
Under review as a conference paper at ICLR 2023

CROSS-WINDOW SELF-TRAINING VIA CONTEXT
VARIATIONS FROM SPARSELY-LABELED TIME SERIES

Anonymous authors
Paper under double-blind review

ABSTRACT

A real-world time series is often sparsely labeled due to the expensive annotation
cost. Recently, self-training methods have been applied to a dataset with few la-
bels to infer the labels of unlabeled augmented instances. Accelerating this trend
for time-series data, fully taking advantage of its sequential nature, we propose
a novel data augmentation approach called context-additive augmentation, which
allows a target instance to be augmented easily by adding preceding and succeed-
ing instances to form an augmented instance. Unlike the existing augmentation
techniques which may alter the target instance by directly perturbing its features,
it preserves a target instance as is but still gives various augmented instances with
varying contexts. Additionally, we propose a cross-window self-training frame-
work based on the context-additive augmentation. The framework first augments
target instances by applying context-varying windows over a given time series.
Then, the framework derives reliability-based cross-window labels and uses them
to maintain consistency among augmented instances across the windows. Ex-
tensive experiments using real datasets show that the framework outperforms the
existing state-of-the-art self-training methods.

1 INTRODUCTION

A time series is a collection of consecutive data points, often annotated with temporally coherent
timestamp labelsR4:, and this work deals with a model aiming to classify every timestamp in a
time series correctly. However, due to the length of and complexity in a time series, labeling every
timestamp in the time series requires prohibitively high cost, and therefore, in reality a lot of time
series are only sparsely labeled (Moltisanti et al., 2019; Ma et al., 2020; Deldari et al., 2021; Shin
et al., 2022). In this regard, self-training is used as a promising way to train a model from sparse
labels, by leveraging the model’s output to infer new labels for unlabeled data points (Laine & Aila,
2017; Rizve et al., 2021). Recent state-of-the-art self-training methods, mostly developed for image
data, necessitate domain-specific data augmentation (Sohn et al., 2020; Zhang et al., 2021; Kim &
Lee, 2022).

Such conventional data augmentation generates multiple different instances from a target instance
R2,R4: (i.e., an instance for pseudo-labeling) by way of data perturbation. If data instances are
independent of one another as in image data, there is no other way than to perturb the target instance
itself. In contrast, using the sequential nature of time series, where data instances (segments or data
points) are temporally correlated, it is feasible to generate multiple different instances from a target
instance without perturbing it but by adding its surrounding sequence (i.e., context). R2,R4: As
shown in Figure 1(a), given a target instance sampled from a time series, contexts of varying lengths
are added to the preceding and succeeding positions of the target instance to generate different pairs
of “augmented” instances. We call this type of data augmentation the context-additive augmentation.

The key property of context-additive augmentation is to achieve the effect of data augmentation
without perturbing a target instance. Being free of data perturbation brings several benefits. First,
consistency between augmented instances can be enforced more reliably because a target instance
itself is exactly the same among its augmented instances. Second, a sufficient number of augmented
instances can be easily obtained by context variations. Third, it is computationally inexpensive, only
requiring the retrieval of a sub-sequence from a time series. Moreover, context-additive augmenta-
tion can be used together with conventional data augmentation such as jittering and scaling. Thus,

1

Under review as a conference paper at ICLR 2023

Target instance

𝑋left 𝑋right

Cross-window soft labels ഥ𝒀 𝑙𝑢 𝑓𝜃 𝑋left , 𝑓𝜃 𝑋right , ത𝑌

Context Target Target Context

A sparsely labeled time series

Context-additive Augmentation

A true label

Add

Pairs of augmented instances

Replicate

Sampling window

…

Context Context

Add

Varying

contexts

Timestamps

Softmax probabilities

Timestamps

+𝑓𝜃 𝑋left 𝑓𝜃 𝑋right

True labels 𝑌 𝑙 𝑓𝜃 𝑋left , 𝑓𝜃 𝑋right , 𝑌

Model 𝑓𝜃

Reliability-Weighted Mixing

M
o

d
el

 u
p

d
at

e

A pair of augmented instances

Model 𝑓𝜃 Shared

(a) Context-additive augmentation. (b) Model update with cross-window soft labels.

Figure 1: R1,R2,R3,R4:Illustration of CrossMatch.

the novel concept of context-additive augmentation opens a new direction of data augmentation for
sequential data, i.e., time series.

Despite its time-series-savvy concept and big benefits, applying context-additive augmentation for
self-training is challenging. First, it requires determining the proper number and range of context
variations based on the trade-off between the expected performance improvement and training cost.
Note that varying the context length in augmented instances incurs different complexity for a down-
stream task; intuitively, compared with the conventional data augmentation, a short context gives
weak augmentation and a long context gives strong augmentation R4: considering the intensity of
perturbation. Second, a new consistency regularization method is needed to fully take advantage
of the benefit of context-additive augmentation, which does not perturb a target instance unlike the
conventional data augmentation.

In order to address the aforementioned challenges, we propose a novel self-training approach, called
CrossMatch, for time series. In existing self-training methods such as MixMatch (Berthelot et al.,
2019) and FixMatch (Sohn et al., 2020), an artificial label is created as a form of a hard label;
because the model’s outputs for augmented instances could be biased by the perturbation of the
target instance, the most confident label is chosen by averaging and sharpening in MixMatch and
weak augmentation and thresholding in FixMatch. In CrossMatch, on the other hand, due to its
target-preserving property, the model’s outputs with the contexts of the same length are considered
equally meaningful, and therefore, the model’s output from an augmented instance (i.e., window) is
crossed to other augmented instances in the form of a soft label. R2: As shown in Figure 1(b), a pair
of augmented instances generated from a target instance is fed to a model to get the two softmax
outputs of the target instance. Then, a single set of cross-window soft labels is derived and enforced
to each output for consistency regularization. The same procedure repeats using diverse pairs of
augmented instances.

In summary, for time-series self-training, CrossMatch conducts context-additive augmentation with
varying contexts and consistency regularization among augmented instances using cross-window
soft labels. Especially for the first aforementioned challenge, we empirically analyze the impact
of context variations on classification accuracy in Section 4.2. Through extensive evaluation using
three sparsely-labeled time-series datasets, despite its simplicity CrossMatch is shown to achieve
higher classification accuracy than the existing state-of-the-art methods, significantly outperforming
the FixMatch style methods with jittering and scaling up to 23p%.

2 RELATED WORK

2.1 DATA AUGMENTATION

Data augmentation perturbs given data instances to generate diverse and sufficient data instances
to prevent overfitting (Shorten & Khoshgoftaar, 2019). The techniques used in data augmentation

2

Under review as a conference paper at ICLR 2023

usually manipulate features and can be classified into two categories: (1) inner-augmentation that
changes the features within a data instance and (2) inter-augmentation that exploits features across
multiple data instances. Rotation, flipping, scaling, cutout, and random erasing are the examples of
inner-augmentation (DeVries & Taylor, 2017; Cubuk et al., 2019). Mix-up, cut-mix, and copy-paste
are the representatives of inter-augmentation that mixes two full or partial images (Zhang et al., 2018;
Yun et al., 2019; Ghiasi et al., 2021). However, these studies have not considered context-additive
augmentation because they deal with independent data instances such as images.

Time-series augmentation techniques have been devised in recent literature (Wen et al., 2021). They
include jittering, scaling, window warping, window cropping, and the Fourier transform special-
ized in the time and frequency domains, and belong to the inner-augmentation category (Um et al.,
2017; Eldele et al., 2021; Yue et al., 2022; Chen et al., 2022). The inter-augmentation category is
considered to be ineffective because temporal patterns could be lost after mixing two time-series
segments (Iwana & Uchida, 2021). These studies also consider a set of already segmented time se-
ries as candidate augmentation targets and assume that the instances in each segment have the same
labels. Thus, they are not directly applicable to a single continuous time series with sparse labels,
which is a more practical and challenging setting. Moreover, all of them perturb the target instances,
following the common trend of existing data augmentation.

2.2 SEMI-SUPERVISED LEARNING BASED ON AUGMENTATIONS

Semi-supervised learning (SSL) trains a model with both labeled and unlabeled data instances
(Van Engelen & Hoos, 2020). Unlabeled data instances are harnessed by two popular approaches:
(1) self-supervised learning which is mostly based on contrastive learning or pretext tasks (Chen
et al., 2020; Grill et al., 2020; Singh et al., 2021) and (2) self-training which produces artificial
pseudo-labels for unlabeled data instances from model predictions (Lee, 2013; Chen et al., 2018b;a;
Xie et al., 2020; Pham et al., 2021). We focus on self-training owing to its simplicity and effective-
ness demonstrated in recent studies (Yang et al., 2021).

State-of-the-art self-training methods force consistency in model predictions from multiple augmen-
tations of a data instance. MixMatch (Berthelot et al., 2019) averages out the predictions from mul-
tiple augmentations and sharpens the averaged prediction to reduce the entropy in the pseudo-label.
ReMixMatch (Berthelot et al., 2020) generates a sharpened pseudo-label from a weak augmentation
and matches it against the predictions from multiple strong augmentations. FixMatch (Sohn et al.,
2020) generates a one-hot pseudo-label by choosing a single class above a fixed confidence thresh-
old. FlexMatch (Zhang et al., 2021) is a variation of FixMatch, which uses a dynamic confidence
threshold to adapt to different learning speeds among different classes. Propagation regularizer (Kim
& Lee, 2022) also reduces confidence in incorrect predictions to make FixMatch robust to a more
sparse label setting. However, all these methods heavily rely on domain-specific augmentation and
lack for consideration of time series.

There are several time-series semi-supervised learning methods in the literature, but most of them are
based on self-supervised learning. In their settings, a model is first pre-trained with time-series self-
supervision and then fine-tuned with initial labels. The examples of time-series self-supervisions are
(1) pretext tasks such as forecasting and temporal relation prediction (Jawed et al., 2020; Fan et al.,
2021), (2) contrastive learning with the aforementioned time-series augmentation techniques (Singh
et al., 2021; Xiao et al., 2022), and (3) clustering results (Singhania et al., 2022). These methods
target an already-segmented time series, which cannot deal with continuous time series with sparse
labels (Ma et al., 2021; Goschenhofer et al., 2021; Xu et al., 2022).

3 CROSSMATCH: CROSS-WINDOW TIME-SERIES SELF-TRAINING

3.1 PRELIMINARIES AND PROBLEM SETTING

Table 1 summarizes basic notations used in this paper.

Dataset and Model: LetD = X ×Y = {(xt, yt) | t ∈ T } be a time series, where T is an index set
of timestamps, xt ∈ Rd is a d-dimensional data point at timestamp t, and yt is a corresponding class
label if xt is labeled or null otherwise. Let TL be the index set of labeled timestamps and TU be
the index set of unlabeled timestamps, where TL∪TU = T and |TL|≪|TU |. Here, TL is sparse, that

3

Under review as a conference paper at ICLR 2023

is, its members are few and scattered. In this work, multiple consecutive timestamps, referred to as
a segment instance, is usually processed in a batch. An instance X={xt | t∈ [m−w : m+w)} is a
set of consecutive 2w data points (timestamps) with d features sliced fromD, where [m−w : m+w)
represents an integer interval from m−w through m+w−1. Likewise, Y = {yt | t∈ [m−w : m+w)}
is a set of the corresponding class labels sliced from D, where yt∈{1, . . . ,K} and K is the number
of classes. A model fθ predicts the sequential softmax probabilities of X , i.e., fθ(X) ∈ [0, 1]2w×K .
The classification loss for training the model given X and Y is formulated as

ℓ(X,Y) =
1

2w

∑
t

1yt ̸=nullH(fθ(X)t,:, yt), (1)

where H(·, ·) is sparse categorical cross-entropy and ·t,: means indexing at timestamp t.

Table 1: A summary of notations.

xt ∈ Rd a data point at timestamp t

X an instance, a set of data points

Ẋ a target instance

X ′ an augmented instance

t a timestamp

w half of the length of X ′

m the middle timestamp of X

o half of the length of Ẋ

c half of the length of context, w − o

Pseudo-labeling: For each instance X , using the maximum
softmax probabilities conditioned on a confidence threshold
τ , a pseudo-label ŷt at each timestamp t ∈ [m−w : m+w) is
derived by

ŷt =

{
argmaxk∈{1,...,K} fθ(X)t,k if fθ(X)t,k > τ

null otherwise.
(2)

A set Ŷ = {ŷt | t∈ [m−w : m+w)} of the pseudo-labels for
X is constructed by Equation (2). Then, the classification loss
for an instance X and its set Ŷ of the pseudo-labels obtained
is formulated as ℓ(X, Ŷ) with Equation (1). R2,R4: Note that
we do not store those pseudo-labels but discard them after the
model update from ℓ(X, Ŷ) whenever a target instance is sampled for pseudo-labeling.

Consistency regularization: Recent self-training methods force consistency between the model
outputs of augmentations as the class information is preserved across augmentations. For example,
FixMatch matches the pseudo-label from a weak augmentation against the prediction from a strong
augmentation (Sohn et al., 2020). That is, ℓ(X, Ŷ)= 1

2w

∑
t 1maxk fθ(α(X))t,k>τH(fθ(A(X))t, ŷt),

where ŷt=argmaxk fθ(α(X))t,k, and α and A represent weak and strong augmentations. R2,R4:

The goal of consistency regularization is to offer informative supervision to update the model by
diverse augmentations and reliable pseudo-labels. In the example of FixMatch, pseudo-labels from
weak augmentations are reliable due to weak perturbation, and strong augmentations become diverse
due to strong perturbation.

3.2 CONTEXT-ADDITIVE AUGMENTATION

𝑋left

Target instance Time seriesContexts

𝑚𝑚− 𝑜𝑚 − 𝑜 − 𝑐

𝑋right

𝑚+ 𝑜 𝑚 + 𝑜 + 𝑐

Figure 2: Illustration of a target instance and its
context.

Given a target instance Ẋ = {xt| t ∈ [m−o :
m+o)}, we add a context of total length c to its
surroundings to generate an augmented instance
X ′ = {xt| t ∈ [m−o−cl : m+o+cr)}. There
are numerous design choices for generating X ′

where the context lengths cl and cr control the
degree of perturbation and the allocation of a con-
text around Ẋ determines the multiplicity of aug-
mentation. Increasing the multiplicity between
augmented instances helps derive more informa-
tive pseudo-labels, but this high multiplicity also
increases the redundancy between similar augmented instances and causes inefficient computations.

In this work, we follow a simple heuristic for the allocation of the context R1,R2,R4: for effective
consistency reguluarization. A context of a given length c is added on the left and right sides of
the target instance, and thus two augmented instances, X left = {xt|t ∈ [m− o− c : m+ o)}
and X right = {xt|t ∈ [m−o : m+o+ c)}, are generated as shown in Figure 2. R1,R2,R3,R4:

The underlying reason is that forcing consistency between the model outputs from the augmented
instances with more difference gives more strong supervision to the model (Wang et al., 2022).
This heuristic is practical and reasonable, as it not only maximizes the difference between the two

4

Under review as a conference paper at ICLR 2023

augmented instances but also increases efficiency in further model inference due to small number of
augmented instances. Each augmented instance is fed to a model, and pseudo-labels are generated
only from the target instance (i.e., the overlap between the two augmented instances) by Equation
(2). As a result, two pseudo-label sets Ŷ left and Ŷ right for the left and and right augmented instances,
respectively, are obtained.

The value of o, which is half of the length of a target instance, needs to be carefully chosen for
each data set. Too large o may include semantically irrelevant data points, while too small o may
not give enough temporal information for prediction. Either way leads to incorrect pseudo-labels
and ultimately degrades the performance. Thus, we set 2o, the length of a target instance, as a
value lower than the mean length of a label-coherent segment, which could be known in advance or
estimated by a given set TL of labeled timestamps.

More important factor is the length of context c, which directly affect the information quality of
consistency regularization. If c is too short, then two augmented instances become too similar
so that the model barely changes after matching the outputs of augmented instances (Wang et al.,
2022). On the other hand, if c is too long, the outputs diverge so that the matching would weld
the representation of instances from different class. We empirically study this trade-off in Section
4.4. To prevent the potential divergence in self-training, we devise reliability-weighted mixing of
pseudo-labels generated from two augmented instances.

3.3 RELIABILITY-WEIGHTED MIXING

𝑛𝑡
left,−𝑛𝑡

left,+

𝑛𝑡
right,+

𝑛𝑡
right,−

𝑋left

𝑚𝑚− 𝑜𝑚 − 𝑜 − 𝑐

𝑋right

𝑚+ 𝑜 𝑚 + 𝑜 + 𝑐𝑡

Figure 3: Visualization of Equation (3).

Though all pseudo-labels generated for a target
instance satisfy the confidence threshold in Equa-
tion (2), we treat them differently based on the
reliability of a pseudo-label. Our rationale is that
the pseudo-label becomes more reliable if (1) the
model fθ receives a larger number of data points
on the left and right sides of the pseudo-label and
(2) the number of data points is balanced between
the two sides so that the prediction is not biased to
the preceding or succeeding interval. We design a
reliability function that follows our rationale and
compute reliability of each pseudo-label. Using the reliability as a weight, we mix the pseudo-labels
into a single cross-window label, which will be matched against two softmax probabilities from both
of augmentations.

Let’s consider two pseudo-labels ŷleft
t and ŷright

t generated from fθ(X
left)t and fθ(X

right)t shown in
Figure 3. For each timestamp t ∈ [m−o : m+o) of a target instance, the length nloc,+

t of the left
side and the length nloc,−

t of the right side along each augmented instance are easily calculated by

nloc,+
t =

{
t−m+o+c if loc = left
t−m+o if loc = right

and nloc,−
t =

{
m+o−t if loc = left
m+o+c−t if loc = right,

(3)

where loc indicates the location of context addition—either left or right.

𝑝

2

1

1

𝑟(𝑝)

Figure 4: Equation (3).

Per our design rationale, the reliability score becomes higher as nloc,+
t and

nloc,−
t are larger and nloc,+

t and nloc,−
t are more similar with each other.

This requirement can be achieved by exploiting a bell-shaped function,

r(p) =
√
2p− p2 +

√
1− p2, (4)

where 0 ≤ p ≤ 1. Here, p is a normalization of nloc,+
t with respect

to the full length of an augmented instance, i.e., ploc(t) = nloc,+/(2o +
c). That is, using Equation (4), we obtain two reliability scores r(pleft(t))
and r(pright(t)) for each pseudo-label from the two augmented instances
Xleft and Xright. Due to the bell shape in Figure 4, a timestamp with a
sufficiently long side length on both sides has an adequately high reliability
in an augmented instance. If a side length on either side is too long (i.e.,

5

Under review as a conference paper at ICLR 2023

biased to one side), then the side length on the other side is too short and consequently the reliability
score is too low. The reliability score is maximized at the center of a given augmented instance.

Last, in order to treat each pseudo-label differently based on the reliability scores on the
two sides, r(pleft(t)) and r(pright(t)), the weight of each pseudo-label is assigned as wloc

t =
r(ploc(t))/(r(pleft(t)) + r(pright(t))) by normalizing the two reliability scores. The final cross-
window soft label for the target instances in the left and right instances is

ȳt = N
(
wleft

t · onehot(ŷleft
t) + wright

t · onehot(ŷrightt)
)
, (5)

where the functionN normalizes the input to make the sum of the softmax probabilities as 1 and the
onehot function converts a scalar to one-hot encoded vector. In other words, reliability-weighted
mixing generates a soft label by adding and normalizing the two pseudo-labels. Using the cross-
window label set and two target instance outputs, we compute classification loss as follows:

ℓu(X
left, X right, Ȳ) =

1

4o

∑
t

1ȳt ̸=null

(
h(fθ(X

left)t,:, ȳt) + h(fθ(X
right)t,:, ȳt)

)
, (6)

where h is soft cross-entropy and Ȳ = {ȳt|t∈ [m−o : m+o)}. By matching a single cross-window
soft label to both augmented instances, we can reduce the variance of the label to be predicted. In
addition, self-traning with soft labeling is more effective than with hard labeling since soft labeling
can be robust to erroneous pseudo-labels when at least one pseudo-label is correct (Müller et al.,
2019).

3.4 OVERALL SELF-TRAINING PROCEDURE USING CROSSMATCH

R1,R2,R3,R4: Figure 1 summarizes the overall procedure of CrossMatch using context-additive aug-
mentation and reliability-weighted mixing. Given a time series, CrossMatch first takes a target in-
stance sampled from the time series as an input and generates a pair of augmented instances with
context-additive augmentation (see Figure 1(a)). Then, a model fθ infers the pair of augmented
instances X left and X right to produce two independent softmax probabilities. The pseudo-labels re-
spectively generated from the two softmax probabilities are averaged (

⊕
) to give cross-window soft

labels Ȳ with reliability-weighted mixing. Finally, the cross-entropy losses are computed from the
cross-window soft labels Ȳ as well as the true labels Y and used to update the model fθ (see Figure
1(b)). These steps are repeated with a randomly sampled target instance for I iterations. CrossMatch
in Appendix A details each step.

4 EVALUATION

4.1 EXPERIMENT SETTING

Table 2: Datasets and configurations.

|T | Length #class d o c z I

HAPT 408K 967 6 6 512 256 0.1% 25K

mHealth 343K 2933 12 23 384 256 1.0% 50K

Opportunity 190K 109 17 113 512 64 1.0% 30K

Datasets: We use three widely-used bench-
mark datasets summarized in Table 2. mHealth
is an action recognition dataset recorded with
wearable sensors, such as 3D accelerom-
eters, 3D gyroscopes, 3D magnetometers,
and electrodes, whose sampling frequency is
50Hz (Banos et al., 2014). HAPT is also a sensor time-series dataset tracking human movements in
a laboratory sampled with the frequency of 50Hz (Anguita et al., 2013). Opportunity is a collection
of sensor recordings at 100Hz capturing daily natural human activities with wearable, object, and
ambient sensors (Roggen et al., 2010). R2,R4: For each originally fully-labeled dataset, we ran-
domly sample the same number of timestamps for each class and drop the labels from the rest of the
timestamps to generate a sparsely-labeled time series, leaving multiple labeled time spans located
randomly. The sampled timestamps become a labeled timestamp set TL for the given ratio of labeled
timestamps z = |TL|/|T |. Table 2 summarizes the statistics of datasets and the data-specific param-
eters, specifying the number of timestamps, the average length of a segment with a single class, the
number of classes, the dimension of a data point, the half length of a target instance o, the context
length c, the default ratio of labeled timestamps z, and the maximum number of iterations I .

Implementation Details: We use a popular multi-stage temporal convolutional network named
MS-TCN (Farha & Gall, 2019), which is applicable to our problem setting as it gives softmax prob-

6

Under review as a conference paper at ICLR 2023

Table 3: Timestamp accuracy and F1@25 score averaged over the last 20 iterations with adjusting
the label ratio z (1×, 5×, and 10× of a default value). The best values are marked in bold.

Method Ratio
FixMatch FlexMatch PropReg CrossMatch

TS Accuracy F1@25 TS Accuracy F1@25 TS Accuracy F1@25 TS Accuracy F1@25

HAPT
1× 0.78 ± 0.01 0.55 ± 0.04 0.78 ± 0.01 0.54 ± 0.04 0.79 ± 0.01 0.52 ± 0.04 0.84 ± 0.01 0.75 ± 0.02
5× 0.85 ± 0.01 0.51 ± 0.04 0.84 ± 0.01 0.50 ± 0.04 0.82 ± 0.01 0.49 ± 0.04 0.88 ± 0.01 0.70 ± 0.02
10× 0.96 ± 0.00 0.87 ± 0.01 0.96 ± 0.00 0.90 ± 0.01 0.96 ± 0.00 0.89 ± 0.01 0.95 ± 0.01 0.84 ± 0.02

mHealth
1× 0.77 ± 0.01 0.23 ± 0.01 0.77 ± 0.01 0.13 ± 0.01 0.81 ± 0.01 0.43 ± 0.03 0.85 ± 0.01 0.45 ± 0.02
5× 0.91 ± 0.01 0.65 ± 0.02 0.91 ± 0.01 0.62 ± 0.03 0.91 ± 0.01 0.67 ± 0.03 0.94 ± 0.01 0.74 ± 0.03
10× 0.91 ± 0.00 0.70 ± 0.02 0.90 ± 0.00 0.66 ± 0.02 0.90 ± 0.01 0.70 ± 0.02 0.95 ± 0.01 0.84 ± 0.03

Opportunity
1× 0.61 ± 0.04 0.65 ± 0.05 0.59 ± 0.03 0.63 ± 0.05 0.63 ± 0.03 0.65 ± 0.05 0.67 ± 0.02 0.73 ± 0.04
5× 0.73 ± 0.03 0.73 ± 0.04 0.72 ± 0.03 0.75 ± 0.05 0.73 ± 0.03 0.74 ± 0.05 0.78 ± 0.02 0.82 ± 0.03
10× 0.75 ± 0.03 0.75 ± 0.04 0.73 ± 0.03 0.77 ± 0.04 0.75 ± 0.03 0.76 ± 0.04 0.83 ± 0.02 0.86 ± 0.02

abilities for each timestamp in an input instance X . We follow the same hyperparameter and config-
uration in the original MS-TCN, except the learning rate and an optimizer adjusted for a self-training
environment with sparse labels. Please refer to Appendix B for more details.

For CrossMatch, we set the confidence threshold τ to 0.95 and the weight of the unlabeled loss λ to
1. The model is first trained without self-training, i.e., only using the labeled batches (Algorithm 1
Line 6–7). We start to update a model with pseudo-labels after the number of pseudo-labels in each
class for a batch is balanced. Formally, this condition is satisfied when the entropy of the numbers
of pseudo-labels per class is above 0.99 for the last 100 iterations; it is enforced to prevent early
confirmation bias in self-training (Kim & Lee, 2022). If a data point xt in an instance X has a true
label (i.e., t ∈ TL), CrossMatch uses the true label instead of the generated pseudo-label.

Evaluation Metrics: R1:We measure timestamp accuracy and segmental F1 score with five-fold
cross validation and report the average value with standard deviation of five runs. For sequential
classifiers such as MS-TCN, timestamp accuracy (denoted as TS accuracy) and segmental F1 score
(denoted as F1@25) measure the performance of classification at each timestamp and segment re-
spectively (Li et al., 2021; Kumar et al., 2022). To evaluate pseudo-labeling performance, we report
pseudo-label F1 score (denoted as PLF) as well. We define each metric in detail in Appendix C.

Compared Self-Training Methods: We compare CrossMatch with three state-of-the-art self-
training methods: FixMatch (Sohn et al., 2020), FlexMatch (Zhang et al., 2021), and PropReg (Kim
& Lee, 2022). As discussed in Section 2, these methods require inner-instance augmentation for con-
sistency regularization. We use two popular time-series augmentations: jittering and scaling, where
weak augmentation α(X) = jittering(X) and strong augmentation A(X) = jittering(scaling(X))
(Um et al., 2017). Throughout the experiments, we use the same hyperparameters for all methods
except the instance length due to the context-additive augmentation. As an additional evaluation for
fair comparison, we also compare CrossMatch with the variants of the compared methods which are
modified in support of our context-additive augmentation.

4.2 COMPARISON WITH STATE-OF-THE-ART SELF-TRAINING METHODS

Overall Comparison: Table 3 shows timestamp accuracy and F1@25 on three datasets with vary-
ing label ratios; each value is obtained by averaging over the last 20 iterations for reliable results.
Compared with other methods, CrossMatch achieves the best classification performance R1: with a
statistical significance of 0.05 using independent (unpaired) t-test for all datasets except HAPT 10×.
This is mainly because consistency regularization using context-additive augmentation is more in-
formative than inner-instance augmentation used in other self-training methods. In particular, Cross-
Match exhibits much better performance than others especially when the initial label ratio is low. For
instance, with only 0.1% of the labeled timestamps in HAPT, CrossMatch outperforms FixMatch
by 20p%, FlexMatch by 21p%, and PropReg by 23p% in F1@25 (see the first row in HAPT data
of Table 3). Therefore, the performance dominance of CrossMatch indicates the context-additive
augmentation with reliability-weighted mixing indeed helps the model select more reliable pseudo-
labels even when softmax probabilities fluctuate due to label scarcity.

Training Curve Analysis: Figure 5 shows the training curves of classification and PLF over the
entire training iteration. Please refer to Appendix D for the same results with standard deviation
and R2,R3,R4:other metrics related to pseudo-labeling. CrossMatch shows R3: much higher per-
formance than the other methods with respect to timestamp accuracy and F1@25 even in the early

7

Under review as a conference paper at ICLR 2023

CrossMatch FixMatch FlexMatch PropReg

0 12500 25000
Iteration

0.7

0.8

0.9
TS

 A
cc

ur
ac

y

0 25000 50000
Iteration

0.5

0.7

0.9

0 15000 30000
Iteration

0.4

0.6

0.8

0 12500 25000
Iteration

0.2

0.5

0.8

F1
@

25

0 25000 50000
Iteration

0.0

0.3

0.6

0 15000 30000
Iteration

0.4

0.6

0.8

0 12500 25000
Iteration

0.0

0.4

0.8

PL
F

0 25000 50000
Iteration

0.0

0.3

0.6

0 15000 30000
Iteration

0.0

0.3

0.6

(a) HAPT (b) mHealth (c) Opportunity

Figure 5: Training curve of the classification performance (the first two rows) and R1,R2: pseudo-
labeling performance (the last row) over self-training iterations in Algorithm 1.

stage of training, reaching the highest performance in most cases (see the first two rows in Figure 5).
This is attributed to its robustness in reliability-weighted mixing in the early stage of self-training
and its credibility in enforcing consistency between two augmented instances from context-additive
augmentation. For example, as shown in mHealth of Figure 5(b), other methods suffer from the
low-quality pseudo-labels at the iteration of around 17, 000 when the warm-up period ends, thereby
showing a temporary drop in timestamp accuracy. Although the accuracy recovers gradually, the
final accuracy is far behind the accuracy CrossMatch achieves.

The effectiveness of CrossMatch is also supported by R2,R3,R4:its PLF computed from precision
and recall (see the last row in Figure 5 and Figure 7). Precision is the ratio of the number of correctly
predicted timestamps to the number of pseudo-labeled timestamps, while recall is the ratio of the
number of correctly predicted timestamps to the length of a target instance (refer to Appendix C for
more details). We averaged PLF over the target instances in a batch. CrossMatch reaches the highest
PLF continuously in most cases due to the reliability of our cross-window labels.

4.3 EXTENSIONS WITH INNER- AND INTER-INSTANCE AUGMENTATION

Table 4: Classification accuracy of the compared
methods with context-additive augmentation (CA) and
CrossMatch with inner-instance augmentation (IA).

Dataset HAPT mHealth
TS Accuracy F1@25 TS Accuracy F1@25

CrossMatch 0.84 ± 0.01 0.75 ± 0.02 0.85 ± 0.01 0.45 ± 0.02
CrossMatch+IA 0.88 ± 0.01 0.77 ± 0.02 0.89 ± 0.01 0.67 ± 0.03

FixMatch 0.78 ± 0.01 0.55 ± 0.04 0.77 ± 0.01 0.23 ± 0.01
FixMatch+CA 0.62 ± 0.02 0.39 ± 0.03 0.76 ± 0.04 0.35 ± 0.04

FlexMatch 0.78 ± 0.01 0.54 ± 0.04 0.77 ± 0.01 0.13 ± 0.01
FlexMatch+CA 0.64 ± 0.02 0.49 ± 0.03 0.82 ± 0.01 0.31 ± 0.03

PropReg 0.79 ± 0.01 0.52 ± 0.04 0.81 ± 0.01 0.43 ± 0.03
PropReg+CA 0.68 ± 0.01 0.45 ± 0.02 0.77 ± 0.03 0.30 ± 0.03

We investigate another possible exten-
sions: (1) CrossMatch to combine the two
inner-instance augmentation (+IA) of jit-
tering and scaling and (2) the variant of
existing self-training methods to combine
our proposed context-additive augmenta-
tion (+CA). For the former, we perform
jittering and scaling before applying the
context-additive augmentation. For the
latter, we modify the existing methods in
support of the context-additive augmenta-
tion. The two augmented instances (the
left and right instances in Figure 2) are re-
spectively treated as weakly and strongly augmented instances for existing methods; the instance
with a higher reliability score than the other becomes the weakly augmented instance.

Table 4 summarizes the performance of possible extensions for HAPT and mHealth datasets with
their default label ratios of 0.1% and 1.0%. First, CrossMatch with jittering and scaling shows
additional performance gain which is about 4p% in timestamp accuracy and 2–22p% in F1@25
for the two datasets. These improvements demonstrate that jittering and scaling can be applied
together with context-additive augmentation without performance drop under the proposed self-

8

Under review as a conference paper at ICLR 2023

Table 5: Timestamp accuracy and F1@25 averaged over the last 20 iterations with varying context
lengths using CrossMatch. The best values are marked in bold.

c
HAPT mHealth Opportunity

TS Accuracy F1@25 TS Accuracy F1@25 TS Accuracy F1@25

0.25× 0.78 ± 0.01 0.67 ± 0.01 0.69 ± 0.01 0.29 ± 0.02 0.65 ± 0.03 0.72 ± 0.04
0.50× 0.79 ± 0.02 0.65 ± 0.03 0.79 ± 0.02 0.37 ± 0.02 0.69 ± 0.03 0.73 ± 0.04
1.00× 0.81 ± 0.01 0.70 ± 0.02 0.85 ± 0.01 0.45 ± 0.02 0.67 ± 0.02 0.73 ± 0.04
2.00× 0.84 ± 0.01 0.78 ± 0.01 0.82 ± 0.01 0.38 ± 0.04 0.66 ± 0.02 0.71 ± 0.03
4.00× 0.84 ± 0.01 0.76 ± 0.02 0.77 ± 0.02 0.28 ± 0.03 0.55 ± 0.02 0.56 ± 0.04

Table 6: R1,R2,R3:Timestamp accuracy and F1@25 averaged over the last 20 iterations with the
variations of context-additive augmentation (CA). The context length for fixed-context CA is set as
the best value observed in Table 5. The best results are marked in bold.

Variations
Left-only CA Right-only CA Fixed-context CA CrossMatch

TS Accuracy F1@25 TS Accuracy F1@25 TS Accuracy F1@25 TS Accuracy F1@25

HAPT 0.72 ± 0.01 0.65 ± 0.03 0.73 ± 0.02 0.67 ± 0.02 0.78 ± 0.01 0.65 ± 0.02 0.84 ± 0.01 0.75 ± 0.02

mHealth 0.77 ± 0.02 0.41 ± 0.04 0.76 ± 0.02 0.43 ± 0.05 0.73 ± 0.02 0.22 ± 0.02 0.85 ± 0.01 0.45 ± 0.02

training framework. However, in general, the simple extensions of existing methods for context-
additive augmentation rather suffer from a significant performance drop. Therefore, our method is
robust to the addition of existing inner-instance augmentation.

4.4 ANALYSIS OF VARYING CONTEXT LENGTHS

Table 5 summarizes the timestamp accuracy and F1@25 score of CrossMatch by adjusting the de-
fault context length c (in Table 2) from 0.25× to 4.0×. If the context length is too large, augmented
instances bear too much perturbation to generate high-quality cross-window labels. On the other
hand, if the context length is too small, informative consistency regularization between two aug-
mented instances becomes trivial since they show high similarity. We found out that the optimal
context length is highly correlated with the average segment length of each dataset. For instance,
the best timestamp accuracy of Opportunity data is achieved with a relatively smaller context length
(i.e., 64 × 0.5 = 32) than that of mHealth data (i.e., 256 × 1.0 = 256) because Opportunity data
has much shorter mean segment length; as can be seen in Table 2, Opportunity and mHealth ex-
hibit the shortest and the longest mean segment length among the three datasets. Therefore, the best
timestamp accuracy and F1@25 score of each dataset is achieved with different context lengths.
R1,R2,R3: Table 6 shows the classification performance of CrossMatch with the variations of
context-additive augmentation (CA). The context is added to only either side of a target instance
(i.e., left-only CA or right-only CA), and the length of the context is fixed rather than varying (i.e.,
fixed-context CA). We set the fixed length to the best value found in Table 5. These variations weaken
the diversity of augmented instances, which degrade the effect of consistency regularization, so all
of them result in lower classification performance than CrossMatch.

5 CONCLUSION

In this paper, we propose a novel time-series self-training method CrossMatch equipped with
context-additive augmentation. It adds a context instance to a target instance on its left and right
sides within a window to generate two augmented instances with different contexts. To reduce vari-
ance in pseudo-labeling, CrossMatch mixes the two sets of pseudo-labels obtained from the two
augmented instances with inferred reliability scores. Our extensive experiments demonstrate that
CrossMatch achieves considerably higher classification accuracy than other state-of-the-art self-
training methods—by up to 23p% even when only 0.1% of timestamps are labeled. CrossMatch
introduces a new direction of data augmentation for sequential data and has the potential to be ap-
plied to a variety of time-series applications. For further work, we plan theoretical analysis of the
optimal context length and performance maximization of self-training using context-additive aug-
mentation.

9

Under review as a conference paper at ICLR 2023

CODE OF ETHICS

In this paper, we propose a time-series self-training framework with context-additive augmentation.
Our algorithm improves model performance despite sparsity of labels in time-series data, and this
improvement can reduce the cost of label annotations. In experiments we use popular time-series
datasets open to the public and available from the websites at the links provided in the references.
Each human subject in the datasets is encoded as a random number for anonymization.

REPRODUCIBILITY

We elaborate on the details of our algorithm and dataset setting in the main text for reproduction.
Section 4.1 and Appendix B describe the dataset setting for sparsely-labeled time series and ex-
plain hyperparameters used in the training and configuration. Algorithm 1 summarizes our frame-
work as a pseudo-code for better understanding. Finally, our work can be reproduced using the
guidelines and the source codes in https://www.dropbox.com/sh/j2n2hrfbze39ags/
AADCRye_a-4pIomnc9OWtG2qa?dl=0.

REFERENCES

Davide Anguita, Alessandro Ghio, Luca Oneto, Xavier Parra, Jorge Luis Reyes-Ortiz, et al. A public
domain dataset for human activity recognition using smartphones. In ESANN, pp. 3, 2013.

Oresti Banos, Rafael Garcia, Juan A Holgado-Terriza, Miguel Damas, Hector Pomares, Ignacio
Rojas, Alejandro Saez, and Claudia Villalonga. mHealthDroid: A novel framework for agile
development of mobile health applications. In Ambient Assisted Living Workshop, pp. 91–98,
2014.

David Berthelot, Nicholas Carlini, Ian Goodfellow, Nicolas Papernot, Avital Oliver, and Colin A
Raffel. Mixmatch: A holistic approach to semi-supervised learning. NeurIPS, 2019.

David Berthelot, Nicholas Carlini, Ekin D. Cubuk, Alex Kurakin, Kihyuk Sohn, Han Zhang, and
Colin Raffel. Remixmatch: Semi-supervised learning with distribution matching and augmenta-
tion anchoring. In ICLR, 2020.

Dong-Dong Chen, Wei Wang, Wei Gao, and Zhi-Hua Zhou. Tri-net for semi-supervised deep learn-
ing. In IJCAI, pp. 2014–2020, 2018a.

Minghao Chen, Fangyun Wei, Chong Li, and Deng Cai. Frame-wise action representations for long
videos via sequence contrastive learning. In CVPR, pp. 13801–13810, 2022.

Ting Chen, Simon Kornblith, Kevin Swersky, Mohammad Norouzi, and Geoffrey E Hinton. Big
self-supervised models are strong semi-supervised learners. In NeurIPS, pp. 22243–22255, 2020.

Yanbei Chen, Xiatian Zhu, and Shaogang Gong. Semi-supervised deep learning with memory. In
ECCV, pp. 268–283, 2018b.

Ekin D. Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, and Quoc V. Le. Autoaugment:
Learning augmentation strategies from data. In CVPR, 2019.

Shohreh Deldari, Daniel V Smith, Hao Xue, and Flora D Salim. Time series change point detection
with self-supervised contrastive predictive coding. In TheWebConf, pp. 3124–3135, 2021.

Terrance DeVries and Graham W Taylor. Improved regularization of convolutional neural networks
with cutout. arXiv preprint arXiv:1708.04552, 2017.

Emadeldeen Eldele, Mohamed Ragab, Zhenghua Chen, Min Wu, Chee Keong Kwoh, Xiaoli Li, and
Cuntai Guan. Time-series representation learning via temporal and contextual contrasting. In
IJCAI, pp. 2352–2359, 2021.

Haoyi Fan, Fengbin Zhang, Ruidong Wang, Xunhua Huang, and Zuoyong Li. Semi-supervised time
series classification by temporal relation prediction. In ICASSP, pp. 3545–3549, 2021.

10

https://www.dropbox.com/sh/j2n2hrfbze39ags/AADCRye_a-4pIomnc9OWtG2qa?dl=0
https://www.dropbox.com/sh/j2n2hrfbze39ags/AADCRye_a-4pIomnc9OWtG2qa?dl=0

Under review as a conference paper at ICLR 2023

Yazan Abu Farha and Jurgen Gall. MS-TCN: Multi-stage temporal convolutional network for action
segmentation. In CVPR, pp. 3575–3584, 2019.

Golnaz Ghiasi, Yin Cui, Aravind Srinivas, Rui Qian, Tsung-Yi Lin, Ekin D. Cubuk, Quoc V. Le, and
Barret Zoph. Simple copy-paste is a strong data augmentation method for instance segmentation.
In CVPR, pp. 2918–2928, 2021.

Jann Goschenhofer, Rasmus Hvingelby, David Rügamer, Janek Thomas, Moritz Wagner, and Bernd
Bischl. Deep semi-supervised learning for time series classification. In ICMLA, pp. 422–428,
2021.

Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre Richemond, Elena
Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Guo, Mohammad Gheshlaghi Azar,
et al. Bootstrap your own latent-a new approach to self-supervised learning. NeurIPS, pp. 21271–
21284, 2020.

Brian Kenji Iwana and Seiichi Uchida. An empirical survey of data augmentation for time series
classification with neural networks. Plos One, 16(7):e0254841, 2021.

Shayan Jawed, Josif Grabocka, and Lars Schmidt-Thieme. Self-supervised learning for semi-
supervised time series classification. In PAKDD, pp. 499–511, 2020.

Noo-ri Kim and Jee-Hyong Lee. Propagation regularizer for semi-supervised learning with ex-
tremely scarce labeled samples. In CVPR, pp. 14401–14410, 2022.

Sateesh Kumar, Sanjay Haresh, Awais Ahmed, Andrey Konin, M Zeeshan Zia, and Quoc-Huy
Tran. Unsupervised action segmentation by joint representation learning and online clustering. In
CVPR, pp. 20174–20185, 2022.

Samuli Laine and Timo Aila. Temporal ensembling for semi-supervised learning. In ICLR, 2017.

Dong-Hyun Lee. Pseudo-label: The simple and efficient semi-supervised learning method for deep
neural networks. In ICML Workshop, pp. 896, 2013.

Zhe Li, Yazan Abu Farha, and Jurgen Gall. Temporal action segmentation from timestamp supervi-
sion. In CVPR, pp. 8365–8374, 2021.

Fan Ma, Linchao Zhu, Yi Yang, Shengxin Zha, Gourab Kundu, Matt Feiszli, and Zheng Shou.
SF-Net: Single-frame supervision for temporal action localization. In ECCV, pp. 420–437, 2020.

Qianli Ma, Zhenjing Zheng, Jiawei Zheng, Sen Li, Wanqing Zhuang, and Garrison W Cottrell.
Joint-label learning by dual augmentation for time series classification. In AAAI, pp. 8847–8855,
2021.

Davide Moltisanti, Sanja Fidler, and Dima Damen. Action recognition from single timestamp su-
pervision in untrimmed videos. In CVPR, pp. 9915–9924, 2019.

Rafael Müller, Simon Kornblith, and Geoffrey E Hinton. When does label smoothing help? Ad-
vances in neural information processing systems, 32, 2019.

Hieu Pham, Zihang Dai, Qizhe Xie, and Quoc V Le. Meta pseudo labels. In CVPR, pp. 11557–
11568, 2021.

Mamshad Nayeem Rizve, Kevin Duarte, Yogesh S Rawat, and Mubarak Shah. In defense of pseudo-
labeling: An uncertainty-aware pseudo-label selection framework for semi-supervised learning.
In ICLR, 2021.

Daniel Roggen, Alberto Calatroni, Mirco Rossi, Thomas Holleczek, Kilian Förster, Gerhard Tröster,
Paul Lukowicz, David Bannach, Gerald Pirkl, Alois Ferscha, et al. Collecting complex activity
datasets in highly rich networked sensor environments. In 2010 Seventh international conference
on networked sensing systems (INSS), pp. 233–240. IEEE, 2010.

Yooju Shin, Susik Yoon, Sundong Kim, Hwanjun Song, Jae-Gil Lee, and Byung Suk Lee.
Coherence-based label propagation over time series for accelerated active learning. In ICLR,
2022.

11

Under review as a conference paper at ICLR 2023

Connor Shorten and Taghi M Khoshgoftaar. A survey on image data augmentation for deep learning.
Journal of Big Data, 6(1):1–48, 2019.

Ankit Singh, Omprakash Chakraborty, Ashutosh Varshney, Rameswar Panda, Rogerio Feris, Kate
Saenko, and Abir Das. Semi-supervised action recognition with temporal contrastive learning. In
CVPR, pp. 10389–10399, 2021.

Dipika Singhania, Rahul Rahaman, and Angela Yao. Iterative contrast-classify for semi-supervised
temporal action segmentation. In AAAI, pp. 2262–2270, 2022.

Kihyuk Sohn, David Berthelot, Nicholas Carlini, Zizhao Zhang, Han Zhang, Colin A Raffel,
Ekin Dogus Cubuk, Alexey Kurakin, and Chun-Liang Li. Fixmatch: Simplifying semi-supervised
learning with consistency and confidence. NeurIPS, 33:596–608, 2020.

Terry T Um, Franz MJ Pfister, Daniel Pichler, Satoshi Endo, Muriel Lang, Sandra Hirche, Urban
Fietzek, and Dana Kulić. Data augmentation of wearable sensor data for parkinson’s disease
monitoring using convolutional neural networks. In Proceedings of the 19th ACM international
conference on multimodal interaction, pp. 216–220, 2017.

Jesper E Van Engelen and Holger H Hoos. A survey on semi-supervised learning. Machine Learn-
ing, 109(2):373–440, 2020.

Xiao Wang, Haoqi Fan, Yuandong Tian, Daisuke Kihara, and Xinlei Chen. On the importance of
asymmetry for siamese representation learning. In CVPR, pp. 16570–16579, 2022.

Qingsong Wen, Liang Sun, Fan Yang, Xiaomin Song, Jingkun Gao, Xue Wang, and Huan Xu. Time
series data augmentation for deep learning: A survey. In IJCAI, 2021.

Junfei Xiao, Longlong Jing, Lin Zhang, Ju He, Qi She, Zongwei Zhou, Alan Yuille, and Yingwei
Li. Learning from temporal gradient for semi-supervised action recognition. In CVPR, pp. 3252–
3262, 2022.

Qizhe Xie, Zihang Dai, Eduard Hovy, Minh-Thang Luong, and Quoc V. Le. Unsupervised data
augmentation for consistency training. In NeurIPS, 2020.

Yinghao Xu, Fangyun Wei, Xiao Sun, Ceyuan Yang, Yujun Shen, Bo Dai, Bolei Zhou, and Stephen
Lin. Cross-model pseudo-labeling for semi-supervised action recognition. In CVPR, pp. 2959–
2968, 2022.

Xiangli Yang, Zixing Song, Irwin King, and Zenglin Xu. A survey on deep semi-supervised learning.
CoRR, abs/2103.00550, 2021. URL https://arxiv.org/abs/2103.00550.

Zhihan Yue, Yujing Wang, Juanyong Duan, Tianmeng Yang, Congrui Huang, Yunhai Tong, and
Bixiong Xu. Ts2vec: Towards universal representation of time series. In AAAI, pp. 8980–8987,
2022.

Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and Youngjoon Yoo.
CutMix: Regularization strategy to train strong classifiers with localizable features. In ICCV, pp.
6023–6032, 2019.

Bowen Zhang, Yidong Wang, Wenxin Hou, Hao Wu, Jindong Wang, Manabu Okumura, and
Takahiro Shinozaki. Flexmatch: Boosting semi-supervised learning with curriculum pseudo la-
beling. NeurIPS, pp. 18408–18419, 2021.

Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin, and David Lopez-Paz. mixup: Beyond empiri-
cal risk minimization. In ICLR, 2018.

12

https://arxiv.org/abs/2103.00550

Under review as a conference paper at ICLR 2023

A OVERALL TRAINING ALGORITHM

Algorithm 1 Time-series self-training with CrossMatch

Input: A time series with initial labels D, labeled timestamp set TL, unlabeled timestamp set TU ,
labeled batch size Bl, unlabeled batch size Bu, a model fθ, confidence threshold τ,
loss weight λ, learning rate η, half the length of target instance o, context length c,
max number of iterations I .

Output: Final model fθ.
1: for each iteration up to I do
2: Tl ← Sample Bl timestamps from TL; Tu ← Sample Bu timestamps from TU ;
3: c′ ← Sample a context length from Uniform(2, c);
4: w ← o+ c′;
5: /** Loss computation for labeled batch **/
6: Xl ← {X[m−w:m+w),m ∈ Tl}; Yl ← {Y[m−w:m+w), t ∈ Tl};
7: Ll =

1
Bl

∑
X∈Xl,Y ∈Yl

ℓ(X,Y); // See Equation (1)
8: /** Loss computation for unlabeled batch **/
9: Xu ← {(X[m−w:m+o),X[m−o:m+w)),m ∈ Tu}; // See Section 3.2

10: Ŷu ← PSEUDOLABELING(Xu, fθ, τ); // See Equation (2)
11: Ȳ ← RELIABILITYWEIGHTING(Ŷu); // See Section 3.3
12: Lu = 1

Bu

∑
(X left,X right)∈Xu,Ȳ ∈Ȳ ℓu(X

left, X right, Ȳ); // See Equation (6)
13: L ← Ll + λLu; θ ← θ − η∇θL;
14: return fθ;

Algorithm 1 describes how CrossMatch works in time-series self-training. For each iteration, there
are two steps for batch initialization: center timestamp sampling from TL and TU (Line 2) and
context length sampling from a uniform distribution (Line 3). Note that we assign w as o+ c′ after
the sampling (Line 4). From labeled middle timestamps, instances are sliced from X with length
2w to construct a labeled batch, Xl and Yl, where X[m−w:m+w) = {xt | t ∈ [m−w : m+w)} and
Y[m−w:m+w) = {yt | t∈ [m−w : m+w)} (Line 6). The classification loss for a labeled batch Ll

is computed and averaged over the batch (Line 7). From unlabeled middle timestamps, instances
are sliced with context-additive augmentation that generates a pair of instances whose length is
o+w (Line 9). The target instance of each instance in an augmented unlabeled batch Xu is then
pseudo-labeled using a confidence threshold τ (Line 10). CrossMatch softens the pseudo-labels
with reliability weighting across two instances with different contexts, transforming two pseudo-
labels into a single cross-window label shared across the instances (Line 11). The classification loss
with cross-window labels is computed for each pair of augmented instances and is averaged over
the batch (Line 12). Finally, the losses for labeled and unlabeled batches are then integrated into a
single loss L with a hyperparameter λ, and the model fθ is updated using its gradient (Line 13).

B DETAILS OF TRAINING THE CLASSIFIER

R2: As described in implementation details of 4.1, we use MS-TCN as backbone sequential clas-
sifier (Farha & Gall, 2019). It can classify each data point in a segment instance X , generating
sequential softmax probabilities at each timestamp. MS-TCN has four stages, and each stage is
composed of eleven dilated convolution layers and a softmax output layer. The first stage takes a
subsequence of the whole time series and outputs softmax probability distribution at each times-
tamp. After the first stage, every stage is fed with softmax probabilities and then outputs another
softmax probabilities. For all datasets, we use the same training hyperparameters and classifier as
listed in Table 7. We set the labeled batch size as 4 and the unlabeled batch size as 8, use SGD
optimizer with momentum and Nesterov method. The initial learning rate is 0.005 and is scheduled
with a cosine decay function. The letter i in Scheduling denotes the current iteration number during
training, and the letter I denotes the total number of iterations.

13

Under review as a conference paper at ICLR 2023

Table 7: Training hyperparameters.

Stage Layer BL BU Optimizer Momentum Nesterov η Scheduling

4 11 4 8 SGD 0.9 True 0.005 cos(7πiI)

C DETAILS IN EVALUATION METRICS

R1: Timestamp accuracy is the ratio of the number of timestamps with correctly predicted labels to
the total number of timestamps in a times series, computed as follows.

TS accuracy =
1

|Ttest|
∑
t∈Ttest

1yt=ŷt

Segmental F1 score is a performance measure for judging whether a classifier outputs correct and
coherent labels for consecutive timestamps. Segmental precision and recall are first computed by
counting the number of correct matches between predicted segments set Ŷ and true segments set Y
with Jaccard similarity threshold (here, we set 0.25) as follows.

Precision =
1

|Ŷ|

∑
Ŷ ∈Ŷ

∑
Y ∈Y

1Jaccard(Ŷ ,Y)>0.25 Recall =
1

|Y|
∑
Ŷ ∈Ŷ

∑
Y ∈Y

1Jaccard(Ŷ ,Y)>0.25

Finally, Segmental F1 score is computed as F1@25 = 2∗precision∗recall
precision+recall .

R2: At each iteration, we measure pseudo-label precision and pseudo-label recall from each times-
tamp of target instances in a batch, as follows:

PL Precision =
the number of correct PLs

the number of PLs
PL Recall =

the number of correct PLs
the number of timestamps

For every timestamp, we check the existence of a pseudo-label and the class of the true label to see if
the class of a pseudo-label is correct to count the numerators and denominators in the above formula.
When there is no pseudo-label at any timestamp, the denominator of precision becomes 0 and the
precision can diverge. So, we define the precision with no pseudo-label as 0. Finally, pseudo-label
F1 score is PLF = 2∗PL precision∗PL recall

PL precision+PL recall . After a few iterations, the entire data is expected to be used
by pseudo-labeling the sampled target instances.

D DETAILED ILLUSTRATIONS

Figure 6 is a detailed version of Figure 5, with standard deviation error bars added. R2,R3,R4Figure
7 shows the pseudo-labeling metrics such as precision, recall, and the total number of pseudo-labels.
Figure 8 shows the accuracy convergence trend when context length is varied as a factor or multiple
of the context length c, illustrating accuracy curve during the training iterations.

14

Under review as a conference paper at ICLR 2023

CrossMatch FixMatch FlexMatch PropReg

0 12500 25000
Iteration

0.7

0.8

0.9

TS
 A

cc
ur

ac
y

0 25000 50000
Iteration

0.5

0.7

0.9

0 15000 30000
Iteration

0.4

0.6

0.8

0 12500 25000
Iteration

0.2

0.5

0.8

F1
@

25

0 25000 50000
Iteration

0.0

0.3

0.6

0 15000 30000
Iteration

0.4

0.6

0.8

0 12500 25000
Iteration

0.0

0.4

0.8

PL
F

0 25000 50000
Iteration

0.0

0.3

0.6

0 15000 30000
Iteration

0.0

0.3

0.6

(a) HAPT (b) mHealth (c) Opportunity

Figure 6: Training curve of the classification performance (the first two rows) and pseudo-labeling
performance (the last row) over self-training iterations in Algorithm 1. Error bars represent the
standard deviation of five runs.

CrossMatch FixMatch FlexMatch PropReg

0 12500 25000
Iteration

0.6

0.8

1.0

Pr
ec
is
io
n

0 25000 50000
Iteration

0.4

0.7

1.0

0 15000 30000
Iteration

0.6

0.8

1.0

0 12500 25000
Iteration

0.0

0.3

0.6

R
ec
al
l

0 25000 50000
Iteration

0.0

0.2

0.4

0 15000 30000
Iteration

0.0

0.2

0.4

0 12500 25000
iteration

0

1e4

2e4

N
um

be
r o

f P
L

0 25000 50000
iteration

0

1e4

2e4

N
um

be
r o

f P
L

0 15000 30000
iteration

0

1e4

2e4

N
um

be
r o

f P
L

(a) HAPT (b) mHealth (c) Opportunity

Figure 7: Precision, recall, and the number of pseudo-labels of CrossMatch compared with those of
FixMatch, FlexMatch, and PropReg.

15

Under review as a conference paper at ICLR 2023

0.25× 0.5× 1× 2× 4×

0 12500 25000
Iteration

0.7

0.8

0.9

TS
 A

cc
ur

ac
y

0 25000 50000
Iteration

0.5

0.7

0.9

0 15000 30000
Iteration

0.4

0.6

0.8

0 12500 25000
Iteration

0.3

0.6

0.9

F1
@

25

0 25000 50000
Iteration

0.0

0.3

0.6

0 15000 30000
Iteration

0.4

0.6

0.8

(a) HAPT (b) mHealth (c) Opportunity

Figure 8: Classification accuracy of CrossMatch for varying context lengthx× c.

16

	Introduction
	Related Work
	Data Augmentation
	Semi-Supervised Learning Based on Augmentations

	CrossMatch: Cross-window Time-series Self-training
	Preliminaries and Problem Setting
	Context-Additive Augmentation
	Reliability-Weighted Mixing
	Overall Self-training Procedure Using CrossMatch

	Evaluation
	Experiment Setting
	Comparison with State-of-the-art Self-training Methods
	Extensions with Inner- and Inter-instance Augmentation
	Analysis of varying context lengths

	Conclusion
	Overall Training Algorithm
	Details of training the classifier
	Details in evaluation metrics
	Detailed illustrations

