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ABSTRACT

Hyperspectral pan-sharpening aims to generate high-resolution hyperspectral
(HRHS) images by fusing low-resolution hyperspectral (LRHS) data with high-
resolution panchromatic (PAN) images, enabling applications in mapping, surveil-
lance, and environmental monitoring. While deep learning methods achieve
strong performance, their heavy computational and memory demands limit de-
ployment on resource-constrained satellite platforms. To address this, we explore
binary neural networks (BNNs) for hyperspectral pan-sharpening. Conventional
binarization, however, introduces gradient instability and severe information loss,
compromising spectral spatial fidelity. We propose the Adaptive Tan Identity
Straight-Through Estimator (ATISTE), a soft binarization strategy that decouples
forward approximation from gradient propagation and employs adaptive scaling to
preserve consistency with full-precision features. Building on ATISTE, we design
HS-BiNet, a lightweight binary CNN with residual connections and multi-scale
fusion, to effectively capture spectral–spatial dependencies while avoiding com-
putationally intensive operations such as unfolding inference and non-local self-
attention. This ensures suitability for real-time deployment on edge and satellite
platforms. Extensive experiments show that HS-BiNet consistently outperforms
binary baselines and remains competitive with, and in some cases surpasses, full-
precision models, offering a practical solution for high-fidelity HRHS reconstruc-
tion.

1 INTRODUCTION

High-resolution hyperspectral (HRHS) images are vital in numerous remote sensing applications,
including mapping services, military surveillance, and environmental monitoring Ram et al. (2024);
Sharma et al. (2020); Pallas Enguita et al. (2024); Carvalho et al. (2019); Stuart et al. (2019); Bedini
(2017), due to their superior spectral fidelity and fine spatial detail. However, directly acquiring
HRHS images remains a technical challenge, as existing remote sensing sensors are limited in their
ability to capture high spectral and spatial resolutions simultaneously. To mitigate this constraint,
hyperspectral pan-sharpening has emerged as a reliable solution, whereby low-resolution hyperspec-
tral (LRHS) images are fused with high-resolution panchromatic (PAN) images to generate enhanced
HRHS outputs. This fusion process exploits the rich spectral information of HS data and the spatial
granularity of PAN images, producing outputs that approximate true HRHS quality.

In recent years, deep learning (DL)-based methods have become the dominant approach for hyper-
spectral pan-sharpening, surpassing traditional techniques Cai & Huang (2020); Yang et al. (2017).
Early models like HyperPNN He et al. (2019) introduced CNNs specifically designed for hyper-
spectral data, with spectral encoders, decoders, and spatial-spectral fusion modules. Building on
this, HSpeNet Hu et al. (2022) added preprocessing subnets for enhanced PAN feature extraction,
DenseNet-inspired fusion, and spectral-aware loss functions to balance spatial detail and spectral
consistency. Further advances include DHP-DARN Zheng et al. (2020) and DIP-HyperKite Ban-
dara et al. (2021), which use deep image prior (DIP) methods to regularize spectral upsampling
and improve fusion under limited data. Notably, DIP-HyperKite’s inverse U-Net enables spatial
over-expansion, enhancing high-frequency detail beyond PAN resolution. Most recently, HyperD-
SNet Zhuo et al. (2022) combined handcrafted edge detectors (e.g., Sobel, Prewitt) with multiscale
deep-shallow feature extraction and per-band Spectral Attention for precise, adaptive detail injection
across hyperspectral channels. Since then, a flood of increasingly complex network architectures has
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Figure 1: Illustration of Forward and Backward Propagation for the Sign Function.

(a) Ground-truth (b) Full Precision (c) Binarized (d) ATISTE

Figure 2: Analysis of binarization: Given the ground-truth (a) and full-precision feature map (b),
the corresponding binarized activation (c) exhibits significant degradation, while ATISTE outputs
(d) retain more information and better preserve the original features.

been proposed to improve further pan-sharpening outcomes, including multi-scale designs, adaptive
frameworks, spatial-frequency representations, and transformer-based models, all contributing to
richer spatial-spectral fusion capabilities Bandara & Patel (2022); Dong et al. (2021); Sun et al.
(2024); Guan & Lam (2021); Wu et al. (2022); Feng et al. (2024). Despite their strong performance,
these state-of-the-art models often demand considerable computational resources, such as high-end
GPUs, making them impractical for deployment on resource-constrained satellite platforms. Driven
by this challenge, we explore network binarization for hyperspectral pan-sharpening to reduce com-
putational complexity while substantially maintaining high reconstruction fidelity. We begin by
analyzing the transformation of real-valued activations under the binarization process. As illustrated
in Fig. 2, binarized feature representations suffer from significant information loss compared to their
full-precision counterparts. This degradation is especially critical in hyperspectral pan-sharpening,
where pixel-level accuracy is essential to preserve spatial detail and spectral integrity. Conven-
tional binarization approaches often fail to maintain this fidelity, leading to suboptimal reconstruc-
tion quality. Despite significant progress, prior works on quantization/binarization and surrogate
gradient methods for BNNs reveal consistent limitations. Early binarization approaches such as
XNOR-Net Rastegari et al. (2016b) enabled efficient binary convolutions but suffered large accu-
racy drops due to crude sign-based binarization and gradient mismatch. Follow-up studies identified
forward–backwards inconsistency, where the forward sign function is discontinuous (as shown in
Fig. 1), while backwards estimators (e.g., identity mapping in classic STE) introduce severe bias
and vanishing gradients Yin et al. (2019). Attempts to close the accuracy gap in low-bit and binary
networks, such as 2-bit quantization methods Choi et al. (2018) and differentiable soft quantiza-
tion Gong et al. (2019b), improved forward approximation but often relied on rigid functional forms
or hand-designed smooth surrogates that could not dynamically adapt, leading to unstable gradients
and limited scalability. More advanced strategies, such as information retention Qin et al. (2020c),
coupled binary activations Kim et al. (2020), and reviving dead weights Xu et al. (2021b), addressed
specific failure cases such as gradient starvation or inactive parameters, but typically introduced
additional heuristics or complex mechanisms without fully resolving the fundamental trade-off be-
tween gradient stability and binarization fidelity. Even the recent Wu et al. (2023), which reframes
STE through an equilibrium perspective, still couples approximation accuracy and gradient stabil-
ity via a single parameter, causing instability when scaled to deeper architectures or larger datasets.
Collectively, these works expose four persistent issues: forward–backwards mismatch, gradient van-
ishing or explosion, rigid or over-parameterized surrogates with poor adaptability, and unstable con-
vergence in deeper networks.

To overcome these limitations, we introduce Adaptive Tan Identity Straight-Through Estimator
(ATISTE), a soft binarization strategy based on a novel straight-through estimator that balances
binarization fidelity with gradient stability. Our STE employs a dual-path surrogate formulation:
one path leverages a smooth, saturating function (a bounded tanh variant) to stabilize gradients dur-
ing backpropagation (mitigating gradient vanishing or explosion), and the second path preserves a
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sharp approximation for practical forward inference (reducing forward–backwards mismatch). This
decoupling enables independent control over the approximation in each pass, ensuring effective gra-
dient flow even in saturated regions and improving convergence stability in deeper networks. Fur-
thermore, STE incorporates an adaptive channel-wise scaling mechanism derived from activation
statistics, aligning the magnitude of binary activations with their real-valued equivalents (address-
ing rigidity of fixed surrogates and reducing information loss). This mechanism further enhances
adaptability, making STE particularly suitable for high-precision tasks like hyperspectral fusion.

Building on STE, we develop HS-BiNet, a compact and efficient convolutional architecture specif-
ically tailored for hyperspectral pan-sharpening. HS-BiNet employs a modular structure in which
key convolutional layers are binarized using STE-enhanced binary convolutions. We incorporate
residual connections and intermediate skip links to strengthen information propagation and pre-
serve contextual awareness. Additionally, the network leverages lightweight local fusion units and
multi-scale receptive fields to effectively capture the intricate spectral and spatial dependencies char-
acteristic of hyperspectral imagery. This combination of STE-driven binarization and architectural
refinements enables HS-BiNet to maintain high reconstruction fidelity while significantly reducing
bitwidth and computation. Extensive experiments confirm that HS-BiNet consistently surpasses
conventional binary baselines across all key evaluation metrics and narrows the performance gap
with full-precision models. In several cases, it even outperforms full-precision methods, demon-
strating the practical viability and strength of the proposed approach for real-world hyperspectral
fusion tasks.

The main contributions of this work are summarized as follows:

1. We propose a novel straight-through estimator that introduces a dual-path gradient approx-
imation strategy and an adaptive scaling mechanism, significantly improving the stability
and accuracy of binarized neural networks. This work presents the first known application
of binary neural networks to hyperspectral pan-sharpening.

2. We design HS-BiNet, a lightweight binary CNN architecture tailored for hyperspectral pan-
sharpening, which integrates ATISTE-based binary convolutions with residual and multi-
scale modules to ensure effective spectral-spatial feature learning.

3. We demonstrate that our binarized network achieves state-of-the-art performance among
binary models and remains competitive with, and even surpasses, many full-precision mod-
els, all while drastically reducing memory and computation.

2 RELATED WORK
2.1 DEEP LEARNING-BASED PAN-SHARPENING

In recent years, deep learning has made remarkable advances in low-level vision tasks, profoundly
impacting pan-sharpening, where DL methods now lead He et al. (2023; 2024). HyperPNN He et al.
(2019) pioneered the use of compact CNNs for hyperspectral fusion, competing well with traditional
optimization-based methods. Hyper-DSNet Zhuo et al. (2022) introduced band-wise processing to
handle inter-band variability, while DIP-HyperKite Bandara & Patel (2022) combined Deep Image
Prior upsampling with an over-complete HyperKite network to learn residual high-frequency details
under spatial and spectral constraints. Subsequently, the field rapidly advanced with architectures
like AIDB-Net Sun et al. (2024), employing adaptive information distillation blocks to enhance key
spectral and spatial features, and FPFNet Dong et al. (2023), which used progressive feature fu-
sion for improved detail recovery. LPPNet Dong et al. (2021) further improved effectiveness by
integrating local and global priors. Moving beyond CNNs, transformer-based models, such as Hy-
perTransformer Bandara & Patel (2022), apply self-attention to capture long-range spectral depen-
dencies, while diffusion models target enhanced fusion quality. Despite their strong performance,
these methods incur high computational and memory costs, which restricts their deployment on
resource-limited satellite platforms. To tackle this, our work investigates binarized neural networks
as a lightweight and effective alternative for pan-sharpening.

2.2 BINARY NEURAL NETWORK

Binarization is the most extreme form of model quantization, compressing networks by restricting
both weights and activations to binary values of −1 and +1, which significantly reduces storage
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consumption and computational cost. Hubara et al. Hubara et al. (2016) introduce the first binarized
neural network by directly quantizing parameters during training. Building upon this idea, Rastegari
et al. Rastegari et al. (2016b) incorporate learnable scaling factors in XNOR-Net, achieving up to a
58× acceleration and a 32× reduction in memory requirements. Motivated by these efficiency gains,
recent works have increasingly explored binary networks for various low-level vision tasks Cai et al.
(2023); Chen et al. (2024); Jiang et al. (2023); Song et al. (2023); Xin et al. (2020); Xia et al. (2022).
Xin et al. Xin et al. (2020) develop the first fully binarized super-resolution model by binarizing both
weights and activations. Jiang et al. Jiang et al. (2021) further propose a binary training framework
that removes batch normalization layers, while Xia et al. Xia et al. (2022) design a basic binary con-
volution unit for image restoration through detailed component analysis. Frequency decomposition
is separately handled in Jiang et al. (2023), and Chen et al. Chen et al. (2024) introduce a binarized
diffusion model for image SR. Remote sensing satellites, which operate under strict constraints on
computation, memory, and energy, present a natural need for highly compact models, and binariza-
tion provides a promising solution for efficient onboard processing. However, applying conventional
binary networks directly to hyperspectral imaging remains challenging. Hyperspectral data consist
of many narrow and continuous spectral bands, and the strong quantization in BNNs causes severe
information loss that is far more harmful for spectral fidelity than in RGB imagery. Their limited
representation capacity also makes it difficult to capture the complex spectral, spatial relationships
present in hyperspectral scenes Guerri et al. (2024); Tang et al. (2024). Moreover, the reduced dy-
namic range of binary activations can distort fine spectral variations and degrade the accuracy of
reconstructed spectral curves Hou et al. (2025). Training is further complicated by the non-smooth
nature of binarization Qin et al. (2020a). Binary constraints can also weaken band-wise spectral
consistency, which is critical for downstream tasks such as material classification and anomaly de-
tection. Due to the high dimensionality and strong inter-band correlations in hyperspectral images,
binary networks often lack sufficient expressive power to generalize well. As a result, although bi-
nary networks offer significant efficiency benefits, their direct application to hyperspectral imaging
faces notable limitations that must be addressed for effective hyperspectral fusion.

3 METHODOLOGY

3.1 OVERALL ARCHITECTURE

As illustrated in Fig. 3, the overall framework of our proposed HS-BiNet consists of four main
components: (1) an Multi-Scale Feature Extractor (MSFE), (2) an Edge Injector Module, (3) a Fu-
sion Module, and (4) a Decoder Module. All components are built on binary convolution (detailed in
APPENDIX A.1), implemented with our Straight-Through Estimator (STE) to enable efficient train-
ing and inference while preserving representational capacity. Given an input low-resolution hyper-
spectral image HS ∈ RH×W×B with B spectral bands and a high-resolution panchromatic image
P ∈ RsH×sW with s as the spatial upsampling factor, we first apply a deformable convolution-
based Dai et al. (2017) upsampler to the hyperspectral image to match the spatial resolution of P,
producing the initial feature map F0 ∈ RsH×sW×B . The upsampled hyperspectral input is then pro-
cessed by the MSFE module for spectral feature extraction, where multi-scale features are obtained
using binary convolutions with kernel sizes 3× 3, 5× 5, and 7× 7. The resulting feature maps are
concatenated along the channel dimension to form a multi-scale feature representation Fms ∈ RC ,
where C represents the hidden states. A subsequent 1 × 1 binary convolution reduces the concate-
nated features from 3C to C channels, followed by a residual connection from the input to preserve
the original spectral content during multi-scale fusion. This design enriches the representation with
multi-scale contextual information while maintaining constant channel size and low computational
cost.

Following the multi-scale extraction, the MSFE employs Binary Residual Blocks, each consisting
of two binarized 3× 3 convolutions with stride 1 and padding 1, each followed by batch normaliza-
tion. A residual connection from the block input to its output preserves spectral information across
layers and mitigates degradation. This residual formulation enables the block to learn corrective
transformations rather than complete mappings, improving training stability and reconstruction ac-
curacy. At each stage of processing, the Edge Injector applies a binary convolution to the PAN
image, producing spatial features Fsp ∈ RC . This transforms the single-channel PAN input into a
multi-channel feature representation that highlights spatial details for integration with the spectral
features extracted by the MSFE. The Fusion unit receives Fsp from the edge injector and Fspc from
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Figure 3: The framework of the proposed HS-BiNet, with hidden dimension C, comprises four key
components: (a) overall network architecture, (b) multi-scale feature extractor, (c) residual block,
and (d) decoder block, where c⃝ denotes concatenation of feature maps and BN refers to BatchNorm.
In the illustration, black-colored kernels represent the binary convolution layers, while blue-colored
kernels indicate the full-precision convolution layers.

the MSFE, concatenating them along the channel dimension to form a combined spectral-spatial rep-
resentation. This representation is then processed by a binary convolution to project it back to the
target feature dimension C, ensuring compatibility with subsequent stages while preserving spectral
fidelity and spatial sharpness.

Finally, the Decoder refines the fused spectral-spatial representation to produce the high-resolution
hyperspectral output ĤS. The input feature map Fin ∈ RC is first processed by a binarized 3 × 3
convolution to enhance both spatial and channel-level details, followed by a 1 × 1 convolution
to adjust channel dimensionality and reduce computational complexity. A lightweight enhancement
mechanism then emphasizes the most informative features while suppressing less relevant responses.
This mechanism begins with adaptive average pooling to produce a compact descriptor for each
channel, followed by a binarized 1 × 1 convolution and a sigmoid activation to compute scaling
factors in the range [0, 1]. These factors are multiplied element-wise with the original feature map to
produce the enhanced output Fout. A global residual connection adds the upsampled hyperspectral
input HS to the decoder output, resulting in the final high-resolution hyperspectral image ĤS that
preserves the original spectral signatures while effectively integrating the spatial information from
the panchromatic image.

3.2 STRAIGHT THROUGH ESTIMATOR

Binarized neural networks face a fundamental challenge in balancing forward fidelity with gradient
stability. Naı̈ve binarization Qin et al. (2020a) through the discontinuous sign function introduces
severe forward–backward mismatch, where the forward mapping discards critical information while
identity-based backward surrogates bias gradients and collapse outside a narrow band. This mis-
match is further compounded by gradient starvation: hard or overly sharp surrogates yielding vanish-
ing derivatives in saturation regions or unstable spikes near zero, both of which hinder optimization
in deeper architectures. Attempts to address these limitations through smooth approximations such
as HardTanh, SoftSign, or Log-Tanh reduce discontinuity but either remain too soft to enforce effec-
tive binarization or too rigid to maintain stable gradients. Methods such as ReSTE Wu et al. (2023)
struggle when applied to high-dimensional or multi-channel data, where different channels often re-
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quire different levels of gradient stability and approximation accuracy. In hyperspectral fusion, this
challenge becomes much more severe because the task demands extremely fine spectral precision
across hundreds of closely spaced bands. The adaptive parameter in ReSTE, which is intended to
balance approximation fidelity and gradient stability, cannot satisfy these conflicting requirements
across all spectral channels, leading to suboptimal approximations and unstable gradient flow. Even
small residual estimator bias or remaining gradient noise can distort subtle spectral curves, and
the progressive schedule of ReSTE, while improving stability, still fails to preserve the delicate
spectral details required for accurate hyperspectral reconstruction. As a result, although ReSTE
is more stable than standard STE methods, it remains insufficient for maintaining high spectral fi-
delity and continuous-value accuracy in hyperspectral imaging. The proposed ATISTE addresses
the fundamental trade-off between forward approximation fidelity and gradient stability that limits
existing surrogate estimators in BNN training. Its formulation integrates a smooth, saturating non-
linearity with a linear residual, resulting in a flexible surrogate that guarantees non-zero gradients
and bounded variance. Formally, for an input activation x ∈ R, the forward surrogate is defined as:

fα,λ(x) = (1− λ) tanh(αx) + λx, (1)

where the sharpness parameter α > 0 controls the steepness of the nonlinear path, and the residual
weight λ ∈ [0, 1] adjusts the contribution of the identity path. This design enables smooth interpola-
tion between two established estimation strategies. Specifically, setting λ = 0 reduces the estimator
to a pure tanh(αx), acting as a smooth approximation of the sign function, while λ = 1 recovers the
identity mapping, corresponding to the classic STE backward surrogate. By selecting intermediate
λ values, ATISTE seamlessly interpolates between these extremes, allowing a controlled transition
from soft to hard binarization during training. The backward pass supplies the pseudo-gradient used
in optimization, derived as:

∂fα,λ(x)

∂x
= (1− λ)α

(
1− tanh2(αx)

)
+ λ. (2)

Equation 2 reveals two critical structural terms. The first term, the scaled derivative of tanh, is
sharply localized near zero and facilitates learning in the binarization-critical region. The second
term, a constant gradient floor of magnitude λ, ensures non-zero gradients even when |x| is large and
the tanh path saturates. Unlike hard sign surrogates, which suffer from vanishing gradients outside
[−1, 1], ATISTE maintains informative gradients everywhere. Furthermore, the boundedness of the
derivative is expressed as:

λ ≤ f ′
α,λ(x) ≤ (1− λ)α+ λ. (3)

This dual bound prevents gradient starvation (via the non-zero floor λ) and gradient explosion (via
the finite ceiling (1− λ)α+ λ). Such properties offer a clear advantage over power-law surrogates,
whose derivatives can either diverge near zero or vanish in saturation regions. From the forward
perspective, ATISTE is rational: its approximation error is no worse than that of the classic STE.
Defining the mean-squared error relative to the ideal sign function as:

E(α, λ) = E
[(

sign(x)− fα,λ(x)
)2]

, (4)

we can analyze its asymptotic behavior. As α → ∞, the nonlinear component converges pointwise
to the sign function:

lim
α→∞

fα,λ(x) = (1− λ) sign(x) + λx, (5)

yielding:
lim

α→∞
E(α, λ) = λ2 E

[(
sign(x)− x

)2] ≤ ESTE. (6)

Thus, for all λ < 1, ATISTE achieves strictly lower or equal approximation error compared to the
identity-based STE.

A key feature of ATISTE lies in its tunable bias–variance trade-off. Increasing α sharpens the
forward mapping, reducing bias by making fα,λ more sign-like, while increasing local gradient
variance. Conversely, increasing λ strengthens the residual path, raising the gradient floor and
reducing variance, but at the cost of forward bias. The decoupling into two independent param-
eters provides explicit control over optimization dynamics, enabling schedules where α is gradually
increased and λ decreased over training epochs. This ensures smooth convergence to a strongly
binarized model without starving gradients. Because of its dual-path design, ATISTE naturally inte-
grates bounded non-zero gradients (Eq. 3) with a rational forward approximation (Eqs. 4, 5, 6) and
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Table 1: Quantitative comparison of our HS-BiNet with representative full-precision and binary
methods on the Botswana and WDC datasets. Here, US denotes unsupervised methods and S de-
notes supervised methods.

Category Method Type Botswana Washington DC Mall (WDC)

PSNR CC SSIM SAM ERGAS PSNR CC SSIM SAM ERGAS

Full-Precision

GLP US 32.559 0.951 0.837 1.383 1.207 27.946 0.934 0.761 6.546 5.110
GSA US 31.739 0.939 0.828 1.389 1.386 24.462 0.906 0.671 7.846 6.079
CNMF US 30.220 0.917 0.788 1.934 1.718 24.604 0.890 0.678 8.441 6.682
HySure US 30.610 0.928 0.796 1.747 1.595 25.598 0.913 0.718 7.254 5.834
HyperPNN S 33.114 0.961 0.873 1.366 1.195 29.258 0.945 0.860 4.051 5.749
HSpeNet1 S 31.746 0.942 0.844 1.456 1.663 29.634 0.960 0.870 4.039 4.266
HSpeNet2 S 32.575 0.953 0.849 1.400 1.348 29.700 0.961 0.872 4.009 4.261
FusionNet S 32.506 0.952 0.850 1.397 1.367 29.696 0.959 0.866 3.917 4.339
Hyper-DSNet S 33.538 0.964 0.876 1.305 1.126 30.232 0.964 0.875 4.102 3.943
FPFNet S 33.451 0.962 0.871 1.369 1.135 30.291 0.957 0.855 4.440 4.250
FusionMamba S 33.943 0.966 0.881 1.277 1.076 31.860 0.965 0.881 3.755 3.882
DM-ZS US 39.280 0.922 0.901 1.384 1.372 38.160 0.955 0.899 4.544 6.562

Binary

BNN S 23.234 0.119 0.845 3.140 5.044 13.054 0.012 0.665 18.057 17.085
ReActNet S 27.532 0.560 0.862 2.740 3.860 20.256 0.612 0.734 11.110 12.027
BTM S 27.485 0.596 0.881 2.946 2.570 17.311 0.072 0.646 18.111 11.674
FABNet S 23.853 0.175 0.832 3.421 3.463 14.700 0.040 0.646 18.312 12.299
ReSTE S 27.959 0.659 0.887 2.792 2.265 24.208 0.759 0.823 8.195 6.665
Bi-DiffSR S 30.821 0.798 0.883 2.373 2.666 25.989 0.845 0.882 8.007 8.447
HS-BiNet S 37.285 0.900 0.891 1.622 1.852 36.003 0.947 0.885 5.468 4.781

Ideal values +∞ 1 1 0 0 +∞ 1 1 0 0

Figure 4: Qualitative comparison of our model with representative binary methods on the reduced-
resolution Botswana dataset. (a) BNN, (b) FabNet, (c) ReactNet, (d) ReSTE, (e) BTM, (f) Bi-Diffsr,
(g) HS-BiNet, and (h) Ground-truth.

explicit control over the error–stability trade-off. These properties collectively explain the empiri-
cally observed faster convergence and higher accuracy of ATISTE in deep BNNs compared to prior
single-parameter surrogates. A detailed discussion of ATISTE’s rationality, flexibility, estimation
error, and gradient instability is provided in Appendix A.2.2.

4 EXPERIMENT

In this section, we present the evaluation on reduced-resolution and full-resolution hyperspectral
pansharpening. We further provide extensive ablation studies to validate the effectiveness of our
STE. Due to page limitations, detailed descriptions of the datasets, baselines, and experimental
settings are included in the Appendix A.2.

4.1 COMPARISON WITH STATE-OF-THE-ART

We first evaluate the similarity between the fused hyperspectral images and the ground-truth data
using reduced-resolution experiments on the Washington DC Mall (WDC) and Botswana datasets.
As shown in Table 1, our method clearly outperforms existing binary approaches (BNN Hubara et al.
(2016), ReActNet Liu et al. (2020), BTM Jiang et al. (2021), FABNet Jiang et al. (2023), ReSTE Wu
et al. (2023), Bi-Diffsr Chen et al. (2024)) across all evaluation metrics. Our model also achieves
comparable results to many full-precision baselines (GLP Aiazzi et al. (2006), GSA Aiazzi et al.
(2007), CNMF Yokoya et al. (2011), HySure Simoes et al. (2014), HyperPNN He et al. (2019),
HSpeNet1/2 Hu et al. (2022), FusionNet Deng et al. (2020), Hyper-DSNet Zhuo et al. (2022),
FPFNet Dong et al. (2023), FusionMamba Peng et al. (2024), DM-ZS Xiao et al. (2025)), show-
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Figure 5: Qualitative comparison of our model against other binary methods on reduced-resolution
WDC dataset. (a) BNN, (b) FabNet, (c) ReactNet, (d) ReSTE, (e) BTM, (f) Bi-Diffsr, (g) HS-BiNet,
and (h) Ground-truth.

Table 2: Full-resolution evaluation on the
FR1 dataset with binary methods.

Method Dλ Ds QNR

BNN 0.093 0.062 0.849
ReActNet 0.318 0.009 0.675
BTM 0.117 0.041 0.846
ReSTE 0.405 0.001 0.594
Bi-DiffSR 0.068 0.083 0.853
HS-BiNet 0.037 0.104 0.861
Ideal values 0 0 1.00

Figure 6: Estimating error (orange curve) and
gradient instability (blue curve) indicators on
CIFAR-10.

ing strong capability despite binarization. The qualitative results in Figures 4 and 5 further support
these findings. RGB visualizations exhibit clearer structures and more accurate colors, while the
MAE maps show fewer bright regions, indicating closer agreement with the ground truth. To test
generalization in real-world conditions, we also evaluate full-resolution FR1 data from the PRISMA
pansharpening contest. As shown in Table 2, our method achieves state-of-the-art results, producing
the highest QNR values and competitive distortion measures (Dλ, Ds). It preserves both spectral
and spatial details well and provides the efficiency benefits of binarization. Additional analysis of
spectral vectors from a WDC sample is presented in APPENDIX A.2.4, where our method shows
noticeably lower spectral distortion than other binary networks.

4.2 ABLATION: EXPERIMENTS ON STE

To demonstrate the effectiveness of our method, we conduct a comprehensive performance study on
the CIFAR-10 dataset, benchmarking against a broad range of state-of-the-art (SOTA) binary net-
works. Unlike many existing approaches that rely on auxiliary components such as additional mod-
ules or loss functions, our method introduces a learnable straight-through estimator that simultane-
ously adapts both the forward surrogate and its backwards gradient, without requiring any auxiliary
modules or losses. For clarity, we mark in Table 3 the methods that depend on such auxiliaries with
an asterisk (*). We evaluate three widely adopted backbone architectures, ResNet-18, ResNet-20,
and VGG-Small, against diverse SOTA binary methods, including LBA Hou et al. (2016), RAD Ding
et al. (2019), DSQ Gong et al. (2019a), Xnor-Net Rastegari et al. (2016a), DoReFa-Net Zhou et al.
(2016), IR-Net Qin et al. (2020b), LCR-BNN Shang et al. (2022), RBNN Lin et al. (2020), and
FDA Xu et al. (2021a).

As shown in Table 3, our approach consistently achieves the highest Top-1 accuracy across all back-
bones. For example, with ResNet-18, our method outperforms RBNN* and IR-Net*, both of which
rely on auxiliary designs. On ResNet-20, our method surpasses the strongest baseline RBNN*. Sim-
ilarly, with VGG-Small, our approach outperforms RBNN* and other competing methods. These
results highlight the superiority of our method in that, despite eliminating the need for auxiliary
modules or loss functions, it consistently outperforms prior SOTA approaches that rely on such
components, demonstrating both greater effectiveness and efficiency.
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Table 3: Performance comparison with state-of-the-art methods on CIFAR-10. Methods marked
with * indicate the use of auxiliary components (either additional modules or loss functions).

Method Top-1 Acc.
Full Precision 94.84
RAD* 90.50
IR-Net* 91.50
LCR-BNN* 91.80
RBNN* 92.20
ATISTE 93.00

ResNet-18 on CIFAR-10

Method Top-1 Acc.
Full Precision 91.70
DSQ 84.11
DoReFa-Net 84.44
IR-Net* 85.40
SLB* 85.50
LCR-BNN* 86.00
FDA* 86.20
RBNN* 86.50
ATISTE 87.45

ResNet-20 on CIFAR-10

Method Top-1 Acc.
Full Precision 93.33
LBA 87.70
Xnor-Net 89.80
BNN 89.90
RAD* 90.00
IR-Net* 90.40
RBNN* 91.30
ATISTE 92.05
VGG-Small on CIFAR-10

Table 4: Benchmark comparison of model complexity and inference performance. All parameter
counts are reported in Millions (M).

Model Params (M) FLOPs (G) Inference (s)
HyperPNN 0.514 7.883 0.619
HspeNet 3.264 52.935 0.620
DHP-Darn 9.067 12.455 1.074
HS-BiNet + ATISTE 1.60 5.599 0.565
HS-BiNet + BNN 1.60 5.599 0.628
HS-BiNet + Bi-DiffSR 1.60 11.010 0.630
HS-BiNet + BTM 1.60 5.599 0.585
HS-BiNet + ReActNet 1.61 5.616 0.624
HS-BiNet + ReSTE 1.60 5.599 0.592

4.2.1 ANALYSIS ON ESTIMATING ERROR AND GRADIENT STABILITY

Fig. 6 shows a steady decrease in estimation error during training, indicating that the proposed
estimator progressively aligns with the sign function and improves forward approximation. At the
same time, the gradient variance remains low with only minor fluctuations, demonstrating stable
and reliable backward gradients. Together, these trends confirm that the estimator achieves accurate
forward approximation while preserving training stability, directly supporting the model’s strong
performance.

4.3 ABLATION: COMPUTATIONAL EFFICIENCY

Table 4 highlights the efficiency of our approach. Across all integration variants, HS-BiNet main-
tains a lightweight profile with nearly identical parameter counts and FLOPs, while achieving faster
or comparable inference times. This demonstrates that HS-BiNet introduces no significant com-
putational overhead. The HS-BiNet + BNN configuration isolates the effect of our architecture
within a standard BNN framework, confirming that the observed improvements stem directly from
HS-BiNet.

5 CONCLUSION

In this paper, we present the first dedicated exploration of binary neural networks for hyperspectral
pan-sharpening and introduce HS-BiNet, a lightweight architecture driven by the proposed Adaptive
Tan Identity Straight-Through Estimator (ATISTE). Specifically, ATISTE employs a dual-path sur-
rogate formulation that decouples forward approximation from gradient propagation, ensuring stable
optimization while reducing information loss. An adaptive channel-wise scaling mechanism is fur-
ther incorporated to align binary activations with their real-valued counterparts, thereby preserving
spectral–spatial fidelity. Building on this estimator, HS-BiNet integrates residual connections, multi-
scale receptive fields, and local fusion units to capture the complex dependencies of hyperspectral
data within an efficient binary framework. Unlike many recent models, HS-BiNet avoids compu-
tationally intensive operations such as unfolding inference and non-local self-attention, making it
well-suited for real-time deployment on edge and satellite platforms. With these functional designs,
our approach consistently surpasses conventional binary baselines and narrows, or even closes, the
gap with full-precision models, demonstrating its practicality for high-fidelity hyperspectral recon-
struction on resource-constrained platforms. Upon acceptance, we will release the full source code,
trained models, and data-processing scripts to facilitate reproducibility and further research.
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A APPENDIX

A.1 BINARY CONVOLUTION

In model binarization, the surrogate estimator plays a central role in approximating the discontinuous
sign function for both weights and activations. However, conventional binary convolutional layers
rely on fixed approximations that either over-restrict the representation capacity or destabilize the
training process. To address this limitation, we design a customized binary convolutional module,
that incorporates channel-wise learnable sharpness parameters and a residual mixing coefficient to
flexibly control the trade-off between binarization fidelity and gradient stability.

Specifically, each output channel of the convolutional weights is associated with a learnable sharp-
ness parameter αw, while each input channel of the activations has a corresponding sharpness pa-
rameter αa. These parameters determine how aggressively the weights and activations are driven
towards their binarized representations. In addition, a residual mixing factor λ is introduced and
made learnable at the layer level. This factor is constrained within [0, 1] to guarantee stability, and
it governs the convex combination of the nonlinear binarization path and the linear passthrough
path. In this way, the model adaptively balances strict binary quantization against the retention of
full-precision information.

During the forward pass, both weights and activations are binarized using the proposed ATISTE
estimator, which approximates the hard sign function in the forward computation while supplying
bounded surrogate gradients in the backward pass. By reshaping αw and αa for proper broadcasting,
the binarization process is applied in a channel-wise manner, ensuring fine-grained control. After
binarization, a per-channel scaling factor is computed as the mean absolute value of the real-valued
weights. This scaling restores the representational power lost through 1-bit quantization and prevents
performance degradation that commonly arises in fully binarized networks.

Finally, the binarized activations and scaled binarized weights are used in a standard convolution op-
eration, inheriting stride, padding, dilation, and grouping from the base full-precision layer. Through
this design, the BinaryConv2d module ensures that both weights and activations are quantized with
stability-aware surrogates, while maintaining sufficient representational capacity to achieve compet-
itive performance in binarized neural networks.

A.2 EXPERIMENTAL SETTINGS

To evaluate the effectiveness of our proposed HS-BiNet for remote sensing pansharpening, we con-
duct extensive experiments on three simulated hyperspectral (HS) datasets1, i.e., Washington DC,
and Botswana, as well as one full-resolution dataset, FR1. The key characteristics of these datasets
are summarized in Table 5 for convenient comparison.

1. Washington DC Mall Dataset
This dataset was collected by the Hyperspectral Digital Imagery Collection Experiment
(HYDICE) sensor. It originally contains 210 spectral bands covering the range from 0.4
to 2.4 µm (visible light and near-infrared). After removing unusable bands, 191 bands are
retained. The spatial resolution of the data is 1208×307 pixels. The dataset covers various
land cover types, including roofs, streets, gravel roads, grass, trees, water, and shadows. In
experimental setups, the Washington DC Mall (WDC) dataset with 191 channels is com-
monly used. The test set is constructed from four 128 × 128 images clipped from the
original image, while the remaining portion is utilized for training the network parameters.
For training, the original PAN and HS images are partitioned into 921 small patch pairs
consisting of 64× 64 PAN patches and 16× 16 HS patches. Additionally, 103 patch pairs
are reserved for validation from the simulated patches.

2. Botswana Dataset
Captured by the EO-1 Hyperion sensor over Botswana between 2001 and 2004, this dataset
spans a spectral range from 0.4 to 2.5 µm at 10 nm intervals. Originally comprising 242
spectral bands, 145 bands are preserved after noise removal. The spatial size is 1496× 256
pixels. The dataset includes 14 distinct land cover classes, representing seasonal swamps,

1Dataset source: https://github.com/liangjiandeng/HyperPanCollection
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Table 5: Hyperspectral Datasets

Dataset Number of Bands Spectral Range Spatial Resolution Image Size Land Cover Types
Washington DC 191 0.4–2.4 µm 1 m 1208× 307 Roofs, Streets

Botswana 145 0.4–2.5 µm 30 m 1496× 256 Seasonal Swamps
FR1 69 0.4–2.5 µm 30 m 2400× 2400 Roofs, Streets

occasional swamps, and drier woodlands within the distal portion of the Okavango Delta.
In practice, the Botswana dataset is often prepared with 102 effective channels. The test set
is composed of four 128 × 128 image clips from the original data. For training, the PAN
and HS images are divided into 799 overlapping 64 × 64 patches, and 168 patch pairs are
retained for simulation.

3. FR1 Full-Resolution Dataset
Distributed as part of the PRISMA contest, the FR1 dataset is intended for full spatial res-
olution pansharpening. The dataset can be downloaded from the official PRISMA website.
It contains co-registered PAN and HS images, where a 12 km×12 km region (equivalent to
2400× 2400 pixels for the PAN image and 400× 400× 69 pixels for the HS image) is ex-
tracted from the original 30 km×30 km PRISMA acquisition. In experimental settings, the
FR1 dataset with 69 channels is employed to evaluate pansharpening performance. The test
set consists of two images (240×240 for HS and 60×60 for PAN) clipped from the original
image, while the remaining portion is used for training after the downsampling simulation.
The training data are divided into 734 small patch pairs, each comprising 60 × 60 PAN
patches and 10× 10 HS patches, with 82 patch pairs reserved for validation.

Following Wald’s protocol, the original HS images from the three simulated datasets serve as the
reference (REF) images. Low-resolution hyperspectral (LRHS) images are generated by first ap-
plying a Gaussian blur to the reference images, followed by downsampling, where one out of every
four pixels is selected in both horizontal and vertical directions. Simulated PAN images are created
by applying a suitable spectral response vector to the original reference HS images. The resulting
simulated PAN and LRHS images are then used as inputs to various hyperspectral super-resolution
methods, including our proposed HS-BiNet. We implemented and trained our model using the Py-
Torch framework on an NVIDIA GeForce RTX A5000 GPU with 24 GB of memory. The training
employed a batch size of 4, the Adam optimizer, and a cosine annealing warm restarts scheduler.
The model was trained for 1,600 epochs on the Washington DC Mall dataset and for 1,000 epochs
each on the Botswana and FR1 datasets.

Finally, the super-resolved HS images are quantitatively compared against the original ground-truth
HS images using standard quality metrics. To assess the quality of the proposed pansharpening
method, we adopt a set of widely accepted spatial and spectral evaluation measures commonly used
in hyperspectral image fusion tasks. Specifically, we evaluate performance using PSNR, SSIM,
Cross-Correlation (CC), Spectral Angle Mapping (SAM), and ERGAS, as these indices collectively
characterize both spatial detail preservation and spectral consistency. The ideal reference values for
these metrics are: PSNR → ∞, SSIM → 1, CC → 1, SAM → 0, and ERGAS → 0, indicating
perfect reconstruction fidelity He et al. (2019); Hu et al. (2022); Deng et al. (2020); Zhuo et al.
(2022); Dong et al. (2023). In hyperspectral fusion, such a diverse set of metrics is essential because
a method must simultaneously reproduce high-frequency spatial structures and maintain accurate
spectral signatures across all bands. PSNR measures overall pixel-wise reconstruction accuracy by
evaluating the logarithmic ratio between the signal and the mean squared error; higher values denote
lower distortion, although PSNR alone cannot fully capture perceptual or spectral differences. CC
complements PSNR by quantifying the linear correlation between spatial patterns of the fused im-
age and the ground truth, thereby reflecting how well spatial structures are retained. SSIM provides
a more perceptually grounded spatial assessment by examining luminance, contrast, and structural
similarity between corresponding patches, offering insight into the preservation of edges and tex-
tures, even though it does not inherently capture spectral distortions. To address spectral fidelity,
SAM evaluates the angle between spectral vectors at each pixel, with smaller angles indicating that
the fused image preserves the correct spectral shape relative to the ground truth, an essential re-
quirement for tasks such as material classification and unmixing. Finally, ERGAS offers a global,
scale-adjusted summary of relative reconstruction error across all spectral bands, integrating both
spatial and spectral discrepancies into a single dimensionless score. Together, these complementary
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metrics ensure a holistic and reliable evaluation of fusion quality, capturing the aspects of spatial
sharpness, structural coherence, and spectral integrity that are fundamental to effective hyperspec-
tral pansharpening.

Reconstruction Loss. We adopt the ℓ1 loss to supervise the reconstruction of high-resolution hy-
perspectral images. It is defined as

L1(x, xgt) = ∥x− xgt∥1, (7)

where xgt denotes the ground-truth HR-HSI and x is the reconstructed HR-HSI. We choose the ℓ1
formulation because prior studies have shown that it produces sharper and more faithful reconstruc-
tions than the ℓ2 loss in hyperspectral pansharpening tasks.

The model is optimized using Adam with an initial learning rate of 1× 10−3 and a weight decay of
1 × 10−5, while a cosine-annealing warm-restart schedule (T0 = 50, Tmult = 2, ηmin = 1 × 10−5)
is employed to periodically refresh the learning rate and stabilize training under binary constraints.
No data augmentation is applied, as spatial or spectral transformations can introduce non-physical
wavelength distortions that negatively impact hyperspectral fidelity. All binary layers are initialized
using Kaiming initialization combined with a scaled real-valued weight formulation, which prevents
early saturation during binarization and promotes stable gradient flow in the initial training stages.
Furthermore, the entire model is trained from scratch without any pretrained components. Since bi-
nary networks are particularly sensitive to learning-rate schedules, initialization strategies, and data
integrity, clearly specifying these design choices ensures consistent and fully reproducible training
behavior.

A.2.1 ANALYSIS ON α AND λ

Figure 7: Forward and backward processes with α = 1.0, 2.0, 3.0, 4.0 and λ = 0.1, 0.2, 0.3.

The results presented in Figure 7 illustrate the influence of the scaling factor α and the blending co-
efficient λ on both the forward approximation and the backwards gradient behaviour of the proposed
ATISTE. In the forward pass, α regulates the sharpness of the nonlinear surrogate. For smaller values
of α (e.g., α = 1), the output exhibits a smooth and gradual transition between −1 and +1, closely
resembling a softened activation. As α increases (α = 4), this transition becomes significantly
steeper, effectively approaching the discontinuous sign function while retaining differentiability. In
parallel, λ governs the trade-off between the nonlinear surrogate and the identity mapping. Lower
values of λ emphasize the nonlinear behavior of the tanh-based surrogate. In contrast, higher val-
ues introduce a stronger linear component, resulting in forward mappings that deviate less from the
input in the saturation regions and preserve more representational continuity.
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The backwards pass reveals a complementary dynamic. The derivative with respect to the input,
defined as a convex combination of the tanh gradient and the constant identity gradient, demonstrates
that α primarily controls the localization of the gradient around zero. Specifically, larger values of α
yield sharper, higher-magnitude peaks, enabling stronger learning signals near the decision boundary
but diminishing gradient flow elsewhere. In contrast, λ lifts the gradient baseline across the domain,
preventing complete gradient vanishing in saturated regions and ensuring stable optimization.

The results demonstrate the dual functionality of ATISTE: α governs the degree of binarization
sharpness, whereas λ regulates the trade-off between expressiveness and trainability. Through the
joint effect of these parameters, the estimator achieves a close approximation to binary activations in
the forward pass while preserving smooth and reliable gradient propagation in the backwards pass.
This property is essential for ensuring convergence and accuracy in binary neural networks.

A.2.2 PROPERTIES OF ATISTE

Rationality A desirable property of any surrogate estimator is rationality, meaning that its forward
approximation error should be no worse than the baseline identity-based STE. ATISTE satisfies this
property by construction. Recall the forward mapping

fα,λ(x) = (1− λ) tanh(αx) + λx, (8)

and let the target discrete mapping be sign(x). The mean-squared forward estimation error can be
written as

E(α, λ) = E
[(

sign(x)− fα,λ(x)
)2]

. (9)

As α → ∞, the nonlinear term converges pointwise to the sign function, yielding

lim
α→∞

fα,λ(x) = (1− λ) sign(x) + λx. (10)

The corresponding asymptotic estimation error becomes

lim
α→∞

E(α, λ) = λ2 E
[(

sign(x)− x
)2] ≤ ESTE. (11)

Thus, for all λ < 1, ATISTE achieves a strictly lower error than the classic STE, which corresponds
to the special case λ = 1. This demonstrates that ATISTE is rational, as it either matches or
outperforms identity-based STE in forward approximation fidelity while maintaining stable gradient
flow.

Flexibility In addition to rationality, ATISTE provides flexibility through two independent degrees
of freedom: the sharpness parameter α and the residual weight λ. Unlike prior estimators, such as
ReSTE, which have a single parameter that simultaneously controls both forward fidelity and gradi-
ent dynamics, ATISTE decouples these roles. Specifically, increasing α monotonically sharpens the
tanh component, driving fα,λ(x) closer to the discrete sign function:

lim
α→∞

fα,λ(x) = (1− λ) sign(x) + λx. (12)

Conversely, adjusting λ modulates the gradient floor:

λ ≤ f ′
α,λ(x) ≤ (1− λ)α+ λ, (13)

ensuring that gradients remain non-zero everywhere. A higher λ provides stronger residual gradients
and hence greater stability, while a lower λ emphasizes sharper binarization. This independent
control over forward fidelity (α) and gradient stability (λ) allows ATISTE to smoothly transition
from soft approximations in early epochs to near-hard binarization at convergence, without relying
on rigid schedules or heuristic parameter coupling. As a result, ATISTE embodies both rationality,
guaranteeing no worse error than STE, and flexibility, enabling adaptive, bounded control of the
error–stability trade-off across training.

Estimation error and Gradient Instability A binarized neural network (BNN) relies on surro-
gate estimators to approximate the discontinuous sign function during training. The effectiveness of
a surrogate estimator is governed by two fundamental factors: estimation error in the forward pass
and gradient stability in the backward pass.
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The estimation error quantifies the discrepancy between the ideal binarization (the hard sign func-
tion) and the chosen surrogate estimator. Formally, for input z, an estimator f(·), and distance metric
D(·), the error indicator is defined as

e = D(sign(z), f(z)), (14)

where we adopt the L2-norm as the distance metric. Thus, the closer f(z) is to sign(z), the smaller
the estimation error.

While low estimation error ensures high forward fidelity, it is equally crucial that the surrogate
produces stable gradients in the backward pass. Instability arises when the variance of gradients
across parameters is high, which can lead to exploding or vanishing updates. To measure this, we
define the gradient instability indicator as

s = var(|g|), (15)

where g denotes the parameter gradients, |g| is the element-wise absolute magnitude, and var(·) de-
notes the variance operator. This metric captures the divergence in gradient magnitudes, independent
of direction.

A critical aspect of ATISTE lies in its treatment of estimation error and gradient stability, the two
fundamental axes governing the effectiveness of surrogate estimators in BNNs. From the forward
perspective, the surrogate is defined as

fα,λ(x) = (1− λ) tanh(αx) + λx, (16)

where α > 0 controls the sharpness of the nonlinear path and λ ∈ [0, 1] introduces a residual linear
contribution. The estimation error with respect to the ideal sign function can be expressed as

E(α, λ) = E
[
(sign(x)− fα,λ(x))

2
]
. (17)

As α → ∞, the nonlinear term approaches the hard sign, yielding

lim
α→∞

fα,λ(x) = (1− λ) sign(x) + λx, (18)

and consequently,
lim

α→∞
E(α, λ) = λ2 E

[(
sign(x)− x

)2] ≤ ESTE. (19)

This shows that ATISTE is rational: its approximation error is guaranteed to be no worse than that
of the identity-based STE, and in practice smaller when λ < 1, thereby ensuring that binarization
fidelity improves as training progresses.

From the backward perspective, the pseudo-gradient provided to the optimizer is given by

f ′
α,λ(x) = (1− λ)α

(
1− tanh2(αx)

)
+ λ. (20)

Since 0 ≤ 1− tanh2(αx) ≤ 1, the pseudo-gradient satisfies the uniform bounds

λ ≤ f ′
α,λ(x) ≤ (1− λ)α+ λ, (21)

ensuring both a non-zero gradient floor and a finite ceiling. The lower bound λ prevents gradient
starvation in saturated regions, while the upper bound (1−λ)α+λ controls variance and avoids ex-
ploding updates. This boundedness makes ATISTE inherently more stable than classical surrogates
such as hard sign, identity, or power-based estimators, which often suffer from vanishing gradients
or uncontrolled variance. By decoupling α and λ, ATISTE provides independent control of bina-
rization fidelity and gradient stability, enabling smooth learning dynamics and effective convergence
in deep BNNs.

A.2.3 ADDITIONAL QUALITATIVE RESULTS

The qualitative results in Figure 8 illustrate that HS-BiNet produces fused hyperspectral images with
sharper structures and more faithful spectral appearance in the pseudo-color visualizations, while the
absolute error maps show noticeably lower discrepancies from the ground truth compared to other
methods.
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Figure 8: Qualitative evaluation results on the WDC dataset. Row 1: Pseudo-color visualizations
constructed from spectral bands 20, 50, and 80 of a representative testing sample. Row 2: Absolute
error maps for spectral band 25 of the same sample, highlighting the difference between the fused
result and the ground truth.

Table 6: Component-wise ablation study of HS-BiNet on the test dataset. The impact of removing
individual modules on reconstruction performance is reported.

Model Variant PSNR ↑ CC ↑ SSIM ↑ SAM ↓ ERGAS ↓
HS-BiNet 37.285 0.900 0.891 1.622 1.852
Without Decoder 36.642 0.893 0.883 1.769 1.917
Without MSFE 36.434 0.885 0.866 1.866 1.912

A.2.4 SPECTRAL VECTOR

The spectral vector plots in Figure 9 at positions (30,40), (60,70), and (100,110) indicate that sev-
eral baseline models produce highly fluctuating and unstable spectral responses. In contrast, the
proposed HS-BiNet (red) exhibits smooth, well-scaled reconstructions that remain closely aligned
with the ground truth across all spectral bands. Unlike ReActNet and Bi-Diffsr, which produce ex-
treme spikes and unrealistic amplitudes, HS-BiNet avoids such distortions and preserves the natural
spectral shape. By effectively zooming, the plots further demonstrate that HS-BiNet captures fine-
grained variations within a realistic intensity range, maintaining fidelity to the ground truth without
over-amplification. These observations suggest that HS-BiNet achieves more reliable and effective
spectral recovery compared to the evaluated methods, effectively balancing reconstruction accuracy
and stability.

(a) Spectral vector at (30, 40) (b) Spectral vector at (60, 70) (c) Spectral vector at (100, 110)

Figure 9: Comparison of three spectral vectors extracted from spatial locations (30, 40), (60, 70),
and (100, 110) in a WDC testing sample, illustrating the variability of spectral signatures across the
scene..

A.2.5 COMPONENT-WISE ABLATION

The results show that every component of HS-BiNet contributes to reconstruction quality. Remov-
ing the Decoder causes a significant drop in PSNR, CC, and SSIM, while increasing SAM and
ERGAS, indicating reduced spatial and spectral accuracy. Eliminating the MSFE module results in
even greater performance degradation, underscoring its crucial role in effective multi-scale feature
extraction. The Edge Injector was not removed in the ablation study because directly adding PAN
edge information is ineffective: the PAN image has a single channel, whereas hyperspectral features

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

have multiple channels, resulting in a dimensional mismatch and poor fusion. The Edge Injector, im-
plemented using binary convolution, is therefore essential for adjusting the channel dimension and
enabling proper edge integration. Overall, the complete HS-BiNet achieves the best performance,
confirming the necessity and complementarity of all its components.

(a) Gradient norm during training. (b) Validation loss curve. (c) Training loss curve.

Figure 10: Training dynamics (left-to-right): the gradient-norm evolution indicating stable updates,
the validation-loss trajectory showing cyclic patterns from learning-rate restarts, and the training-
loss curve demonstrating consistent within-cycle convergence.

A.2.6 ANALYSIS OF TRAINING DYNAMICS

As seen in Fig. 10b, the validation loss shows small cycles with short spikes at learning-rate changes,
but it quickly returns to low values, meaning the model generalizes well. In Fig. 10c, the training
loss follows the same pattern, steadily going down within each phase and only jumping when the
learning rate resets, showing that the training is stable. The gradient norm in Fig. 10a stays in a
safe range without exploding, which confirms that the updates remain stable throughout training.
Overall, the three figures demonstrate that the model trains smoothly, handles learning-rate steps
correctly, and maintains control over the gradients.
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