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ABSTRACT

Graph-level representation learning is important in a wide range of applications.
However, existing graph-level models are generally built on i.i.d. assumption for
both training and testing graphs, which is not realistic in an open world, where
models can encounter out-of-distribution (OOD) testing graphs that are from
different distributions unknown during training. A trustworthy model should not
only produce accurate predictions for in-distribution (ID) data, but also detect
OOD graphs to avoid unreliable prediction. In this paper, we present SGOOD, a
novel graph-level OOD detection framework. We find that substructure differences
commonly exist between ID and OOD graphs. Hence, SGOOD effectively encodes
task-agnostic substructures to learn powerful representations to achieve superior
performance. Specifically, we build a super graph of substructures for every graph,
and design a two-level graph encoding pipeline that works on both original graphs
and super graphs to obtain substructure-enhanced graph representations. To further
distinguish ID and OOD graphs, we develop three graph augmentation techniques
that preserve substructures and increase expressiveness. Extensive experiments
against 10 competitors on numerous graph datasets demonstrate the superiority of
SGOOD, often surpassing existing methods by a significant margin. The code is
available at https://anonymous.4open.science/r/SGOOD-0958.

1 INTRODUCTION

Graphs are ubiquitous to represent complex data, e.g., chemical compounds, proteins, and social
networks. Graph-level representation learning is crucial for applications in biochemistry (Jiang et al.,
2021; Rong et al., 2020), social network (Dou et al., 2021; Shao et al., 2017), natural language
processing (Peng et al., 2018; Xu et al., 2019), and recommendation (Wu et al., 2014).

Existing graph-level learning models are based on the closed-world assumption, in which testing
graphs encountered at deployment are drawn i.i.d. from the same distribution as the training graph
data. However, in reality, the models are actually in an open world, where testing graphs can be
from different distributions that are never exposed to the models during training. In other words,
testing graphs can be out-of-distribution (OOD) w.r.t. in-distribution (ID) training graphs (Li et al.,
2022a;b; Yang et al., 2022). Consequently, the models trained by ID data tend to be inaccurate when
making predictions on OOD data (Hendrycks & Gimpel, 2017), which raises reliability concerns
in safety-critical applications, e.g., drug discovery (Basile et al., 2019). A trustworthy graph-level
learning model should not only give accurate predictions for ID graphs, but also determine whether a
test graph is OOD or not, to avoid unreliable predictions.

Existing graph OOD detection methods, e.g., (Li et al., 2022b; Liu et al., 2023b), mainly adopt
message passing GNNs (Kipf & Welling, 2017; Hamilton et al., 2017) to first get node representations,
and then generate graph-level representations solely based on these node representations. These
methods do not consider the substructure patterns in graphs for OOD detection. In the literature, there
are GNNs to learn high-order substructures in graphs, such as hierarchical GNNs (Ying et al., 2018;
Lee et al., 2019; Gao & Ji, 2019) and subgraph GNNs (Zhao et al., 2021; Zhang & Li, 2021). These
methods are trained using ID graphs and classification objectives to learn classification task-specific
substructures. However, for OOD detection, OOD graphs are unseen during training, and thus these
methods may achieve sub-optimal OOD detection performance (Winkens et al., 2020), as validated
in our experiments. Winkens et al. (2020) propose that encoding the task-agnostic information into
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representations can improve the OOD detection task on image data. Summing up, explicitly encoding
task-agnostic substructures for graph-level OOD detection is underexplored in the literature.

In this paper, we develop SGOOD, a novel framework that explicitly encodes task-agnostic sub-
structures and their relationships into effective representations for graph-level OOD detection. The
design of SGOOD is motivated by the finding that substructure differences of ID and OOD graphs
commonly exist in real-world data. We provide the following empirical evidence in Table 1. Given
a dataset of graphs (see Table 2 for graph statistics), we apply modularity-based community de-
tection (Clauset et al., 2004) to detect the substructures of the graphs. Note that the substruc-
tures are task-agnostic, since they are independent to specific learning tasks, e.g., classification.

Table 1: The percentage of OOD graphs with sub-
structures never appeared in ID graphs.

Data ENZYMES IMDB-M IMDB-B BACE BBBP DrugOOD

58.9% 14.0% 8.5% 50.0% 44.6% 77.3%

Then we compute and report the percentage of
OOD graphs with substructures that never ap-
peared in ID graphs in Table 1. Observe that
such percentage values are high, more than 44%
in 4 out of 6 datasets, indicating many OOD
graphs contain substructures rarely in ID graphs.
The finding above justifies that, if one model can accurately preserve the substructures in ID graphs
in an embedding space, intuitively, the model will give a large distance (i.e., OOD score) to OOD
graphs with unseen substructures that are far away in the embedding space.

Hence, we develop a series of techniques in SGOOD to encode task-agnostic substructures and
generate substructure-enhanced graph representations for effective graph-level OOD detection.
Specifically, we first build a super graph Gi of substructures for every graphGi to obtain substructures
and their relationships. Then, a two-level graph encoding pipeline is designed to work on Gi and Gi

in sequence to learn expressive substructure-enhanced graph representations. We prove that SGOOD
with the pipeline is strictly more expressive than 1&2-WL, which theoretically justifies the power
of preserving substructure patterns for OOD detection. To further enhance the performance, we
design three substructure-preserving graph augmentation techniques. The augmentation techniques
utilize the super graph of substructures to ensure that the substructures in a graph are modified as a
whole. The overall training objective of SGOOD combines a classification loss with a contrastive
loss. At test time, given a graph Gi and its super graph Gi, our OOD detector obtains the graph-level
representations of both, which are then used for OOD score estimation. Extensive experiments
are conducted to compare SGOOD against 10 baselines over many real-world graph datasets with
various OOD types. SGOOD achieves superior performance, often outperforming existing methods
by a significant margin. For instance, on an IMDB-M dataset, SGOOD achieves 9.58% absolute
improvement in terms of AUROC over a runner-up baseline. In summary, our contributions are:

• We present SGOOD, a leading method that encodes task-agnostic substructures and their relation-
ships to learn expressive representations for effective graph-level OOD detection.

• We design a novel two-level graph encoding pipeline by leveraging a constructed super graph of
substructures, to empower SGOOD to learn substructure-enhanced graph representations.

• We further develop a collection of substructure-preserving graph augmentations via super graphs
of substructures, to strengthen the distinguishability of SGOOD.

• Extensive experiments demonstrate the superiority of SGOOD for graph-level OOD detection.

2 PRELIMINARIES

We consider graph-level classification, which aims to classify a collection of graphs into different
classes. Let Gi = (Vi, Ei) be a graph, where Vi and Ei are node set and edge set, respectively. Let
xu ∈ Rc denote the attribute vector of node u ∈ Vi in graph Gi. Denote X as the in-distribution (ID)
graph space and let Y = {1, 2, ..., C} be the label space. In graph-level classification, the training
set Din

tr = {(Gi, yi)}ni=1 is drawn i.i.d. from the joint data distribution PXY . Every graph sample in
Din

tr contains a graph Gi with label yi. Let f be a learning model trained by the training set Din
tr , and

f is deployed to predict the label of a testing graph.

Graph-level Out-Of-Distribution Detection. At test time, graph-level OOD detection can be
treated a task to decide whether a testing graph Gi in testing set Dtest is from the ID PX or from
other irrelevant distributions (i.e., OOD). A typical way for OOD detection is to develop an OOD
detector by leveraging the representations generated from the classification model f that is trained
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Figure 1: The SGOOD framework. The techniques in SGOOD are designed to effectively encode
task-agnostic substructures and their relationships for accurate graph-level OOD detection.

via ID training graphs in Din
tr . Specifically, the OOD detector has a scoring function S(Gi) for every

testing graph Gi ∈ Dtest. Testing graphs with low scores S(Gi) are regarded as ID, while the graphs
with high scores are OOD. As stated in (Ming et al., 2023), a score threshold λ is typically set so that
a high fraction of ID data (e.g., 95%) is correctly classified.

3 THE SGOOD METHOD

Solution Overview. The main goal of SGOOD is to effectively encode task-agnostic substruc-
tures and their relationships into representations for graph-level OOD detection. To achieve this,
we develop several techniques in SGOOD as illustrated in Figure 1. Specifically, SGOOD gener-
ates substructure-enhanced graph representations, and further improves representation quality by
substructure-preserving graph augmentations. Given a graph Gi, we first build its super graph
Gi of task-agnostic substructures, in which a super node represents a substructure in Gi and edges
connect super nodes by following the connectivity in graph Gi. A two-level graph encoding pipeline
is designed over both Gi and Gi for graph-level representations that are enhanced by substructures.
The training objective on ID training graphs is a cross-entropy loss LCE for graph classification.
For augmentations, intuitively, if more information about training ID data is preserved, it is easier
to distinguish unseen OOD data. The substructure-preserving graph augmentations are designed to
achieve this. Specifically, given a graph Gi, we augment it by first performing dropping, sampling,
and substitution on its super graph Gi and then mapping the changes to Gi accordingly. This process
is substructure-preserving in the sense that a substructure is modified as a whole. The overall training
objective of SGOOD combines a classification loss LCE with a contrastive loss LCL. During test
time, given a testing graph Gi, we first obtain the graph-level representations of both Gi and its super
graph Gi, concatenate and normalize the representations, and finally get OOD score S(Gi). The
pseudo-code of SGOOD is in Appendix D.

3.1 SUBSTRUCTURE-ENHANCED GRAPH REPRESENTATIONS

As mentioned, substructures in a graph are critical to distinguish the graph from others. Given a
graph Gi, we first describe how to construct its super graph Gi of substructures, and then present a
two-level graph encoding pipeline to generate substructure-enhanced graph representations.

Constructing a Super Graph of Substructures. Let a substructure gi,j of graph Gi be a connected
subgraph of Gi. Specifically, a subgraph gi,j = (Vi,j , Ei,j) is a substructure of Gi = (Vi, Ei) iff
Vi,j ⊆ Vi, Ei,j ⊆ Ei, and gi,j is connected. The substructures {gi,j}ni

j=1 of a graph Gi satisfy the
following properties: (i) the node sets of substructures are non-overlapping, (ii) the union of the nodes
in all substructures is the node set of Gi, and (iii) every substructure is a connected subgraph of Gi.

Remark that SGOOD uses task-agnostic substructures, and thus it is orthogonal to existing subgraph
detection methods (Dhillon et al., 2007; Cordasco & Gargano, 2010), and it is not our focus on
how to detect subgraphs. The substructures are detected without considering any learning tasks,
e.g., classification, and thus they are task-agnostic. By default, we use modularity-based community
detection (Clauset et al., 2004) to detect substructures. We also test other subgraph detection methods
and find that the modularity-based substructures are effective in SGOOD, as shown in Table 6.
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Then we construct the super graph Gi by regarding every substructure gi,j as a super node in Gi,
and connect super nodes by inserting edges via Definition 1. Super graph Gi can be regarded as a
higher-order view that depicts the relationships between the substructures of a graph G. We also add
self-loops in super graph Gi.
Definition 1 (A Super Graph of Substructures). A super graph of substructures constructed from
the input graph Gi = (Vi, Ei) is denoted as Gi = (Vi, Ei), where every super node gi,j in node set
Vi = {gi,j}ni

j=1 represents a substructure of Gi, and every edge in Ei connecting two super nodes,
and the edge set Ei = {(gi,j , gi,k)|∃u ∈ Vi,j ∧ v ∈ Vi,k, (u, v) ∈ Ei}.

Two-level Graph Encoding. Given a graph Gi and its super graph Gi, we present a two-level graph
encoding pipeline, as shown in Figure 1. The idea is that, in addition to learning representations over
Gi, we further utilize the super graph Gi to encode substructure information into graph representations,
to better preserve distinguishable substructure patterns for effective OOD detection.

The two-level graph encoding first adopts GNNs to learn node representations with initial features
over graph Gi. For every node v ∈ Vi, its representation h

(l+1)
v at (l+1)-layer is obtained by Eq. (1).

Different GNNs have different AGGREGATE and COMBINE. By default, we adopt Graph Isomorphism
Network (GIN) (Xu et al., 2018) as the backbone. The GIN for graph Gi has L1 layers.

h(l+1)
v = COMBINE(l+1)(h(l)

v ,AGGREGATE
(l+1)(h(l)

u , u ∈ NGi(v))),h
(0)
v = xv, (1)

where h
(l)
v ∈ Rd is the intermediate representation of node v from the l-th layer GNNs with hidden

dimension d, AGGREGATE(l+1) is the function that aggregates node features from v’s neighborhood
NGi(v) in graph Gi, COMBINE(l+1) is the function that updates node v’s representation by combining
the representations of its neighbors with its own, and initially h

(0)
v = xv .

Next, we obtain the representations of substructures gi,j in Gi by leveraging the node representations
above. As shown in Eq. (2), given a node v, we first concatenate all representations h

(l)
v for

l = 1, ..., L1 to get hv that preserves multi-scale semantics. Then, for a substructure gi,j of graph Gi,
we obtain the substructure representation h

(0)
gi,j by integrating hv of all v in gi,j via DeepSet pooling

(Zhang et al., 2019) in Eq. (2).

h(0)
gi,j = POOL({hv|v ∈ Vi,j}),hv = CONCAT({h(l)

v }L1
l=1) (2)

Note that h(0)
gi,j only considers the nodes inside substructure gi,j and the original graph topology

Gi. To further consider the relationships depicted in the super graph Gi of substructures, we regard
h
(0)
gi,j as the initial features of super node gi,j in Gi, and employ a L2-layer GIN over Gi to learn

substructure-enhanced graph representations by Eq. (3) and (4).

h(l+1)
gi,j = COMBINE(l+1)(h(l)

gi,j ,AGGREGATE
(l+1)(h(l)

gi,k , gi,k ∈ NGi(gi,j))), (3)

where NGi
(gi,j) contains the neighbors of super node gi,j in Gi.

Lastly, in Eq. (4), we get the final representation hgi,j of every super node gi,j by concatenating the
representation of gi,j in every layer of the L2-layer GIN, and finally obtain the graph representation
hGi

by a readout function that is sum pooling.

hGi = READOUT({hgi,j |gi,j ∈ Vi}),hgi,j = CONCAT({h(l)
gi,j}

L2
l=0 (4)

Remark that the representation hGi
of super graph Gi of graph Gi is used to train the loss LCE for

classification. Meanwhile, as explained shortly, for OOD detection during testing, we further consider
another representation of graph Gi obtained by aggregating node representations as in Figure 1.

Discussion. In literature, there exist studies considering substructures/subgraphs for graph represen-
tation learning, such as hierarchical pooling (Ying et al., 2018; Lee et al., 2019; Gao & Ji, 2019) and
subgraph GNNs (Zhang & Li, 2021; Zhao et al., 2021). We also conduct experiments to demonstrate
that our SGOOD is more effective than these methods for the task of graph-level OOD detection.

3.2 SUBSTRUCTURE-PRESERVING GRAPH AUGMENTATIONS

Intuitively, if more information about training ID data is preserved, it is easier to distinguish unseen
OOD data. Hence, we design substructure-preserving graph augmentations by leveraging the super

4



Under review as a conference paper at ICLR 2024

graph Gi of graph Gi, to improve the performance further. However, it is challenging to achieve
this. Substructures with subtle differences have different semantics. It is important to keep the
substructures of a graph intact while performing augmentations. Common augmentation techniques
like edge permutation and node dropping directly on graphsGi may unexpectedly destroy meaningful
substructures, and hamper OOD detection effectiveness.

To tackle the issue, we first perform augmentations on the super graph Gi by regarding substructures
as atomic nodes, and then map the augmentations to the original graph Gi with modifications over
substructures as a whole. Specifically, we propose three substructure-level graph augmentations
below, namely substructure dropping (SD), super graph sampling (SG), and substructure substitution
(SS). The default augmentation ratio is set to 0.3.

• Substructure Dropping (SD). Given a graph Gi with its super graph Gi, a fraction of super nodes
in Gi (i.e., the corresponding substructures in Gi) are discarded uniform randomly. Remark that
selected substructures are dropped as a whole.

• Super Graph Sampling (SG). In the super graph Gi, we start from a random node, sample a fixed-
size connected subgraph in Gi, and drop the rest nodes and edges. The changes are mapped to Gi

accordingly. Depth-first search is chosen as the sampling strategy (You et al., 2020).
• Substructure Substitution (SS). Given a graph Gi in class c with super graph Gi of substructures,

we randomly substitute a fraction of nodes in Gi (i.e., substructures in Gi) with other substructures
from the graphs of the same class c. To avoid drastic semantic change of the whole graph, only
super nodes with degree one (excluding self-loops) in Gi take part in the substitution.

3.3 OBJECTIVES AND TRAINING

For classification, we adopt a standard cross-entropy loss LCE . Specifically, after getting the
representation hGi

for the super graph Gi of graph Gi, we apply a linear transformation to get
prediction logits ŷi, which is evaluated against the ground-truth class label yi to get LCE by Eq. (5)
for a mini-batch of B training graphs.

LCE = − 1

B

∑B
i=1

∑C
c=1 1(yi = c) log (ŷi,c) (5)

Then we adopt the substructure-preserving graph augmentations in Section 3.2 to get contrastive loss
LCL. Specifically, given a mini-batch of B training graphs {Gi}Bi=1 and their super graphs {Gi}Bi=1,
we transform the super graphs to get Ĝi,0 = T0(Gi) and Ĝi,1 = T1(Gi), where T0 and T1 are two
augmentations chosen among A = {I, SD, SG, SS}, where I indicates no augmentation. Graph Gi is
transformed accordingly via T0 and T1 to obtain Ĝi,0 and Ĝi,1 respectively. Then, the representations
hĜi,0

and hĜi,1
of the two augmented super graphs can be calculated by applying Eq.(1)-(4). We

transform hĜi,0
and hĜi,1

by a shared projection head ψ(·), which is a 2-layer MLP, followed
by l2-normalization, to obtain uĜi,0

= ψ(hĜi,0
)/||ψ(hĜi,0

)|| and uĜi,1
= ψ(hĜi,1

)/||ψ(hĜi,1
)||,

respectively. We get LCL by

LCL =
1

2B

B∑
i=1

∑
a∈{0,1}

− log
exp (u⊺

Ĝi,a
uĜi,1−a

/τ)∑B
j=1 exp (u

⊺

Ĝi,a
uĜj,1−a

/τ) +
∑B
j=1 1(j ̸= i) exp (u⊺

Ĝi,a
uĜj,a

/τ)
, (6)

where τ is a temperature parameter.

The overall training loss is

L = LCE + αLCL,where α is a weight factor. (7)

The training procedure of SGOOD consists of two stages. In the first pre-training stage, the parameters
are solely updated by minimizing LCL for TPT epochs. In the second stage, the parameters are
fine-tuned under the combined overall loss L for TFT epochs. This training procedure achieves better
performance than directly training L, as shown in Appendix Figure 4 when pretraining TPT is 0.

3.4 GRAPH-LEVEL OOD SCORING

Recall that the main goal of OOD detection is to let the representations of ID data and OOD data to
be distant from each other. In terms of distance, at test time, given a testing graph Gi ∈ Dtest, we
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Table 2: Data Statistics.

Dataset Graph Type OOD Type # Class # ID Train # ID Val # ID Test # OOD Test

ENZYMES (Morris et al., 2020) Proteins Unseen Classes 6 480 60 60 60
IMDB-M (Morris et al., 2020) Social Networks Unseen Classes 3 1200 150 150 150
IMDB-B (Morris et al., 2020) Social Networks Unseen Classes 2 800 100 100 100
REDDIT-12K (Yanardag & Vishwanathan, 2015) Social Networks Unseen Classes 11 6997 875 875 875
BACE (Wu et al., 2018) Molecules Scaffold 2 968 121 121 121
BBBP (Wu et al., 2018) Molecules Scaffold 2 1303 164 164 164
DrugOOD (Ji et al., 2022) Molecules Protein Target 2 800 100 100 100
HIV (Wu et al., 2018) Molecules Scaffold 2 26319 3291 3291 3291

use the standard Mahalanobis distance (Lee et al., 2018) to quantify its OOD score. If Gi is with
large Mahalanobis distance from the ID training data in the embedding space, it tends to be OOD.

In SGOOD shown in Figure 1, in addition to the representation hGi of the super graph Gi of a testing
graph Gi, we also aggregate the node representations of Gi to get hGi

= READOUT({hv|v ∈ Vi}).
Representations hGi

and hGi
are concatenated together to estimate the OOD score S(Gi)

S(Gi) = maxc∈[C](zi − µc)
⊺Σ̂−1(zi − µc), (8)

µc =
1

Nc

∑
j:yj=c

zj ; Σ̂ =
1

N

∑
c∈[C]

∑
j:yj=c

(zj − µc)(zj − µc)
⊺; zi =

CONCAT(hGi ,hGi)

||CONCAT(hGi ,hGi)||2
, (9)

where [C] = {1, 2, . . . , C}, µc is the estimated class centroid for class c, and Σ̂ is the estimated
covariance matrix for ID graphs.

3.5 ANALYSIS

We show in Proposition 1 that SGOOD is more expressive than 1&2-WL, indicating that SGOOD
can distinguish more structural patterns, which, together with our empirical findings in Section 1,
explains the power of SGOOD for graph-level OOD detection. The proof is provided in Appendix A.

Proposition 1. When the GNNs adopted in SGOOD are with sufficient number of layers, and the
POOL function in Eq.(2) and READOUT function in Eq.(4) are injective, then SGOOD is strictly more
powerful than 1&2-WL.

4 EXPERIMENTS

Datasets and Evaluation Metrics. We adopt real datasets that encompass diverse types of OOD
graphs, as listed in Table 2. The OOD graph data is generated following (Liu et al., 2023b; Li et al.,
2022b). All ID graphs Din are randomly split into training, validation, and testing with ratio 8:1:1,
following the settings of standard graph classification (Hu et al., 2020; Morris et al., 2020). The
testing set consists of the same number of ID graphs and OOD graphs. We use three commonly used
metrics AUROC, AUPR and FPR95 for OOD detection evaluation (Hendrycks & Gimpel, 2017;
Wu et al., 2022). All these metrics are independent of threshold choosing. For the classification
performance in ID graphs, we use Accuracy (ID ACC). Remark that the priority of the graph-level
OOD detection task is to accurately identify OOD graphs, when maintaining instead of improving the
ID ACC. The details of dataset descriptions and the metric formula are provided in Appendix B.1.

Baselines and Implementation Details. We compare SGOOD with 10 competitors in 3 categories.
(i) General OOD detection methods, including MSP (Hendrycks & Gimpel, 2017), Energy (Liu
et al., 2020), ODIN (Liang et al., 2018), and MAH (Lee et al., 2018), for each of which, we replace
their network backbone with GIN to handle graph data. (ii) Existing graph-level OOD detection
methods, including GNNSafe (Wu et al., 2022), GraphDE (Li et al., 2022b) and GOOD-D (Liu
et al., 2023b). (iii) Existing graph-level anomaly detection methods, including OCGIN(Zhao &
Akoglu, 2021), OCGTL(Qiu et al., 2022), and GLocalKD(Ma et al., 2022). In SGOOD, we set the
number of layers L1 = 3 and L2 = 2, and dimension d as 16. We use mini-batch gradient descent to
optimize parameters in SGOOD with Adam optimizer, and batch size is set as 128. In SGOOD, we
set TPT as 100 epochs and TFT as 500 epochs. In the first stage of training, learning rate is tuned
in {0.01, 0.001, 0.0001}. For the second stage, we set learning rate as 0.001 and α as 0.1. On each
dataset, we repeat experiments 5 times with different random seeds and report the mean metrics. The
implementation details of baselines are in Appendix B.3.
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Table 3: Overall OOD detection performance by AUROC, AUPR, and FPR95 in percentage % (mean
± std). ↑ indicates larger values are better and vice versa. Bold: best. Underline: runner-up.

Method
ENZYMES IMDB-M IMDB-B REDDIT-12K

AUROC↑ AUPR↑ FPR95↓ AUROC↑ AUPR↑ FPR95↓ AUROC↑ AUPR↑ FPR95↓ AUROC↑ AUPR↑ FPR95↓

MSP 61.34±3.79 61.65±6.64 89.67±2.26 42.75±1.52 51.04±1.93 95.73±1.63 58.13±2.31 59.63±1.22 91.40±4.16 50.63±0.87 48.60±1.08 95.95±1.25

Energy 54.69±9.18 56.90±8.85 89.33±3.55 24.50±19.73 37.26±11.78 96.40±2.25 49.58±17.76 59.03±13.06 92.80±3.55 55.10±0.48 56.52±0.78 97.19±0.58

ODIN 63.70±2.70 65.72±4.77 92.66±3.26 40.12±2.96 50.08±2.44 96.66±1.03 58.25±2.94 61.36±0.49 92.20±2.92 51.74±2.03 54.53±1.26 96.45±0.73

MAH 67.37±3.67 63.81±2.15 83.33±9.60 69.26±3.67 63.64±2.14 60.93±9.06 76.77±4.37 76.88±6.30 81.40±7.14 72.68±0.87 74.47±0.48 80.75±2.05

GNNSafe 56.85±8.91 56.13±8.26 97.00±3.71 21.93±1.76 36.88±1.68 95.46±1.42 70.49±14.80 75.67±15.71 87.80±5.81 51.68±0.08 53.97±0.52 95.59±2.80

GraphDE 61.35±3.99 66.26±2.98 99.00±0.81 66.87±4.25 62.60±4.47 93.06±8.24 26.91±3.35 42.73±2.06 100.00±0.00 59.40±0.18 63.06±0.30 81.82±0.01

GOOD-D 67.21±6.41 64.86±6.32 82.33±8.31 61.89±4.87 66.91±7.60 95.20±4.55 52.58±10.21 55.69±10.56 99.20±1.00 56.11±0.10 59.56±0.16 93.67±0.34

OCGIN 68.11±4.61 68.90±4.19 89.67±3.70 47.51±9.47 50.76±4.53 98.27±17.70 60.78±5.21 57.80±5.10 8780±9.15 59.33±1.26 60.02±1.88 90.00±2.01

GLocalKD 71.46±3.21 64.93±4.44 78.67±6.37 19.82±1.57 35.39±0.49 98.27±1.13 79.39±4.71 85.56±3.33 87.40±5.42 49.60±1.06 51.75±0.72 97.60±0.35

OGGTL 73.22±1.83 73.61±3.19 82.33±2.70 54.07±12.93 58.20±7.86 86.40±6.49 37.39±18.82 47.11±14.06 98.80±2.40 51.62±0.019 53.33±0.01 96.79±0.06

SGOOD 74.40±1.42 72.53±2.51 73.66±7.03 78.84±2.00 72.54±3.21 45.46±6.62 80.41±3.16 83.49±3.59 81.20±2.28 74.95±0.79 74.93±0.93 75.17±2.72

Method
BACE BBBP DrugOOD HIV

AUROC↑ AUPR↑ FPR95↓ AUROC↑ AUPR↑ FPR95↓ AUROC↑ AUPR↑ FPR95↓ AUROC↑ AUPR↑ FPR95↓

MSP 46.34±6.10 48.65±3.08 97.02±2.18 57.37±4.28 56.84±3.36 94.63±2.26 52.86±5.26 54.49±4.33 98.80±0.01 50.75±1.88 50.49±0.91 95.52±0.50

Energy 46.05±6.66 49.68±4.16 97.36±2.92 56.56±4.16 55.74±2.78 92.68±2.62 52.81±5.36 54.98±4.36 98.20±1.16 50.97±2.13 50.49±0.91 95.50±0.59

ODIN 45.51±3.85 48.28±3.76 97.02±1.53 54.78±3.46 54.63±3.69 96.34±1.80 51.09±3.79 52.70±2.66 99.00±1.09 50.16±0.73 49.95±0.58 94.60±1.07

MAH 73.78±1.97 75.33±2.32 86.78±6.32 53.77±4.27 52.57±3.81 93.29±2.51 66.90±4.14 64.30±4.43 81.60±4.58 58.10±3.60 57.18±3.18 91.89±1.32

GNNSafe 47.61±7.50 51.52±5.91 98.18±2.05 47.04±2.40 51.52±5.90 98.41±0.99 50.44±0.57 51.14±0.30 96.01±0.33 50.98±6.82 55.13±6.81 96.01±0.33

GraphDE 47.32±1.52 51.1±2.57 94.21±4.58 50.88±2.78 51.47±3.84 94.63±2.34 60.19±4.32 62.59±2.47 88.80±5.60 52.38±1.86 54.14±3.21 94.89±0.84

GOOD-D 70.42±2.22 73.21±3.34 88.26±1.78 54.15±1.10 58.58±1.93 99.39±0.41 60.52±3.33 63.09±2.54 98.40±1.27 59.69±0.62 57.10±.14 92.03±0.61

OCGIN 59.71±5.20 61.43±5.18 93.39±4.44 47.78±5.72 47.27±2.98 94.76±2.70 57.95±5.80 59.50±7.00 94.20±3.12 54.06±0.47 52.14±0.26 92.81±1.01

GLocalKD 45.34±2.11 55.39±2.35 98.68±1.11 43.77±2.23 45.84±1.20 98.29±1.00 45.72±0.97 50.90±3.33 100.00±0.00 46.81±2.90 46.95±2.01 97.05±0.19

OGGTL 80.84±2.00 79.93±1.26 66.44±8.89 58.73±2.19 60.47±1.38 91.46±2.21 67.59±7.93 70.90±5.80 83.00±11.22 51.78±0.19 53.71±0.22 96.41±0.05

SGOOD 84.39±2.73 83.32±2.49 64.13±4.83 61.25±1.60 59.36±2.39 88.04±3.44 73.15±4.48 73.25±4.49 67.40±5.16 60.82±0.75 59.99±0.69 90.39±1.04

4.1 OVERALL GRAPH-LEVEL OOD DETECTION EFFECTIVENESS

Table 3 reports the overall graph-level OOD detection performance of all methods by AUROC, AUPR
and FPR95 metrics on all datasets, by mean and standard deviation values. Observe that SGOOD
consistently achieves superior OOD detection effectiveness under most settings. For instance, on
IMDB-M, SGOOD has AUROC 78.84%, which indicates 9.58% absolute improvement over the best
competitor with AUROC 69.26%. As another example on BACE molecule dataset, the AUROC of
SGOOD is 84.39%, while the runner-up achieves AUROC 80.84%. The overall results in Table 3
demonstrate the power of our technical designs in SGOOD presented in Section 3 for graph-level
OOD detection. Due to space limit, ID ACC results are in Appendix Table 9.

4.2 MODEL ANALYSIS

Table 4: Ablation AUROC (%)
Method ENZYMES IMDB-M IMDB-B BACE BBBP DrugOOD

Best baseline 71.46 69.26 79.39 73.78 57.37 57.37

SGOOD (base) 67.38 69.26 76.80 73.78 53.77 66.90
SGOOD\A 73.60 75.22 77.80 75.96 57.84 68.80

SGOOD 74.41 78.84 80.42 84.40 61.25 73.16
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Figure 2: ID and OOD score distributions with the
dotted line indicating the mean of ID/OOD scores.

Ablation. In Table 4, SGOOD\A is SGOOD
that ablates all augmentations in Section 3.2,
i.e., α=0 in Eq. (7); SGOOD (base) further
ablates all substructure-related representations
in Section 3.1. In Table 4, first observe that,
from SGOOD (base) to SGOOD\A and then
to the complete version SGOOD, the perfor-
mance gradually increases on all datasets, val-
idating the effectiveness of all proposed tech-
niques. Second, SGOOD\A already surpasses
the best baseline performance on most datasets,
which demonstrates the effect of the techniques
in Section 3.1, without the augmentation tech-
niques in Section 3.2. With the help of the
substructure-preserving graph augmentations,
SGOOD pushes the performance further higher.
In Figure 2, we visualize the ID and OOD score distributions of SGOOD (base), SGOOD\A and
SGOOD on DrugOOD, with their mean scores shown in dotted lines. Clearly, we are obtaining more
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separable OOD scores against ID data from left to right in Figure 2, which demonstrates that our
techniques in SGOOD can learn distinguishable representations for ID and OOD graphs.

Table 5: Comparing with different augmentations
by AUROC (%)

ENZYMES IMDB-M IMDB-B BACE BBBP DrugOOD Avg. Rank

EP 74.28 76.50 78.44 78.75 58.24 71.32 4.67
AM 72.44 / / 77.28 59.68 71.27 5.25
ND 73.11 77.09 78.40 78.79 58.59 69.48 4.83
SA 72.12 76.76 79.25 77.13 57.84 72.66 4.83

SD 74.77 78.15 79.54 82.00 59.76 72.65 1.83
SG 72.74 77.98 78.97 82.24 59.58 71.97 3.33
SS 74.27 76.20 80.50 83.53 63.53 71.94 2.67

Effect of Substructure-Preserving Graph
Augmentations. We evaluate the augmenta-
tions (SD, SG, and SS) in Section 3.2, with
conventional graph augmentations that are not
substructure-preserving, including edge pertur-
bation (EP), attribute masking (AM), node drop-
ping (ND), and subgraph sampling (SA). Table
5 reports the results, AM is not applicable on
IMDB-M and IMDB-B since they do not have
node attributes. Observe that our SD, SG, and
SS are the top-3 ranked techniques for graph-level OOD detection, validating the effectiveness of the
proposed substructure-preserving graph augmentations. In Appendix Figure 7, we also visualize the
improvements of all pairwise combinations of our augmentation techniques.

Table 6: Comparison between different substruc-
ture detection methods by AUROC (%).

SGOOD ENZYMES IMDB-M IMDB-B BACE BBBP DrugOOD

w.o. substructures 67.38 69.26 76.8 73.78 53.77 66.90
Modularity 74.41 78.84 80.42 84.40 61.25 73.16
Graclus 71.12 74.64 78.86 79.54 56.62 67.94
LP 68.09 75.48 78.46 76.63 54.90 68.95
BRICS / / / 78.39 60.18 64.78

Effect of Substructure Extraction Methods.
As mentioned, SGOOD is orthogonal to spe-
cific substructure extraction methods. Here in
SGOOD, we evaluate several commonly-used
methods to extract substructures, including Gr-
aclus (Dhillon et al., 2007), label propagation
(LP) (Cordasco & Gargano, 2010), and BRICS
(Degen et al., 2008). Specifically, BRICS uses
Chemistry knowledge for extraction. In Table 6, SGOOD with different substructure detections are
all better than SGOOD w.o. using substructures, and SGOOD with Modularity is the best. The results
validate the effectiveness of our framework that leverages substructures for OOD detection.

Table 7: Comparing with subgraph-aware models
AUROC (%). Bold: best. Underline: runner-up.

Method ENZYMES IMDB-M IMDB-B BACE BBBP DrugOOD

SAG 70.40 76.50 77.30 76.90 58.90 65.80
TopK 70.20 76.80 77.20 74.20 54.90 58.50

DiffPool 73.30 75.90 78.00 76.50 57.50 70.60
NGNN 70.30 71.20 76.60 71.20 52.60 75.60

GNN-AK+ 68.50 73.50 77.20 70.90 54.30 63.00

SGOOD 74.41 78.84 80.42 84.40 61.25 73.16

Comparison with Subgraph-aware Mod-
els. We then compare SGOOD directly with
subgraph-aware models, including three hierar-
chical pooling methods (SAG (Lee et al., 2019),
TopK (Gao & Ji, 2019), DiffPool (Ying et al.,
2018)) and two subgraph GNNs (NGNN (Zhang
& Li, 2021) and GNN-AK+ (Zhao et al., 2021)).
Note that these methods are not specifically de-
signed for graph-level OOD detection. At test
time, we extract the graph representations gen-
erated by these methods and use Mahalanobis distance as OOD score. Table 7 reports the AUROC
results. SGOOD performs best on 5 out of 6 datasets and is the top-2 on DrugOOD. This validates
the effectiveness of our substructure-related techniques in Section 3 for graph-level OOD detection.

Table 8: Varying L1 and L2 in SGOOD (AUROC).

L1 L2 ENZYMES IMDB-M IMDB-B BBBP BACE DrugOOD

4 1 74.00 77.13 81.00 80.43 62.00 71.17
3 2 74.41 78.84 80.42 84.40 61.25 73.16
2 3 73.63 76.03 79.05 80.34 62.26 69.12
1 4 74.22 77.83 76.79 76.62 61.08 68.01

Varying L1 and L2. In the experiments above,
we fix the layers of the two GINs in the two-level
graph encoding in Section 3.1 to be L1 = 3 and
L2 = 2 as default. If we search L1 and L2,
it is possible to get even better OOD detection
results, as shown in Table 8 where L1 and L2 are
varied with their sum fixed to be 5. For example,
on BACE with L1=2 and L2=3, AUROC is 62.26%, about 1% higher than the default setting.

Efficiency. The training and inference time is in Appendix Table 11. SGOOD is faster to train
than existing graph-level OOD detection methods, including GraphDE and GOOD-D, and has close
efficiency with OCGIN and GLocalKD. SGOOD also has close training time to general OOD
detection methods. All methods have close inference time.

More experiments. In Appendix, we compare the performance of SGOOD and baselines when
different backbones other than GIN are used in Table 10, evaluate the effect when varying augmen-
tation ratio in Figure 3, study the effect of pretraining epochs TPT in Figure 4, vary the weight of
constrastive loss α in Figure 5, and visualize detected substructures in Figure 8.
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5 RELATED WORK

Graph-level Representation Learning. Graph-level representation learning aims to learn repre-
sentations of entire graphs (Wu et al., 2020). GNNs (Hamilton et al., 2017; Kipf & Welling, 2017;
Veličković et al., 2018; Xu et al., 2018) are often adopted (Guo et al., 2023; Yang et al., 2022) to
first learn node representations by message passing on graphs and then node representations are
aggregated by pooling functions to get graph-level representations (Liu et al., 2023a). It is shown that
the expressiveness of such a way is limited by 1-WL (Chen et al., 2020; Li et al., 2020). Hence, there
are general subgraph-aware methods to improve the expressive power, e.g., hierarchical pooling (Gao
& Ji, 2019; Lee et al., 2019; Ying et al., 2018) and subgraph GNNs (Zhang & Li, 2021; Zhao et al.,
2021). Hierarchical pooling methods learn to assign nodes into different clusters and coarsen graphs
hierarchically. Subgraph GNNs apply message passing on extracted rooted-subgraphs of nodes in a
graph, and then aggregate subgraph representations (Frasca et al., 2022). Wang et al. (2022) assumes
pre-defined repetitive type of substructures on periodic graphs. Contrarily, we do not have such an
assumption and consider various substructures automatically extracted by community detection. Still,
these methods assume that graphs are i.i.d in training and testing. In experiments, SGOOD is more
effective for graph-level OOD detection.

Out-of-distribution Detection. OOD detection has received great research attention in various data
domains, as learning models tend to be over-confident on out-of-distribution data (Hendrycks &
Gimpel, 2017; Nguyen et al., 2015). There are OOD detection methods designed for image data
(Hendrycks & Gimpel, 2017; Lee et al., 2018; Liang et al., 2018; Liu et al., 2020; Ming et al., 2023;
Sehwag et al., 2021; Sun et al., 2022). Some methods rely on classification probabilities predicted
by neural networks to get OOD scores (Hendrycks & Gimpel, 2017; Liang et al., 2018; Liu et al.,
2020), while the others measure OOD scores according to the distance between test samples and
ID training data (Lee et al., 2018; Ming et al., 2023; Sehwag et al., 2021; Sun et al., 2022). Note
that non-graph OOD detection methods are designed without considering the unique characteristics
of graphs, though they can be modified to handle OOD detection on graph data. As shown in our
experiments, SGOOD surpasses these methods. Recently, several OOD detection methods on graphs
have been proposed. Wu et al. (2022) explore node-level OOD detection by using energy function
to detect OOD nodes in a graph, which is a different problem from this paper. For graph-level
OOD detection, Li et al. (2022b) design a generative model that has the ability to identify outliers in
training graph samples, as well as OOD samples during the testing stage. Liu et al. (2023b) develop a
self-supervised learning approach to train their model to estimate OOD scores at test time. Recently,
Zhang et al. (2022) proposes to learn anomalous substructures using deep random walk kernel, which
depends on labeled anomalous graphs, while OOD graphs are unseen during the training stage and
only available during the testing stage. Observe that existing graph-level OOD detection methods
mainly leverage node representations output by GNNs (Kipf & Welling, 2017; Veličković et al., 2018;
Xu et al., 2018) to get graph-level representations, while the rich substructure patterns hidden in
graphs are under-investigated for graph-level OOD detection. On the other hand, our method SGOOD
explicitly uses substructures in graphs to learn high-quality graph-level representations for effective
graph-level OOD detection. The representations generated by SGOOD are able to better distinguish
ID and OOD graphs than existing methods, which have already been demonstrated in the extensive
experiments.

6 CONCLUSION

We study the problem of graph-level OOD detection, and present a novel SGOOD method with
superior performance. The design of SGOOD is motivated by the exciting finding that substructure
differences commonly exist between ID and OOD graphs. By leveraging substructures, SGOOD
aims to preserve more distinguishable graph-level representations between ID and OOD graphs.
Specifically, we build a super graph of substructures for every graph, and develop a two-level graph
encoding pipeline to obtain high-quality structure-enhanced graph representations. We theoretically
prove the expressiveness power of the obtained representations. To further improve the representation
quality, we develop a set of substructure-preserving graph augmentations. Extensive experiments on
real-world graph datasets validate the superior performance of SGOOD over existing methods for
graph-level OOD detection.

9



Under review as a conference paper at ICLR 2024

REFERENCES

Anna O Basile, Alexandre Yahi, and Nicholas P Tatonetti. Artificial intelligence for drug toxicity and
safety. Trends in pharmacological sciences, 40(9):624–635, 2019.

Ulrik Brandes, Daniel Delling, Marco Gaertler, Robert Gorke, Martin Hoefer, Zoran Nikoloski,
and Dorothea Wagner. On modularity clustering. IEEE transactions on knowledge and data
engineering, 20(2):172–188, 2007.

Zhengdao Chen, Lei Chen, Soledad Villar, and Joan Bruna. Can graph neural networks count
substructures? Advances in Neural Information Processing Systems, 33:10383–10395, 2020.

Aaron Clauset, Mark EJ Newman, and Cristopher Moore. Finding community structure in very large
networks. Physical review E, 70(6):066111, 2004.

Gennaro Cordasco and Luisa Gargano. Community detection via semi-synchronous label propagation
algorithms. In 2010 IEEE international workshop on: business applications of social network
analysis (BASNA), pp. 1–8. IEEE, 2010.

Jörg Degen, Christof Wegscheid-Gerlach, Andrea Zaliani, and Matthias Rarey. On the art of
compiling and using’drug-like’chemical fragment spaces. ChemMedChem: Chemistry Enabling
Drug Discovery, 3(10):1503–1507, 2008.

Inderjit S Dhillon, Yuqiang Guan, and Brian Kulis. Weighted graph cuts without eigenvectors a
multilevel approach. IEEE transactions on pattern analysis and machine intelligence, 29(11):
1944–1957, 2007.

Yingtong Dou, Kai Shu, Congying Xia, Philip S Yu, and Lichao Sun. User preference-aware fake
news detection. In Proceedings of the 44th International ACM SIGIR Conference on Research and
Development in Information Retrieval, pp. 2051–2055, 2021.

Fabrizio Frasca, Beatrice Bevilacqua, Michael Bronstein, and Haggai Maron. Understanding and ex-
tending subgraph gnns by rethinking their symmetries. Advances in Neural Information Processing
Systems, 35:31376–31390, 2022.

Hongyang Gao and Shuiwang Ji. Graph u-nets. In international conference on machine learning, pp.
2083–2092. PMLR, 2019.

Zhichun Guo, Bozhao Nan, Yijun Tian, Olaf Wiest, Chuxu Zhang, and Nitesh V Chawla. Graph-
based molecular representation learning. In Proceedings of the Thirty-Second International Joint
Conference on Artificial Intelligence, 2023.

William L Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large graphs.
In Advances in Neural Information Processing Systems, pp. 1025–1035, 2017.

Dan Hendrycks and Kevin Gimpel. A baseline for detecting misclassified and out-of-distribution
examples in neural networks. In 5th International Conference on Learning Representations, 2017.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. Advances in
Neural Information Processing Systems, 33:22118–22133, 2020.

Yuanfeng Ji, Lu Zhang, Jiaxiang Wu, Bingzhe Wu, Long-Kai Huang, Tingyang Xu, Yu Rong, Lanqing
Li, Jie Ren, Ding Xue, et al. Drugood: Out-of-distribution (ood) dataset curator and benchmark
for ai-aided drug discovery–a focus on affinity prediction problems with noise annotations. arXiv
preprint arXiv:2201.09637, 2022.

Dejun Jiang, Zhenxing Wu, Chang-Yu Hsieh, Guangyong Chen, Ben Liao, Zhe Wang, Chao Shen,
Dongsheng Cao, Jian Wu, and Tingjun Hou. Could graph neural networks learn better molecular
representation for drug discovery? a comparison study of descriptor-based and graph-based models.
Journal of cheminformatics, 13(1):1–23, 2021.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In International Conference on Learning Representations, 2017.

10



Under review as a conference paper at ICLR 2024

Junhyun Lee, Inyeop Lee, and Jaewoo Kang. Self-attention graph pooling. In International conference
on machine learning, pp. 3734–3743. PMLR, 2019.

Kimin Lee, Kibok Lee, Honglak Lee, and Jinwoo Shin. A simple unified framework for detecting
out-of-distribution samples and adversarial attacks. Advances in Neural Information Processing
Systems, 31, 2018.

Haoyang Li, Xin Wang, Ziwei Zhang, and Wenwu Zhu. Ood-gnn: Out-of-distribution generalized
graph neural network. IEEE Transactions on Knowledge and Data Engineering, 2022a.

Pan Li, Yanbang Wang, Hongwei Wang, and Jure Leskovec. Distance encoding: Design provably
more powerful neural networks for graph representation learning. Advances in Neural Information
Processing Systems, 33:4465–4478, 2020.

Zenan Li, Qitian Wu, Fan Nie, and Junchi Yan. Graphde: A generative framework for debiased
learning and out-of-distribution detection on graphs. Advances in Neural Information Processing
Systems, 35:30277–30290, 2022b.

Shiyu Liang, Yixuan Li, and R Srikant. Enhancing the reliability of out-of-distribution image
detection in neural networks. In International Conference on Learning Representations, 2018.

Chuang Liu, Yibing Zhan, Chang Li, Bo Du, Jia Wu, Wenbin Hu, Tongliang Liu, and Dacheng Tao.
Graph pooling for graph neural networks: Progress, challenges, and opportunities. In Proceedings
of the Thirty-Second International Joint Conference on Artificial Intelligence, 2023a.

Weitang Liu, Xiaoyun Wang, John Owens, and Yixuan Li. Energy-based out-of-distribution detection.
Advances in Neural Information Processing Systems, 33:21464–21475, 2020.

Yixin Liu, Kaize Ding, Huan Liu, and Shirui Pan. Good-d: On unsupervised graph out-of-distribution
detection. In Proceedings of the Sixteenth ACM International Conference on Web Search and Data
Mining, pp. 339–347, 2023b.

Rongrong Ma, Guansong Pang, Ling Chen, and Anton van den Hengel. Deep graph-level anomaly
detection by glocal knowledge distillation. In Proceedings of the Fifteenth ACM International
Conference on Web Search and Data Mining, pp. 704–714, 2022.

Yifei Ming, Yiyou Sun, Ousmane Dia, and Yixuan Li. How to exploit hyperspherical embed-
dings for out-of-distribution detection? In The Eleventh International Conference on Learning
Representations, 2023.

Christopher Morris, Nils M Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion
Neumann. Tudataset: A collection of benchmark datasets for learning with graphs. arXiv preprint
arXiv:2007.08663, 2020.

Anh Nguyen, Jason Yosinski, and Jeff Clune. Deep neural networks are easily fooled: High confidence
predictions for unrecognizable images. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 427–436, 2015.

Hao Peng, Jianxin Li, Yu He, Yaopeng Liu, Mengjiao Bao, Lihong Wang, Yangqiu Song, and Qiang
Yang. Large-scale hierarchical text classification with recursively regularized deep graph-cnn. In
Proceedings of the 2018 world wide web conference, pp. 1063–1072, 2018.

Chen Qiu, Marius Kloft, Stephan Mandt, and Maja Rudolph. Raising the bar in graph-level anomaly
detection. In Proceedings of the Thirty-First International Joint Conference on Artificial Intelli-
gence, 2022.

Yu Rong, Yatao Bian, Tingyang Xu, Weiyang Xie, Ying Wei, Wenbing Huang, and Junzhou Huang.
Self-supervised graph transformer on large-scale molecular data. Advances in Neural Information
Processing Systems, 33:12559–12571, 2020.

Vikash Sehwag, Mung Chiang, and Prateek Mittal. Ssd: A unified framework for self-supervised
outlier detection. In 9th International Conference on Learning Representations, 2021.

11



Under review as a conference paper at ICLR 2024

Minglai Shao, Jianxin Li, Feng Chen, Hongyi Huang, Shuai Zhang, and Xunxun Chen. An efficient
approach to event detection and forecasting in dynamic multivariate social media networks. In
Proceedings of the 26th International Conference on World Wide Web, pp. 1631–1639, 2017.

Yiyou Sun, Yifei Ming, Xiaojin Zhu, and Yixuan Li. Out-of-distribution detection with deep nearest
neighbors. In International Conference on Machine Learning, pp. 20827–20840. PMLR, 2022.
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APPENDIX

We provide the proof of Proposition 1 in Appendix A, more experimental details on datasets,
evaluation metrics, implementation in Appendix B, several additional experiments for effectiveness,
efficiency and visualization in Appendix C, and the pseudo code of SGOOD in Appendix D.

A PROOF FOR PROPOSITION 1

Proof. We first prove that SGOOD is at least as powerful as 1&2-WL in Lemma 1. Then, we
prove that SGOOD can distinguish 2-regular graphs that 1&2-WL cannot distinguish in Lemma 2.
Combining these two Lemmas, we prove that SGOOD is strictly more powerful than 1&2-WL.

Lemma 1. Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs identified as non-isomorphic by
1&2-WL. SGOOD projects them into different representations hG1

and hG2
in Eq. (4).

Proof. Let HG
1 = {hv|v ∈ V1} and HG

2 = {hv|v ∈ V2} be the multisets of node representations of
G1 and G2 generated by GIN in Eq. (2), respectively. Let G1 = (V1, E1) and G2 = (V2, E2) be the
super graphs of G1 and G2 respectively. We consider two cases: (1) |V1| ≠ |V2|, (2) |V1| = |V2|.
For case (1), G1 and G2 are two graphs with different number of nodes. Thus, G1 and G2 can be
easily determined as non-isomorphic by 1&2-WL. It is proved that GIN with sufficient number of
layers and all injective functions is as powerful as 1&2-WL (Xu et al., 2018). As GIN is adopted
in SGOOD as GNN backbone with sufficient number of layers and READOUT function in Eq.(4) is
injective, representations hG1

and hG2
of G1 and G2 are different.

For case (2), let |V1| = |V2| = K. Let HG
1 = {h(0)

g1,j |g1,j ∈ V1} and HG
2 = {h(0)

g2,j |g2,j ∈ V2}
be the multisets of initial node representations of G1 and G2 calculated by Eq.(2), respectively.
Using GIN with sufficient number of layers, we have HG

1 ̸= HG
2 (Xu et al., 2018). As stated

in Section 3.1, the substructures {gi,j}ni
j=1 of a graph Gi satisfy the following properties: (i) the

substructures are non-overlapping, (ii) the union of the nodes in all substructures is the node set
of Gi. Thus, {{hv|v ∈ g1,j}}Kj=1 (resp. {{hv|v ∈ g2,j}}Kj=1) is a partition of HG

1 (resp. HG
2 ).

Then, we have {{hv|v ∈ g1,j}}Kj=1 ̸= {{hv|v ∈ g2,j}}Kj=1. As POOL function in Eq.(2) is injective,
we have {POOL({hv|v ∈ g1,j})}Kj=1 ̸= {POOL({hv|v ∈ g2,j})}Kj=1, that is HG

1 ̸= HG
2 . As GIN

with sufficient number of layers and READOUT function in Eq.(4) are both injective, we derive that
representations hG1

and hG2
generated on HG

1 and HG
2 are different.

Combining case (1) and case (2), we prove Lemma 1.

Next, we prove that SGOOD can distinguish 2-regular graphs that 1&2-WL cannot distinguish in
Lemma 2. Before that, we first give the definition of 2-regular graphs. Note that we only consider
undirected graphs in this paper.
Definition 2 (2-regular graph). A graph is said to be regular of degree 2 if all local degrees are 2.

Based on the definition of a 2-regular graph, we can conclude that a 2-regular graph consists of one
or more (disconnected) cycles.
Lemma 2. Given two non-isomorphic n-node 2-regular graphs G1 = (V1, E1) and G2 = (V2, E2)
that 1&2-WL cannot distinguish, SGOOD projects them into different graph representations hG1 and
hG2 in Eq. (4).

Proof. Based on the definition of a 2-regular graph, we can say that G1 and G2 consist of one or
more disconnected cycles. Let r1 and r2 be the number of cycles in G1 and G2, respectively. We
consider two cases: (1) r1 ̸= 1 ∧ r2 ̸= 1, (2) (r1 = 1 ∧ r2 ̸= 1) ∨ (r1 ̸= 1 ∧ r2 = 1).

For case (1), G1 and G2 consist of disconnected circles. Let G1 = (V1, E1) and G2 = (V2, E2) be the
constructed super graphs of G1 and G2, respectively. G1 and G2 are constructed by modularity-based
community detection method (Clauset et al., 2004) that assign nodes in a graph to different clusters
when the modularity of the graph is maximized under such cluster assignment. As Brandes et al.
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(2007) proves in Lemma 3.4, there is always a clustering with maximum modularity, in which each
cluster consists of a connected subgraph. As a result, ∀g1,j ∈ V1 is a circle in G1, and |V1| = r1.
Similarly, ∀g2,j ∈ V2 is a circle in G2, and |V2| = r2. Let N1 = {|V1,j |}|V1|

j=1 and N2 = {|V2,j |}|V2|
j=1.

Since G1 and G2 are non-isomorphic, we have ∃n1,j ∈ N1 : ∀n2,j ∈ N2, n1,j ̸= n2,j . As a result,
we have N1 ̸= N2. Then, we have {{hv|v ∈ V1,j}}|V1|

j=1 ̸= {{hv|v ∈ V2,j}}|V2|
j=1. As POOL function

in Eq.(2) is injective, we have {POOL({hv|v ∈ g1,j})}|V1|
j=1 ̸= {POOL({hv|v ∈ g2,j})}|V2|

j=1, that is
HG

1 ̸= HG
2 . As GIN with sufficient number of layers and READOUT function in Eq.(4) are both

injective, we have representations hG1
and hG2

generated on HG
1 and HG

2 are different.

For case (2), we consider r1 = 1 ∧ r2 ̸= 1, and the proof when r2 = 1 ∧ r1 ̸= 1 is similar. G1

consists of one single circle, and G2 consists of r2 disconnected circles. Let G1 = (V1, E1) and
G2 = (V2, E2) be the constructed super graphs ofG1 andG2, respectively. ForG2 and G2, ∀g2,j ∈ V2

is a circle in G2, and |V2| = r2 following the conclusion in case (1). For G1 and G1, we consider
two cases: (i) |V1| = r1 = 1, and (ii) |V1| > 1. For case (i), V1 = {g1,1}, where g1,1 = G1. Let
N1 = {|V1,j |}|V1|

j=1 = {|V1,1|} and N2 = {|V2,j |}|V2|
j=1, where |V2| > 1. We have N1 ̸= N2. Similar

to case (1), we have the same conclusion that graph representations hG1 and hG2 generated on HG
1

and HG
2 are different. For case (ii), V1 = {g1,j}|V1|

j=1, where ∀g1,j ∈ V1 is a chain and two nearby
chain are connected in G1. In other words, G1 is a |V1|-circle while G2 consists of |V2| isolated nodes.
Thus, G1 and G2 can be easily distinguished as non-isomorphic by 1&2-WL. According to (Xu et al.,
2018), when we encode G1 and G2 by Eq. (3) with sufficient layers of GIN, and generate hG1

and
hG2

by Eq. (4), where READOUT is injective, hG1
and hG2

are different. Combining case (i) and case
(ii), we prove that SGOOD generates different hG1 and hG2 for G1 and G2 in case (2).

Combining case (1) and case (2), we prove Lemma 2.

B EXPERIMENTAL SETTINGS

We provide more details on datasets, evaluation metrics, and implementation here for reproducibility.
All experiments are conducted on a Linux server with Intel Xeon Gold 6226R 2.90GHz CPU and an
Nvidia RTX 3090 GPU card.

B.1 DATASET DETAILS

We adopt real-world datasets in various data domains for graph-level OOD detection. The dataset
statistics is listed in Table 2. Following existing work (Liu et al., 2023b; Li et al., 2022b), given a
graph dataset, we use graphs of the same type with distribution shift as ID and OOD data, respectively.
The detailed descriptions of ID and OOD graphs in the 6 datasets are as follows.

• ENZYMES (Morris et al., 2020) dataset comprises protein networks representing enzymes
classified into 6 EC top-level classes. In this paper, we consider graphs from all classes in
ENZYMES as in-distribution (ID) graphs. To introduce OOD graphs, we utilize graphs from
the PROTEINS dataset (Morris et al., 2020). PROTEINS is also a dataset of protein networks,
where graphs are labeled as either ’Enzymes’ or ’Non-enzymes’. Specifically, we use graphs
in PROTEINS with label ’Non-enzymes’ as OOD graphs. Consequently, the OOD graphs in
ENZYMES represent unseen classes.

• IMDB-M (Morris et al., 2020) is a dataset of social networks. It consists of ego-networks derived
from actor collaborations. The graphs are labeled with three genres: Comedy, Romance, and Sci-Fi.
We consider graphs from all classes in IMDB-M as ID graphs. To introduce OOD graphs, we utilize
graphs from another dataset called IMDB-B (Morris et al., 2020). Similar to IMDB-M, IMDB-B
is also a dataset of social networks, but the graphs are labeled as either ’Action’ or ’Romance’.
Specifically, we use graphs labeled as ’Action’ as OOD graphs. These OOD graphs do not belong
to any classes in IMDB-M, and they represent unseen classes.

• IMDB-B (Morris et al., 2020) dataset is constructed in a similar manner to IMDB-M. Specifically,
we consider graphs from both classes (Action and Romance) in IMDB-B as ID graphs. On the
other hand, we regard graphs labeled as ’Comedy’ or ’Sci-Fi’ in IMDB-M as OOD graphs. These
OOD graphs represent classes that are not present in IMDB-B, and they are with unseen classes.
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• REDDIT-12K (Yanardag & Vishwanathan, 2015) dataset is a large-scale dataset of social networks.
It consists of graphs corresponding to an online discussion thread in REDDIT where nodes
correspond to users. The graphs are labeled as 11 classes based on the subreddit they belong to.
In this paper, we consider graphs from all classes in REDDIT-12K as in-distribution (ID) graphs.
To introduce OOD graphs, we utilize graphs from the REDDIT-BINARY dataset (Yanardag &
Vishwanathan, 2015) where graphs also represents online discussion threads and are labeled as
question/answer-based community or a discussion-based community. Consequently, the OOD
graphs in REDDIT-12K represent unseen classes.

• BACE (Wu et al., 2018) is a dataset of molecular graphs used for predicting particular physiology
properties of chemical compounds. The dataset is split into training/validation/test sets based on
the scaffolds of molecules. Notably, the samples in the training set have distinct scaffolds compared
to those in the validation and test sets. The molecular properties of different scaffolds are often
quite different (Ji et al., 2022). We consider graphs from the training set as ID graphs, while graphs
from the test set are treated as OOD graphs. The OOD graphs exhibit a scaffold distribution that
differs from ID graphs.

• BBBP (Wu et al., 2018) is a dataset of molecular graphs for predicting barrier permeability. Like
BACE dataset, BBBP is split into training, validation, and test sets based on the scaffolds of
molecules. We consider graphs from the training set as ID graphs, while graphs from the test set
are treated as OOD graphs. The OOD graphs exhibit a scaffold distribution that differs from the ID
graphs.

• DrugOOD is a dataset of molecular graphs generated by the dataset curator provided by (Ji et al.,
2022), which is a systematic OOD dataset curator and benchmark for AI-aided drug discovery. We
focus on the sub-dataset DrugOOD-sbap-core-ec50-protein, which contains molecular graphs for
the task structure-based affinity prediction. The dataset is split into training/validation/test sets
based on the protein target of molecules. Graphs from the training set are considered ID graphs,
while graphs from the test set are treated as OOD graphs. The OOD graphs exhibit a protein target
distribution that differs from that of the ID graphs.

• HIV (Wu et al., 2018) is a large-scale dataset of molecular graphs for testing compounds on
the ability to inhibit HIV replication. Like BACE and BBBP dataset, HIV is split into training,
validation, and test sets based on the scaffolds of molecules. We consider graphs from the training
set as ID graphs, while graphs from the test set are treated as OOD graphs. The OOD graphs exhibit
a scaffold distribution that differs from the ID graphs.

B.2 EVALUATION METRICS

We explain in details the OOD detection evaluation metrics. We use three commonly-used metrics
AUROC, AUPR and FPR95 for OOD detection evaluation (Hendrycks & Gimpel, 2017; Wu et al.,
2022). All the three metrics are independent of threshold choosing.

• AUROC, short for Area Under the Receiver Operating Characteristic (ROC) Curve, is a widely
used performance metric. It quantifies the area under the ROC curve, which plots the True Positive
Rate (TPR) against the False Positive Rate (FPR) across different probability thresholds ranging
from 0 to 1. The AUROC score provides a comprehensive assessment of a model’s ability to
differentiate between the positive and negative classes, reflecting its overall discriminative power.

• AUPR stands for Area Under the Precision-Recall Curve. Precision-Recall curve is a plot of
precision versus recall at various probability thresholds ranging from 0 to 1. Higher AUPR indicates
that positive samples are correctly identified while false positive predictions are minimized. AUPR
is particularly useful in imbalanced datasets where one class is significantly underrepresented
compared to the other.

• FPR95 stands for False Positive Rate at 95% True Positive Rate. FPR95 measures the false
positive rate (FPR) when the true positive rate (TPR) is 95%. A lower FPR95 value indicates better
performance, as it means the classifier is able to maintain a high true positive rate while minimizing
false positive predictions.

B.3 IMPLEMENTATION DETAILS OF BASELINES

We provide more description and implementation details of the baselines in Section 4.
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• MSP, Energy, ODIN are general OOD detection methods that estimate OOD scores directly
from classification logits at test time. Specially, MSP (Hendrycks & Gimpel, 2017) is the
first and the most basic baseline that directly uses the maximum softmax score as OOD
score. Energy (Liu et al., 2020) uses energy function that works directly on the output
logits to predict OOD scores. ODIN (Liang et al., 2018) uses temperature scaling with
gradient-based input perturbations to enlarge the outputs differences between OOD and ID
samples.

• MAH (Lee et al., 2018) is a distance-based OOD detection method. It models the feature
embedding space as a mixture of multivariate Gaussian distributions and measures OOD
scores according to the MAH distance between test samples and ID training data.

• GNNSafe (Wu et al., 2022) is a graph OOD detection method based on energy model. It
incorporates GNNs in the energy model and detects OOD samples using energy scores.
For node-level OOD detection, it further adopts a propagation scheme to leverage graph
structure through unlabeled nodes. In our paper, we use graph labels to directly run the basic
version of GNNSafe from its Section 3.1 (Wu et al., 2022).

• GraphDE (Li et al., 2022b) is a graph-level OOD detection method based on probabilistic
model. It addresses both the challenges of debiased learning and OOD detection in graph
data. By modeling the graph generative process and incorporating a latent environment
variable, the model can automatically identify outliers during training and serve as an
effective OOD detector.

• GOOD-D (Liu et al., 2023b) is an unsupervised graph-level OOD detection method. It
detects OOD graphs solely based on unlabeled ID data. GOOD-D utilizes a graph contrastive
learning framework combined with perturbation-free graph data augmentation to capture
latent ID patterns and detect OOD graphs based on semantic inconsistency at multiple levels
of granularity.

• OCGIN (Zhao & Akoglu, 2021) is a graph-level anomaly detection method that combines
deep one-class classification with GIN (Xu et al., 2018). It aims to project the outlier graphs
at a significant distance from the training graphs in the learned feature space.

• OCGTL (Qiu et al., 2022) is a graph-level anomaly detection method based on self-
supervised learning and transformation learning. It develops an one-class objective that
encourages graph embeddings of training data to concentrate within a hyper-sphere and
outlier graphs are distant to the hyper-sphere.

• GLocalKD (Ma et al., 2022) is a graph-level anomaly detection method. By training a
predictor network to reproduce representations from a randomly-initialized network, the
model learns both global and local normal patterns in the training data. Anomaly scores are
then computed based on the prediction error, allowing the detection of irregular or abnormal
graphs.

Implementation Details. For MSP, Energy, ODIN, and MAH baselines, we substitute the network
backbone in their official implementation with a 5-layer GIN (Xu et al., 2018) using a fixed hidden
dimension of 16 to encode graphs into node representations. The node representations from different
layers are first concatenated and then aggregated using sum pooling for the final graph representations.
Graph representations are sent to linear layer for classification logits. Other experimental settings
are the same as SGOOD. For ODIN, as we lack auxiliary OOD data for hyperparameter fine-tuning,
we initially explore the temperature values from 1, 10, 100, 1000 and the perturbation magnitudes
from 0, 0.001, 0.002, 0.004 on all datasets. After experimental tuning, we set the temperature to 10
and the perturbation magnitude to 0.002 consistently achieves competitive performance across all
datasets. This configuration is then fixed for further evaluation. For MAH, we leverage the graph
representations used for classification to compute the MAH distance, which serves as the estimated
OOD scores. However, we do not employ the calibration techniques, such as input pre-processing
and feature ensemble in the original paper (Lee et al., 2018). We observed a significant drop in
performance when implementing MAH with these techniques. We guess the reason is that the
calibration techniques designed for image data are not suitable for graphs. For the other competitors,
we use their original codes provided by the respective authors. All competitors are trained using ID
training graphs and fine-tuned using ID graphs in validation set.
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C ADDITIONAL EXPERIMENTS

Performance on ID graph classification. Table 9 reports the performanc on ID graph classification
of all methods by Accuracy (ID ACC). We observe that SGOOD achieves best ID ACC on 7/8
datasets, which indicates that leveraging substructures also benefits graph classification. Nevertheless,
note that, as mentioned, the main goal of OOD detection is to accurately identify OOD data during
testing, while maintaining instead of significantly improving ID ACC.

Table 9: ID graph classification performance measured by ID ACC. All results are reported in
percentage % (mean ± std). / indicates that ID ACC is not applicable for unsupervised methods.

Method ENZYMES IMDB-M IMDB-B REDDIT-12K BACE BBBP HIV DrugOOD

MSP 37.33±8.73 48.27±3.58 69.80±5.38 48.91±1.06 80.83±2.41 87.44±2.57 96.62±0.39 79.20±6.49
Energy 37.33±8.73 48.27±3.58 69.80±5.38 48.91±1.06 80.83±2.41 87.44±2.57 96.62±0.39 79.20±6.49
ODIN 37.33±8.73 48.27±3.58 69.80±5.38 48.91±1.06 80.83±2.41 87.44±2.57 96.62±0.39 79.20±6.49
MAH 37.33±8.73 48.27±3.58 69.80±5.38 48.91±1.06 80.83±2.41 87.44±2.57 96.62±0.39 79.20±6.49

GNNSafe 17.66±2.71 30.13±5.55 50.20±2.70 27.42±6.62 56.69±8.24 79.14±11.55 96.58±0.34 64.40±20.08
GraphDE 46.00±2.70 37.86±5.89 69.80±7.05 40.68±8.64 77.68±3.65 88.90±1.00 96.20±0.40 77.00±6.39
GOOD-D / / / / / / / /

OCGIN / / / / / / / /
OCGTL / / / / / / / /

GLocalKD / / / / / / / /

SGOOD 48.66±3.49 48.66±2.77 71.60±3.00 51.82±1.51 80.33±2.84 89.14±3.44 96.66±0.29 79.40±3.81

Table 10: Performance with different backbones by AUROC (%). Bold: best. Underline: runner-up.

Backbone Method ENZYMES IMDB-M IMDB-B BACE BBBP DrugOOD

GCN

MAH 70.04 71.27 53.46 72.68 54.97 66.01
GraphDE 61.40 68.44 29.13 53.24 52.50 56.61
GOOD-D 41.96 61.71 59.53 72.52 58.91 61.79
OCGIN 64.35 57.46 64.08 67.54 51.23 59.30
SGOOD 71.26 73.52 65.91 83.42 62.76 72.52

GraphSage

MAH 68.07 48.06 43.63 73.60 53.88 64.55
GraphDE 61.37 69.65 28.28 53.24 52.50 56.66
GOOD-D 45.55 57.02 23.90 73.15 56.85 61.57
OCGIN 71.75 36.86 71.44 57.47 46.65 63.82
SGOOD 70.21 68.63 61.59 82.22 59.50 68.60

Performance under different backbones other than GIN. We evaluate the performance of
SGOOD and competitors when changing the GIN backbone to GCN (Kipf & Welling, 2017) and
GraphSage (Hamilton et al., 2017). Table 10 reports the results. Observe that, with GCN backbone,
compared with the baselines, SGOOD consistently achieves the best scores; with GraphSage back-
bone, SGOOD is the best on BACE, BBP, DrugOOD, and the second best on other datasets. The
results validate the versatility/robustness of SGOOD to differnt backbones.

The effect of augmentation ratio. We conduct experiments to study the effect of augmentation
ratio on the three substructure-preserving graph augmentations (SD, SG, SS) introduced in Section 3.2.
Specially, we fix T0 as I that indicates no augmentation, set T1 as one of the three augmentations,
and vary the augmentation ratio (dropping ratio/substitution ratio) from 0.1 to 0.5. Intuitively, larger
augmentation ratio leads to harder contrastive tasks. Figure 3 reports the results, and the dotted red
line indicates the performance of SGOOD\CL without any augmentation for calibration. First, for
all three substructure-preserving graph augmentations, under most augmentation ratio settings, we
can achieve better performance than the red-dot baseline. Second, the three augmentations usually
achieve the most significant performance improvement in SGOOD under moderate augmentation
ratio (e.g., 0.3 and 0.4).

The effect of pretraining epochs. We conduct experiments to study the effect of pretraining epochs
TPT from 0 to 200. As shown in Figure 4, compared to SGOOD without first-stage pretraining
(TPT = 0), pretraining improves SGOOD’s performance. We also found that excessive pretraining
can sometimes have negative effects. For example, when TPT = 200, SGOOD’s performance
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Figure 3: OOD detection performance of SGOOD when augmentation ratio varies by AUROC
(%) on all the three substructure-preserving graph augmentations, SD, SG, and SS. The dotted red
line indicates the performance of SGOOD\CL without any augmentation, which serves as a base
performance. The area in color represents standard deviation.
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Figure 4: OOD detection performance of SGOOD by AUROC (%) when the number of pretraining
epochs TPT varies from 0 to 200, with colored area representing standard deviation.
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Figure 5: OOD detection results of SGOOD by AUROC (%) when the weight of the contrastive loss
α varies from 0 to 1, with colored area representing standard deviation.

decrease on all datasets except ENZYMES. We speculate the reason is that excessive pretraining
makes task-agnostic information dominate, with a negative impact on the SGOOD’s ability to learn
from class labels. As TPT = 100 generally leads to competitive performance across all datasets, we
set the default value of TPT to 100.

The effect of α. We vary the weight of the contrastive loss α from 0 to 1 to study the effect.
As shown in Figure 5, compared to SGOOD fine-tuned solely by LCE (i.e., α = 0), fine-tuning
SGOOD with both LCE and LCL generally leads to better performance. As α = 0.1 usually leads to
competitive performance across all datasets, we set the default value of α to 0.1 in SGOOD.

The effect of the number of negative samples in LCL. We conduct experiments to study the
effect of the number of negative samples used in contrastive loss LCL (Eq.(6)). Following the
established convention in graph contrastive learning You et al. (2020), pairs of augmented graphs
originating from the same graph are treated as positive pairs, while pairs generated from different
graphs within the batch are considered negative pairs. In such a way, in a B-size batch, for every Gi,
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Figure 6: OOD detection results of SGOOD by AUROC (%) when the batch size B varies from 16 to
256.
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Figure 7: AUROC gain (%) of SGOOD compared with SGOOD\A without graph augmentations.

Table 11: Comparison of training time per epoch and inference time per epoch of all the methods on
six datasets by seconds (s).

Method
ENZYMES IMDB-B IMDB-M REDDIT-12K BACE BBBP HIV DrugOOD

Train (s) Test (s) Train (s) Test (s) Train (s) Test (s) Train (s) Test (s) Train (s) Test (s) Train (s) Test (s) Train (s) Test (s) Train (s) Test (s)
MSP 0.119 0.008 0.090 0.007 0.077 0.007 0.890 0.260 0.053 0.005 0.055 0.006 2.740 0.200 0.078 0.005

Energy 0.119 0.008 0.090 0.007 0.077 0.007 0.890 0.260 0.053 0.005 0.055 0.006 2.740 0.200 0.078 0.005
ODIN 0.119 0.026 0.090 0.022 0.077 0.021 0.890 0.420 0.053 0.016 0.055 0.013 2.740 0.300 0.078 0.020
MAH 0.119 0.020 0.090 0.019 0.077 0.018 0.890 0.400 0.053 0.016 0.055 0.019 2.740 0.300 0.078 0.019

GraphDE 1.692 0.358 1.392 0.292 1.175 0.380 176.400 0.120 0.950 0.155 0.696 0.138 43.770 9.620 1.020 0.232
GOOD-D 0.257 0.006 0.197 0.008 0.171 0.009 17.550 0.710 0.157 0.006 0.095 0.008 5.160 0.010 0.230 0.006

OCGIN 0.123 0.005 0.086 0.006 0.079 0.005 1.650 0.170 0.075 0.005 0.044 0.005 2.900 0.050 0.099 0.005
GLocalKD 0.072 0.853 0.054 0.629 0.203 0.707 142.000 37.670 0.052 0.527 0.035 0.320 4.220 30.420 0.067 0.788

SGOOD 0.161 0.030 0.137 0.027 0.138 0.028 0.980 0.130 0.085 0.025 0.058 0.028 3.970 0.300 0.124 0.030

it will have 2B − 2 negative samples, as shown in the denominator of Eq.(6). Apparently the number
of negative samples is related to batch size B. We vary B from 16 to 256 to evaluate sensitivity
of SGOOD w.r.t. the number of negative samples, and report the results in Figure 6 . Observe
that as increasing from 16 to 128, the overall performance increases and then becomes relatively
stable, which proves the effectiveness of the augmentation techniques developed in SGOOD and also
validates the superior performance of SGOOD when varying batch size and the number of negative
samples.

Visualizing pairwise combinations of all augmentations. In Figure 7, we exhaust the pairwise
combinations of all options in A = {I, SD, SG, SS} and visualize the AUROC gain on graph-
level OOD detection over SGOOD\A without graph augmentations. As shown in Figure 7, most
combinations achieve positive gains for effective OOD detection.

Model efficiency. We compare the training time per epoch and inference time per epoch in seconds
of all methods, with results in Table 11. Compared with other graph-level OOD detection competitors,
including GraphDE and GOOD-D, SGOOD requires less time to train. Compared with all methods,
including the methods originally designed for image data, SGOOD requires moderate time for training.
In terms of inference time, SGOOD is much more efficient than GraphDE. Although GOOD-D is
more efficient in inference, it is not as accurate as SGOOD in OOD detection as shown in Table 3.
Considering together the time cost in Table 11 and the effectiveness in Table 3, we can conclude that
SGOOD has superior accuracy for graph-level OOD detection, while being reasonably efficient.

Substructure Visualization. In SGOOD, we adopt the modularity-based community detection
method (Clauset et al., 2004) to detect substructures in a graph. We demonstrate the detected
substructures in different datasets in Figure 8. We observe that dense cliques in protein networks
(ENZYMES) and social networks (IMDB-M, IMDB-B) are separated as substructures in SGOOD.
For molecular graphs, the rings that play a critical role in the properties of molecules(Zhu et al.,
2022) are detected in SGOOD. As the cliques and rings can not be captured by graph representations
generated by GNNs based on message passing and flat pooling (Chen et al., 2020) while SGOOD
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Figure 8: Different colors indicate different substructures. For molecular graphs, we label the nodes
with atom types. For graphs of other types, we label the nodes with node IDs.

can generate substructure-enhanced graph representations, it explains why SGOOD achieves superior
performance in graph-level OOD detection.

D PSEUDO-CODE OF SGOOD
We present the pseudo code of SGOOD for training and testing in Algorithm 1 and 2 respectively.

21



Under review as a conference paper at ICLR 2024

Algorithm 1: Pseudo-code of SGOOD (Training)
1 Input: Training dataset Din

tr = {(Gi, yi)}ni=1, testing set Dtest, weight of the contrastive loss α, number
of first-stage pretraining epoch TPT , number of second-stage fine-tuning epoch TFT

// Super graph construction

2 Construct super graphs of substructures {Gi}ni=1 of all Gi ∈ Din
tr ;

// First stage
3 for epoch = 1, 2, . . . , TPT do
4 Randomly split training graphs Din

tr into batches B with batch size B;
5 for {Gi}Bi=1 ∈ B do
6 for Gi ∈ {Gi}Bi=1 do
7 Obtain augmented super graphs Ĝi,0, Ĝi,1 by applying T0 and T1 to Gi;
8 Obtain augmented graphs Ĝi,0, Ĝi,1 according to Ĝi,0, Ĝi,1;
9 Calculate hĜi,0

and hĜi,1
using (Ĝi,0, Ĝi,0) and (Ĝi,1, Ĝi,1) by Eq.(1)-(4);

10 Obtain uĜi,0
=

ψ(hĜi,0
)

||ψ(hĜi,0
)|| and uĜi,1

=
ψ(hĜi,1

)

||ψ(hĜi,1
)|| using shared projection head ψ followed

by l2-normalization;
11 Calculate contrastive loss LCL by Eq.(6);
12 Update parameters using mini-batch gradient descent w.r.t. LCL;

// Second stage
13 for epoch = 1, 2, . . . , TFT do
14 Randomly split training graphs Din

tr into batches B with batch size B;
15 for {Gi}Bi=1 ∈ B do
16 for Gi ∈ {Gi}Bi=1 do
17 Same as Lines 7-10 ;
18 Calculate hGi using (Gi,Gi) by Eq.(1)-(4);
19 Calculate prediction logits ŷi by applying linear transformation on hGi ;

20 Calculate cross-entropy loss LCE by Eq.(5);
21 Calculate contrastive loss LCL by Eq.(6);
22 Update parameters using mini-batch gradient descent w.r.t. LCE + αLCL;

// Estimate class centroids and covariance matrix

23 for Gi ∈ Din
tr do

24 Calculate {hv|v ∈ Vi} and hGi using (Gi,Gi) by Eq.(1)-(4);
25 Calculate hGi = READOUT({hv|v ∈ Vi});
26 Calculate zi =

CONCAT(hGi
,hGi

)

||CONCAT(hGi
,hGi

)||2
;

27 Calculate estimated class centroids {µc}Cc=1 and covariance matrix Σ̂ by Eq.(9);

Algorithm 2: Pseudo-code of SGOOD (OOD Detection During Testing)
1 Input: The trained SGOOD model f , testing set Dtest, estimated class centroids {µc}Cc=1 , estimated

covariance matrix Σ̂
// Testing stage

2 for Gi ∈ Dtest do
3 Construct super graph Gi;
4 Calculate {hv|v ∈ Vi} and hGi using (Gi,Gi) and f by Eq.(1)-(4);
5 Calculate hGi = READOUT({hv|v ∈ Vi});
6 Calculate zi =

CONCAT(hGi
,hGi

)

||CONCAT(hGi
,hGi

)||2
;

7 Calculate OOD score S(Gi) by Eq.(8);
8 if Gi is not OOD based on S(Gi) then
9 Perform classification on Gi via prediction logits ŷi by applying linear transformation on hGi ;
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