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Abstract—We study the problem of a local bandwidth recovery
for nonstationary stochastic signals when the measured informa-
tion is given in terms of level crossings. We propose a kernel
estimate of the local bandwidth from samples generated from
level crossings of stochastic signals being the time-warped version
of stationary Gaussian processes. The positivity and bandlimited
nature of the local intensity is captured by the properly selected
class of bandlimited and positive kernel functions. The asymptotic
properties of the estimator are derived.

I. INTRODUCTION

In the conventional signal processing system the sampling
rate corresponding to the Nyquist frequency is kept fixed when
the signal is processed. Such an approach is justified in relation
to signals whose spectral properties do not evolve in time.
However, there are numerous classes of signals whose local
spectral content is strongly varying and the concept of the
global bandwidth is not sufficient. This fact has motivated
a number of researchers [1]–[4] to utilize time-varying lo-
cal properties of the signal and adapt the sampling rate to
the changing frequency content. This, however, requires the
knowledge of the local bandwidth to control time-varying
sampling rate. The approach which can be used for this
purpose is the level-crossing sampling as the mean rate of
level crossings is higher when the signal varies quickly and
lower when it changes more slowly.
In this paper we observe that the local bandwidth can be
directly related to the concept of a local intensity function
characterizing a counting process of level crossings. This
allows us to develop the nonparametric kernel estimate for
the local bandwidth recovery, see [5], [6] for the related
preliminary results. The celebrated Rice theory [7], [8] for
average number of level crossings of stochastic processes is
utilized to establish the link between the local bandwidth and
the level crossings counting process. We consider a class of lo-
cally stationary processes being the time-warping deformation
version of stationary Gaussian processes [9]. The positivity
and bandlimitness of the local bandwidth requires the suitable
correction of our estimate. This is achieved by the proper
choice of bandlimited and positive kernel functions. The
asymptotic properties of the proposed estimate are established
based on the theory of the local martingale characterization of
counting processes.
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The remainder of the paper is organized as follows: Section
2 introduces the examined class of nonstationary signals. In
Section 3 the problem of estimating the time deformation
model from level crossings is formulated. We also present
our basic mathematic tools utilizing the Rice level crossing
theory and the local martingale characterization of counting
processes. Section 4 defines the kernel method for the local
bandwidth estimation. Also in the same section we present
the asymptotic theory of the proposed estimate. The detailed
proofs and simulations studies will be presented elsewhere.
We shall denote by 1(A) the indicator function of the set A.

II. NONSTATIONARY STOCHASTIC SIGNALS: THE TIME
DEFORMATION MODEL

Many processes encountered in biomedical and communi-
cations systems arise from nonstationary phenomenon. The
nonstationary nature of a signal can be manifested by the local
variability or periodically correlated structure. The latter case
is represented by a class of cyclostationary random signals
[10], [11]. A nonstationary stochastic signal X(t) often reveals
a local stationarity that can be defined in various ways. In
[12] the local stationarity is characterized by the Hölder con-
dition imposed on the autocorrelation function. Nonstationary
processes with a locally time varying spectral representation
were examined in [13], [14]. Yet another approach defines
the local stationarity based on modeling the signal X(t) as a
certain deformation of the stationary process Z(t) [15], [16],
[9]. A rich class of nonstationary signals can be obtained by
imposing amplitude and phase deformation mappings. Hence,
the following deformation model can be considered

X(t) = a(t)Z(θ(t)), (1)

where Z(t) is a zero-mean stationary stochastic process with
finite variance µ0 and covariance function R(τ). The function
a(t) defines the amplitude variation, whereas θ(t) is the
time warping deformation. The nonstationarity of X(t) results
from the time-varying behavior of the variance of X(t), i.e.,
V ar[X(t)] = a2(t)µ0. The further essential contribution to the
signal nonstationarity is provided by the warp function θ(t).
In fact, we have

RX(t, s) = a(t)a(s)R(θ(s)− θ(t)). (2)

The important case of (1) is the time deformation model

X(t) = Z(θ(t)). (3)



This model plays an important role in a number of real-world
applications such as the Doppler effect and also is an inherent
part of nonstationary signal processing, e.g., in speech analysis
to model local expansion (or compression) of time [13], [9],
[17]. This is the deformation model that will be examined in
this paper.
The natural question concerns the inverse statistical infer-
ence problem of recovering the deformation transformation
θ(t) from the observed nonstationary signal X(t). Hence,
one would like to estimate θ(t) from the single realization
{X(t), 0 ≤ t ≤ T} for some finite T . This inverse warping
problem was thoroughly studied in [16], [9]. The detailed
statistical theory for estimating θ(t) from a densely observed
single realization of X(t) was given in [9]. The consistent
estimate of the derivative of θ(t) was proposed assuming that
the input signal Z(t) is a stationary Gaussian process and that
the deformation function θ(t) meets some strong smoothing
conditions. In fact, the weak convergence of an estimate of
(log(θ(1)(t)))(1) was established.
In this paper we address the analogous inverse estimation
problem regarding the model in (3). Nevertheless our statistical
inference is not based on the direct observation of X(t) but
on the event driven samples obtained from level crossings of
X(t). As a result we obtain a consistent estimate of θ(1)(t)
assuming merely that θ(t) is the differentiable, positive and
non-decreasing function. Hence, θ(t) can be represented as

θ(t) =

∫ t

−∞
Ω(s)ds, (4)

where Ω(t) = θ(1)(t) is a positive function often interpreted
as a local bandwidth. Thus, our theory provides consistent
nonparametric estimates of the local bandwidth. As we have
already mentioned, the concept of local bandwidth plays es-
sential role in asynchronous signal processing where irregular
sampling is performed according to the time-varying shape of
the bandwidth [18] , [19], [1], [2], [4], [6], [5].

III. ESTIMATING LOCAL BANDWIDTH FROM LEVEL
CROSSINGS

At the given level u the level crossings measurements can be
represented by the counting process NX

u (t) that is the number
of u−level crossings of the signal X(t) over the interval [0, t].
The goal of this paper is to recover the local bandwidth Ω(t)
representing the model in (3) from the level counting process
NX

u (t) over the interval [0, T ] . The theory of level crossings
for stationary stochastic processes is well established and has
originated from the celebrated Rice formula for the average
number of level crossings in stationary Gaussian processes
[20], [7], [8]. In this paper we use the extended Rice formula
for nonstationary processes and this gives us the link between
the average number of level crossings and the local crossing
intensity function. In the context of the model in (3) the latter
is directly related to the local bandwidth Ω(t).
Our estimation method relies on the counting process
{NX

u (t), 0 ≤ t ≤ T}. In this context no asymptotic con-
vergence is possible in the classical setting (when the sample

size tends to infinity) since the intensity estimation problem
for counting processes does not fall into the large-sample -
smaller distance between sample points framework. In order
to obtain the proper asymptotic we must increase the number
of points falling into the interval [0, T ]. To do so, we let the
mean bandwidth of the input signal Z(t) to increase without
bound. If Z(t) is bandlimited this is effectively equivalent to
the fact that the absolute bandwidth of Z(t) tends to infinity.
The asymptotic with respect to T is not appropriate since, as it
was remarked in [21], [22], this will only add new observations
for t > T but not everywhere.
Fig. 1 illustrates our problem of estimating the local bandwidth
Ω(t) from counting process NX

u (t).
In the following sections we summarize fundamental results on
level crossings for both stationary and nonstationary processes.
In particular we present the version of the Rice formula for
the time deformation process in (3).

A. Stationary Signals and Level Crossings

Let us begin with the simplest case of the stationary Gaussian
process Z(t) that is assumed to be zero mean with smooth
trajectories. The latter is formalized by the requirement that
the first two spectral moments of Z(t) exist or equivalently
that µ0 = var[Z(t)] and µ2 = var[Z(1)(t)] exist. As it was
already defined let NZ

u (t) denote the number of times the
process Z(t) crosses a fixed level u over the interval [0, t].
The following celebrated Rice formula [20], [7], [8] gives the
average value of NZ

u (t).

E[NZ
u (t)] =

t

π
γe−u2/2µ0 , (5)

where
γ =

√
µ2/µ0 (6)

is the so-called mean bandwidth of the process Z(t). Hence,
the stationary Gaussian process is characterized by the con-
stant intensity λu(t) = 1

πγe
−u2/2µ0 at the level u. It is of

great interest to evaluate the formula in (5) for bandlimited
processes. This is illustrated in the following example.
Example 1. Let us consider the stationary bandlimited Gaus-
sian process with R(τ) = sin(ω0τ)

ω0τ)
and the corresponding

spectral density S(ω) = 1
2ω0

1(|ω| ≤ ω0). Then, µ0 = 1 and

µ2 =
ω2

0

3 yielding the mean mean bandwidth

γ =
ω0√
3
. (7)

Z(t) X(t) NX
u (t)

Level uΩ(t)

Deformation

Fig. 1. The process of recovery of the local bandwidth Ω(t) from the level-
crossing counting process NX

u (t).



Hence, the Rice formula in (5) reads as follows

E[NZ
u (t)] =

t

π

ω0√
3
e−u2/2µ0 . (8)

This reveals that the average number of level crossings over a
finite time interval is increasing with the bandwidth ω0.
If u = 0 (zero crossings) the Rice formula gives the average
sampling rate equal to τR = π

√
3/ω0. Tthe Shannon sampling

theory suggests the average sampling rate τS = π/ω0. As
τS < τR this clearly reveals the advantage of level-crossing
sampling over the classical time-domain scheme.

B. Nonstationary Signals and Level Crossings

The level-crossing rate for nonstationary stochastic processes
is characterized by the local crossings intensity function λu(t)
at the level u. In fact, the the average number of level crossings
of the smooth nonstationary stochastic process X(t) over the
interval (s, t) is given by

E[NX
u ((s, t))] =

∫ t

s

λu(τ)dτ. (9)

It is known [7] (Chapter 8), [23] (Chapter 3.10) that for a wide
range of nonstationary random processes the local crossings
intensity λu(t) is given by the following formula

λu(t) =

∫ ∞

−∞
|v|fX,X(1)(u, v; t)dv, (10)

where fX,X(1)(u, v; t) is the joint density of (X(t), X(1)(t))
that depends on t due to the non-stationarity of the process
X(t). The explicit form of λu(t) in (10) is difficult to obtain
as the joint density function of (X(t), X(1)(t)) can have a
complex form. Nevertheless, specializing the result in (10) to
the time deformation model in (3) leads to the following result.
Lemma 1. Let X(t) be the time deformation process in (3),
where θ(t) is the positive, differentiable and non-decreasing
function with θ(1)(t) = Ω(t). Let Z(t) be the zero mean
stationary Gaussian process with finite spectral moments µ0,
µ2. Then, we have

λu(t) = Ω(t)E[NZ
u (1)], (11)

where E[NZ
u (1)] is defined in (5) .

The result in (11) yields the following formula for the average
value of level crossings for the nonstationary process in (3)

E[NX
u (t)] = αu

∫ t

0

Ω(s)ds, (12)

where αu = 1
πγe

−u2/2µ0 and γ is the mean bandwidth of
Z(t). Thus, the intensity function is of the multiplicative form,
i.e., we have

λu(t) = αuΩ(t). (13)

If Z(t) is bandlimited (with the bandwidth ω0) αu is propor-
tional to ω0. The class of counting processes for which the
local intensity function has this form is called the multiplica-
tive intensity model that was thoroughly examined in [24].
The following example illustrates the identity in (13).

Example 2. Let us consider the bandlimited Gaussian signal
Z(t) examined in Example 1. Then, by (11) and (8) we obtain

λu(t) = Ω(t)
ω0

π
√
3
e−u2/2µ0 . (14)

C. Level Crossings Counting Process
The level crossings counting process NX

u (t) can be examined
by techniques developed in the general theory of counting
processes [24], [25]. The process NX

u (t) can be written as

NX
u (t) =

∑
i

1(ti ≤ t), (15)

where {ti} are ordered time points where level crossing events
are taking place. The cumulative intensity

∫ t

0
λu(τ)dτ is just

the average E[NX
u (t)] given in (12). This reveals that the

process

MX
u (t) = NX

u (t)−
∫ t

0

λu(τ)dτ (16)

is the residual process for which we have E[MX
u (t)] = 0. It

turns out [25] that the process MX
u (t) forms the local mar-

tingale with the increment dMX
u (t) satisfying the following

formula
dMX

u (t) = dNX
u (t)− λu(t)dt. (17)

Hence, the increment of the counting process dNX
u (t) can be

written in the signal plus noise form dNX
u (t) = λu(t)dt +

dMX
u (t), where the increment dMX

u (t) is the zero mean
martingale. The martingale process reveals jump points at
the level crossing points of the counting process NX

u (t).
The probabilistic properties of dMX

u (t) are crucial for the
asymptotic results presented in this paper. The local behavior
of the noise process MX

u (t) with u = 0 (zero crossings) is
illustrated in Fig.2.

IV. NONPARAMETRIC LOCAL BANDWIDTH ESTIMATION

Owing to (15) we note that the formal derivative of NX
u (t)

is the sum of delta functions defined at the event points {ti}.
This and (12) suggest the following naive estimate of λu(t)

λ̃u(t) =
∑
tk≤T

δ(t− tk),
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Fig. 2. The zero crossings counting process NX
u (t), the cumulative intensity∫ t

0 λu(τ)dτ and the corresponding residual process MX
u (t) = NX

u (t) −∫ t
0 λu(τ)dτ. The vertical lines show the time positions {ti} of the zero

crossings.



where δ(t) is the delta function. Clearly, this is the impractical
and inconsistent estimate of λu(t) since it includes infinite
spikes yielding the estimate with the unbounded variance.
A consistent estimate of λu(t) can be obtained by a proper
smoothing of the naive estimate., i.e., by taking the convo-
lution of the naive estimate with the locally tuned kernel
function, i..e, λ̃u(t) ∗ bW (t), where bW (t) = Wb(Wt). This
leads to the following kernel estimate

λ̂u(t) =
∑
tk≤T

bW (t− tk), (18)

where b(t) is the positive kernel function. The smoothing
parameter W controls the bias-variance tradeoff of λ̂u(t).
Hence, small W results in large bias and small variance. On
the other hand, large W gives the opposite effect.
The problem of estimating the local intensity function has
been examined by a number of authors, see [21], [25] and
the references cited therein. These contributions have consid-
ered the classical setting when data are generated according
a certain point process. Furthermore, the employed kernel
functions belong to a class of compact supported density
functions. In event based systems the underlying signals are
often bandlimited and one is required to consider a class
of band-limited intensity functions that have bandwidth not
larger than W . By selecting b(t) in (18) as the bandlimited
positive function with the unit bandwidth the estimate λ̂u(t)
becomes the positive bandlimited function with the bandwidth
W . We denote the class of bandlimited positive functions with
bandwidth W as BL+(W ).
As we have already pointed out the estimate λ̂u(t) cannot
converge to the true λ(t) since level-crossing points are not
closely spaced. Owing to the derived multiplicative formula in
(13) we can establish the asymptotic theory by allowing the
factor αu to diverge. This means that the mean bandwidth γ
of the input process must increase. As a result one can define
the following estimate of Ω(t)

Ω̂(t) = λ̂u(t)/αu. (19)

Our first asymptotic result gives the evaluation of the mean
squared error of Ω̂(t).
Theorem 1. Let Ω(·) ∈ BL+(W0). Let b(·) ∈ BL+(1) such
that B1 =

∫
R b

2(t)dt and B2 =
∫
R t

2b(t)dt be finite. Then,
for t ∈ (0, T ) the following asymptotic formula holds

E[Ω̂(t)− Ω(t)]2 =
W

αu
B1Ω(t) (20)

+
1

4
B2

2(Ω
(2)(t))2W−4 + o2.

The term o2 is smaller order than W−4. The first term in (20)
is the estimate variance, whereas the second one is its bias.
The analogous result holds for the mean integrated squared
error (MISE).

Theorem 2. Under the conditions of Theorem 1 we have

E
∫ T

0

[Ω̂(t)− Ω(t)]2dt =
W

αu
B1

∫ T

0

Ω(t)dt (21)

+
1

4
B2

2

∫ T

0

(Ω(2)(t))2dtW−4 + o2.

It is seen that the pointwise and integrated errors tend to zero
if W = W (αu) → ∞ and W (αu)/αu → 0 as αu → ∞.
Hence, αu plays the role of ’sample size’ used in the classical
statistical setting. The variance-bias decomposition in (21) is
minimized by the choice of W of the form

WMISE = cα1/5
u , (22)

where c depends on Ω(t) and the kernel function b(t). Plug-
ging this optimized value of W into (21) gives the minimal
asymptotic version of MISE . Hence, we obtain

MISEopt = cη1/5(Ω)ψ2/5(b)α−4/5
u , (23)

for some universal constant c, where

η(Ω) =

(∫ T

0

Ω(t)dt

)4 ∫ T

0

(Ω(2)(t))2dt

and

ψ(b) =

(∫
R
b2(t)dt

)2 ∫
R
t2b(t)dt. (24)

The careful examination of the formula in (22) allows to show
that for Ω(·) ∈ BL+(W0) and if the input signal Z ∈ BL(ω0)
then

WMISE = cW
4/5
0 ω

1/5
0 .

With the choice ω0 =W0 we can obtain the desirable property
that Ω̂ ∈ BL+(W0). Furthermore, the optimized MISEopt

in (23) can be further minimized with respect to the kernel
choice. Ideally, one would like to minimize the functional ψ(b)
in (24) for b ∈ BL+(1). This seems to be a difficult problem
and the result below gives the partial answer to this question
giving the optimal kernel that minimizes the estimate bias.
Hence, we wish to minimize

J(b) =

∫
R
t2b(t)dt (25)

with respect to b ∈ BL+(1). This variational problem has the
unique solution and the optimal kernel is given by

bopt(t) = 4π
cos2(t/2)

(π2 − t2)2
, (26)

with J(bopt) = π2.

V. CONCLUDING REMARKS

In this paper we proposed the consistent kernel estimate of
the local bandwidth that characterizes fine properties of the
assumed class of nonstationary stochastic signals. Our estima-
tion method relies on the observed level-crossings counting
process at a fixed level. There are two natural extensions of the
proposed approach. The first generalization concerns a larger
class of nonstationary signals with a variance which is not



necessarily constant [16]. The second extension may consider
spatial data [26] where the theory of level sets for random
fields can be utilized [27].
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