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Abstract

We offer a two-stage reranking method for001
grammatical error correction: the first model002
serves as edit generator, while the second clas-003
sifies the proposed edits as correct or false. We004
show how to use both encoder-decoder and se-005
quence labeling models for the first step of our006
pipeline. We achieve state-of-the-art quality on007
BEA 2019 English dataset even using weak008
BERT-GEC edit generator. Combining our009
roberta-base scorer with state-of-the-art GEC-010
ToR edit generator, we surpass GECToR by011
2 − 3%. With a larger model we establish a012
new SOTA on BEA development and test sets.013
Our model also sets a new SOTA on Russian,014
despite using smaller models and less data than015
the previous approaches.016

1 Introduction017

Grammatical error correction (GEC) is the task of018

converting the source text to its clean version with019

no orthographic, punctuation, lexical or other er-020

rors. It becomes increasingly popular during last021

years due to its applications such as Second Lan-022

guage Learning. However, even for English with023

its numerous resources and wide research commu-024

nity, modern models are far from being perfect. In025

particular, the recall of the state-of-the-art GEC-026

ToR model (Omelianchuk et al., 2020) on stan-027

dard BEA2019 development set is lower than 40%.028

While GECToR uses sequence labeling approach029

with linguistically motivated label inventory, most030

works for other languages (Náplava and Straka,031

2019) simply mimic machine translation methods,032

training a Transformer model (Vaswani et al., 2017)033

on the pairs of source and corrected sentences. This034

approach suffers from left-to-right decoding: the035

model can make a wrong decision not observing036

the future context.037

This problem may be mitigated using reranking:038

the ranker observes entire corrected sequences and039

thus may utilize richer context. It also helps to040

discriminate between several possible edits with 041

similar basic model probability . Due to these rea- 042

sons, it was heavily used in machine translation 043

both in statistical (Och et al., 2004) and neural (Yee 044

et al., 2019) era. 045

In contrast to machine translation, sequence edit- 046

ing in GEC usually does not require complete 047

rewriting and can be decomposed to elementary 048

edits such as modifying a single word or a consec- 049

utive group of words. In this paper we propose 050

to score elementary edits produced by the basic 051

model and classify them as positive or negative on 052

the second stage of the pipeline. Than the calcu- 053

lated probabilities can be either used directly or 054

combined with the scores from the first stage. 055

We show that our scoring model achieves state- 056

of-the-art performance on BEA2019 dataset even 057

with rather weak first stage model. Its combination 058

with GECToR edit generator outperforms the mod- 059

els of the same size by about 2 F0.5 points. The 060

large version of our model beats SOTA on BEA 061

dataset among models of all size. We also beat cur- 062

rent SOTA on Russian with two different variants 063

of the edit generator. 064

2 Pipeline description 065

As proposed by Alikaniotis and Raheja (2019), 066

probably the simplest approach to grammatical 067

error correction is to generate possible edits us- 068

ing a rule-based model and then extract those that 069

increase the sentence probability by a sufficient 070

margin. This probability may be estimated using 071

a large pretrained language model, such as GPT 072

(Radford et al., 2019) or BERT (Devlin et al., 2019). 073

This approach requires no training data, only a de- 074

velopment set for tuning the hyperparameters. As 075

a reverse side of its simplicity, this algorithm has 076

two main limitations: 077

• Recall is limited to errors that can be specified 078

by the rules. 079
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• The probability estimators are imperfect, espe-080

cially when the edit changes sequence length.081

Therefore the main idea of our paper is to replace082

the scorer by a more powerful trainable model. An-083

other key detail is that we apply the scorer not to084

the full corrections, but to the elementary edits.085

Namely, given the erroneous sentence *The boy086

fall on floor yesterday and its correction The boy087

fell on the floor yesterday, our model should return088

True for sentences The boy fell on floor yesterday089

and The boy fall on the floor yesterday and False090

for other elementary corrections, for example, *The091

boy falls on floor yesterday.092

So, our model includes three main stages:093

1. Extracting elementary edits from the edit gen-094

erator.095

2. Classifying these edits as positive or negative.096

3. Applying the positively classified edits to the097

source sentence.098

The first part is described in 3 and the remaining099

two in Section 4. A schematic description of our100

algorithm is given on Figure 1.101

3 Edit generators102

In this section we describe the first stage of our103

pipeline – the edit generator. We seek to make104

our pipeline independent of particular generator105

selection. Therefore we describe three possible106

variants: the rule-based generator (Subsection 3.1),107

the seq2seq model (3.2) and the sequence label-108

ing one (3.3), based on SOTA GECToR model109

(Omelianchuk et al., 2020). Note that GECToR110

is available only for English and its development111

for languages with complex morphology is prob-112

lematic since it needs a word inflection module to113

transform the predicted labels into surface forms.114

3.1 Rule-based edit generator115

We start with describing edits extraction based on116

linguistically motivated rule-based model. It may117

be considered as our reimplementation of Alikanio-118

tis and Raheja (2019). Our edit generation module119

takes as input a dependency tree of the sentence120

and applies rule-based edits corresponding to the121

most frequent errors, such as missing or incorrect122

determiners, commas and prepositions or wrong123

choice of word form. The exact list of applied rules124

is given in Appendix A.1.125

These operations produce a fairly large num- 126

ber of possible corrections. To reduce computa- 127

tional burden we apply two-stage filtering based 128

on left-to-right probability model p, such as GPT 129

(Radford et al., 2019). First, for every hypothe- 130

sis u we calculate the gain log p(uπ+1|w1...wπ)− 131

log p(wπ+1|w1...wπ), where π is the length of 132

longest common prefix of u and source sequence 133

w.1 We choose best Kdel deletions, Kins inser- 134

tions and Ksub replacement edits according to this 135

score. For the selected hypotheses we calculate 136

their full log-probability and pick K best variants 137

provided their score exceeds log p(w)− θ, where 138

θ is the predefined margin. 2 139

3.2 Sequence-to-sequence edit generator 140

To generate edits using a sequence-to-sequence ba- 141

sic model we run standard beam search, align all 142

the produced hypotheses with the source sentence 143

and extract non-trivial parts of such alignments. 144

The score of edit e equals log p(u|w)−log p(v|w), 145

where u denotes the most probable hypothesis 146

containing e and v is the most probable hypoth- 147

esis that changes nothing in the span of e. If 148

there is no such hypothesis, we set the score to 149

log p(u|w)− log p(v|w) + 1, where v is the last 150

hypothesis in the beam.3 We experimented with 151

tracking only hypotheses with at most one edit, 152

however, it requires implementing an additional 153

control mechanism over beam states and does not 154

bring performance gains. The same holds for di- 155

verse beam search, which also has additional hy- 156

perparameters such as diversity penalty. 157

3.3 Sequence labeling generator 158

In contrast to other methods, the recent GECToR
model (Omelianchuk et al., 2020) reduces grammar
error correction to sequence tagging. We give an
example of such reduction in Table 1 and refer the
reader to Sections 3 and 5 of the original paper to
better understand their approach. GECToR oper-
ations naturally correspond to elementary edits in
our terminology. For each position i we extract all
the tags t such that

log p(ti = t) ≥ log p(ti = KEEP)− θ,

where p is the label probability GECTOR returns 159

and θ is the predefined margin. For example, if on 160

1It requires one pass of the pretrained GPT-like LM.
2We set Kdel = 10,Kins = 10,Ksub = 30,K =

15, θ = 3.0.
3It is equivalent to assumption that ‘no_change‘ hypothesis

is one point worse than the last beam element.
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Source Edit generator Model score Stage 1 Stage 2 Stage 3 Target
The boy fall on floor yesterday (0, 1, boys) 0.53 ? ? × The boy fell on the floor yesterday

(1, 2, falls) 0.7 ? × -
(1, 2, fell) 0.83 ? ✓ +
(3, 3, the) 0.9 ✓ + +

(−1,−1,None) 0.57 ? ? ✓ (terminate)

Figure 1: The pipeline of our algorithm. On each decoding stage, the most probable (labeled with check) remaining
action is selected. It also eliminates other edits with intersecting spans (labeled with cross). In the end all the
selected operations are applied in parallel.

the first step of the example in Table 1 we have161

p(t3 = VBD) = 0.5, p(t3 = VBZ) = 0.3, p(t3 =162

KEEP) = 0.1, then the VBZ transformation fall163

→ falls will also be extracted. Again, we keep164

top K edits according to the difference between165

logarithmic probabilities of the edit and the the166

default “do nothing“ operation (the KEEP tag).167

3.4 Common details168

All the GEC datasets we use are in .M2 format,169

presented on Figure 2. If an edit has the form ‘0-to-170

k‘, ‘k-to-0‘ or ‘k-to-k‘ words with k > 1, then we171

also treat as positive all ‘0-to-1‘, ‘1-to-0‘ and ‘1-to-172

1‘ edits in its partition. It is done since GECToR173

generator cannot produce multiword elementary174

operations and different datasets vary in how they175

treat multiword edits. We also add the “do nothing”176

edit that returns the source sentence. It is treated as177

positive if the sentence is already correct.178

4 Model description179

4.1 Edits classification180

Given numerous successes of Transformer models
in NLP, we decide to use Roberta (Liu et al., 2019)
for edit classification. It takes as input the sequence

x = ⟨BOS⟩SOURCE⟨SEP⟩EDITED_SOURCE⟨EOS⟩

and outputs the probability of the edited source to
be a plausible correction. Consider the sequence
x = BOS x1 . . . xL SEPx′1 . . . x

′
L+δ EOS and let

xi . . . xj and x′i . . . x
′
j+δ be the source and the tar-

get of the edit, respectively. Then our classification
model M can be decomposed as

M(x) = g(f(READOUT(ENCODER(x)))),

where181

• ENCODER is the Transformer encoder that182

produces the embeddings4 sequence h =183

hBOSh1 . . . hLhSEPh
′
1 . . . h

′
L+δhEOS.184

4Through all the paper ‘embedding‘ means the encoder
output for current subtoken.

• READOUT is the readout function that con- 185

verts a sequence of embeddings to the vector- 186

ization of the whole input. We use the first em- 187

bedding of the target span and consider other 188

variants during ablation in Appendix D.1. 189

• f is a multilayer perceptron and g is the final 190

classification layer with sigmoid activation. 191

4.2 Decoding 192

After classifying the edit we cannot simply apply 193

all edits classified as positive as they may conflict 194

each other (e.g., the edits fall → fell and fall → 195

falls for the sentence The boy fall on the floor yes- 196

terday). The conflicts may also happen between 197

adjacent edits (boy → boys and fall → falls) thus 198

we consider as contradicting any two edits whose 199

source spans either intersect or are adjacent and 200

non-empty.5 We test two decoding strategies: 201

parallel Pick the edits whose probability is greater 202

than the maximum of predefined threshold 203

and “do nothing” edit score. Keep those that 204

do not contradict any edits with higher scores. 205

stagewise If the most probable edit is “do nothing” 206

or its probability is below threshold, stop. Oth- 207

erwise pick the most probable edit, apply it to 208

the current input sentence and remove all the 209

edits with intersecting spans. Repeat this until 210

reaching the maximal number of iterations. 211

The stagewise strategy is slower as it requires 212

rerunning the scorer on the modified sentence on 213

each iteration. However, it produces slightly better 214

scores, thus it is used for all experiments in the 215

paper. The optimal threshold is model-dependent 216

and is optimized on development set. We investi- 217

gate the effect of threshold selection and decoding 218

strategy in Appendix D.2. 219

5Using all non-overlapping edits leads to worse empirical
performance and is less correct linguistically.
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Iter. Source Edits Result
1 CLS Boy fall the floor APPEND_The LOWER VBD KEEP KEEP The boy fell the floor
2 CLS The boy fell the floor KEEP KEEP KEEP APPEND_on KEEP KEEP The boy fell on the floor

Table 1: An example of GECToR labeling and corresponding sentence edits.

S In there moment , I thought that my best friends was my parents and sister .
A 0 1|||R:PREP|||At|||REQUIRED|||-NONE-|||0
A 1 2|||R:OTHER|||that|||REQUIRED|||-NONE-|||0
A 10 11|||R:VERB:SVA|||were|||REQUIRED|||-NONE-|||0
S При новых законах , надо было держать женщин на работу .
A 0 1|||Предлог|||По|||REQUIRED|||-NONE-|||0
A 1 3|||Заменить|||новым законам|||REQUIRED|||-NONE-|||0
A 9 10|||Сущ.:Падеж|||работе|||REQUIRED|||-NONE-|||0

Figure 2: Examples of single sentence descriptions for English (above) and Russian (below). The second edit for
Russian sentence (“новых законах” novykh zakonakh ‘new+PL+LOC law+PL+LOC’ 7→ “новым законам” novym
zakonam ‘new+PL+DAT law+PL+DAT’) is multiword and should be partitioned during edit generation.

4.3 Scoring220

All edit generators described above not only gen-221

erate the hypotheses but also output scores corre-222

sponding to edit log-probability. Thus there are223

two possible methods of final edits scoring:224

scorer-only Use only the probabilities produced225

by the scorer.226

combined Combine them with edit generator227

scores in log space. Precisely, we set the228

score of edit e equal to log pscorer(e) + α ·229

scoregen(e), where α is the tuned parameter.6230

The ‘scorer-only‘ variant is used by default for231

most experiments in the paper, the ‘combined‘232

method scores are reported only for the best se-233

lected models to compare with SOTA scores.234

5 Data and models235

5.1 Data236

We test our approach on English (a high-resource237

language) and Russian with less resources and238

worse edit generators available. For English we239

use the BEA 2019 Shared Task data (Bryant et al.,240

2019). We use the same training data as in the241

previous works: Write&Improve and LOCNESS242

corpus (Bryant et al., 2019), First Certificate of En-243

glish (FCE) (Yannakoudakis et al., 2011), National244

University of Singapore Corpus of Learner English245

(NUCLE) (Dahlmeier et al., 2013), Lang-8 Corpus246

of Learner English (Tajiri et al., 2012) and synthetic247

6In all the experiments optimal value was α = 0.1.

data (Awasthi et al., 2019). For experiments with 248

pretraining on synthetic data we utilize PIE dataset 249

(Awasthi et al., 2019). We test our models on BEA 250

2019 development and test sets and CoNLL 2014 251

(Ng et al., 2014) test data. 252

For additional experiments we also use cLang8 253

(Rothe et al., 2021) – the cleaned and extended 254

version of Lang8 corpus. The characteristics of 255

datasets are given in Table 2. 256

Dataset Size Usage
W&I+LOCNESS 34308 Train, finetune
FCE 28350 Train
NUCLE 57151 Train
Lang8 1037561 Train
PIE synthetic 9000000 Pretrain
BEA 2019 dev 4384 Development
BEA 2019 test 4477 Test
CoNLL14 1312 Test
cLang8 2372119 Train

Table 2: Training data for English GEC experiments.

For Russian we use the RULEC-GEC data (Ro- 257

zovskaya and Roth, 2019). Due to its small 258

size we generate our own synthetic dataset, cor- 259

rupting the source sentences with rule-based 260

operations such as comma / preposition inser- 261

tion/deletion/replacement or changing the word to 262

another form of the same lexeme. The full list of 263

operation is in Appendix A.2. 264

We follow the training procedure described in 265

(Omelianchuk et al., 2020). Namely, after pretrain- 266

ing on synthetic data only we perform the main 267
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Dataset Sentences Errors
RULEC-GEC train 4980 4383
RULEC-GEC dev 2500 2182
RULEC-GEC test 5000 5301
Synthetic data 213965 187122

Table 3: Data used for experiments on Russian GEC.

training on full BEA 2019 train set which is the268

concatenation of W&I+LOCNESS, FCE, NUCLE269

and Lang8 and afterwards finetune the model on270

W&I+LOCNESS. When using cLang8 instead of271

Lang8 we do not apply pretraining. For Russian we272

pretrain on the concatenation of real and synthetic273

data and finetune on RULEC-GEC train set.274

5.2 Model architecture and training275

For our scorer we use the Transformer model and276

initialize it using the weights of pretrained roberta-277

base. We take the encoding of the leftmost word278

in the target span as sequence representation and279

process it by a 1-layer perceptron with output di-280

mension 768 and ReLU activation. The output of281

this perceptron is passed to the final linear layer282

with sigmoid activation. We implement our models283

using PyTorch and use HuggingFace roberta-base284

implementation.7285

The model is trained using total batch size of286

3500 subtokens to fit into 32GB GPU memory. All287

the examples for a single sentence are placed to288

the same batch. Since the number of proposed289

negative edits is much larger than the number of290

positive ones, we independently average the loss for291

positive and negative examples inside each batch.292

We optimize the model with AdamW optimizer293

using default hyperparameters.294

6 Experiments295

In this section we describe our experiments. Note296

that our main contribution is the scorer and we297

claim that our method is not limited to a particular298

edit generator. Thus we do not train edit generators299

by ourselves and only adapt them to our pipeline300

as described in Section 3.301

Our main experiments are conducted for English,302

in Subsection 6.3 we also present results for Rus-303

sian. We compare the models by F0.5 score using304

ERRANT (Bryant et al., 2019) for English BEA305

7Our code is available on https://www.dropbox.
com/s/ubcblvy63ynsfs7/edit_scorer.tar.gz

Dataset Rule-based BERT-GEC GECToR
BEA 2019 dev 45.8 55.5 54.9
W&I train 46.7 61.0 66.3
FCE 40.4 60.7 56.6
NUCLE 39.6 48.3 45.0
Lang8 33.0 50.2 43.3
BEA dev F0.5 38.4 48.6 54.1

Table 4: Recall of different edit extraction methods for
English. W&I is W&I+LOCNESS.

data and M2Scorer (Dahlmeier et al., 2013) for 306

other datasets. 307

6.1 Edit generators 308

We use three edit generators of different type: the 309

rule-based one with GPT2-medium edit scorer 310

(Subsection 3.1), the seq2seq BERT-GEC model8 311

(Subsection 3.2) and the sequence labeler based on 312

our extension of GECToR9 (Subsection 3.3). For 313

all edit generators we set the number of hypotheses 314

(“beam width”) to 15 and gain threshold θ to 3.0. 315

Before all we check that our edit generator has 316

sufficient recall. As shown in Table 4 that BERT- 317

GEC and GECToR has similar recall on BEA data, 318

while on other datasets BERT-GEC coverage is 319

better despite lower quality of the corresponding 320

model. Recall of the rule-based model is low be- 321

cause it cannot handle free rewriting in principle. 322

6.2 English 323

Our first goal is to show that our scorer has solid 324

performance with any edit generator. For this pur- 325

pose we train it on full BEA 2019 training data 326

without synthetic pretraining and do reranking in 327

‘scorer-only‘ mode (Subsection 4.2). Then we se- 328

lect the best models and retrain them with PIE pre- 329

training. For these models we test both modes of 330

edit scoring. For comparison we use our generator 331

models BERT-GEC (Kaneko et al., 2020) and GEC- 332

ToR models (Omelianchuk et al., 2020), that are 333

both trained on the same data and use transformer 334

encoders of the same size as we do. 335

As shown in Table 5, our ranker outperforms 336

GECToR variant based on the same Transformer 337

with both model-based edit generators. If take into 338

8https://github.com/kanekomasahiro/
bert-gec

9We use the roberta-model available from https:
//github.com/grammarly/gector, our extension
code is available by https://www.dropbox.com/s/
ncxcjyhbw3q845d/gector.tar.gz
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Edit gen. Scorer PT BEA 2019 dev CoNLL 2014
P R F0.5 P R F0.5

Rule-based ‘scorer-only‘ NO 63.3 28.1 50.6 71.2 33.3 58.0
BERT-GEC ‘scorer-only‘ NO 62.1 33.9 53.2 70.2 38.0 60.0
GECToR ‘scorer-only‘ NO 60.4 34.1 52.5 73.6 34.9 60.2

BERT-GEC ‘scorer-only‘ YES 68.4 30.4 55.1 71.2 39.4 61.3
GECToR ‘scorer-only‘ YES 69.1 30.9 55.4 72.9 39.1 62.1
GECToR ‘combined‘ YES 68.4 34.5 57.2 79.1 38.3 65.2

BERT-GEC YES 53.0 36.5 48.6 69.2 45.1 62.5
GECToR, roberta YES 62.3 35.6 54.2 72.8 40.9 63.0
GECToR, XLNet YES 66.0 33.8 55.5 77.5 40.2 65.3

Table 5: Results for different GEC models on two GEC datasets. Models in the second block are additionally
pretrained on 9M synthetic data. Lower blocks contains results of external models.

account the scores of GECToR edit generator by us-339

ing ‘combined‘ decoding, we additionally improve340

on BEA dev by 1.8 F0.5 points. Notably, if BERT-341

GEC is used as edit generator, the scorer still shows342

solid performance being significantly better than its343

generator model. Thus SOTA performance is pos-344

sible even for a weak generator models provided345

its recall is high.346

In Table 5 all models were of “base” size and347

were trained on the same data. Now we com-348

pare with models of larger size or / and trained349

with more data. In this setup we do two modifica-350

tions: replace Lang8 with larger and better cLang8351

dataset (Rothe et al., 2021) and utilize roberta-large352

model instead of roberta-base. For all the models353

we use GECToR edit generator. As shown in Ta-354

ble 6, roberta-large produces further improvement355

over roberta-base and outperforms current SOTA356

on BEA 2019 test set. However, the improvement357

on CoNLL-2014 is much smaller, we hypothesize358

that our models may overfit to BEA domain.359

6.3 Russian360

With 6 main cases and 3 genders, Russian has more361

complex morphology than English. This extends362

the space of possible errors even for the rule-based363

generator. There is no pretrained model for Russian364

GEC, thus we compare two generators: the rule-365

based one (analogous to English) and the finetuned366

ruGPT-large.10 Their coverage statistics are given367

in Table 7. We initialize the scorer with ruRoberta-368

large11 since there is no roberta-base for Russian.369

The results are given in Table 8.370

10https://huggingface.co/sberbank-ai/
ruGPT3large_based_on_gpt2

11https://huggingface.co/sberbank-ai/
ruRoberta-large

We observe that reranking the edits of finetuned 371

ruGPT-large slightly outperforms the edit genera- 372

tor itself. The combined model beats this baseline 373

by a margin of 1.7%. We also note that previous 374

SOTA models had larger size and were trained with 375

significantly more synthetic data. Contrasting with 376

English experiments, scoring the rule-based edits 377

provides even better scores than the model-based 378

ones. We explain this by two reasons: first, the dif- 379

ference between rule-based and model-based edits 380

coverage is smaller for Russian than for English, 381

second, the RULEC-GEC dataset is of much lower 382

quality with a lot of errors uncorrected. Thus it 383

does not contain enough complex edits that cannot 384

be captured by the rules and for which the benefits 385

of model-based generator are more clear. 386

These results prove that the existence of strong 387

edit generators is not a necessary condition for our 388

method to work. 389

7 Ablation studies 390

7.1 Joint generators 391

Our model is trained on edits from a particular 392

generator. A natural question is whether it overfits 393

to this generator or learns a model-independent 394

notion of grammaticality. We check this by training 395

a model with a single generator and applying it 396

to the union of different generators output (‘joint‘ 397

generator in Table 9). We also investigate the effect 398

of finetuning and full training on joint edit sets. 399

Results are given in Table 9. We note that the 400

recall of joint generator on BEA development set 401

is 69%, which significantly exceeds the coverage 402

of individual generators, which is about 55% (see 403

Table 4). Table 10 also illustrates the difference in 404

edits produced by different generators. 405
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Model Scorer cLang8 BEA 2019 dev BEA 2019 test CoNLL 2014
P R F0.5 P R F0.5 P R F0.5

roberta-base ‘combined‘ NO 68.4 34.5 57.2 82.4 54.5 74.7 79.1 38.3 65.2
roberta-base ‘scorer-only‘ YES 70.2 32.9 57.2 82.8 52.4 74.2 72.6 39.5 63.9
roberta-base ‘combined‘ YES 69.3 35.5 58.2 82.5 55.1 75.1 79.6 36.2 66.0

roberta-large♢ ‘scorer-only‘ NO 70.2 33.1 57.3 83.8 52.0 74.7 77.3 36.3 63.0
roberta-large♢ ‘combined‘ NO 69.6 35.6 58.5 83.5 54.4 75.5 79.3 39.5 66.0
roberta-large♣♢ ‘scorer-only‘ YES 71.0 33.4 57.9 86.2 54.2 77.1 79.4 36.1 64.0
roberta-large♣♢ ‘combined‘ YES 70.3 35.9 59.0 84.8 56.3 77.0 80.2 39.1 66.3

GECToR, ensemble NO NA NA NA 79.4 57.2 73.7 78.2 41.5 66.5
(Sun et al., 2021)♣♢ NO NA NA NA NA NA NA 71.0 52.8 66.4
T5-XXL, cLang8♣♢ YES NA NA NA NA NA 75.9 NA NA 68.9

Table 6: Results for different GEC models on different GEC datasets. Lower blocks contains results of external
models. cLang8 column means whether the model was trained on cLang8 dataset, ♣ stands for large language
models and ♢ for using additional training data.

Dataset Coverage
Rule-based ruGPT-based

RULEC-GEC train 54.4 81.5
RULEC-GEC dev 55.5 59.3
RULEC-GEC test 46.4 54.3

Synthetic data 78.0 95.8

Table 7: Coverage of edit generators for Russian data.

Joining generators output produce minor im-406

provements for GECToR-based model and has neg-407

ative impact on BERT-GEC-based one. It proves408

that our models overfit to the edit generation al-409

gorithm, the most severe overfitting happens in410

case of BERT-GEC. As expected, full training on411

joint set of edits performs better than only on edits412

from GECToR generator. The same patterns hold413

for large models and ‘combined‘ decoding, in par-414

ticular, the roberta-large model trained with joint415

edits achieves 76.2 F0.5 on BEA test, reaching the416

highest score among the models trained without417

external data.418

7.2 Decoding ablation419

Our decoding algorithm has three hyperparame-420

ters: the decoding algorithm (‘scorer-only‘ or ‘com-421

bined‘), the threshold between positive and nega-422

tive edits and the the maximal allowed number of423

edits. Detailed results of their ablation are in Ap-424

pendix D.2, summarizing:425

1. ‘Combined‘ decoding provides a stable im-426

provement of 0.5− 1% over ‘scorer-only‘.427

2. Optimal threshold is usually 0.7 before fine-428

tuning and 0.9 after finetuning.429

3. F0.5 score monotonically improves up to 8 430

allowed edits due to increased recall, after 5 431

edits the scores almost saturate. 432

8 Related work 433

The task of grammatical error correction has a 434

long history. The main paradigm of recent years is 435

to treat it as low-resource machine translation (Fe- 436

lice et al., 2014; Junczys-Dowmunt et al., 2018) us- 437

ing extensive pretraining on synthetic data (Grund- 438

kiewicz et al., 2019). Synthetic data is usually 439

generated using random replacement, deletion, in- 440

sertion, spelling errors and perturbations (Grund- 441

kiewicz et al., 2019; Kiyono et al., 2019; Náplava 442

and Straka, 2019), other approaches include train- 443

ing on Wikipedia edits (Lichtarge et al., 2019) and 444

backtranslation (Kiyono et al., 2019). Another 445

trend is incorporating pretrained Transformer lan- 446

guage models either as a part of system architec- 447

ture (Kaneko et al., 2020) or for the initialization 448

of model weights (Omelianchuk et al., 2020). The 449

extreme case of the latter approach is the “brute 450

force” when one simply uses large encoder-decoder 451

Transformer that potentially is able to solve any 452

text-to-text task (Rothe et al., 2021). 453

Another paradigm in GEC is to reduce gram- 454

mar correction to sequence labeling (Omelianchuk 455

et al., 2020). However, it requires constructing a lin- 456

guistically meaningful set of tags that could be hard 457

to design for languages with complex morphology. 458

Our work mainly follows the third approach that 459

considers GEC as two-stage process including edit 460

generation as the first stage and their ranking or 461

classification as the second. Edits were usually gen- 462
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Model Training data P R F0.5

Transformer (Náplava and Straka, 2019) 10M synthetic + RULEC-GEC train + dev 63.3 27.5 50.2
mT5-XXL (Rothe et al., 2021) mC4 synthetic + RULEC-GEC train NA NA 51.6
ruGPT-large finetune (strong baseline) 200K synthetic + RULEC-GEC train 65.7 27.4 51.3

rule-based edits 200K synthetic + RULEC-GEC train 69.4 25.9 51.9
ruGPT-large edits, ‘scorer-only‘ 200K synthetic + RULEC-GEC train 68.2 27.1 51.6
ruGPT-large edits, ‘combined‘ 200K synthetic + RULEC-GEC train 74.4 24.6 53.0

Table 8: Results for Russian on RULEC-GEC data.Our results are in the lower block and baselines in the upper.

Generator Metrics
Train Finetune Test P R F0.5

GECToR GECToR GECToR 69.1 30.9 55.4
GECToR joint 67.6 33.0 55.9(+0.5)
joint joint 64.8 35.5 55.7(+0.3)

BERT-GEC BERT-GEC BERT-GEC 68.4 30.4 55.1
BERT-GEC joint 63.4 34.2 54.2(−0.9)
joint joint 64.2 34.3 54.6(−0.5)

joint joint joint 64.5 38.2 56.7(+1.3)

Table 9: Effect of generator joining on different training stages. All models are trained on full BEA dataset with PIE
pretraining and tested on BEA development set using ‘scorer-only‘ decoding.

erated by manually written rules and their scoring463

was performed by linear classifiers (Rozovskaya464

et al., 2014) or later by a pretrained language model465

(Alikaniotis and Raheja, 2019). A recent work of466

Yasunaga et al. (2021) generates edits using sepa-467

rate sequence-to-sequence Transformer and then468

filters them using a language model.469

Our approach can be seen as a special case of470

reranking. Feature-based reranking was common471

in statistical machine translation before the advent472

of neural networks (Och et al., 2004), in the field473

of grammatical error correction it was applied by474

Hoang et al. (2016), Xie et al. (2016) used a feature-475

based binary classifier similar to ours to improve476

precision of the GEC model. Grundkiewicz et al.477

(2019) used a R2L language model scorer to rerank478

the output of the first stage seq2seq model. How-479

ever, recent studies on machine translation (Lee480

et al., 2021) and summarization (Liu and Liu, 2021)481

benefit from a training a Transformer rescoring482

model, not choosing a fixed one. Our work is483

partially inspired by theirs, the key difference is484

that we use classification loss instead of ranking485

and rerank individual edits, not complete sentences.486

As far as we know, the only example of trainable487

reranking for GEC is Liu et al. (2021), but it uses488

a more complex architecture and focuses more on489

error detection than correction.490

9 Conclusion 491

We have developed a two-stage algorithm for gram- 492

matical error correction based on edit classifica- 493

tions. Our main results are the following: 494

• Our model reaches state-of-the-art perfor- 495

mance on English even without using the 496

scores of edit generator. Using ‘roberta-base‘, 497

it outperforms models of the same size and 498

achieves SOTA scores using ‘roberta-large‘. 499

• It beats current SOTA on Russian, proving that 500

our model is also applicable to small datasets 501

with weaker edit generators. 502

• Our approach works with different edit gener- 503

ators and their combinations. 504

Since our model shows competitive performance 505

even with rule-based edit generators, it may be 506

applied in settings that require control over possible 507

corrections. One such field is language learning, 508

e.g., correcting error of particular type, such as verb 509

tense or determiner choice. In the future work we 510

plan to address this question in more details and 511

test the applicability of our approach on additional 512

languages, such as German or Czech. Last but not 513

the least, the main idea of ranking individual edits 514

can be applied not only to GEC, but to any task 515

where the concept of elementary edit has meaning, 516

for example, machine translation post-editing. 517
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A Rule-based transformations used for 729

edit generation 730

A.1 English 731

Rule-based edit generator includes the following 732

operations: 733

• Comma insertion and deletion. 734

• Preposition insertion, deletion and substitu- 735

tion. Insertion is allowed only before the first 736

token of a noun group. 737

• Determiner insertion, deletion and substitu- 738

tion. Insertion is allowed only before the first 739

token of a noun group. 740

• to insertion before infinitives. 741
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• Spelling correction for OOV words using Hun-742

spell.12743

• Substitution a word with all its inflected forms,744

inflection is performed using Lemminflect.13745

• Capitalization switching.746

• Replacement of comma by period and capital-747

izing the subsequent word (I have a dog, it is748

cute. → I have a dog. It is cute.).749

A.2 Russian750

Rule-based edit generator for Russian includes the751

following operations:752

• Comma insertion and deletion.753

• Preposition insertion, deletion and substitu-754

tion. Insertion is allowed only before the first755

token of a noun group.756

• Conjunction substitution.757

• Spelling correction for OOV words using Hun-758

spell.14759

• Joining of consecutive words using Hunspell760

(e.g. ne bol’shoj ‘no+big‘ 7→ nebol’shoj761

‘small‘).762

• Substitution a word with all its inflected forms,763

inflection is performed using PyMorphy.15764

• Joint noun group inflection (e.g. bol’shoj765

dom ‘large house‘ 7→ bol’shikh domov766

‘large+GEN+PL houses+GEN’)767

• Capitalization switching.768

• Switching the order of consecutive words.769

The rules take as input sentence dependency770

trees, parsing is done using DeepPavlov.16771

B Data sources772

English773

• W&I-LOCNESS train, dev and test774

https://www.cl.cam.ac.uk/775

research/nl/bea2019st/data/776

wi+locness_v2.1.bea19.tar.gz.777

12https://github.com/MSeal/cython_
hunspell

13https://github.com/bjascob/
LemmInflect/

14https://github.com/MSeal/cython_
hunspell

15https://github.com/kmike/pymorphy2/
16http://docs.deeppavlov.ai/en/0.14.1/

• FCE https://www.cl.cam.ac.uk/ 778

research/nl/bea2019st/data/ 779

fce_v2.1.bea19.tar.gz. 780

• NUCLE https://sterling8. 781

d2.comp.nus.edu.sg/nucle_ 782

download/nucle.php. 783

• Lang8 https://docs. 784

google.com/forms/d/e/ 785

1FAIpQLSflRX3h5QYxegivjHN7SJ194OxZ4XN_786

7Rt0cNpR2YbmNV-7Ag/viewform. 787

• CLang8 https://github.com/ 788

google-research-datasets/ 789

clang8. 790

• Conll14 https://www.comp. 791

nus.edu.sg/~nlp/conll14st/ 792

conll14st-test-data.tar.gz. 793

• PIE synthetic data https:// 794

drive.google.com/open?id= 795

1bl5reJ-XhPEfEaPjvO45M7w0yN-0XGOA. 796

Russian 797

• RULEC-GEC https://github.com/ 798

arozovskaya/RULEC-GEC. 799

• Synthetic data: not available yet. 800

C Examples of elementary edits 801

See Table 10. 802

D Ablation studies 803

D.1 Additional losses 804

The choice of model architecture and training pa- 805

rameters may seem arbitrary. Therefore in this 806

section we study other possible variants of mod- 807

ern architecture. The architecture used in main 808

experiments has the following key components: 809

1. The model is trained with cross-entropy classi- 810

fication loss without any additional objectives. 811

2. The loss is normalized separately for positive 812

and negative instances. 813

3. The encoding of the first token in the output 814

span is used as edit representation. 815

4. The classification module contains a single 816

hidden layer. 817

5. Except for the classification module, no ad- 818

ditional layers are added on the top of main 819

Transformer encoder. 820
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Source Until the dawn all of them go out , so they sacred until they find a refuge .
Correct By dawn all of them had got out , so they sacred until they found a refuge .

Edit Target Gain Label
Rule-based edit generator

(1, 2, the) → _ Until dawn all of them go out , so they sacred until they find a refuge . 1.33 True
(11, 11, _) → are Until the dawn all of them go out , so they are sacred until they find a refuge . 0.95 False

(3, 3, _) → , Until the dawn , all of them go out , so they sacred until they find a refuge . 0.95 False
(11, 11, _) → were Until the dawn all of them go out , so they were sacred until they find a refuge . −1.73 False

(-1, -1, _) → _ Until the dawn all of them go out , so they sacred until they find a refuge . 0.00 False
BERT-GEC edit generator

(11, 11, _) → are Until the dawn all of them go out , so they are sacred until they find a refuge . 0.06 False
(1, 2, the) → _ Until dawn all of them go out , so they sacred until they find a refuge . −0.06 True

(11, 11, _) → stay Until the dawn all of them go out , so they stay sacred until they find a refuge . −0.24 False
(0, 2, Until the) → Before Before dawn all of them go out , so they sacred until they find a refuge . −0.79 False
(12, 12, _) → themselves Until the dawn all of them go out , so they sacred themselves until they find a refuge . −2.95 False

(0, 2, Until the) → Up until Up until the dawn all of them go out , so they sacred until they find a refuge . −2.99 False
(-1, -1, _) → _ Until the dawn all of them go out , so they sacred until they find a refuge . 0.00 False

GECToR edit generator
(0, 1, Until) → In In the dawn all of them go out , so they sacred until they find a refuge . 5.35 False

(1, 2, the) → _ Until dawn all of them go out , so they sacred until they find a refuge . 4.59 True
(0, 1, Until) → _ The dawn all of them go out , so they sacred until they find a refuge . 4.01 False

(0, 1, Until) → As As the dawn all of them go out , so they sacred until they find a refuge . 2.86 False
(12, 13, until) → _ Until the dawn all of them go out , so they sacred they find a refuge . 1.21 False

(15, 16, a) → _ Until the dawn all of them go out , so they sacred until they find refuge . 1.01 False
(7, 8, out) → _ Until the dawn all of them go , so they sacred until they find a refuge . 0.72 False

(0, 1, Until) → By By the dawn all of them go out , so they sacred until they find a refuge . 0.71 True
(3, 3, _) → , Until the dawn , all of them go out , so they sacred until they find a refuge . 0.65 False

(8, 10, ,_so) → . So Until the dawn all of them go out . So they sacred until they find a refuge . 0.48 False
(6, 7, go) → went Until the dawn all of them went out , so they sacred until they find a refuge . −0.55 False

(8, 9, ‘,‘) → _ Until the dawn all of them go out so they sacred until they find a refuge . −0.81 False
(12, 12, _) → , Until the dawn all of them go out , so they sacred , until they find a refuge . −1.18 False

(14, 15, find) → found Until the dawn all of them go out , so they sacred until they found a refuge . −3.76 True
(-1, -1, _) → _ Until the dawn all of them go out , so they sacred until they find a refuge . 0.00 False

Table 10: Output of different edit generators for the sentence Until the dawn all of them go out , so they sacred until
they find a refuge . Gain column contains the first stage score.

We test the following architecture modifications:821

1. Adding an additional ranking objective. We
do it adding standard margin loss:

L(x+, x−) = max (g(x−)− g(x+) + θ, 0),

L= LCE + α

∑
(x+,x−)∈P

L(x+,x−)

|P | .

Here g is the logit of positive class before822

sigmoid, P is the set of contrastive pairs of823

batch elements, θ is a margin hyperparameter824

and α is the additional loss weight 17. We825

investigate 3 variants of defining P :826

• All pairs of positive and negative in-827

stances (+soft),828

• Only pairs of positive and negative in-829

stances whose spans intersect(+hard),830

• All pairs of the form (e+, e0) and831

(e0, e−), where e+, e− and e0 are pos-832

itive, negative and “do nothing” edits,833

respectively(+contrast).834

17We set α = 0.25, θ = 2.0.

2. Removal of class normalization (no_norm). 835

3. Using the CLS token (cls), mean representa- 836

tion of output span (mean) and concatenation 837

of output and source span (origin) as edit en- 838

codings. 839

4. Adding one more hidden layer in the classifi- 840

cation block (‘2 layers‘). 841

5. Adding an additional Transformer layer be- 842

tween all the edit representations for the same 843

sentence (+attention). That allows to poten- 844

tially use information from other hypotheses. 845

We run all ablation experiments on the concate- 846

nation of W&I+LOCNESS train and FCE datasets 847

using GECToR edit generator, results are given in 848

Table 11. For all the models we select the best per- 849

forming checkpoint and threshold according to the 850

F0.5 score and perform stagewise decoding. For 851

those models that improve over the basic one on 852

the small dataset, we run additional testing on full 853

BEA train data without finetuning. 854

We observe that additional losses that are helpful 855

in low-resource setting even decrease performance 856
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Model W&I+FCE BEA 2019 train+finetune
P R F0.5 P R F0.5

Basic 55.5 26.7 46.1(+0.0) 60.4 34.1 52.5(+0.0)

+hard 55.1 26.4 45.8(−0.3) NA NA NA
+soft 55.2 30.8 47.6(+1.5) 58.2 35.3 51.6(−0.9)
+contrast 55.1 31.1 47.7(+1.6) 60.9 30.1 50.5(−2.0)

no_norm 55.8 27.4 46.2(+0.1) NA NA NA
CLS 57.7 22.0 43.5(−2.6) NA NA NA
+mean 58.0 27.0 47.2(+1.1) 61.6 31.6 51.8(−0.7)
+origin 57.4 26.2 46.4(+0.3) NA NA NA
2layers 55.6 27.7 46.3(+0.2) NA NA NA
+attention 52.8 31.4 46.4(+0.3) NA NA NA

Table 11: Comparison of different architecture modifications, the number in brackets is the difference with the
‘Basic‘ model used in the paper. See the list above for a complete description.

for larger data. Thus the variant used in the paper857

is the most effective despite being the simplest,858

however, a more detailed study is required.859

D.2 Decoding ablation860

In the first experiment in Table 12 we vary the de-861

coding algorithm and the decision threshold. We862

provide the scores for the model trained with GEC-863

ToR edit generation on full training data before and864

after finetuning on W&I-LOCNESS training data.865

Another notable pattern is that before finetuning the866

best F0.5-score is achieved at threshold 0.6− 0.7,867

while afterwards the optimal threshold is 0.8− 0.9.868

These values are stable across datasets, so setting869

the threshold to 0.7 before finetuning and to 0.9870

after it is nearly optimal, thus threshold tuning is871

almost unnecessary.872

In Table 13 we also analyze how the quality of873

the model depends on the maximal number of edits874

allowed. We observe that recall and F0.5 score are875

improved up to 8 edits per example. The differ-876

ence between stagewise and parallel algorithms is877

about 0.5 − 0.7 F0.5 score. It follows the experi-878

ence of (Omelianchuk et al., 2020), where iterative879

rewriting (the analogue of our stagewise decoding)880

improved performance even more significantly.881

E Limitations and risks of the work882

Our method relies on either the existence of a883

grammatical error correction model that can serve884

as model-based generator or a pretrained LM to885

be used with rule-based generator. With the ex-886

istence of multilingual language models these re-887

quirements are fulfilled for most of high- or middle-888

resource languages. A more serious limitation is889

the existence of labeled corpus of grammatical er- 890

rors and its quality. 891

Concerning practical applications of our work, 892

we mentioned that it can be used for automatic cor- 893

rection of learner sentences, for example, in the 894

field of Second Language Learning. However, we 895

acknowledge that real-word learner errors differ 896

from the ones in the academic datasets. It implies 897

that before applying our model or its extension in 898

any practical setting an additional study is required 899

to check whether its precision is enough for prac- 900

tical usage. In particular, its corrections should be 901

verified by a human in case of usage for automatic 902

essay scoring and related tasks. 903

The model was trained on examples from aca- 904

demic datasets that may be biased towards students 905

having particular mother tongue. Therefore an addi- 906

tional investigation is required, whether the model 907

has equal quality for the sentences from English 908

learners with different native languages and profi- 909

ciency levels. 910
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Threshold Before finetuning After finetuning
P R F0.5 P R F0.5

0.5 59.2 30.7 49.9 57.1 39.8 52.6

0.6 60.5 29.8 50.2 58.6 38.9 53.2

0.7 63.1 27.7 50.2 60.7 37.9 54.2

0.8 68.8 22.7 48.9 63.1 35.9 54.8

0.9 79.9 10.7 34.8 69.2 30.9 55.4

Table 12: Precision, recall and F0.5 score on BEA 2019 development set with different decision thresholds
with/without finetuning using parallel decoding. Models are trained on synthetic data and BEA 2019 full train set
and finetuned on W&I-LOCNESS train set with GECToR edit generator.

1 2 3 4 5 6 7 8
Parallel Precision 72.9 70.6 69.6 69.5 69.4 69.4 69.4 69.4

Recall 18.8 25.7 28.0 29.0 29.3 29.5 29.5 29.5
F0.5 score 46.2 52.4 53.7 54.3 54.5 54.6 54.6 54.6

Stagewise Precision 72.9 71.0 70.1 69.4 69.2 69.1 69.0 69.0
Recall 18.8 25.9 30.4 28.8 29.9 30.5 30.9 31.0
F0.5 score 46.2 52.6 54.5 54.9 55.2 55.3 55.4 55.4
(F0.5 gain) (+0.00) (+0.2) (+0.8) (+0.6) (+0.7) (+0.7) (+0.8) (+0.8)

Table 13: Dependence of model performance from the maximal allowed number of edits. The last row is the
difference between stagewise and parallel decoding algorithms.
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