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ABSTRACT

Recently, through numerous works Esteban et al. (2017); Mogren (2016); Yoon
et al. (2019) attempts were made to obtain generative models for time series that
correctly reproduce the underlying temporal characteristics of a given training
data set. However, we prove in this work that the performance of these mod-
els is limited on datasets with high-variability for example containing different
classes. In such setups, it is extremely difficult for a generative model to find the
right trade-off between sample fidelity i.e. their similarity to the real time series
and sample diversity. Furthermore, it is essential to preserve the original classes
and the variation within each class. To tackle this issue, we propose a new gen-
erative class sensitive model, Class-specific Recurrent GAN (CLaRe-GAN), that
conditions the generator on an auxiliary information containing the class-specific
and class-independent attributes. Our model relies on class specific encoders: a
unique encoder for two contradictory functionalities i.e. extracting the inter- and
intra-class attributes. To extract the high-level representation of the time series,
we make a shared-latent space assumption Liu et al. (2017). At the same time,
we use a class discriminator that discriminates between the latent vectors to ef-
ficiently extract the class-specific attributes. We test our approach on a set of
publicly available datasets where the number of classes, the length and the num-
ber of available times series for each class varies and evaluate our approach both
visually and computationally. We prove that our model outperforms the state-of-
the-art generative models and leads to a significant and consistent improvement
in the quality of the generated time series while at the same time preserving the
classes and the variation of the original dataset.

1 INTRODUCTION

In spite of the great success of GANs with images Karras et al. (2019; 2020); Donahue & Simonyan
(2019), their utility and use on time series data is still limited. Indeed, finding a suitable generative
model for time series is challenging and a lot of factors must be considered when designing a good
generation framework for this type of data. One main requirement is that the time series generation
preserves the temporal relationship between the data points. Moreover, as for other types of data,
an efficient generative model should be able to find a compromise between sample fidelity, i.e. the
similarity of the generated data to the real ones and sample diversity, i.e. reproducing the variation
of the real data. This is particularly challenging for datasets with high variability such as datasets
with multiple classes, where one or many classes are misrepresented i.e. in imbalanced setups or
when the difference between the classes is not obvious and outstanding. A possible solution to
this problem would be to train a specific GAN for each class, however this reduces the potential to
learn characteristics common to all classes from the full training data set. For such datasets, it is
fundamental to produce samples of high-quality that reflect the inter- and intra-class variation. This
means that all the classes of the real dataset must be represented in the synthetic samples and that
the diversity within each class should be preserved.

A first generative model for continuous sequential data was proposed by Mogren Mogren (2016)
namely C-RNN-GAN consisting of a recurrent Generator and Discriminator. A well-known method
to improve the performance of GAN is to condition GAN on additional information extracted from
the original data Mirza & Osindero (2014). In this context, Cristobal et al. proposed a more efficient
model, RCGAN Esteban et al. (2017), i.e. a recurrent GAN augmented with auxiliary conditional
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information. More recently, Yoon et al. introduced TimeGAN that preserves better the temporal
dynamic between the data points and that can be used on mixed datasets i.e. dataset with static and
temporal data. In this work, we will prove that these state-of-the-art frameworks, despite generating
realistic time series in simple environments, fail to produce acceptable results preserving the inter-
and intra-class diversity of the original dataset on multi-class datasets. Driven by the recent success
of conditional GAN Mirza & Osindero (2014) and similar to RCGAN, we introduce Class-Specific
Recurrent GAN (ClaRe-GAN) a generative class sensitive framework for time series. Our approach
is based on the simple and intuitive idea: to deal with datasets of high-variability, learning their
inter- and intra-class variations is the basis and hence our starting point. We assume that time series
from various classes within the same dataset share some common information and that this should
be contained in the generated data. To extract this information, we use class-specific encoders,
one encoder per class and make a shared-latent space assumption enforcing the latent vectors to
be mapped to a common latent space. At the same time, a major challenge when using GAN on
datasets with multiple classes is not only to preserve the classes but also the diversity within each
class. To achieve this, we use an extra class discriminator, that is trained by applying a class adver-
sarial loss to enable an efficient comparison between the latent codes of the different encoders and
a precise extraction of the class-specific attributes. Thanks to this special setup we ensure that the
extracted latent codes are class-specific and, at the same time, contain the high-level representations
of the original dataset. Moreover, our framework uses a collection of loss functions borrowed from
image-to-image translation techniques and generative models for images to improve the diversity of
the generated time series. We finally prove that a Generator conditioned on these representations
outperforms the existing models by generating time series of much higher-quality i.e. diverse sam-
ples that preserve the classes of the original dataset and their properties very well (high fidelity). In
order to encourage reproducibility, our code will be made available if the paper is accepted.

We test our approach on a collection of datasets from the UEA & UCR Time Series Classification
Repository Bagnall et al. (2018) which vary in time series’ length and number of classes and com-
pare its performance to the state-of-the-art generative models for time series. The performance of
our model is evaluated against different criteria namely diversity, fidelity and usefulness. In order
to enable a fair comparison, we use the same evaluation metrics of Yoon et al. (2019) i.e. Discrim-
inative and Predictive Score. While the Discriminative Score assess the fidelity of the generated
time series through a classifier meant to distinguish between the real and the generated datasets, the
Predictive Score evaluates the usefulness of the generated data on prediction tasks. Furthermore, we
visualize the real and the synthetic time series in full and reduced dimensions using PCA Bryant
& Yarnold (1995) and t-SNE Maaten & Hinton (2008) analysis such as in Yoon et al. (2019) to
allow a direct comparison and to asses the diversity of the generated time series. In the conducted
experiments, we show that our method is scalable with the length of the time series and the number
of classes and conclude that our framework produces time series of high-quality. It outperforms the
existing state-of-the-art methods visually and computationally enabling significant progress in the
research area of generative models for time series.

2 RELATED WORK

Recently, several generative models for time series data have been proposed. Mogren proposed
C-RNN-GAN Mogren (2016), illustrated in Fig. 1 (d), that consists of a recurrent Generator and
Discriminator and uses techniques from Salimans et al. (2016) to stabilize the GAN’s training. The
proposed framework was tested on classical music. Later, Cristobal et al. proposed RCGAN Esteban
et al. (2017) (Fig. 1 (c)) a conditional version of recurrent GAN that conditions the input of the
generator and the discriminator on an additional information. A more sophisticated architecture was
presented by Yoon et al. Yoon et al. (2019) in TimeGAN (Fig. 1 (d)) consisting of an embedding and
recovery functions and a recurrent Generator and Discriminator. The main goal behind TimeGAN
was to design a good generative model that preserves the temporal dynamic for mixed datasets with
temporal and static data. Unlike these models, our approach presents an efficient architecture to
extract the conditional information i.e. the class-specific and class-independent attributes of the
dataset. This is achieved by means of a special architecture for the class-specific encoders and
an additional class discriminator that discriminate between the latent representations by applying
a class adversarial loss. A comparison between the different models architecture is illustrated in
Fig. 1.
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Figure 1: Comparison of the architecture of the different generative models for time series data. The
used loss functions are depicted in lilacs Xs, Xs and Xt, Xt denotes the static and temporal data
respectively. X1 and X2 are time series from two different classes.

Learning efficient representation of time series have been exhaustively investigated to perform dif-
ferent Machine Learning (ML) tasks i.e. for clustering purposes Ma et al. (2019), to perform classifi-
cation tasks in semi-supervised Jawed et al. (2020) or unsupervised Srivastava et al. (2015) settings
and to perform forecasting Lyu et al. (2018) or prediction Dai & Le (2015) or to achieve disen-
tanglement Li & Mandt (2018). In this context, Denton et al. (2017) applied an adversarial loss
to split the video frames into time-dependent and time-independent parts. This method was later
adopted by Lee et al. (2018; 2020) in order to disentangle each image in content and attribute to
perform image-to-image translation tasks. In a similar fashion, the class discriminator is trained
via an adversarial loss to distinguish between the representations of the different classes. Moreover,
representation learning was successfully applied in several application domains such as for medical
purposes Jones et al. (2016) to model different medical concepts Choi et al. (2016) or to predict the
patient phenotype Suresh et al..

Different attempts in conditioning GAN based on an auxiliary information have been proposed in the
literature. Several works focused on the generator and discriminator architectures and the methods
used to concatenate the label with the data Mirza & Osindero (2014); Reed et al. (2016). Oth-
ers proposed a projected based discriminator Miyato & Koyama (2018) or a class-aware generator
Zhou et al. (2020). Conditional GAN was also used for other purposes than image generation such
as image-to-image translation Kim et al. (2017) or text-to-image translation Zhang et al. (2017).
Rather than conditioning the generator on the label or proposing a class-aware architecture for the
generator Zhou et al. (2020), we propose a novel approach that conditions the generator on an aux-
iliary information that efficiently regroup the common characteristics between the different classes
and the class-specific representation.

3 CLASS-SPECIFIC RECURRENT GAN

In Conditional GAN (cGAN), labeled setups were used to condition the input of the generator lead-
ing to a significant improvement in the quality of generated data. In a similar fashion, we exploit the
supervised setup to find a good generative model for time series stemming from different classes.
Our main goal is to learn the inter- and intra-class variations of the dataset and to exploit this in-
formation to improve the quality and the diversity of the generated time series. Our approach com-
bines class-specific encoders and a class discriminator to enable an efficient extraction of the class-
dependent and class-independent attributes. Our model is composed of class-specific encoders, one
encoder per class, a class discriminator and recurrent generators and discriminators, as illustrated in
Fig. 1. Class-specific encoders are trained in a parallel manner using the real time series belonging
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to the different classes and the class discriminator. Our model can therefore be used for any number
of classes.

We consider a set X = X1 ∪ X2 ∪ . . . ∪ XN of labeled time series {xt}Tt=1 from N different

classes following a distribution Pr. Let Str
r =

{
xtr1,1:T , x

tr
2,1:T , . . . , x

tr
k,1:T

}
be a set of training

samples uniformly sampled from Pr. For each class n ∈ {1, . . . , N}, we use a GAN consisting
of a Generator Gn and a Discriminator Dn to learn a distribution Pg that approximates Pr. The
Discriminator Dn is a binary classifier that tries to distinguish between the real time series and the
ones synthesized by the GeneratorGn. The minimax game between both components is summarized
as follows:

LGAN (Gn, Dn) = Ex∼p(x) [log (Dn (x))] + Ez∼pz(z) [log (1−Dn (Gn (z)))] (1)
where z is a latent vector and x ∈ Xn.

A class-specific encoderEn : Xn → C learns a representation for each time series x ∈ Xn belonging
to the same class n by mapping them into a vector of predetermined length. This class-specific
encoder is used to gather class-specific and class-independent attributes by learning the factor of
variation of each real time series:

cnx = En (x) (2)
We assume that all time series are mapped to the same latent space C. This is achieved by sharing the
weights Liu et al. (2017) of the last 2 layers of the encoders. This assumption guarantees a common
extraction of the high-level representation of the time series i.e. we extract the class-independent
properties. At the same time, the class-specific encoders are trained adversarially by means of an
additional class-specific discriminator. It discriminates between the representation of the different
time series to enable an efficient extraction of the class-specific features. The extracted latent codes
are later concatenated with an input noise vector in a sophisticated manner to generate time series
of high-quality. Furthermore, we make no restriction on the architecture of these encoders in our
case we used Convolutional Neural Networks, but architectures such as fully connected layers or
Recurrent neural networks can replace those as well.

Inspired by Lee et al. (2018; 2020), we impose a class discriminator DCl
X to discriminate between

the learn class representations of the encoders En allowing a more precise extraction of the different
class features. The class discriminator is trained by applying a class adversarial loss to improve the
quality of the variation learned by the encoders. For a dataset with 2 classes the class adversarial
loss can be expressed as follows:

Ladv

(
E1, E2, D

Cl
X
)
= Ex1

[
0, 5 · log

(
DCl
X (E1 (x1))

)
+ 0, 5 · log

(
1−DCl

X (E1 (x1))
)]

+

Ex2

[
0, 5 · log

(
DCl
X (E2 (x2))

)
+ 0, 5 · log

(
1−DCl

X (E2 (x2))
)]

(3)

As in Karras et al. (2019; 2020), our generator Gn : {C, z} → X is equipped with a mapping
function f : Rm → W consisting in 3 fully connected layers. However, our mapping function f is
used on the noise vector z instead of the latent vector cnx i.e. f (z) = w where the noise vector z is
sampled randomly from a pre-defined distribution. In our case, we used the Gaussian distribution.
The obtained vector w is later concatenated with the latent code cnx and fed to a Recurrent Neural
Networks (RNNs). Like all other generative models designed for time series we opt for the usage
of RNNs due to their well-known ability in modeling sequential data. We used in our case Long
short-term memory (LSTM) but we make no restriction on the recurrent architecture.

Our discriminator Dn : X → [0, 1] minimizes the original discriminator loss function as proposed
by Goodfellow when introducing GAN i.e. Eq. 1. We use multi-scale discriminators Wang et al.
(2018); Zhang et al. (2018) originally designed for images. In this case, many discriminators are
used and trained with different image resolutions. In our experiment, we found that this multi-
scaling techniques i.e. feeding the same input time series under different levels of compression to
a multitude of discriminators eases the training process and improves the quality of the synthesized
time series. Additionally to the class adversarial loss, we apply further loss functions that facilitate
the training and improve the quality of the generated time series.

Mode Seeking regularization To improve the diversity of the generated data and to prevent mode
collapse, we apply the mode seeking regularization term Mao et al. (2019) that helps to capture
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the different modes present in the real dataset by maximizing the ratio of the distance between two
generated time series G (x, z1) and G (x, z2) given an input time series x, and two latent noise
vectors z1 and z2,

Lms = max
Gn

(
dx (Gn (z1, x) , Gn (z2, x))

dz (z1, z2)

)
(4)

where d∗ denotes the mean absolute error.

The full objective function of our framework can then be written as:

λGANLGAN (Gn, Dn) + λcadvLadv

(
E1, E2, D

Cl
X
)
+ λmsLms + λc ‖ cnx ‖2 (5)

where ‖ cnx ‖2 is a L2 regularization term applied to prevent overfitting and λGAN , λcadv and λms

are the model parameters. The used loss function are summarized in Fig. 1. In our experiments, we
used λGAN = 1, λcadv = 1 λc = 0.01 and λms = 1e− 5.

4 EVALUATION METHODS

In order to enable a fair comparison between the different frameworks we use as part of our eval-
uation the evaluation methods proposed in Yoon et al. (2019) when introducing TimeGAN. It is to
be noted that TimeGAN was also compared to the previous existing frameworks namely RCGAN
and C-RNN-GAN. As in Yoon et al. (2019), we focus on three important criteria when assessing the
quality of the generated data namely diversity, fidelity and usefulness:

• Diversity the generated data should reflect the variation present in the real dataset
• Fidelity the generated data must be indistinguishable from the real ones
• Usefulness asses the applicability and the utility of the generated data i.e. the synthetic

samples should be as useful as the real data when performing prediction tasks

We perform a computational and visual evaluation by computing the Predictive and Discriminative
scores and by visualizing the synthetic and real samples:

• Discriminative Score Yoon et al. (2019) A 2-layer LSTM is trained to discriminate be-
tween the real and synthetic samples. During the training process, each real time series
is labeled as real and each generated time series is labeled as fake. The Discriminative
score denotes classification error of a test set consisting of a mix between real and gener-
ated samples. This score measures the similarity between both datasets and hence checks
whether the generated samples are indistinguishable from the real data i.e. fulfill the fidelity
criterion.

• Predictive Score In order to assess the usefulness of the generated time series, a 2-layer
LSTM is trained to predict the next coming value for each sequence of the generated time
series. The trained model is later tested on the real time series. The Predictive score
represents the mean absolute error between the predicted and the real values.

• Visualization Yoon et al. Yoon et al. (2019) applied t-SNE Maaten & Hinton (2008) and
PCA Bryant & Yarnold (1995) on the real and generated time series to enable an efficient
comparison of the two distributions in a 2-dimensional space. These visualizations aim
to compare the diversity of the real and synthetic samples. However, we will show in the
following that the evaluation of time series similarity in a reduced dimension space alone is
not sufficient to ensure high quality time series. To convince the reader about the generated
time series, we opt for an additional visualization method where we plot all the real time
series and the generated time series side-by-side to enable a direct comparison.

5 EXPERIMENTS

Dataset Description We evaluate the performance of our approach on a collection of publicly avail-
able datasets from the UEA & UCR Time Series Classification Repository Bagnall et al. (2018;
2017) with time series of different properties namely ItalyPowerDemand, TwoLeadECG Goldberger
et al. (2000), Yoga, DistalPhalanxTW Davis (2013) and FreezerRegularTrain. The datasets used in
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Table 1: Summary of the characteristics of the used datasets. The datasets are publicly available in
the UEA & UCR Time Series Classification Repository Bagnall et al. (2018) and differ in the length
of the time series the number of classes and the ratio of data per class.

Dataset Length Number of classes Ratio of data available per class
ItalyPowerDemand 24 2 50%-50%

TwoLeadECG 82 2 50%-50%
FreezerRegularTrain 301 2 50%-50%

Yoga 425 2 50%-50%
DistalPhalanxTW 80 6 34,18%-34,18% -3,48%-5,76% -16,08%-% 6,32

our experiments vary in the length of the real time series ranging from 24 to 425, the number of
class present in the real dataset ranging from 2 to 6, the number of time series per class: balanced
and imbalanced datasets, and the characteristics of the times series such as the class properties or
the level of noise. Table 1 summarizes the characteristics of the used datasets. The experiments
are conducted on t2.large AWS EC2 instances with 8 GiB of system memory and 2 vCPUs. For a
detailed description of the implementation, we refer to the appendix.

Baseline We compare our method to the state-of-the-art generative models for time series data
namely TimeGAN Yoon et al. (2019), RCGAN Esteban et al. (2017) and C-RNN-GAN Mogren
(2016).

Results The results of the PCA analysis are illustrated in Fig. 2. We clearly see that C-RNN-GAN
shows a limited performance in terms of samples diversity. A better performance was noticed for
RCGAN with the ItalyPowerDemand, TwoLeadECG and Yoga datasets. However, the distribution
of the samples generated by RCGAN differs from the distribution of the real samples. Furthermore,
the samples generated by TimeGAN are not as diverse as the real dataset for the TwoLeadECG
dataset and TimeGAN fails in capturing the distribution of the real samples for the other datasets.
The PCA and t-SNE (available in appendix) plots show that there is a significant improvement in the
diversity of the samples generated by ClaRe-GAN in comparison with the other methods. We clearly
see that the distribution of the samples generated by ClaRe-GAN is the closest to the distribution
of the real samples and that the performance of CLaRe-GAN scales well with the number of class
and the ratio of data available per class (DistalPhalanxTW dataset) and the length of the time series
(Yoga and FreezerRegularTrain datasets). ClaRe-GAN was able to capture the distribution of the
real data independently of the dataset and its properties.

To allow a direct comparison of the time series, we visualize the real and generated time series by
each model. The results for the yoga dataset are depicted in Fig. 3. Further examples are available
in Appendix. We clearly see that visualizing both datasets in a reduced 2-dimensional space is not
enough. In fact, Fig. 3 shows that the time series generated by RCGAN are noisy and the main class
properties are ignored during the generation process. Moreover, according to Fig. 2, TimeGAN is
showing a good performance and the difference between the distribution of the generated and the
real samples is not as important as for RCGAN. However, we see in Fig. 3 that the time series
generated by TimeGAN don’t reflect the properties of the real dataset and are smoother than the
real ones. In contrast to that, ClaRe-GAN captures properly the properties of the real dataset and its
class characteristics. While the state-of-the-art methods presented a poor or limited performance,
our method was able to learn the inter- and intra-class variations of the original dataset and to reflect
these properties in the generated dataset.

The fidelity and usefulness of the generated time series are assessed with the Discriminative and
Predictive Score respectively. The obtained results are summarized in Tables 2 and 3. They show
that the fidelity and usefulness of the time series synthesized by C-RNN-GAN is limited. A better
performance is noticed for RCGAN and TimeGAN. For all the datasets and independently from their
characteristics, ClaRe-GAN achieves the lowest Predictive and Discriminative Scores which proves
that the time series generated by this framework are of high-fidelity and are as useful as the real time
series. For example, a great improvement was noticed in terms of Discriminative Score (half of the
best Discriminative Score achieved by the other methods) for the yoga dataset. Moreover, for the
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DistalPhalanxTW dataset, an imbalanced dataset with 6 classes, the ClaRe-GAN’s Predictive Score
is equal to 0,13. It is to be noted that ClaRe-GAN is also the most efficient in terms of computation.

Figure 2: Comparison of the real (depicted in green) and generated (depicted in orange) dataset
with PCA. Each row corresponds to a specific dataset and each column to a method. The results
are presented in the following order (top to bottom): ItalyPowerDemand, TwoLeadECG, Yoga,
DistalPhalanxTW and FreezerRegularTrain.

6 CONCLUSION

We introduced a new generative model for time series with class information which efficiently sim-
ulates novel times series capturing both the class association and variability of the training data set.
Our approach relies on class conditional encoders and a class discriminator to extract simultane-
ously class-specific and class-independent features. We compared our model to different state-of-
the-art generative models for time series and prove that our model extracts effectively the inter- and
intra-class features leading to a drastic improvement in the quality of the synthesized time series
even in challenging setups such as imbalanced datasets. In the future, we plan to investigate the
utility of our framework for other purposes such as translation or domain adaptation tasks. Further-
more, the generalization to multivariate time series data and the proper evaluation of these results is
a planned next step.

7



Under review as a conference paper at ICLR 2021

Figure 3: Illustration of the real and generated time series by ClaRe-GAN, RCGAN, C-RNN-GAN
and TimeGAN for the Yoga dataset. The time series are depicted in black. The red line presents an
example time-series for each subplot. For the conditional GANs, ClaRe-GAN and RCGAN, and the
real dataset we visualize the time series of each class separately.

Table 2: Discriminative Scores computed on the time series generated by the different frameworks
(ClaRe-GAN TimeGAN, RCGAN and C-RNN-GAN) for the different datasets namely TwoLead-
ECG, Yoga and DistalPhalanxTW. A lower Discriminative Score denotes a high-fidelity to the real
datasets.

Dataset ClaRe-GAN TimeGAN RCGAN C-RNN-GAN
TwoLeadECG 0.224 0.3985 0.2633 0.4498

Yoga 0.08 0.2 0.17 0.4998
DistalPhalanxTW 0.4273 0.496 0.447 0.4981

Table 3: Predictive Scores computed on the time series generated by the different frameworks
(ClaRe-GAN TimeGAN, RCGAN and C-RNN-GAN) for the different datasets namely TwoLead-
ECG, Yoga and DistalPhalanxTW. A lower Predictive Score denotes a better usefulness of the gen-
erated time series.

Dataset ClaRe-GAN TimeGAN RCGAN C-RNN-GAN
TwoLeadECG 0.117 0.1246 0.127 0.5965

Yoga 0.156 0.157 0.16 0.5349
DistalPhalanxTW 0.1349 0.1749 0.2164 0.4784
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ing clinical predictions through unsupervised time series representation learning. arXiv preprint
arXiv:1812.00490, 2018.

Qianli Ma, Jiawei Zheng, Sen Li, and Gary W Cottrell. Learning representations for time series
clustering. In Advances in neural information processing systems, pp. 3781–3791, 2019.

Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(Nov):2579–2605, 2008.

Qi Mao, Hsin-Ying Lee, Hung-Yu Tseng, Siwei Ma, and Ming-Hsuan Yang. Mode seeking genera-
tive adversarial networks for diverse image synthesis. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 1429–1437, 2019.

Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets. arXiv preprint
arXiv:1411.1784, 2014.

Takeru Miyato and Masanori Koyama. cgans with projection discriminator. arXiv preprint
arXiv:1802.05637, 2018.

O. Mogren. C-rnn-gan: Continuous recurrent neural networks with adversarial training. arXiv
preprint arXiv:1611.09904, 2016.

Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen Logeswaran, Bernt Schiele, and Honglak Lee.
Generative adversarial text to image synthesis. arXiv preprint arXiv:1605.05396, 2016.

Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.
Improved techniques for training gans. In Advances in neural information processing systems,
pp. 2234–2242, 2016.

Nitish Srivastava, Elman Mansimov, and Ruslan Salakhudinov. Unsupervised learning of video
representations using lstms. In International conference on machine learning, pp. 843–852, 2015.

H Suresh, P Szolovits, and M Ghassemi. The use of autoencoders for discovering patient pheno-
types. arxiv [cs. lg] 2017.

Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Andrew Tao, Jan Kautz, and Bryan Catanzaro. High-
resolution image synthesis and semantic manipulation with conditional gans. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pp. 8798–8807, 2018.

J. Yoon, D. Jarrett, and M. van der Schaar. Time-series generative adversarial networks. In Advances
in Neural Information Processing Systems, pp. 5508–5518, 2019.

Han Zhang, Tao Xu, Hongsheng Li, Shaoting Zhang, Xiaogang Wang, Xiaolei Huang, and Dim-
itris N Metaxas. Stackgan: Text to photo-realistic image synthesis with stacked generative ad-
versarial networks. In Proceedings of the IEEE international conference on computer vision, pp.
5907–5915, 2017.

Han Zhang, Tao Xu, Hongsheng Li, Shaoting Zhang, Xiaogang Wang, Xiaolei Huang, and Dim-
itris N Metaxas. Stackgan++: Realistic image synthesis with stacked generative adversarial net-
works. IEEE transactions on pattern analysis and machine intelligence, 41(8):1947–1962, 2018.

Peng Zhou, Lingxi Xie, Xiaopeng Zhang, Bingbing Ni, and Qi Tian. Searching towards class-aware
generators for conditional generative adversarial networks. arXiv preprint arXiv:2006.14208,
2020.

10


	introduction
	Related Work
	Class-specific Recurrent GAN
	Evaluation Methods
	Experiments
	Conclusion

