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Abstract

Our brain can flexibly perform a variety of sequential learning tasks including
music, language, and mathematics, but the underlying mechanism hasn’t been
elucidated in traditional experimental and modeling studies which were designed
for only one task at a time. From the computational perspective, we hypothesize
that the working mechanism of a multitask model can provide a possible solution
to that of brains. Therefore, we trained a single recurrent neural network to perform
8 sequential learning tasks that depend on working memory, structure extraction,
categorization, and other cognitive processes. After training, the model can learn
sophisticated information holding and erasing strategies to perform multitasks
simultaneously. More interestingly, the model learns to reuse neurons to encode
similar task features. Hopefully, this work can provide a computational platform to
investigate the neural representations of cognitive sequential learning ability.

1 Introduction

Sequential learning is essential to the daily activities of animals and especially humans, such as
music, speech, language, and mathematics. In recent years, researchers have explored the abilities
of sequential learning in both primates and humans based on visual and auditory cues, elucidating
the crucial role of attention, timing encoding, working memory in different types of sequential
tasks. Previous work has found that different brain areas play different roles in general sequential
learning. For instance, ordinal numbers are ubiquitously represented in ventral intraparietal cortex
(VIP) neurons in macaque parietal cortex [12], while prefrontal cortex (PFC) is related to working
memory [8, 3], and the hippocampal area stores timing information [10, 4]. There were also studies
showing that the perirhinal cortex (PRC) can integrate item signals from corresponding sensory
cortices and temporal order information from the hippocampus, which will be transmitted to PFC for
motor planning [10, 11]. However, although there are so many studies in this field, none of them has
ever been able to explore the multiple sequential learning abilities mostly because it’s very hard to
train the animals in the electrophysiological experiment[14].

To explore the potential mechanisms, we took the approach of training recurrent neural network
(RNN) models. Our premise hypothesis is that if computational models can perform multiple
sequential learning tasks, then the internal working mechanism provides a possible explanation for
animal sequential learning ability. Specifically, we investigated the following questions:
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1. Can one RNN model accomplish multiple sequential learning tasks simultaneously?

2. What is the internal mechanism of the above multitask RNN model?

3. How are the different features stored at the neuronal level for each task?

4. If two tasks share similar structures, what would be the relationship between their neural
representations?

2 Setups

We first designed 8 sequential learning tasks which were simplified from previous physiological
studies[4, 6, 7, 13]. There has been a proliferation of research work on sequential learning both in
humans and non-human primates in recent years. They either let the humans or monkeys repeat the
sequence of visual or auditory items in forward or inverted order, or the subjects needed to report
whether the sequence order of certain pictures is the same as the one that appeared before some delay
time [7, 1]. As shown in Figure 1, we clarified the tasks as Repeat (repeat the sequence); Mirror
(report the sequence in inverse order); Pre (report the symbol before a specified position); Pos (report
the symbol after a specified position); Add first (repeat the sequence and add the first symbol in the
beginning); Add last (repeat the sequence and add the last symbol in the end); Shift (shift the position
of the first two symbols and report); and Swap (swap every two symbols according to the order. If the
sequence is odd, then just report the symbol at the end).

Repeat:
Mirror:              
Pre (the second):
Pos (the second):
Add first:
Add end:
Shift (the first two) :
Swap (each pair) :

x1, x2, …, xn x1, x2, …, xn
x1, x2, …, xn xn, xn-1, …, x1
x1, x2, …, xn x1
x1, x2, …, xn x3
x1, x2, …, xn x1, x1, x2, …, xn
x1, x2, …, xn x1, x2, …, xn, xn
x1, x2, …, xn x2, x1, …, xn
x1, x2, …, xn-1, xn x2, x1, …, xn-1, xn
x1, x2, …, xn x2, x1, …, xn

CueInput Output

Odd

Even

Part II.I  Model illustration

Task design: 
simplified from previous experimental paradigm
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Figure 1: Definition of 8 sequential learning tasks. The same color denotes a similar task structure.

To accomplish these tasks, we adopt a sequence tagging paradigm. Figure 2 shows an example of
the Repeat task. As shown, model inputs are x1, x2, x3, followed by a cue to indicate which task to
perform, and it needs to predict x1, x2, x3 at the last three-time steps.

x1 x2 x3

0 00

output

RNN

embedding
x1 x2 x3 cue

Figure 2: Architecture of sequence tagging for the Repeat task.

Miller and Cowan have summarized that the capacity of working memory is limited to about seven or
four chunks according to a variety of experimental data [9, 2]. Therefore, we used the same range of
sequence numbers in our experiments. Specifically, the training data comprises 20,000 sequences
with a length of 4, 5, or 7 (and each symbol is randomly selected from 1 to 6). To successfully perform
sequential learning tasks, the model should have the ability to generalize, thus, the testing data set
is randomly selected from a length of 3 to 8 (each length consists of 2,000 sequences). Besides,
the multitask RNN model is trained by randomly pick a batch of data from one task at a time. For
comparison, we also trained single task RNN with the same settings. In all experiments, we used an
advanced RNN, called Long-short-term memory (LSTM) network [5], with one layer comprising 50
hidden neurons and a batch size of 32. We have also tried a simple RNN model without gating and
memory cell mechanism, but it failed on the generalization tests.

2



3 Results

3.1 Can one RNN model accomplish multiple sequential learning tasks simultaneously?

We first tested the ability of the RNN model to solve all tasks together or individually. As shown
in Figure 3, the multitask RNN model achieves excellent performance on all 8 tasks with different
sequence lengths (The same results were found for single task RNN). An intriguing result is that the
performance of the model is not linearly decreased with the ordinal position of each item, instead
shows a "U"-shape-curve, which is similar to that in humans and animals [7]. The reason behind this
would be an interesting future work to explore.

(a)                                                                                      (b) 
     
 
 
 
 
  

Figure 3: Multitask RNN accuracy, where (a) shows the average accuracy over all time points and (b)
shows the accuracy at each time point with a sequence length of 8. Task Pre and Pos are not shown
since they only have one output.

3.2 What is the internal mechanism of the above multitask RNN model?

To explore the model’s working mechanism, we proposed a label-clustering (LC) method to measure
how much information of the target input is maintained in every time step. Taking the repeat task
for instance, we have a set of repeat sequences x0, x1, x2, x3, x4 in which each symbol appears in
a specific time point from t0 to t4. At each time point ti, the network needs to receive a new input
symbol xi and maintain the historical information of symbol x1:i−1 in the meantime. For instance,
we want to calculate how much information of symbol x1 is maintained at time t2. To achieve this
goal, the LC method first marks the value of symbols at time t2 as the value of symbols at time t1.
Then, it extracts the hidden embedding at t2, resulting in a set of 50-dimensional vectors each with
a corresponding label. Finally, the LC method calculates the aggregation degree (Davies-Bouldin
index, DBI) of the same label. In short, the greater the difference between intra-class and inter-class
aggregation, the more information the symbol x1 contains at time point t2.

(a)                                                                                      (b)   
 
 
 
 
 
 
 
 
 
 
 
(a)                                       Repeat                                      (b)                                 Mirror 

 
 
 Figure 4: LC results for (a) Repeat task (b) Mirror task with the sequence input length of 4.

Figure 4 shows that the RNN model learns to hold and erase information at the right time (Similar
results were found on all 8 tasks). In the encoding phase (x0 − x4), some information is maintained
(low DBI) and others are lost (higher DBI) over time. In the decoding phase (y0 − y4), most of the
corresponding information is erased after the symbols are output. Interestingly, we found that single
and multiple task RNN models seem to learn different strategies and the latter one can learn more
precise sequential learning rules, e.g., predict the next symbol at the cue time (low DBI of the blue
line at cue in the Repeat task).
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3.3 How are the different features stored at the neuronal level for each task?

To successfully perform the 8 tasks, the RNN model should: (1) encode and store input symbols along
with their appearance time, and (2) extract and output the right symbols at the right time. Therefore,
the symbol and time features are crucial to accomplish these tasks. Next, we analyzed relations
between the two features with individual neurons in the hidden layer of the RNNs model.

We conducted an ablation test by predicting these features with one neuron shielded. The hypothesis
is that if the network uses a local or sparse coding, then there should be a small set of neurons that
encode a specific feature, thus ablating them would lead to a drastic performance drop (or error rise).

(a)                                                                                      (b)   
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: Root-mean-square error (RMSE) of feature (a) time and (b) symbol when masking one
neuron at a time.
As shown in Figure 5, there are single neurons that are more important to one feature than others,
such as neuron 9 for time and neuron 19 for symbol. We then masked the top 10 neurons that are
sensitive to each feature and found that the left neurons can still predict the two features pretty well.
Therefore, we conclude that no single neuron is responsible for all behaviors of any features, thus,
task features are stored in RNN in a distributed-represented way rather than a local-represented way.

3.4 If two tasks share similar structures, what would be the relationship between their
neural representations?

From Figure 5, we can also find that multitask RNN learns to use the same neurons when performing
similar tasks. For instance, Pre and Pos tasks have similar error rises; Repeat, Add-first, and Add-end
have similar error rises. Note that this phenomenon has not been found on single-task RNN, which
indicates that the RNN model can learn more physiologically meaningful representations only with
simultaneous training on different tasks.

4 Conclusions and Future Work

We trained a single RNN to perform multiple sequential learning tasks at the same time, hoping to
provide a computational platform to investigate the neural representations of cognitive sequential
learning ability. An interesting future work is to explore complicated sequential learning tasks such as
sequences with a nested structure which is important to animals’ sequential learning [4]. To explore
that, we need to first simplify and formalize these tasks to a unified architecture. Then we may
need more powerful computational models than RNN such as the Neural Turing Machine (NTM)
model which has an extra memory module to flexibly manipulate information flow. The purpose
of the computational models is to help us understand the mechanism of the brain and to figure out
how the real brain truly solves these problems. Therefore, we also need to compare the results
of computational models with real neural data such as the electrophysiological data recorded by
experimental scientists.

Furthermore, we can also build a brain-inspired computational model to do these sequential learning
tasks. For instance, as we proposed before, for the visual sequential learning task, the visual items are
originated from the anterior-inferior temporal cortex (area TE); the timing and structure information
of the sequence are represented in the posterior parietal cortex (PPC) and hippocampus. All these will
then be integrated into PFC as working memory. Accordingly, RNN with biology-inspired working
memory and multimodal integration modules may be more intelligent in accomplishing multitask
sequential tasks and more similar to the brain. In this way, computational models and the brain
assisted each other, driving both artificial intelligence and neuroscience forward.
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