figures 2 and 3 for sample saliency299

masks output images of this test in the 5th column.300

Note however, that after training on the SOC validation set, performance was reduced on the first six datasets in the301

table which did not contain any instances where the ground truth was empty. This could be associated with the much302

smaller size of the SOC training set compared to the DUTS training set.303

Table 8: Run 3 - Testing MINet-Res50 trained on SOC/Train with modified F-Measures

Dataset Fmax Favg Fωβ MAE Em Sm Fmax
′ Favg

′ Fωβ
′

Datasets
without empty
masks

DUTS 0.814 0.769 0.691 0.058 0.855 0.789 0.814 0.769 0.691
DUT-OMRON 0.701 0.645 0.548 0.088 0.763 0.725 0.701 0.645 0.548
HKU-IS 0.877 0.848 0.779 0.057 0.892 0.826 0.877 0.848 0.779
ECSSD 0.869 0.835 0.761 0.078 0.859 0.818 0.869 0.835 0.761
PASCAL-S 0.855 0.820 0.780 0.071 0.877 0.822 0.862 0.827 0.787
MSRA10K 0.819 0.780 0.683 0.096 0.820 0.783 0.819 0.780 0.683

Datasets with
empty masks

SOC 0.399 0.378 0.356 0.041 0.572 0.888 0.898 0.877 0.855
THUR15K 0.307 0.289 0.274 0.142 0.807 0.799 0.771 0.704 0.688

4.4 Results from training on Combined SOC and DUTS Training datasets304

Finally, we tested the MINet-Res50 model trained on combined SOC and DUTS Train with the modified F-measures on305

all the datasets. Again there was a clear distinction in the results of the datasets that didn’t contain empty masks and the306

one that did, as shown in Table 9. In this case, performance on the first six datasets which did not contain any empty307
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Original Ground Truth VGG DUTS ResNet DUTS ResNet SOC ResNet DUTS+SOC

Figure 2: Test images for MINet trained on DUTS and SOC datasets

Original Ground Truth VGG DUTS ResNet DUTS ResNet SOC ResNet DUTS+SOC

Figure 3: Test images with black ground truth for MINet trained on DUTS and SOC datasets
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ground truth masks was improved from those shown in Table 8 where the training set was smaller. The performance on308

both the SOC validation set and the THRU15K was also improved compared to Table 7 where the model was trained on309

the DUTS/Train alone. This shows that the MINet model is fairly robust and can be trained for a slightly different intent310

to both identify when there is no salient object, and if there is, to generate a saliency map.311

However, again, the overall performance on the THUR15K dataset is still relatively weak due to the confusing images312

this dataset contains, where there is an object, but it is not of the class denoted by the folder name and rather only313

looks similar. From the dataset description, the THUR15K dataset is meant to evaluate shape based image retrieval314

performance, so a method that is intended to look for salient objects which standout may not perform well as it does not315

necessarily care about what object it is seeing. Refer to Figures 2 and 3 for sample saliency masks output images of this316

test in the last column.317

Table 9: Run 4 - Testing MINet-Res50 trained on combined SOC and DUTS Train with modified F-Measures

Dataset Fmax Favg Fωβ MAE Em Sm Fmax
′ Favg

′ Fωβ
′

Datasets
without empty
masks

DUTS 0.885 0.839 0.822 0.036 0.922 0.857 0.885 0.839 0.822
DUT-OMRON 0.804 0.761 0.732 0.052 0.872 0.812 0.804 0.761 0.732
HKU-IS 0.928 0.908 0.881 0.032 0.951 0.885 0.928 0.908 0.881
ECSSD 0.937 0.918 0.896 0.037 0.942 0.893 0.937 0.918 0.896
PASCAL-S 0.870 0.842 0.812 0.060 0.900 0.843 0.877 0.849 0.819
MSRA10K 0.909 0.888 0.857 0.052 0.928 0.877 0.909 0.888 0.857

Datasets with
empty masks

SOC 0.409 0.382 0.367 0.041 0.549 0.892 0.903 0.877 0.862
THUR15K 0.321 0.301 0.295 0.172 0.787 0.780 0.717 0.667 0.661

5 Discussion318

Given the number of time our team trained different models on many datasets, time was definitely the most challenging319

aspect of our process. However, we did manage to run all the experiments and make additional modifications that320

further strengthened the claims in the paper. The evidence we got from running both the original code and the same321

DUTS/Train dataset and training it on other datasets were able to further support the claims of the paper; the MINet322

performs well on the mentioned datasets and outperforms many existing state-of-the-art SOD methods.323

5.1 What was easy324

Since the author’s source code is publicly available, testing the network architecture was made easier since it did not325

need to be coded from scratch. The code available was thorough and worked well. The included readme files also326

significantly helped with understanding the code and how to run it. Although it took some time to download and install327

some of requirements to run the code, we didn’t face any issues training and testing the code on the MINet model on328

the 5 given datasets.329

Additionally, the testing was fairly easy on all the datasets we worked with. Their code implementation allowed330

specifying any number of dataset paths to test on, as long as the datasets were organized into an "Image" folder of the331

original images, and a "Mask" folder containing the ground truth masks. As opposed to the training, the testing did not332

take as much time and the measurement results were always good.333

5.2 What was difficult334

For the THUR15K dataset, we were not able to run it through the MINet model unchanged because it does not include a335

mask for every image. Additionally, the THUR15K organizes the images into 5 different categories and numbers them336

from 1 to 3000 in each folder, for a total of 15531 images. So there were around 5 duplicates for each filename. As such,337

we had to first write a script which would go through every image in the dataset and if it did not contain a ground truth338

saliency map, create a pure black one for it. The script also renamed the files by adding the folder name to the filename339

so that there were no duplicates and all of the dataset images could be moved into one folder as required by the MINet.340

One of the biggest challenges was that the paper did not discuss the total training and testing time for their model, so341

we did not know how long it would take going in. Many of the comments in the code were also not in English, so it342

took our team some time to understand the different steps of the code and compare it with the model described in their343

paper. However, our team was able to understand it without needing to contact the authors with questions. The training344
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and testing also took a some time, both before and after modifications. Training the VGG-16 Model on the five datasets345

in the paper took 63.5 hours. Testing the original 5 datasets reported on in the paper with the 3 measures included in the346

code (F-Max, F-Mean, and MAE) took 65 min. However, after adding the extra datasets and testing the 9 total measures347

(with the modified F-measures), testing time increased to over 3 hours on our machine.348

5.3 Communication with original authors349

Our team didn’t communicate with the original authors. We didn’t feel the need to ask the original authors any questions350

to understand their model or code as the information provided in the paper as well as the GitHub code and readme files351

were very thorough. We utilized their public repository on GitHub to test the the algorithms.352
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